Studies on Antimicrobial Sesquiterpenes in the Leaves of Rugosa
by user
Comments
Transcript
Studies on Antimicrobial Sesquiterpenes in the Leaves of Rugosa
Title Author(s) Studies on Antimicrobial Sesquiterpenes in the Leaves of Rugosa Rose (Rosa rugosa Thunb.) Hashidoko, Yasuyuki Citation Issue Date 1990-03-24 DOI Doc URL http://hdl.handle.net/2115/36087 Right Type theses (doctoral) Additional Information There are other files related to this item in HUSCAP. Check the above URL. File Information hashidoko2.pdf (Volume II) Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Studies on Antlmicrobial Sesquiterpenes in the Leaves of Rugosa Rose (Rosa rugosa Thunb.) ハマナス (Rosa rugosa Thunb.) 葉中の抗菌性セスキテルペンに関する研究 Volume II YASUYUKI HASHIDOKO Doctor's Course, Division of Agricultural Chemistry March 1990 農芸化学専攻 橋床 泰之 博士課程 3-6 Rugosic Acid A Metab'olites in t"zosa rt'igosct- Lea-v-es .t. 3-6-1 Introduction As described in t,he previous section, rugosal A (1) is probably synthesized from carota-1,4-dienaldehyde (3) and further oxidized to rugosic acid A (2) in the leaf tissues of Rosa rugosa. Those carotane peroxides 'tend to be 'accumulated in 'the tissues. However, the author noticed that old and slightly senescent leaves of rosa rugosa (for example, sample VIII) contained quite small amount of those compounds. Albeit the dramatic decrease of 1 and 2, the leaves were still rich in oily substance. The author therefore speculated that those peroxides were metabolized in the senescent leaf tissues. Accordingly, the presuinable metabolites were surveyed in t,he constituents of senescent Rosa rugosa leaves, especially in the acidic extractives. In this section, the auther describes isolat,ion and identification of those metabolites of rugosic acid A (2), and discusses on the biogenesis of carotanolds originated in Rosa rugosa, focussing on rugosal A (1) as a key compound. 3-6-2 Rugosic Acid A Methyl Ester Rugosic acid A methyl ester (5), a neutral metabolite of rugosic acid A (2) was found during a survey of peroxides in Rosa rugosa leaf-constituents, using a peroxide test with N,N=dimethylp-phenylenediamine sulfite reagent. Firstly, 9.6 kg of leaves (sample V) were mechanically damaged and then soaked in 76 liters of tap water for 24 hr, at whieh point the wat・er layer was collected and the exudates were partitionated with an equal volume of EtOAc. After being concentrated to ca 5 liters, t・he EtOAc 400 extracts were once washed with 10 liters of 5 % NaHC03 to ca 17 g tt of neutral substances in the organic layer. The neutral constituents coated on 70 ml of silica gel were chromatographed on silica gel column settled in benzene (gel voleme 1500 inl) to obtain 9 fractions as shown in Table 3-90 and Fig. 3-235. Since an unknown spot clearly positive to the peroxide reagent was detecetd in Fr-V-1, t,he compound denoted as RL-PERO-3 was isolated by PTLC successively in n-hexane-EtOAc 3:1, ,successive benzene-EtOAc 5:1, n-hexane-EtOAc 4:1 and CHC13-MeOH 50:2; Rf O.66, O.58, O.36 and O.81, respeetively) to give colorless needles (6.5 mg, from ca 1/2 of Fr-3) (Fig. 3-236). Table 3-90 No Fr-V-1 Fr-V-2 Fr-V-3 Fr-V-4 Fr-V-5 Fr-V-6 Fy-V-7 Fr-V-8 Fr-V-9 Fractionation of the extraetives from Samp1e V by silica gel column chromatography Volume Solvent' 20 20 50 50 50 50 100 100 100 % % % % % % % % % 500 500 500 500 500 500 500 500 500 EA/B EA/B EA/B EA/B EA/BEA/B EtOAc EtOAc EtOAc 401 ml ml ml ml ml ml ml ml ml H-EA 9:1 o RL-,,.,tbyekag O quenching under UV 254 nm ZZlp peroxide test: + 8 6 1 2 3 4 5 6 7 8 9 Fig. 3-235 TL Chromatograpm of Column Eluants of Neutral Constituents in the Exduates from Damaged Rosa rttgosa Leaves The isolate showing the molecular ion at m/z 296 (O.8 %) was agreeable with that of RSA-CN or RDA-ME lk in the EI-MS (Fig. 3237). In the IH-NMR spectrum, RL-PERO-3 was also indistinguishable fvom them (Fig. 3-238). RL-PERO-3 was thus identified as 5. The fifth naturally occurring carotanoid from Rosa rugosa named rugosic acid A methyl ester was thus eonfirmed. As the optical rQtation of ' the isolate [ct]D + 150 O indicates an absolute eonfiguration identical with that of rugosie acid A (2), 5 is presumed to be derived from 2 in the plant. The possibility that 5 is an artifact was reasonably rejected, because the leaf material was extracted not with MeOH but with water. Rugosic acid A methyl ester (5) was also isolated from sample VI (ca 4.5 mg/kg). The content of 5 in the overmatured leaves (eollected in late Augst) was about 3.5 times higher than that of leaves during the flowering season ・(June-July). Therefore, this methyl ester was regarded as an ordinary met・abolite of 'rugosic acid A (2). 402 B-EA 5:1 H-EA 3;1 - C-M 50:2 under a quenching UV 254 nm do mo ma peroxide test: + a RL-PERO---3 of do o em wh O O " ny"-------- Fr-V-3 std.lk RL-PERO-3 lk -'O---. RL-PERO-3 lk ' Fig. 3-236 TL Chromatograrns of Rugosic Acid A Methyl Ester (RLPERO-3) IZZ 6 8Z a7s 6Z 41 55 296 4Z 2Z 7Z 199 .83 g7 *2Z,Z IZ9 91 12Z 175 se lzz lsz 2e3 2ZZ 221 264 235 25e 3ZZ 35Z ' Fig. 3-237 EI-lyfass Spectrum of Rugosic Acid A Methyl Ester (RL- PERO-3) 403 ( ⑩ ∩ 0 6 り 。 口 ・r→ い N 8 oo ゆ ) 雪 」 d 8 ( 詩 o 6い σり l 国 幽 1 需 日 3 8 ,6 日 ) 一 の 9 の 8 「 国 H 』 臼 ρ Φ r 一 器 8言l く u;〔し ℃ ・H o ぐ ま 一 2 。 ・了一畳 の o LO bO 8 づ 面 8 偏 。 べ ρ o 累 〔=) @ρ\」噌 「 & 「 ① @Ln 8 @ 扇 T @ L. @ L. 臼 の 呂 寓 面 9 1 8 一 0; 面 ◎o ◎り N 1 f ◎り @ 0 @ @ (⊃ . @ @ 一 @ q. @ L 穿『 o 一 @ 「、. bρ 。F4 「∫rユ. 一 昌 @ @ ● ⊂; に @ @ 8 へ ト ム 404 山 Table 3-gl Physicochemieal properties of meth:vl rugosate A (5== PDA-ME) -VUiiJ"/ ""PNtSNt / COOCH3 NN :N: OH 5= lk Colorless needles, mp i44-147 "C Rf: O.66 (H-EA 3:1), O.56 (B-EA 5:1), O.34 (H-EA 4:l), O.81 (C-M 50:2) Vanillin-H2S04 eolor: pinkish grey N,IVL-dimethyl-p-phenylenediamine sulfate test: positive (pink) [a]D : + 150 O (c O.02 in MeOH) FI-MS m/z (%): 296 (M+, 100) EI-MS m/z (%): 296 (M', O.8), 278 (M+-H20, 2.0), 264 (4.0), 246 (2.9), 235 (3.8), 221 (9.6), 203 (5.7), 175 (6.7), 139 (31), 120 (17), 109 (19), 97 (27), 83 (29), 81 (20), 70 (29), 69 (100), 57 (20), 55 (54), 43 (39), 41 (59). iH-NMR 6g"Di8i3(soo MHz): 4.3g7 (iH, dd,, J= n.s and 6.s Hz, c-2-H), 2.687 (IH, d, J= 11.5 Hz, C-2-OH), 7.064 (IH, dd, J= 6.4 and 1.2 Hz, C-3-H), 5.234 (IH, ddd, J= 5.1, 2.4 and 1,2 Hz, C-5-H), 2.220 (IH, dd, .J= 14.2 and 5.1 Hz, C-6-Ha), 1.884 (IH, dd, .I= 14.2 and 2.4 Hz, C-6-Hb), 1.813 (IH, ddd, J= 12.8, 12.8 and 7.1 Hz, C-8-Ha), 1.706 (IH, dd, J= 12.1 and 6.5 Hz, C-8-Hb), 1.603 (IH, ddd, .1= C-9-Ha), 1.434 (IH, dddd, J= 13.0, 13.0, 10.8 and 6.6 Hz, C-9-Hb), 1.873 (IH, ddd, J= 10.3, 8.5 and 2.2 Hz, C-10-H), 2.611 (IH, double sept., J= 6.8 and 2.2 Hz, C-11-H), O.966 (3H, d, J= 6.8 Hz, C-12-H3), O.922 (3H, d, J= 6.8 Hz, C-13-H3), O.899 (3H, s, C-15-H3), 3.776 (3H, s, C-7'-H3). These signals showed a good accordance to those of RSA-CN (lk)・ 405 3-6-2 Rugosic Acid B As the metabolic fate of carotanoids, it is expectable that rugosic acid A (2) is converted into some polar compounds through some rearrangement at the endoperoxide bridge, since 2 is the largesP pool of carotanoids in Rosa rugosa tissues. The leaf materials (sample VH and VllI) were botl'} extracted with MeOH, and the concentrated extract, was dissolved in EtOAc. The organic layer of V (ca 1 liter) was once washed with 700 ml of 5 % NaHC03・ The' washing was acidified to pH 3.0 with 5 N HCI, and then extracted with 500 ml of EtOAc. The acidic substances (ca 8 g) were successively chromatographed on a silica gel column. As shown in Table 3-92, the acid eonstituents coated on 90 ml silica gel was put onto 250 ml of Wako gel C-200 settled in n-hexane, and then eluted with a EtOAc/hexane mixture containing O.33 % of formic acid. The eluates were iinmediately concentrated to dryness to remove the formie aeid, and then the residue was dissolved in small volume of EtOAc. The TLC pattern of the each fraetion was shown in Fig. 3-239. Tab1e 3-92 Si1ica gel column chroma.tography of acidic constituents from ,sample VU No Fr-VIIA-1 Fr-VIIA-2 Fr-VIIA-3 Fr-VIIA-4 Fr-VIIA-5 Fr-VIIA-6 Fr-VIIA-7 Fr-VIIA-8 Fr-VIIA-9 Fr-VIIA-1O Solvent CH2C12-HCOOH 300:1 CH2C12-HCOOH 300:1 CH2C12-MeOH-HcooH 400:10:1.5 CH2C12-MeOH-HcooH 400:10:1.5 CH2Cl2-MeOH-HCOOH 400:20:1.5 CH2C12-rvleOH-HcooH 400:20:1.5 CH2C12-MeOH-HcooH 400:60;i.5 CH2C12-MeOH-HcooH 400:60:1.5 CH2C12-MeOH-HcooH 400:60:1.5 acetone 406 Vo1ume 100 200 200 200 200 200 200 200 200 300 ml ml ) ml ml ) ml ml ml ml ml ml Weight (g) o o o 5 . 9 . 9 . 4 In Fr-VUA-8 and -9, some spots showing lower Rf than that of 2 were detected on TLC, and one of them indicated a yellow colo.ration by the vanillin-H2S04 test. As RDA-KOH (2e) was also colorlized yellow with vanillin-H2S04 reagent, the acidic fraction was again developed in H-EA-F 25:25:i with authentic 2e. As the result, the focused compound and 2e were agreeable in their Rf values (O.27) and responses to vanillin-H2S04 reagent・ Accordingly, the focused compound was isolated by PTLC in H-EA-F 30:30:1 and C-M-F 30:2:1 (Rf O.21, in Fig. 3-240), to give 10.4 mg of a colorless syrup (ca 14 mg/kg of sample VH). EI-MS and IH-NMR spectra of the isolate were indistinguishable £rom those of 2e (Fig. 3-241 and 242, cL 13C-NMR spectrum in Fig. 3-243), and accordingly the isoiate named rugosic acid B (6= 2e) wqs revealed to be identical to RDA-KOH and present, in the fresh leaves of Rosa' rugosa. Although rugosic aeid B (6) is convertible from rugosic acid A (2) by an alkali-reaction, the isolate (6) from the exudates seems not to be an artifaet but a nat.urally oceurring earotane acid, since the MeOH extract was ordinarily aeidic (> pH 5.5). H---EA-F 30:10:1 o Q o 8 8 o D (z) a O Fig. 3-239 TL Chromatogram of Column Eluants of Acidic Constituents in the Methanol Extracts of Rosa rugosa Leaves (Sample V) 407 H--EA-F 25:25:1 C-M-F 30:2:1 H-・EA-F 30:30;i O guenching under UV 254 nm c; i:[I/:ti iiiiii O @ vaniliin"-H2SO4 test: posltlve 1i,T 11・ pt..------e.- Fr-VIIA-8 Std., 2e Fig. 3-240 Isolated 2e Isolated 2e TL Chromatograms of Rugosic acid B and Authentic Compound 2e IZZ 1 9 se 69 6e 4Z a64 41 97 181 55 282 *3Z.Z 81 91 2Z 5Z IZ9 IZZ Fig. 3-24i 121 a53 2Z5 15Z 2ZZ EI-lyfass Speet・rum o£ 408 22Z 246 asz 3ZZ Rugosic Acid B S5Z 垂 L o 暫6 8 婚 8 8 面 Φ o L3 ρ Φ H o 8 κ; 8 d ・H “ 8 9 ゼ べ L o o ゆ ) 目 oo言i & φ【・ qq ℃ ・r→ l: o Cつ く め べ o 8 に 貯 r-1 の o ご b幻 じ ド 舶 。 8 べ づ ρ o Φ 8 の 面 8 z 。) 的 ぜ 「 ゆ 8 φ 一 N N 寸 l oり 8 δ 一 ● 409 ● bρ ・r→ h 一ト o 9 鶏 oく◎ 可℃ 1 ① 9自 o ρ Φ ω邸 oo ミH 馳 。切 “。:Σ1 hO N 9一 ) 07 o的 一ζ1℃ L・H 9名 o ・r→ 1訟 N 『 葛 爲ω 一〇 bO 聖 鵠 oα自 コ 触 o 三霞 ⊂=)吻 冒「〔L ~ o N【し い 済 。・←」 f刈 ,o Φ 。 ご ¢の 一円 N ω ψ 9そ 一Q 9H 毒『 等 σり σり 寸 1 ⊂)(N 一σ、 ◎り ⊂, ・ 一。)b幻 倒 ・▼→ 島 410 In this extractives (Sample VIII), rugosic acid B (6) only as an ambiguous spot detected by Vanillin-H2S04 test, rugosic acid C (7) was undetected. On the contrary, 8 was detectable in the acidiq extractives of the younger leaves VII). These facts allowed a speculation that rugosic acid further transformed to various minor metabolites including acids B・-D (6, 7 and 8), and that only 8 among them can be accumulated in the old leaves. Probably, 8 is one of the stable and physiologically inactive carotane acids in Rosa tissues, 411 appeared whi1e also (samp1e A (2) is rugos1c most rugosa Table 3-93 Physicochemical properties of rugosic acid B (6= RDA- KOH) OH NN "N "x lc1i COOH "s""NO N'-" ssl OH 6= 2e Colorless columns, mp Vanillin-H2S04 color: clear yellow EI-MS m/z (%): 282 (M', O.1), 264 (M"-H20, 1.2), 246 (5.6), 231 ' (3.7), 220 (13), 205 (9.5), 204 (8.6), 203 (9.0), 181 (44), 140 (37), 139 (100), 121 (22), 109 (17), 97 (58), 95 (19), 91 (20), 83 (17), 81 (30), 79 (16), 69 (73), 55 (40), 44 (49), 43 (40), 41 (63) 1H-NMR 6[i{Mlil8s2 (soo MHz): 6.7g1 (IH, d, .T= 4.g Hz, c-3-H), 4.o1g (.J= 4.9 Hz, C-2-H), 2,414 (IH, d sept., J= 6.9 and 3.9 Hz, C11-H), 2.172 (IH, d, J= 11.9 Hz, C-6-Ha), ca 2.09 (IH, overlapped, C-10-H), l.966 (IH, d, .T= 11.9 Hz, C-6-Hb), 1.966 (IH, m, C-9-Ha), 1.753 (IH, m, C-8-Ha), 1.662 (IH, ddd, J= 15,8 and 7.2 Hz, C-8-Hb), 1.638 (IH, ddd, J= 12.5, 11.4 and 7.0 Hz, C-9-Hb), 1.112 (3H, s, C-15-H3), 1・O02 (3H, d, J= 6.9 Hz, C-12-H3), O.911 (3H, d, J= 6.9 Hz, C-12H3)' 13c-NMR 6Elit!i18s2'(125 lvfHz): 167.2 (C-14), 138・9 (C--4), 129・2 (C-3), 102.0 (C-5), 97.0 (C-1), 65.1 (C-2), 56.0 (C-10), 53.4 (C6), 48.9 (C-7), 44.8 (C-8), 25.7 (C-12), 25.6 (C-11), 24.7 (C-15), 24.0 (C-9), 20.7 (C-13). 412 3-6-4 Rugosic Acid C From the column fractior} (Fr-VIIA-8 and -9) eontainir}g rugosie acid B, a substance with.Rf O.23 in n-hexane-EtOAe-HCOOH 25:25:1 .t . identical to that of authentic RSA-TU (2a) was also found. After PTLC in the solvent, the substance was further purified by PTLC in CHCI3-MeOH'HCOOH 30:2;1 (Rf O.30) and finally isolated by PTLC in the first solvent syst,em to give 1.9 mg of a colorless syrup (Fig. 3-244), The isolate was elucidated as 7, by direct comparison with 2a in EI-mass and IH-NMR spectra, and was named rugosic acid C (Ftg. 3'245 and 246), Rugosic acid C (7) was involved in a comparatively small amount in the leaf tissues (ca 5 mg/kg). This compound was considered as one of the metabolites of rugosic acid A (2),' as with rugosic acid B (6). Since these acidic metabolites were hardly found in senescent leaves colleeted in late September (Sample VIII), it was expected that these compound were further metabolized or modified in the tissues while the leaves were funetioning. H-EA-F 30:30;1 C-M-F 30:2:1 s H-EA-F 25:25:1 o quenching under UV 254 nm :"i3tl.1:.: va egsU"sggi 92.e `liiii> Qtk.. s. Fr-VIIA-8 Fig. 3-244 .v・・ @-@ @ Std. s.'::.':'lt 2a Isolated 2a ------ k----- Isolated 2a TL Chromatogram of Rugosic Acid C and Authentic CompQund 2a 413 lze 9 14e BZ 6Z 41 4Z 55 189 69 81 2Z *IZ.Z 162 izsii7 i3i 77 177 5Z 266 -L-"--'-・---r-'"---"--v--- 91 IZZ Fig. 3-245 2Z5 2ZZ 15Z a17 232 248 25Z 3ez EI-Mass Spectrum of Rugosic Acid C 414 35Z 釧〔 o 8 」 d 鵠 曽 & 二 8 d (Qり 囲 需 9 & 二 曽 $ & 二 外 臼 面 』 8 呂 & 」 Q Q 8 雨 鎖 ’H “ N 8・8 ぜ LΩ ) o 託 ・H ℃ 8q一 済 0 ぐ o 8 ・響一略 二 。α o 冒 bり ぜ 8i葦 呂 d飢 め 輌 累 o ぜ 9 8 K 90 Φ の 髪 8 器 ご ぜ 8葦 ま rく【L ぜ ヨ 8 κ φ 8め 〒 寓 州 ⑩ 寸 8 6 N I ◎り ● b幻 ・H 山 415 Tabie 3-94l Physicochemdca1 properties of rugosic acid C (7= RDA-TU) .OH t .,s`' ""NOH lc11 COOH s =-OH 7= 2a A eolorless syrup Vanillin-H2S04 color: grayish yellow -> graish purple EI--MS m/z (%): 266 (M+-H20, O.4), 248 (M"-2H20, 6.4), 232 (4.7), 230 (4.1), 217 (9,7), 205 (13), 190 (15), 189 (36), 162 (20), 145 (25), 140 (83), 131 (17), 117 (17), 97 (100), 96 (17), 9i (27), 81 (23), 69 (35), 55 (33), 44 (28), 43 (28), 41 (so), IH-NMR 6EiSlsC13(500 MHz): 7,O05 (IH, br., C-3-H), 4.900 (IH, br・, C- 5-H), 4.436 (IH, br., C-2-H), '2.461 (IH, br., C-11-H), ca 2,21 (IH, ill, C-6-Ha), 2.188 (IH, m, C-10-H), 2.016 (IH, dd, J= 15.4 and 7.1 Hz, C-6-Hb), 1.959 (IH, m, C-9-Ha), 1.769 (IH, m, C-9-Hb), 1,551 (IH, m, C-8-Ha), 1.438 (IH, dd, .r= ll.6 and 7.0 Hz, C-8-Hb), O.947 (3H, d, .I= 6.8 Hz, C-12H3), O.901 (3H, d, .1= 6.8 Hz, C-l3-H3), O.878 (3}I, s, C-15- H3)' 416 3-6-5 Rugosic Acid D Rugosic acid D (8), a naturally occurring carotanoic acid equal to RDA-TSA (2c) was isolated from the exdudates of old Rosa rugosa leaves. Sample VII[ (550 g) collected in late Sept,ember was once extracted for 3 weeks with ca 4 liters of MeOH. The ' extraetives were defatted twice by shaking with a 1/3 volume of nhexane, and the resulting lower layer was concentrated to ca 500 ml of a water suspension. The water layer was saturated with NaCl and extraeted with 600 ml of EtOAc (x 2). The combined EtOAc extracts were repeatedly washed with 700 ml of 5 % NaHC03 solution. The washings were acidified with 5 N HCI' to pH 3.5 and re-extracted with 500 ml of EtOAc. The EtOAe layer contain・ing the acidic constituents was then dried over Na2S04, and concentrated in vacuo to give ca 3 g of acidic extracts. ' 'acidic extractives were chromatographed (pTLc) in nThe hexane-EtOAc-HCOOH 25:25:1 (Fig. 3-247), As a constituent corresponding to RSD-TSA (2c) was detected as the major one, the compound was focused to isolate. After the PTLC in the H-EA-F system, the focused compound (Rf O.51) was further purified by PTLC in CHC13-MeOH-HCOOH 50:2:1 (Rf O.34). By re-PTLC in the first solvent system, the compound was eventually isolated as 11.2 mg of a colorless syrup (calculated ca 41 ing/kg). In EI-mass and IH-NMR speetra, the isolate and RDA-TSA was completely identical (Fig. 3248 and 249). The fourth naturally occurring carotanoic acid named rugosic acid D was thus formulated as 8 (= 2c). In this extractives (Sample VII[), rugosic acid B (6) appeared only as an ambiguous spot detected by Vanillin-H2S04 test,, while rugosic acid C (7) was undetected. On the contrary, 8 was also deteetable in the acidic extraetives of the younger leaves (sample V). These facts allowed a speeulation that rugosic acid A (2) is further transformed to various minor metabolites including rugosic 417 acids B-D (6, 7 and 8), and that only 8 among them can be rnACH+ accumulated in t,he old lea-v-es. Pi'obab]y, 8 is orie of the "iUOL st,able and physiologically inactive carotane acids in Rosa rugosa tissues. C-M-F 50:2;i H-EA-F 25:25:1 O quenching under UV 254 nm cl $n・,'iis'; vanillin-H2S04 test: posltxve iiii (ES) {g:) @) ,.;,,i・ll' SampleVI[I Std.2c Isolated 2c - Fig. 3-247 TL Chromatographic Detection of Rugosic Acid D in Acidic Extractions (Sample IZZ VIll) 7 BZ 6Z 41 S5 4Z 156 87 B3 2Z l lsilI 9 IZ9 1 ' 141 122 i35 1l] lee Fig. 3-248 '191 175 alB a33 a49 264 , 2ZZ 25Z 15Z 3ZZ EI-Mass Speetrum of Rugosic Acid D 418 3SZ L: . 一 一 } 一 8 噛 8 C 丙 (⑩ 8 雨 Q⑩ o q }イ い N 8 q ooゆ ) P 〔⊃マ 。己 ロ;【L ∩ ℃ ・▼→ o 00欄m < o 8 め ・P1 の o bO 鰍 。 8 臼 べ ρ o ① 8 q の 面 1 「 @ @ @ 8 £ 氏 匹 φ 目 ① 寸 N @ 一 5 Qり 8 噌⊂; 一 6 419 ■ bO 。H 国 Tab1e 3-95 Physicochemical properties of rugosic acid P (8= RDATSA) "N "N NN""sdN >NN"i"" o / COOH s NS NOH 2c A colorless syrup Rf; O.51 (H-EA--F 25:25:1), O,34 (C-N 100:5:2) Vanillin-H2S04 color: grayish brown EI-)!S n?/z (%): 264 (M'-H20, 2.1 Hz), 249 (M'-CH3-H20, 2,8), 233 (2.8), 218 (6.3), 203 (3.0), 191 (10), 175 (7.2), 165 (7.9), 156 (33), 141 (15), 138 (10), 135 (10), 122 (12), 109 (15), 91 (13), 87 (32), 83 (26), 70 (100), 69 (62), 55 (54), 53 (16), 43 (31), 41 (61). IH-NrviR 6CiMDs6 (soo MHz); 7.o76 (IH, d, J= 4.1 Hz, c-3-H), 5.025 (IH, br. d, .T= 7.7 Hz, C-5-H), 3.940 (IH, d, J= 4.1 Hz, C2-H), 3.647 (IH, ddd, J= 8.5, 6.5 and 3.0 Hz, C-10-H), 1.824 (IH, dd, Jr= 12.2 and 7.7 Hz, C-6-Ha), 1.560 (IH, d sept., .T= 6.8 and 6.5 Hz, C-ll-H), 1.394 (IH, in, C-8-Ha), 1.350 (IH, br. d, J= 12.2 Hz, C-6-Hb), ca 1.26 (IH, m, C-8Hb), ca 1.21 (IH, m, J= C-9-Ha), 1.070 (IH, ill, C-9-Hb), O.873 (3H, d, .T= 6.8 Hz, C-12-H3), O.775 (3H, d, J= 6.8 Hz, C-13-H3), O.698 (3H, s, C-15-H3). 420 3-6-6 Conclusion Rugosic acid A (2) as a large pool of carotanoids in Rosa rugosa was found to be further metabolized into more polar and stable compounds. As the result of these surveys, at least four metabolic pathways for 2 were presumed (Scheme 3-32). Those metabolic reaction, involving methylation at the carboxyl group and peroxide rearrangements, were presumed as only a part of the complicated carotanoid metabolism in Rosa rugosa, since more and more constituents were detectable on TLC. However, those metabolites are considered to oecupy an initial part in the metabolism of 2. Significance of those metabolit・es are not known. As Rosa rugosa can control the pathogenic fungus, those sesquiterpenes related to 2 may be immune from pathogens. ""ON d:: 1 CHO 6, × NS SON : ol ., SN NO. .S ", cooH o/I cooMe 6'"' , OH OH × s s ,OH "N "N NSS >s,"i N /44 ,,"sO o N" CHO .OH N" tSH """ ON / COOH OH t: OH Scheme 3'46 Metabolic pathways from rugosic acid A (2) 421 / COOH 3-7 Minor Carotanoids in Rosa rugosa ' 3-7-1 Introduction According to the survey of terpenoids in Rosa rugosa leaves, it was revealed that the pathway from carota-1,4-dienaldehyde (3) to rugosic acids A-D and rugosic acid A methyl ester (2 and 5-8) is the main flow in earotanoid metabolism. However, Rosa rugosa leaves also contain various kinds of minor carotanoids, which are considered to be originated in some isomers of 3 found in the RL fraction. Here, minor carotanoids isolated and identified by spectroscopic and/or chemical methods are described. 3L7:2 Daucenaldehyde and Its Related Compounds 1) Daueenaldehyde As described in Section 5 of t,his chapter, some less polar constituents idetected in GC-MS analysis of RL fraction indieated a sesquiterpene nature isomeric to carota-1,4-dienaldehyde (3). Following by the HPLC for isolation of carota-1,4-dienaidehyde (3), these minor constit,uents were also purified. A compound appearing as the second peak in HPLC (Unisil Q 100-5, 2.5 % EtOAc/n-hexane) was isolated as a colorless oii (Fig. 3-250) identical with RL-A in MS (the former EI-MS and the latter GC-MS, Fig. 3-25' 1). RL-A was considered as an isomer of carota-1,4-dienaldehyde (3) because of' the same molecular weight (M+ 218, ClsH220) as that of 3 and similar MS fragmentation to that of 3. Furthermore, RL-A showed xMmeaOxH 229 nm, which was indicative of the presence of an a,& unsaturated aldehyde group in the molecule. In IH-NMR spectrum, an isopropyl group (6H O.897 and O.869 each 3H, d, J= 6.9 Hz, and 2.515, IH, sept., J= 6.9 Hz ), an 422 t ; i i i ;・ l・ 11 i' l f t tt-- '---- - ' '- -- --- L '------H- r------L±・ : -> o t' RL-A / ・I, ' 1 ;- l l iiY ・! 1 l .11 ! t ; -- : 1. Ii' : ・; :. l 8l l・ 1-H l. -11 i K :・ Fig. 3-250 HPL-Chromatogram of RL Fraction (at UV 230 nm); The second peak isolated by HPLC revealed the compound was identical to RL-A depicted in Fig. 3-162. 423 aldehyde group (6H 9.263, IH, s) and bridgehead methyl group (6H O.811, 3H, s) all characteristic of a carotane aldehyde were obse.rved (Fig. 3-252 and Table 3-95). As a clear difference of RL-A from 3 showing two olefinic protons in the IH-NMR spectrum, only one olefinic proton was detected at 6H 6.101 (IH, ddd, .T= 8.2, 5.2 and 2.0 Hz). In addition, the methine proton of the ・isopropyl group was observed as a clear septet signal (6H 2.515, tJ= 6・9 Hz), which suggested that the isopropyl group was attached to a nonhydrogen-bearing carbon, Therefore, a carotane structure for RL-A which possesses a C,C-double bond on C(10)-C(1) was tentatively proposed. To confirm the estimation, decoupling experiments were carried out. As the results, a part of proton sequence was newly deduced as shown in Fig. 3-253. The olefinic proton was vicinally coupled with a pair of methylene prot,ons at 6H 2.053 (IH, br. dd, .J= 14.3 and 5.2 i{z) and 1.935 (IH, dd, J= 14.3 and 8.2 Hz), and further coupled with one of allylic methylene protons at 6H 1.763 (IH, br・ dd, J= 14.9 and 14.5 Hz, geminally eoupled with 6H 3.049) by J= 2.0 Hz of an allyl coupling. This methylene protons being relayed to another pair of methylene protons with further vicinal couplings, the partial structure -CH2-CH=C-CH2-CH2- was event,ually revealed. Because of the deshielding effects on the olefinic proton and the allylic methylene protons (6H 3.049 and 1.763), the ct,B-unsaturated aldehyde group was allocated to the disubstituted non-hydrogen bearing olefinic carbon. Furthermore, another proton sequence was also revealed. Analysis of the proton coupling patterns revealed part strueture --CH2'CH2-N, and equivalent methylene protons at 6H 2.125 showed a homoallyl coupling with a proton at 6H 1.616. This result was suggestive that t,he tetrasubstitut,ed olefinie bonds locate between two earbons bearing these protons (See Fig. 3-253). on the other hand, 13c-NMR spectra (coM, DEPT and CH-COSY) were taken to assign all the proton bearing earbons (Fig. 3-254, 424 IZZ 11 162 8Zz 175 6ee 93 4ee 41 136 IZ7 79 147 2Zz 55 67 19Z2Z3 218 25Z3ZZ ' se 2ZZ 15Z IZZ IZZ 1 1 8Z 41 6Z 16a 93 175 55 4Z 79 59 2Z IZ5 135 67 147 185 2Z3 5Z Fig. 3-251 lez ISZ 2ZZ 218 25Z GC-Mass Spectrum of RL-A (top) and EI-Mass Spectrum of the Isolated Compound (bottom) 425 1}. o 00 一 om 0 め N ロ 00 N ー 。 ω 冒Σ 員cL 一 NΩ一 00 め 。 「\ 。 い (り ‘ 一 囚 呂Σ “【L マ_4⊂」 00 自 ⑩ o 噂 ・甲→ oo O o 一 め Σ 江 【L “ Σ 〔L ⊂)a- o m 00 N 〇 一 め N o o ゆ ) < 〇 一 N Oo 1 日 ω 偏 。 00 へ 祠 。 Φ q の oΣ= oo 一.a一 o⊃ Σ z l (ρaF 一 00 ㎝ Nゆ N l σり ■ bD ・7→ 隔 426 Tab1e 3-96 Proton chemical shift values of RL-A (500 MHz, in C6D6, TMS as an int. std.) 6H 9 6 3 2 2 2 263 s , 101 ddd J,= 8. 2, 5 . 049 ddd J= 14 . 512 sept J= 6. 9 Hz . 330 ddd J= 14 .o, . 125 053 br ddd J= 7 br dd J= 14 . 1 1 1 1 o .9, 2 5 . 4 2. 9 Hz ' .7, .3, 5. 2 Hz 935 dd J= 14 .3, 8. 2 Hz 763 br.dd J= 14 .9, ca br.dd J= ca 14. 5, 14. 616 ' 550 . 471 . 869 dd J= 12. 4, dd J= 12. 4, d J= 6.9 Hz d J= 6.9 Hz . 811 s 897 C-14-H C-5-H C-3-Ha C-11-H 2.0 Hz ' ,3 7. 4 ,2 . o o Assignment . 2 1 Coupling 5. 4 . o Hz . 9 Hz 5 14. o 7 .4 Hz 7 .7 Hz ・427 ' ' 3 2 . o, 2 . 9 Hz .O Hz C-2-Ha C-9-H2 C-6-Ha C-6-Hb C-3-Hb C-2-Hb C-8-Ha C-8-Hb C-12-H3 C-13-H3 C-15-H3 触_ /コ oり 頃 。 N , \ め ◎り O一工 §竃( r詳一ノ エ ① ● H 唱 Φ ρ エーO /皇 ℃ o F→ρ ω 国 N O一〇 \/野 oり ⑩ 工 ト H ■ o ◎り 翰 o N 。〆k ゆ Φ 、 ① 寸 o O一工 ● ぐ一 o \ σり へ・ 工oO一工 、『 〈ミ 、 ⑩ 州 ⑩ ■ L◎ H 1 3 ぎ t ’ ノ ㌦① ! 、 ● 、N ノ 、、 N 州 N - lo 訓1 ’ ’ \:含/ ト ド !ρoへ _ 山 ド ~ σり ノ 州 ト マ ● 州 Φ→ρ℃口 の⊆1日目 ①Φ+⊃ b幻臼旨の ¢・H 麟 ・r→臼oo 山。・… ’ ’ 、、 工0一工 \胤ノ 臼 oΩ4qo 臼⇒ ’ 、 oΦ qΦ のζ= +⊇⇒ 5びの ・H ρ HΦ申)o 側Ωi ゴ図①bO ρ・州 oO国H¢ bO・HH q自のΩl o・Hω⇒ +)「→oo ε 5 3 bO 戯 +) 償Φ 。H一4 傷。 』 F→ρ つて1 ω o目5 o ● 監 1 コ 3 oO ① ① ’\ ノ。“ 州 ノ. め +♪ ・r→ ゆ ‘o N め の 聖。 ● H N l o bO ・H 隔 目 428 卜 融 霞Q Qり 狽p o N頃o 9 自 需 尋 oc6N ( 臼 山 富国 ∩ で 8¢ :Σ1. ⊂) 一 N Nの帽 顧7 Nm4〕N 一 (⊃ 『一 帆 呂8 8 ・H 8£‘ 匙国 一 呈o o ゆ 爲 ) 一ぐ 1 需冨 転 o 一 審 一 ρ 累〇 一 Φ の 婁餌 琵 宝る 蜀 雪 欝 8㌣ 一cつ の 8bむ N ・r→ 山 429 Tab1e 3-97 13C-Al?!IR chemica1 shift values of RL-A (COM and DEPT, 125 MHz , in C6D6, TMS as an int . std.) 6c Properties 8 -CHO =CH- 7 =C o =C 2 =C C-14 C-5 C-1 (or C-4, C-10) C-10 (or C-1, C-4) C-4 (or C-1, C-10) 8 -C- C-7 193 o . 152 . 146 . 141 . 140 ' 49 41 39 27 26 2 ・,i 24 22 21 21 . Assignment 7 CH2 2 CH2 4 CH2 7 CH 2 CH3 C-8 (or C-6) C-6 (or C-8) C-9 (or C-2, C-3) C-11 C-15 . o CH2 C-2 (or C-3, C-9) . 4 CH2 C-3 (or C-2, C-9) . 7 CH3 C-12 (or C-13) - 2 CH3 . . . . . . C-13 (or C-12) 430 255 and Table 3-97, 98). Three (one quarternary carbon at 6c 49・8 and two of disubstituted olefinic carbons) non-hydrogen bearing earbons out of four were contributed to the connection of these partial structures. Accordingly, the partial structures including the isopropyl group and the bridgehead methyl group were combined with those non-hydrogen bearing carbons. Since the bridgehead methyl group must be allocates to the quarternary carbon and the homoallyl coupling must be present over t,wo partial structures, only two possible forms were depicted - one bas a carotane skeleton (A) and the other a 4,8-bicyclic skeleton (B) (Fig. 3-256)・ To elucidate the correct structure, a COLOC expriment on RL-A was carried out. The COLOC spectrum of RL-A, indicative of a H-C-C and H-C-C-C sequenee together with H-C, showed some long range cros' s peaks that made the non-hydrogen-bearing carbons assignable as shown in Fig. 3-257, Accordingly, it was revealed that the strueture A only fulfilled a eross peak between 6H 3.049 proton and 6c 141.0 (Table 3-99 and Fig. 3-258). Furthermore, a cross peak between 6H 2.330 and 6c 49.8 was also explicable only with the strueture A. Thus, the planar structure of RL-A was established as 9. Since RL-A was a novel carotane aldehyde having C-14-oxodaucene strueture, to t,his compound was given a trivial name, daucenaldehyde. All the carbon signals were finally assinable as shown in Table 3-97. 431 r-ttrrr・T-rrrT-t-T-ttT-tTt-TTTT・nTT-Ttt-t-T・-・TT.-t rrTrrTTTTt.t.tTrrrrTT.TrT 2.00 s.ao o.o 1.00 PPM - 1 thf g - Si 8 o eit - - - - tsNb' as .t. 3 :- --.. 2}: . or-- 6- . ti1 -- - .- Fig. 3-255 o- CH-COSY Spectrum, of RL-A (500 and 125 MHz , in C6D6) 432 Table 3-98 CoreZations between carhons and protons in CH-COSY of RL-A Carbon 193.0 Proton 9.263 152.8 6.10l 41.7 2.053, 1.935 39.2 1.550, 1.471 27.4 26.7 2.125 24.2 O.811 24.0 3.049, 1.763 22.4 21.7 2.330, 1.616 21.2 O.869 2.512 O,897 CHO structure B structure A Fig・ 3-256 Possible Structure of RL-A: Strueture A affords a earotadiene skeleton 433 ro 8-- l-iIwn'- 5 rmm'rrrmm I-,llii l-/-FMnMI i'ii o 1 T"' ol'l th. o ;; o ・I・i..,,,..i rs i,Iilii o 1,.1.ilr.r g r- x8 g Ii 'i/''u'1''' li' llii }.tt lu....-...t..t 11I.....L...J.L.-...- -----=------------・--- 1'' t.--........-..t+....".."-.t.4.. i IIS lr・Havni-"'- i+ 1/ E; ii' i/QI'mr ll'Il・-・ll--t ll・l, lii・l,I il lli・ ll... g r-u'-wn"rm 11iIlimh-rm-- +- iil・ii-+'i''"-"'i"-----T---- i・-ii- -1・ o- j v i' 8 6 P o fi) o y ,o 9, fJ: .p fH o o o o N = Fig. 3-257 COLOC Spectrum of RL-A (500 and 125 MHz , in C6D6): The long range cross peaks (C-C-H, or C-C-CH) were marked with a circle. 434 Table 3-99 Proton-carbon peaks in COLOC expl'iment of RL-A Proton Carbon (6H) (6c) --- > --- > 141.0 811 ---d > o. 811 ---- > 49.8 3. 049 o. 811 o. 141.0 41.7 o. 39.2 9. 49.8 146.7 811 ---- > 2. 330 ---- > 263 --- > CHO Fig. 3-258 Correiation between Non-Hydrogen-Bearing Carbons and Protons in RL-A Revealed by CH-COSY and COLOC Experiment:()-m.t> indicates a long range correlation (Proton to carbon). 435 Tab1e 3-100 Physicochemical properties of daucenaldehyde (RL-A, 9) CHO 9 A colorless oil Vanillin-H2S04 color: grayish purple GC-MS m/lz (%): 218 (M', 11), 203 (M'-CH3, 5.2), 190 (6.0), 176 ' (12), 175 (M'-C3H7, 58), 162 (84), 147 (19), 136 (32), 135 (28), 133 (17), 122 (11), 121 (100), 107 (31), 105 (23), 9fl (29), 93 (44), 91 (33), 79 (25), 77 (23), 55 (15), 53 (14), 41 (32). EI-MS m/z (%): 218 (M', 9.8), 203 (M'-CH3, 5.4), 190 (4.9), 185 (5.9), 176 (11), 175 (M'-C3H7, 55), 162 (58), 147 (23), 136 (27), 135 (27), 133 (18), 122 (11), 121 (leO), 107 (35), 105 (35), 94 (30), 93 (53), 91 (51), 79 (34), 77 (33), 55 (42), 53 (21), 43 (45), 41 (69). IH- and 13c-NMR data are shown in Tables 3-97 and 3-98, respectively. 436 2) Epoxydaucerialdehydes While constituents of the rugosa rose leaves were surveyed, a quenching spot was detected on TLC around Rf O.55 in H-EA 4:1 <RL109), and the eompound corresponding to the spot was accordingly isolated from Fr-B-5 (Sample VII, See Section 3-5, pp. 324) and Fr' ' See Section 3-8, pp. 529). The isolated coinpound I-5 (Sample I, (ea 30 mg) afforded the parent ion at m/z 234 in FI-MS. RL-109 was however found to be a mixture of two compounds in IH-NMR analysis. For separation of two constituents from each other, some solvent systems for TLC were examined to find n-hexane-dichloromethaneaeetone 25:25:1 (H-DCM-AT) as an effective slvent (Fig. 3-259). Aeeordingly, the mixture was separated to RL-109A (8.2 mg) and RL109B (18.2 mg) by HPLC (Unisil Q 100-5, n-hexane-iso-PrOH 100:O.5 and H-DCM-AT 100:100:10) equipped with a UV detecter at 230 mn (Fig. 3-260). The' major const,ituent RL-109B, providing M+ 234 in FI- and EI- MS (Fig. 3-261, 262) showed some signals characteristic of carotane aldehydes (cL carota-1,4-dienaldehyde, 3) in IH-NMR and HH-COSY spectra as shown in Fig. 3-263, 264 and Table 3-101. .Furthermore, some methylene protons were quite similar to those of daucenaldehyde (9) in the signal pattern. The presence of clear septet signai assignable to C-11-H (6H 1.468) and isolated -CH2-CH=C-CH2- CH2- coupling sequence aHowed to presume that C-1 and C-10 were replaced by non-hydrogen-bearing sp3 earbons. since two-nonhydrogen-bearing and oxygenated carbons were detected at 6c 76.8 and 7s.4 in place of the two sp2 carbons in the 13c-NMR spectruin (Fig. 3-265 and Table 3-101), those were attributable to C-1 and C10. According to the 13C-NMR (INEPT), RL-109B was deduced to have the inolecular formula ClsH2202 (CH x 3, CH2 x 5, CH3 x 3 and C x 4), which was only compatible with a structure having an epoxy group on C(1)-C(10). Thus, structure 10 was proposed for RL-109B. 437 H-EA 4:1 RL-1O9 H-DCM-AT 25:25:1 x 3 Q o 1' i - ' N"'i quenching under UV 254 nm R.L,1i,Z9,A,-.'..)'Ziii]t O Fr-VIIB-5 1 Fig. RL-1O9 3-259 TL Chromatograms of RL-109A and RL-1O9B RL-109A N.. ARL-109B 'iWl'r'r''' , + , l ,・l I il 1・ L, l. Pl --1 ki F, tii' I・/i ..-"-;・-,. ,l--+,l,-.-I, ili'li--・・'i' +・,l-1・-÷11-/ li・liii l'!lilil,i1 lilttl/i:tti/ -l--・;ii sv[ 1,: t i''iii iiii'i'Ll '' .Lll, ,' tltt iF'i1 't ttlt1 l,- 111 l'i"' ll-・・・/ it'' :: 't' 1/llt/t/ li/l' ltttt1i'i,ll-11・l・l,・・ F Fig・ 3-260 HPL-Chromatogram of RL-1O9 Mixture (Unisil Q 100-5, H-DCM-AT 25:25:i (-TV 230 nm) ' 438 M+ 'l ?ee fi, 3e.pt. ?. >:'t !fS, i}- bu- ・- z .t e i-rrttrT-rrrrrrrrrrr;'rr-r-r-rrrrTT--TTr`r--n"r:-Tft--ii}lrtf'tit-rrti -f r:mr・''''rrrrrrr"T'-Trrr"-T:- se t ,I. 15? 1ez i 2se 2e.o .P .?2 -d.1 "J- M/E z 1gf:ig 3e.p.? -M ,p" r=t U) z:. ui tr- H- i ? .-I?i . Et E! I Bgg 35e Fig. 3-261 IZZ 4se 4・ee 5n-eM/E FI-Mass Spectrum of RL-109B 7 43 se 6e lse 4e 91 55 79 az IZ9 125 '137 163 21s 2B4 173 1912el se IZZ 15Z 2ez Fig. 3-262 EI-Mass Spectrum of RL-1O9B 439 25e 3ze 」 ∫~ .一一一 i G 8 卜⊂》 ぐこ 霧 8 ρ」 臼 8 ぐ」 ヨ 9 8 ぐ4 辱雨 ’ (⑩ 冒 .績 ∩ ㊤ ci o 8 }ゼ 9 錆1 ・H ぐこ い N 属 ≡≡垂.9 r 塁 『己、 ひ1 .φ仁・ ら き8 の F→ !臼 口 3舶 0 パ田 ρ o Φ 雰の 6 ビ ’ o ゆ ) .卜 呂 零 ⊂)rΣ $ ■[ω に 1 し. 1z 9 ・1の 零 州 。; σう ⑩ N I 3 σり o bρ 1『 。H 山 440 r' .5 ・st, e pa Dss L 't" $" m es0, ie , " LO 'a g・ntee L5 wa ' 2.0 o va"l es 2.S q 6 e op e ei ' q 3.0 oQ t;- ・oe・O 5.5 g 4.0 -t 4.S , o 5.0 ' : S.5 L 6.0 -. n b 6.5 tl 6 6.56.0S.S5.04.S Fig. 3-264a q.o3.s3.o2.s2.o1.st.o.s-・ PPM HH-COSY Spectrum of RL--109B (500 MHz , in C6D6) 441 PM . r' ' .5 -ic7--'""'-"--' stl1 imp 1.0 tt. ilv& g,clt}- tg" ・:- :ut S(ll:) @ Qs tiii311XIIi!) 0, '"t L5 " , ti7 g" t 2.0 ee"t i[S? 2-, 5 t"t Q 3.0 oiae mo `lil? : ・g b t"- ,oe,e 3.5 tt } - Fig. 3-264b Continued (Magnified in High Magnetic Field) 442 4.0 → 4 耀レ Ω .臼 .9 ( 臼 仙 国 一9 q ヨ ℃ 畠 o o “ ・旨 ⑩ o⑩ o 需 L ・r→ お1 ■ ぐ’, …Cつ.. 一’ .Ω 一二 フ1 め N 一 ) qq の 。 目 1 口 .窮 舶 o .9 o 一ψ 90 Φ o の 旧しσ Σ 匿 .9 l o oう 一9 一R 州 寸 寸 H l σり r. C ■ 一rつ e寸 ・7→ 』 443 Tab1e 3-Z OI Physicochemical properties of epoxydaucenaldehyde A ( -m-- R L -1 0 9B, 1 0 .> N CHO tttt :"r" o 10 A colorless syrup EI-MS m/z (%): 234 (M', 17), 216 (15), 201 (6.4), 191 (6.4), 173 15), 163 (11), 152 (46), 149 (33), 148 (28), 137 (24), 125 (27), 119 (26), 109 (32), 107 (27), 105 (23), 91 (29), 81 '(22), 79 (22), 71 (100), 55 (28), 44 (43), 43 (95), 41 (64). IH-NMR 6TCM6Ds6' (50o MHz): 1.407 (IH, ddd, J= 14.1, 13.3 and 2・2 Hz, C-2-Ha), 1.173 (IH, br. ddd, J= 14.1, 5.5 and 2.2 Hz, C-2Hb), 3.149 (IH, m-dvid. dd, J= 14.8 and 5.4 Hz, C-3-Ha), 2.202 (IH, m-dvid. dd, J= 14.8 and 13.2 Hz, C-3-Hb), 6.033 (IH, br. m, C-5-), 2.516 (IH, br. dd, J= 14.4 and 4.7 Hz, C-6-Ha), 1.781 (IH, dd, J= 14.4 and 8.8 Hz, C-6-Hb), 1.260 (IH, br. ddd, .r= 11.7, 10.5 and 8.0 Hz, C-8-Ha), O.918 (IH, dd, J= 11.7 and 7.8 Hz, C-8-Hb), 1.617 (IH, dd, k 13.4 and 8.0 Hz, C-9-Ha), 1.357 (IH, ddd, J= 13.4, 10.5 and 7.8 Hz, C-9-Hb), 1.469 (IH, sept., J= 6.9 Hz, C-11-H), O.991 (3H, d, J= 6.9 Hz, C-12-H3), O.666 (3H, d, .J= 6.9 Hz, C-13-H3), 9.240 (IH, s, C-L14-H), O.511 (3H, s, C-15-H3). 13c-NMR 6TC M6Ds6 (12s MHz): 76.8 (C, C--1), 23.3 (CH2, C-2), 19.0 (CH2, C-3), 147.0 (C, C-4), 152.5 (CH, C--5), 36.2 (CH2, C6), 42.8 (C, C-7), 34.6 (CH2, C-8), 22.9 (CH2, C-9), 75.3 (C, C-10), 28.8 (CH, C-11), 18,8 (CH3, C--12), 18.6 (CH3, C13), 192.6 (CH, C-14), 21.0 (CH3, C-.15). 444 While RL-109B was elucidated as 10, the other isoiate, RL-109A was also analyzed spectroscopically. RL-109A whose FI-MS showed the .parent ion at m/z 234 (100 %) (Fig. 3-266) resembled to 10 in the EI-MS £ragmentation (Fig. 3-267). Although the IH-NMR spectrum of RL-109A (in C6D6) was quite different from that of RL-109B (Fig. 3-268), in CDCI3 the minor isolate showed a similar IH-NMR signal pattern (Fig. 3-269), HH-COSY of RL-A was there£ore measured in CDC13 (Fig. 3-270) to prove two 1-CH2.-CH2-- coupling systems on RL1O9A. 13C-NMR data of RL-109A were indicative of its diastereoisomeric nature to 10 at the Cl/CIO-epoxy ring, showing a good aceordanee of carbon chemical shift, values to those of 10 (Fig. 3-271). Accordingly, structure 11 was proposed for RL-109A. Z 1eze > H Ho dz i Fz F-t se.ee e .ee , se 1eeo 1ee 1se M+ n.!E Z se.ez F> s--t oz z tu le HZ .ee BSSM!E Fig. 3-266 FI-Mass Spectrum of RL-109A 445 3eB 7 4 BZ 6Z 158 4Z 2e9 55 79 2Z 91 125 137 163 99 5Z Fig. 3-267 173 179 191ezl 6i izz ISZ 216 234 2ZZ EI-Mass Spectrum of RL-1O9A 446 2SZ 3ez 」 ヨ ぐ, c, ⊂) o r. 1. ド oo F e“ }臼 (り 。 め( ⑩ 戸・ q o ⑩ o 島 卜。 ←■ o⊆1 (⊃・r→ ,「 コ o 9 N 胃 セ◎ 国 c) r「、 。 o 8定。 ψ .,:1:.LΩ u「 F◎ o 「 レ(「♪ r二 kρ }A o 卜 }「 」 妻 、 曽トユ ωρく 0 「 ) < ① 〇 一 81 レ 匂 。 7∫〕 臼 。づ 。臼 「・十) o Φ の ; 「 rr1 ~rつ 1㍉ ⊂,餌 .oΣ= 1しし’. レ のz l 頃 州 しし 一 。⊃oσ ∫.)⑩ I 門;eq σり ● ・H ‘,角 r. C }1. 5 447 」 }. ⊂ン 8 窓 5こ 鶏 ト ト 9 雪 ぐ」 呂 附 (σり HQ L蜜 ∩ 締 ぐ」・ (.) 9 rf. 。 ・H 野 丸ρ “ N ぐ」 類 o._ で⊃己・ 臼 」)L oo ゆ ) 9 → < ① … 謬 8 o州 1 ω 日 70. 承 舶 。 旨 ∈i 霧 「.: ρ o ① F 露 F 9 の 、で; 1 急~ H 1・ 零 n= ① ⑩ N I Qう ● 零 bO ・H (つ 448 臨 1 0.0 .5 1.0 ⑳魁恥 露 1.5 藤 &購 2。0 潔 ㊥9 2.5 o 3.0 喝 3.5 4.0 ・ 4.5 ⑳ 8 5.0 5.5 6.0 6.5 q㊥ 6.5 6.0 5.5 5.0 4.5・ 4.0 3.5 2.5 2.0 1.5 1.O 310 g5 PPM Fig・3-270a HH-COSY Spectrum・f Rレ109A(500 MHz・in CDCI3) 449 PPO.0 , 0.0 , .5 .凝 1.0 勧働輪 鐙棚 1.5 ・ 怐E類・1, ㌣ 醜勧 2.0 談. 2.5 o ・ の }.. 3.0 「 3.5 Fig・ 3-270b Continued (Magnified’in High Magnetic Field) 450 罫 前 2 9 9 鴇 9 需 ( 臼 9 自 国 ∩ 零 8 ℃ 駐 3 0 お 0 “ £ 把 8 お 9 日 潔 § ’登 。 ぐ寸 窪 乙 川 一芯 .婁 e・」砥・ 川 口 ヨ ξ ρ・J e寸 ヨ q⑩ o 自( ・HN ^Σ 頃ゆ Σ=N H oo ⑩ρ )⇔ <℃ σ)① o自 州5 1 臼 鍋 。の 一台 ⇒ 白日 +)づ 。自 Φ+3 ρ4Q の① ρ霞ω 罠 寓←l 舅 .蚕 田 口 l畠 (.)国 。つ∩ 祠 H卜 N i oり 舅 ● 婁 bβ ・H 舅 婁 451 の 日邸 Ω⇒Φ 婁 曜o ρ・」 ⑩ 縞 Tab1e 3-102 Physicochemical properties of epoxydaucenaldehyde B (11) k N " " N CHO o 11 A colorless syrup EI-MS m/z (%): 234 (N', 12), 216 (7.5), 201 (3.6), 19! (5.3), 173 (8.4), 163 (13), 152 (41), 149 (29), 148 (25), 137 (25), 125 (26), 119 (24), 109 (34), 107 (26), 91 (27), 79 (23), 71 (100), 55 (31), 44 (46), 43 (99), 41 (65). IH-NMR.6TC M6Ds6 (5oO MHz): 9.211 (IH, s, C-14-H), 6.028 (IH, m, C5-H), 3,068 (IH, m, C-3-Ha), 1.840 (IH, dd, J= 14.1 and 5.0 Hz, C-6-Ha), 1.522 (IH, sept., .J= 6.9 Hz, C-11-H), 1.028 (3H, d, J= 6.9 Hz, C-12-H3), O.828 (3H, s, C-15-H3), O.763 (3H, d, .J= 6.9 Hz, C-13-H3). Ot,her signals were mostly overlapped in C6D6・ IH-NMR 6QrDMCsl3(500 MHz): 1.712 (IH, br. dd, .J= 13.4 and 12・9 Hz, C- 2-Ha), ca 1.58 (IH, overlapped with H20 peak, C-2-Hb), 3.000 (IH, m-dvid dd, .T= 14.8 and 6.3 Hz, C-3-Ha), 1.829 (IH, t-like m, C-3-Hb), 6.832 (IH, in, C-5-H), 2.388 (IH, dd, J= 14.1 and 5.2 Hz, C-6-Ha), 2.250 (IH, dd, J= 14.1 and 8.8 Hz, C-6-Hb), 1,393 (IH, ddd, J= 12.5, 10.5 and 8.3 Hz, C-8-Ha), 1.273 (IH, br. dd, J= 12.5 and 7.9 Hz, C-8-Hb), 1.851 (IH, br. dd, J= 13.8 and 8.3 Hz', C-9-Ha), 1.746 (IH, m, C-9-Hb), 1.751 (IH, sept., J= 6.9 Hz, C-11-H), 1.097 (3H, d, J= 6.9 Hz, C-12-H3), 1.092 (3H, d, .J= 6.9 Hz, C-13H3), 9.409 (IH, s, C-14-H), O.994 (3H, s, C-15-H3). i3c-NMR 6Prlii8i3(i2s MHz): 7s.7 (c, c-1), 22.s (cH2, c-2), 20・i (CH2, C-3), 146.3 (C, C-4), 152.3 (CH, C-5), 37.1 (CH2, C6), 44.2 (C, C-7), 35.7 (CH2, C-8), 25.4 (CH2, C-9), 28.5 (CH, C-11), 19.5 (CH3, C-l2), 18.9 (CH3, C-13), 191.8 (CH, C-14), i9.7 (CH3. C-15)・ 452 The proposed structures 10 for RL-109B and 11 for RL-109A was conCimiled by direct comparison with the epoxidation products of 9 with m-CPBA as shown in Scheme 3-33 (TLC in Fig. 3-272). RL-A 3.2 mg) dissolved in 1.5 ml of CHCI3 cooled to O oc added 2.4 mg of m-CPBA stirred 30 min. concentrated and dissolved in ca O .2 ml of EtOAc subjected to PTLC (n-hexane-EtOAc 20:1) Product RL-A-CPBA, Rf O.06, 2.1 mg, 61 % yield) Scheme 3-33 Process of RL-A epoxidation and isolation of the product The product showing m/z 234 as the parent ion in EI-MS was, as expected, found to be a mixture of diastereomers by the IH-NMR analysis with a ratio o£ 3:1 (Fig. 3-273). The product was therefore separated by HPLC (H-DCM-AT 100:100;10, UV 230 nm, Fig. 3-274) to obtain RL-A-CPBA-1 (O.5 mg) and RL-A-CPBA-2 (1.5 mg). The EI-MS fragmentation and proton signals of the product,s were each coincident well wit,h those of RL-109A and RL-109B, respectively, proving their proposed structures (11 and 10) (Fig. 3-275, 276, 277 and 278). 453 C-M 50:4 Vatneisiti :in+-H2So4 :・l・:・li:;・・ q peroxide test: ua + tl.- l' i・:・} Reaction Std. lc . MIX. Fig. TL Chromatograms of Reaction Product 3-272 s .Aii[A, , . !.Ea t.so' !.ia t..sa !..'a FFn nyt . io 2.ta 2.! o tsa -- ' . . '"ny-'-T"nyT.-'-"T-'・-・-・"T-・-. 3.2e 3.!O :・ ' - r,mTr--T-v., "" E.la Eae V-rv 9.sa1,-"-=-..'. 9.::. #=H "l 2.En r. t.;o ; ---"'-' - T'"'"-""""T-M"'・--'--r"-"'T""-T-----`'--- t.ae .le .so .,o t :slee Fig. 3-273 ?.' 1 3a s.' o:・ 7.ao E 'ae ,i ・.le... ,e , a.bo 3.'n・: :・・::: ! H-NMR Spectrum of RL-A-CPBA Mixture (500 MHz, 454 bs: m elo C6D6) Thus, it was suggested that the epoxy carotanoids RL-109B (10) and .RL-109A (11) were biogenetically derived froin 9, and were named epoxydaucenaldehyde A (RL-109B) and epoxydaucenaldehyde B (RL109A), respectively. .Carbon ehemical shift values of 10 and 11 were quite similar to those of a known epoxycarotane (46) found in Ferula communis subsp. communis by rvliski et al. (Table 3-103) [46]・ iiiii.,11.[-,,,..l,tlilll"/l'..il/llli/tl'10Lu/p.X/., t!t iltlii ll liE IUI・ i i, 1 4i'.1li li i ii ir 11 il i/ d :l1 1 ' li 11 ,l -.i' i' l t'-tti tLl ikl // r,I ' ・ll・l t i・ k・ l g 1isi; li i Tt tI T l i I lt 1/ l i 1 l i -ll ・ [ i'i ] 1 i ;i・ 1,・ ---r-: iii .Lj t' --i--7-1- '' '" i i' lllliill/1vil・1:l,1Ol1 I li・ I1[l,IL[ i1i1l/t or・ iiUili I t 1 rt-"'l:;--i'''-"r-,#LiTi'ri l lt il //I l TH ['1IIII iliili i'iilii'+I.lil・1/1/1 1ill 11i i/l v il lll /l l ifiiil, iii.ii.1・' i' g l1 'j il[ 11il!11・[1I!tt/t・,1,jll'il /LeIilii ]1]t l:] I S- ,4・ i' :l [j II・ ,ll M -iF 11 l・ 1 1 1-l ls ll i.ll li1 il・ l li . I 1] lii llli i・ Ii UL ==-・ ,--" -- t /tt/ 1// ' /t/ r l/tl:]1,ilr/ll[I:Mi Iillil'!i1,ii111/1 iil +!,1li 11illllIiiIII 11iiiiR・i tj'// l・iIit+rl 11iill11,,/ ]・j1 lilo[[llIHi l,/,1' [-[I[[ llil]' kl・iiii liitiilloov M-tliii/El-:;Il/ 11111 t't't liil' ll・ i liiiili・'t'.Lll,NI1/ -l,M'1'ii' L t iii 1 :l-x lll it・ lil IFI i 111 ' IEI -l, N -rtHf:'i ll1 t // , l li iili[Ii 1/ ll'iili Iill ttt ・iv・iI/l・ 1E'L 1I l1 l・ l ii:Ii iL li 11i il IVI'H'i''・.l..-ti11 .l[.11'[i'iil11 l 4.1 .l.. ] :l/ ir/./tl'.[ii I]" E i ' ....b. lll ll/l・ /d;I・il・"・l/ ilii 1 ll li il #--L'r// ii 1iYlUL1, iilli tt i 'lf 1rV IEii r1・ l・ l l 1E.iilliiiii'ii11bllIfiiili1・i・iiIiliili11!1 jl[I''tlt .i・ ii I 7 .LLILI.iiii '!IIII-・・T・"-i・1"ii1i11・' ilkriITI, t fi・ +,l lrl 1,・・ t'ltll'I-T'ij"'-r" r'--1'-'--" i : li[ lfiT ritrI[[lt/"llll,l・11, II , - ii i.-11l llil,ttlIiki i'iiIl, 4 - rt- '' I=1 IL it ii /1 t' 1 lll l,lll i, ,..L + iil lii i ,Li 11 ll・ llll,LilI'/1i,1iiill l tl, ii il ii il lili, l 1/ 11/ T 1, l: lli i ll g l 11 E=rLirS 1 i Tliili k:l :l 1ill lt tl L rt -- lii i l 1i i xi [1 il I l rHf-il l' 'l ・ l e t E: 4S. i・ds i /,) i, li "ll 'iii I i] i ii li, 1 ii'" ,i・ x i' i I E ll 1! 1':I, E i ii iii ii/ ii i lilll lliE ij III1,' i' ] jiili' F tl L il il il t/' lt l'':l I- II"li I・ l!I ,t t[/'r[,L//L;b:;l' 11iil/lt i L . p 1// ,I"l:Il IIIi/"L,''1 l"',IillT[,,,,e- Fig. 3-274 HPL-Chromatogram of RL-A-CPBA Mixture (UV 230 nm) 455 IZZ q . 91 8Z 53 179 12B 1e5 77 4Z 145 119 6Z 216 71 65 azl 159 t83 21 165 2sa se Fig. 3-275 2ez 2se ISZ lee 3ZZ EI-Mass Speetrum of RL-A-CPBA--2 teee 91 z 119 6Zz 77 4ee 1Z5 12e 14S S3 173 216 71 15e 2ee 6 5Z Fig. 3-276 ezl 165 IZZ 15Z 183 e6234 2zz 2se EI-Mass Spectrum of RL-A-CPBA-1 456 31Z ’c三 一 2 o 一丁一 ミ 1 一〇、 C 臼 8 eこ 8 ぐi 窮 ci 9 o( ㊤ oo 雨の o 9 ◇こ 臼 ・F→ ξ の 自国 ぜ頃 露 自. ei 需 o o ε 1韓 9 .8蓋 ♂㌣ 話 き 二 』 £コ 1 @1 零く ゆ口 =o 曽. 臼 8 ,η 角 。 ⊂).臼 臼 《1 9 一『コ 「・・ 臼 、 ρ o Φ の ,nΣ: ρ国 ロ 1 州 8卜 卜 IN 。、 の ● rl響 と 457 ch ll 一 一.・・ }! 二1 .h 孝} ど{メド .’「 __歪訴 21 一 ≧ さ~ 一 _一唱 =一 Q ・r→ ~㌔巨 ____一声7 一=一.” ( ⑩ ∩ f ζρ 、レ・ 》 「 1.1 9 つ田 ゐ oo LΩ 劃 }? ,’ ll.) 三∴ 51 レ. i 話 ・∫1’ き 〔乙 二{売 、ド 覧 ン @P→ 甲 q l 輌 。 2 く1 r 一 1; 艦「ヤ ρ o Φ の l 3 ぐ, H ◎o 卜 N i σり 二影 ■ bO 叩→ ドi函 1 458 Table 3-103 Carbon chemical shift of an epoxy carotanoid (46] isolated from an Uhiberifellae plant 15 8 Xi4 7 CH20-Anisate 1 11 o2 No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 46* 10** 76.0 24.7 22.2 138.1 127.2 33.3 41.9 23.4 28.0 76.8 33.9 18.2 17.2 69.3 20.3 76.8 23.3 19.0 147.0 152.5 36.2 42.8 34.6 22.9 75.3 28.8 18.8 18.6 192.6 21.0 11*** 75.7 22.8 2e.1 146.3 152.3 37.1 44.2 35.7 25.4 75.0 28.5 19.5 18.9 l91.8 19.7 * 50 MHz in CDC13 **125 MHz in C6D6, assigned by CH-COSY ***68 MHz in C6D6 ' 459 Tab1e 3-104 Physicochemical properties of RL-A-CPBA--2 (10) t N CHO Z,tt-- 10 A colorless syrup Rf: O.35 (H-EA 4:1), O.19 (H-DCM-AT 25:25:1) Vanillin-H2S04 color: brown EI--MS m/z (%): 234 (M+, 4.3), 216 (51), 201 (29), 183 (22), 173 (56), 159 (25), 145 (62), 143 (49), -1.31 (51), 129 (49), 128 (54), 119 (62), 117 (37), 115 (46), 105 (53), 91 (80), 79 (40), 77 (52), 71 (34), 53 (36), 43 (66), 41 (100). IH-NMR 6CTff?9 (500 MHz): 1.403 (IH, ddd, J= 14.2, 13.8 and 1.8Hz, C-2-Ha), 1.171 (IH, br. dd, J= 14.1, 5.5 and 2.3 Hz, C-2Hb), 3.155 (IH, m-dvid. dd, J= 14.8' and 5.5 Hz, C-3-Ha), 2.204 (IH, m-divid. dd, J= 14.8 and 13.8 Hz, C-3-Hb), 6.023 (IH, br. m, C-5-H), 2.511 (IH, dd, J= 14.4 and 5.1 Hz, C-6Ha), 1.775 (IH, dd, J= 14.4 and 8.7 Hz, C-6-Hb), ca 1.25 (IH, overlapped, C-8-Ha), O.914 (IH, dd, J= 11.7 and 8.2 Hz, C-8-Hb), 1.617 (IH, dd, J= 13.2 and 8.2 Hz, C-9-Ha), 1.355 (IH, ddd, J= 13.2, 10.7 and 7.8 Hz, C-9-Hb), 1.403 (IH, sept., J= 6.9 Hz, C-11-H), O.991 (3H, d, Jt 6.9 Hz, C12-H3), O.663 (3H, d, J= 6.9 Hz, C-13-H3), 9.238 (IH, s, C14-H), O.507 (3H, s, C-・15-H3). 460 Ta bJ e 3-105 Physicochemical properties of RL-A-CPBA-1 (10 CHO 11 A colorless syrup Rf: O.35 (H-EA 4:1), O.21 (H-DCM-AT 25:25:i) Vanillin-H2S04 color: brown EI-MS m/z (%): 234 (M+, 4.1), 216 (35), 201 (20), 183 (14), 173 (39), 145 (48), 143 (40), 131 (37)'i 129 (39), 128 (44), 119 (65), l15 (36), 105 (44), 91 (81), 79 (40), 77 (48), 53 (38), 44 (48), 43 (57), 41 (100). IH-NMR 6*llil2i6 (soo MHz): g.211 (IH, s, c-14-H), 6.o2o (IH, m, c-s" H), 3.072 (IH, m, C-3-Ha), 1.837 (IH, br. dd, k 13.7 and 4.5 Hz, C-6-Ha), 1.507 (IH, sept., J= 6.9 Hz, C-11-H), 1.028 (3H, d, J= 6.9 Hz, C-12-H3), O.827 (3H, s, C--15-H3), O.761 (3H, d, .7t 6.9 Hz, C-13-H3). 461 By the NOE experiments, the relat・ive configuratien were revealed as *rel. [1(S*), 7(R*), 10(S*) in 10, and 1(R*), 7(R*), 10(RI) in 11, respectively (Fig. 5-ZYU). Tendency to be formed more 10 in the epoxidation of 9 is explicable with a steric hindrance on C-15 bridgehead ]nethyl group. Compared with highly restricted stereo-seleetivi'ty during epoxidation of carota-1,4dienaldehyde (3), t,his stereo-selection is rather loose. This fact is suggested that the stereo-selectivity in the oxygenations of 3, including the epoxidation and peroxylation, was mainly due to the steric hindance of the isopropyl group on C-10 (Fig. 3-280)・ H-CH3NH N CHO .SN((lll, 't ・. H H3C CH3 Fig. 3-279 Some NOEs Observed on RL-109B 462 Φ 謂 ρ て∫で q自 幡邸 q( 謬F司 o工 o工 O 。 Φ / c ① o⊃ u ) \) の 工 ♂ 。り 工 。 巳 嵩〉⊃ Φ℃ 渇H LΩ露 lo Q5 払Φ Φo ゼ 。 謁 一 →Jq同 〇 触 ○ 」 工 O 寸 一 》 く 」 の 鵡調 ÷♪① ① 1 ⊇ 飯) Φ 州rづ ℃ て) Φ 〇一 ψ こ Φ ℃ 〉 = / Φ で あ £ α= o o ①・H 。自 <♪→一)( 自dσつ 邸「づ) 臼・H ①×Φ で。℃ qΩ4>} ・H国ぷの 躍 ¢て5 0・Hr→ }→ 邸 の 工 o 臼q⊆1 Φづ① の額℃ Ol +)o・r→ o 曽“ OF→ ◎o>》一 o Nα1 ζつ臼+) 10邸 Ω♂o (り =[ (り 工 ・o』 b£ζo邸 耐HO 馬 463 3-7-3 Isodaueenaldehyde and Its Related Compounds 1) Isodaucenaldehyde Third peak of RL £raction (Fig. 3-281) isolated as colorless oil (ca 3 mg) was dentical to RL-E in MS analysis (Fig・' 3-282)・ This ininor compound was revealed to possess an isopropenyl group instead of an isopropyl group (6H 4.811 and 4.720, each IH, coupling with J= 2.4 Hz, assignable to exoinethylene protons, and 1・690, 3H, br s, allylmethyl protons) in the IH-NMR spectruin. In addition, a methyl group on a quarternary carbon (6H O.814, 3H, s) and a formyl proton at 6H 9.348 both characteristic of Rosa rugosa carotane skeleton were detected (Fig. 3-283 and Table 3-!06). Furthemnore, its 13 C-NMR spectrum revealed the presence of two methine carbons at 6c 56.2 and 5e.3, in spite of the disappearance of the isopropyl methine carbon (Fig. 3-284 and Table 3-107). i -r----i' --- ;・ fi ---- i T""'--'-'"-- i pt'''"'-'H''''- l・:b- .-.--".. l・ '・・-------l----・---・--. --- /i・ 1 o------ i -・-- RL--E・----------.--."-za- 1',/JI l-・-----・------l----.・-.". 'b"7'-'- -''--'---b--"---.-,.. ; lttetZIZI://ts---t-------.----------- r rr・--'---- ・- ii i; IIIbo H-----H---. --・- i・ ;・---------・- :-'"t'--"'-' -- l ----'-' 1l-------------- --・ 1・ . l-- 'i Fig. 3-281 HPL-Chromatogram of RL-E Detected at UV 230 nm 464 IZZ 6 8Z 6Z 4Z 79 41 93 lz7 53 21 lal 5Z IZZ 136 149 175 162 189 21e 2ZZ 15Z IZZ 2e3 2SZ 3ZZ 6 ee 6Z 4Z 4Z 4 79 g3 2Z 55 IZ7 121 175, 136 149 16a 5Z Fig. IZZ 21B leg 2Z3 2ZZ 15Z 25Z 3ze 35e 3-282 GC-Mass (top) and EI-Mass (bottom) Spectra of RL-E 465 3 I EC⊃ ll占 } F ぐつ (つ r ⊂つ 。, 「、1 ト (つ m し F 仁o (二) (二) 璽幽 量 }∩ (の 。つ し乙】 /.9 幽馳 D」 ⊂⊃_ Ho Q o ’. 「、 一 自 ‘三 。F→ 晒・■ い と・. 亡) (o 一 q 〔、. 」、 r.■ o o ゆ (⊃ L ) σ、 P{ 卜 N (『.} (つ cゴ 。⊃ し0 国 i 臼 触 。 葭 。 ¢ 「、、 ρ o Φ o卜 の (=) P ‘つ 耐 ぐ【) 卜G の 7 cし. z I o 噛 雫 e“ご 肛. Ω (o o 州 『 ぐ=) 1.(⊃ o、 事 ○り ○O N 「 ;、 σり ⊂⊃ o o ド) 0 俗 ⊂) Σ ω試 q 1:ヨ 鼠 こつ ◆-.. E め ’ 466 ● b£ ・F→ 国 Tab1e 3-106 1 H-NMR chemical shift values of RL-E (500 MHz , in CDCI3, TMS as an int. std.) 6H 1 ' 1 1 . 3 1 6 2 2 1 4 ・ 751 . 619 . 195 IH br. d J= 15.3 Hz 617 IH br. dd J= 11.7 and 6.7 Hz IH ddd J= 12.4, 11.7 and 8.2 Hz IH ddd J= 12.4, 9.2 and 8.2 Hz IH dddd J= 12.4, 12.4, 6.7 and O.9 Hz IH ddd J= 11.6, 9.2 and 9.1 Hz IH dd J= 2.4 and 1.2 Hz . 502 . 757 821 . 020 . 811 4 720 1 690 9 o IH m IH ddd J= 8.8, 3.3 and 3.0 Hz 666 1 3 IH ddd .T= 12.3' 11.6 and 2.0 Hz 182 IH dddd .T= 13.6, 12.8, 12 3 and 1.7 Hz 71 (approx.) IH m 073 IH m dvid. d .T= 16.5 Hz 921 ' 1 i Assignment Coupling . 348 . 814 IH dd J= 15.3 and 8.8 Hz IH d J= 2.4 Hz 3H d J= 1,2 Hz IH s 3H s 467 C-1-H C-2-Ha C-2-Hb C-3-Ha C-3-Hb C-5-H C-6-Ha C-6-Hb C-8-Ha C-8-Hb' C-9-Ha C-9-Hb C-10-H C-12-Ha C-12-Hb c-13-H3 C-14-H C-15-H3 Since the single oxygen was att,ributable to the aldehyde group these methine carbons rather resonating in a lower magnetic field were deduced to be the C-10 tertiary methine and the C-1 bridgehead methine carbons, respectively. Spin-spin decoupling experiments and CH-COSY speetrum of RL-E (Fig. 3-285) clearly revealed a sequence of proton coupling to form a carotane skeleton as shown in Fig. 3-286. The methine carbons at, 6c 56.3 and 6c 50.3 each showed a cross peak with proton signals of C-1-H (6H !.921) and C'10-H (6H 3.020), respectively. Thus, RL-E was proved as an isomerie carotane dienaldehyde (12) and was named isodaucenaldehyde. Stereostructure of 12 was determined by NOE experiments. By the irradiation on the C-15 methyl protons, an NOE's were observed on C-6-Ha, C-8-Hb, C-12-Ha and C-13-H3, suggesting rel* [7(R*), 10(R*) for 12 (Fig. 3-287). On the ot,her hand, stereostructure at C-1 was determined by its proton coupling eonstant with vicinal C10-H (J= 11.6 Hz). If C-i are R* (namely cis-fusion on C-1 and C7), the dihedral angle between CIO-Cl-CIH and Ci-CIO-CIOH provides cH, Hi(Cl)/--l)i 7(IN, (-・-・b H N N 77 ([{tH CHO H. C]> <H × H3C .:/ <-XN vH ' /AJ H !I]i> H H,ltYX (l>/ H ,kv> Fig. 3-286 Proton-Proton Coupling Sequence Elucidated by Decoupling Experiment on RL-E 468 一1 o ぎ{ 予 { σq o 6 o 9一 “ 垂 一 } 。 ~ 一ヒ 礎 o~ o【 ま 、 { o【 o ミ 「 「 ( 白 “ 山 国 噌 一 → 。 “ oo 1 H ℃ 口 uo { 妻 ud 重 ・ o h 重 oQ “ 帽岨 」o ・H “ N 甫 隔 f 冒 『昆 } E ■ ‘ σり Ho ∩ Q L の ’ } ■ { “ 由 。 ロ … ー 壷 」” 一 } } ’,f’ 聲 垂 「 髄 ) の 国 一 凹 翻 噂、 垂 齢【 e } 竃 一 .、 .「 3 書 ご f. 嚇、 ⇒ き } 一 2 ; 一 重 3 重 o 叫 観 } 舶 胴 ’監3 { 州 旨 日 モ 6唱 竃 1 ⑩ 膚 馴 ・i 垂 ◎Q 哺 ” o Φ 「「 一 の 噂 一 “ .‘, 一 .‘、 」、 一 じ ゅ 一 z o l oり 嗣 罰 酋 一 。 、 儒 { ρ h. 哩 OQ N l の ξ 、 一 9’ σう ■ ” 一 1 ,n 勾 一 oo 妻 一 の ← 伽 “ 469 ・H h Table 3-107 13C-?VMR chemical shift va1ues fOl- RL-E (78 MHz, COM and INEPT, in CDC13, TMS as an int. std.) ' 6c CHx Assignment* 195.0 - CH C-14 ' 154.7 CH C-5 147.2 C C-4 145 ,.9 C C-11 113.4 CH2 C-12 56.2 CH C-1 50.3 CH C-10 43.7 CH2 C-6 ' 42.7 C C-7 42.0' CH2 C-8 28.2 24.9 23.0 22.9 19.7 CH2 CH2 CH3 CH2 CH3 C-9 C-3 C-13 C-2 C-15 * The assignment was confirmed by the CH-COSY experiment on RL-E 470 1 - . . om 8 b -" - 6 : b il -ra g -.・ $- - ' - en. - a b . 8 b - 8R- ' 2is - dv y o r, -1 ., .F .g lb )v8' 3 )l 6 h' . - 8 ts u B- ---"-O. - b 'U- 1- M ts b-11 7 ・en ce Ul -. - P - o-+ cr - 6.S 6.0 S.5 5.0 4.5 4.0 3.5 PPM 3.0 2.5 2.0 1.5 1.0 .5 O.O Fig. 3-285 CH-COSY Spectrum Qf RL-E (500 MHz, in C6D6): The methylene carbon at 6c 28,2 unexpectedly showed no cross peak with proton signals ; however, the carbon was eventually assigned to be C-9 whose protons were also not attributable by the spectrum. 471 nearly 90 O in tl}e inolecular model, while a model possesing S* configuration at C-1 (trans-fused 5,7-bieyclic) indicates a small angl.e (Fig. 3-288). In the Iight of Jackman-Sternhell function, the coupling constant J= 11.6 }Iz between C-1-H and C-10-H is *. obviously compatible with C-10S configuration. CH3 N CHO =- H N, , H3C H 3-287 NOE's Observed on RL-E: The mutual NOE between C-15-H3 and C-13-H3 indieated that those groups were on・the same side of Fig. the five-membered ring. 15 15 ' ' ' ' H 7 L x x t t 7 ' 1. tl 11 10 T". 1OOP ' t t t 1 t t 2 t 1 11 t z t ' t 10' k?T= 2Hoo 2 tt , ' t H t t tls .v.2t s H 3-288 Dihedral Angles between CIO-Cl-CIH and cl-cio-cloH in the Cases of C-IR* and C-IS* Fig. 472 TabZe 3-108 Physicocheinical properties of isodaucenaldehyde (12) CHO 12 A colorless oil Vanillin-H2S04 color: brown GC-MS m/z (%): 218 (M', 12), 203 (6.3), 189 (4.6), 176 (6. 8), 175 (14), 162 (6.4), 149 (11), 147 (9. 7), 136 (14), 135 (11), 133 (14), 121 (17), 109 (15), 107 (26), 105 (16), 95 (13), 94 (15), 93 (28), 91 (22), 81 (14) , 79 (30), 77 (16) , 68 (100), 67 (35), 55 (17), 53 (21), 41 (28). EI-}4S m/z (%): 218 (M', 13), 203 (4.9), 189 (3.8), l76 (6. 2), 175 (14), 162 (5.8), 149 (12), 147 (9. 0), 136 (14), 135 (12), 133 (12), 121 (17), 109 (17), 107 (25), 105 (16), 95 (12), 94 (15), 93 (27), 91 (26), 81 (16) , 79 (28), 77 (16) , 68 (100), 67 (31), 55 (22), 53 (20), 44 (37), 41 (34), 40 (48) IH- and 13c-NMR data are shown in Table 3-106 and 3-107, respectively. 473 2) Isodaucenoic Aeid i As described in Section 5, the fraction con-t,ainlng carota-l,4ttt dienoic acid (4) furthec involved an unknown substanee isomeric to 4 and indicative of some carotane nature: After 4 was autoxidized to yield RL-115MA-OX (4b) and rugosic acid A (2), the residue recovered by PTLC yielded fine crystallines during the concentration (Fig. 3-289). When the crystallines were carefully washed with cool n-hexane, ca 2.0 mg of colorless plates were obtatned. This acidic substance (RL-115M-B) indicating M+ 234 in EI-MS (Fig. 3-2go) was revealed by IH- and 13c-NMR analyses to be a carotane acid (structure 13) corresponding to isodaucenaldehyde (12) (Fig. 3-291 and 292). Most of the proton signals were similar to those of 12, except C-14 formyl proton. The acid was the sub-inajor constituent of the RL-115M fraction, unlike the carotane diene aldehyde' mixture (RL faction) in whieh 12 was only a minor eonstituent. From the mixture of RL-115-M met,hylation products (See pp. 382), the methyl ester of 13 (RL-115M-B-ME) was also isolated. Its spectroscopic data are shown in Fig. 3-293, 294. 474 H-EA-F 30:10:1 O quenching under UV 254 nm ua peroxide test: + RL-115M-B th op ""-" r"-"-----・--)-F--m------.-.-.- Reaction MIX. Std. RL-115}I Fig. 3--289 . TL Chromatograins of RL-115M Fraet'ion Contained RL-115M- B 12Z 6 8Z 6Z 4Z 41 2Z 79 55 121 93 IZ5 191 145 5Z Fig, 3-290 lel 164 219 234 2ZZ 15Z EI-Mass Spectrum of RL-115M-B 475 2SZ 3ZZ ll ‘ 「) r, 8 8 臼 eこ 曾 ( 需 σり 1一, 承 一 @ 門 8 。 ∩ o P8) 甲 畠 シ) u ・N o 甲{ @ ω @ }‘ “ 8 i⊃ 普。 , @鴫 m ’ @ @ @ G h 頴 Σ 『」 o o ゆ 〔三. o ) ρQ 8 I 」; ゆ HH I 口 8 綿 。 ω づ @ @ o F「 @ ρ o 郎 Φ 8 の 「: 9 月 ヒLg F , Pて 一 づ ,5 6 @ ’ @ 簿 惹, と 【L Pκ 、 こつ 臼 の 1 1 σり ㌣ 骨 コ 蔀 476 81扇 。; ・H 国 E レ… σり oo 出国 N 餌 。 9 鵠 ( 病鼠 宥 9℃ 尾 o o 5い oり 囲 o 澱∩ o ぐつ 噌mΣ: 8・H “ .9= ゆ 8..N 撃撃e→ 一邑 【三. ) o∩q =ll ゆ ! 。}餌 日 も 〔’, 一 “コー. コ 曾。 B 蔀8 一Ωi の 一話属 一宮 z f ρo 州 騨” 9 _・ ミつ @Oq ① N 。、. Cつ 一黙1 8響 賄 e刈 477 zz 1 1 6S S3 sz 6Z IZ5 79 41 136 2e5 4Z 145 9 248 163 189 178 2Z 233 ' 217 S7 se lez Fig. 3-293 2ez 15Z 25Z3ZZ35Z EI-Mass Spectrum of RL-115M--B--ME 478 1養1・ 」 t り \ 民 \ ⊇ R ー 質 薯 \ 一 融 佃 ∫ \ σり 一 鯛一.. の n HQ ∩ o .日 N 「 Σ o卜 N ) の 田 学 甲 濡 二 山 ゆ も LN ρ o Φ 創 の 1 oo 州 → ① eq l o 卜 σり bβ ・r→ ● 。り 479 h Tab1e 3-109 Physicochemdcal properties of isodaucenoic acid (RL- 115M-B, 13? N COOH 13 Colorless powder Vanillin-H2S04 color: clear pink EI-MS m/z (%): 234 OI', 4.0), 219 (4.2), 191 (17), 164 (6.0), 149 ' IH-NMR (8.3), 145 (9.1), 136 (9.9), 123 (11), 121 (27), 109 (13), 107 (14), 105 (17), 94 (15), 93 (22), 91 (20), 81 (15), 79 (-23), 77 (i2), 69 (21), 68 (100), 67 (26), 55 (15), 53 (15), 53 (15), 44 (27), 41 (28). 6,CrMDC s13(500 MHz); 1,847 (IH, overlapped, C-1-H), 1・261 (IH, m, C-2-Ha), 1.716 (IH, in, C-2-Hb), 3.050 (IH, m dvid. dd, LT= 15.4 and 5.4 Hz, C-3-Ha), ca 1.68 (IH, m, C-3-Hb), ca 7.22 (IH, m, C-5-H), 2.469 (IH, dd, J= 14.8 and 9.3 Hz, C6-Ha), 2.039 (IH, br. d, J= 14.8 Hz, C-6-Hb), 1.577 (IH, br. dd, J= 11.8 and 6.9 Hz, C-8-Ha), 1.455 (IH, ddd, J= 12.2, 11.9 and 8.0 Hz, C-8-Hb), 1.792 (IH, m, C-9-Ha), ca 1.88 (IH, m, C-9-Hb), 2.989 (IH, ddd, J= 11.4, 9.1 and 9.1 Hz, C-10-H), 4.797 (IH, dd, .T=2.3 and 1.3 Hz, C-12-Ha), 4.716 (IH, d, J= 1.3 Hz, C-12-Hb), 1.694 (3H, br. s, C-13H3), O.814 (3H, s, C-15-H3), 13c--NplR 6,CrrvD/813(7s MHz): s6.9 (CH, C-1), 22.8 (CH2, C-2), 27・9 (CH2, C-3), 134.0 (C, C-4), 144'.6 (CH, C-5), 42.7 (C-H2, C- 6), 42.3 (C, C-6), 41.9 (CH2, C-7), 28.2 (CH2, C-9), 50.1 (CH, C-10), 147.4 (C, C-11), 113.1 (CH2, C--12), 23.0 (CH3, C-13), 172.2 (C, C-14), 19.5 (CH3, C-15). 480 Tab1e 3-110 Physicoehemical properties of RL-115MB-ne (13a? N COOCH3 13a A colorless syrup Vanillin-H2S04 color: clear pink EI-MS m/z (%): 248 (M+, 33), 233 (19), 217 (8.4), 205 (45), 189 (28), 178 (21), 173 (21), 163 (32), 145 (30), 137 (47), 136 (53), 133 (34), 121 (100), 119 (50), 107 (48), 105 (65), 94 (51), 93 (82), 91 (54), 81 (43), 79 (61), 77 (35), 69 (42), 68 (88), 67 (62), 55 (37), 53 (37), 53 (37), 41 (60). IH-NMR 6?6iDs6 (soo MHz): 3.o69 (IH , dddd, J= 15.0, 5.5, 2.2 and 1.1 Hz, C-3-Ha), 7.053 (IH, m, C-5-H), 2.431 (IH, dd, .J= 14.6 and 9.2 Hz, C-6-Ha), ca 2. OO (IH, br. d, J= 14.6 Hz, C-6Hb), 2.982 (IH, ddd, .T= ll .4, 9.2 and 9.2 Hz, C-10-H), 4.792 (IH, dd, J= 2.2 and 1.1 Hz, C-12-Ha), 4.712 (iH, d, LI= 2.2 Hz, C-12-Hb), 1.692 (3H, d, .T= 1.1 Hz, C-13-H3), 3.724 (IH, s, C-14'-H3), O .806 (3H, s, C-15-H3)} 481 3) Isodaucenaldehyde Hydroxyl Derivative Hydroxycarotaldehyde was found as a spot with Rf O.26 and positive to DNPH reagent (orange) on silica gel/ pL/ates charged FrV-8 (from Sample V, See pp. 589) and developed in H-EA 3:1 (Fig. 3295). By column chromatography and PTLC of the fraction Sample V, ca 4 mg of the foeused substance was isolated as a colorless syrup. The compound denoted as RL-117C was also expected to be a carotane aldehyde, which showed M+ 236 (18 %) with base peak at m/z 59 in FI-MS (236.173 in FI-HR-MS, ClsH2202, calcd. 236.178) On the other hand, a dehydration peak at in/z 214 was EI-MS (Fig. 3-297). The presence of a hydroxyl group by its IR spectrum appearing as a broad absorption at (Fig. 3-296)・ observed in was suggested 3430 cm-1 (Fig. 3-298). ' In t,he IH-NMR and HH-COSY analyses (Fiig. 3-299, 300 and Table 3-111), RL-117C showed a similar signal pattern to that of isodaucehaldehyde (12) except protons attributable to C-11, 12 and 13. The signals for the side-chain, revealed the presence of -C(OH)-(CH3)2. The 13C-NMR of the compound indicated a non- hydrogen-bearing oxygenated carbon at 6c 73.3 assignable to the C11 (Fig. 3-301 and Table 3-112). Furtherinore, two methine carbons resonating in a downfield at 6c 56.5 and 53.1 resonating downfield were characteristic of a tertiary or a bridgehead carbon. As C-1 and C-10 methine carbons of 12 were detected at 6c 56.2 and 50・3, respectively, the former methine carbons of RL-117C were similarly assigned to those positions. Consequently, structure of RL-117C was elucidated as 14, and this novel carotanoid was named hydroxycarotanaldehyde. 482 "-EA 3:1 O O quenching under UV 254 nm "1tw DNPH reagent positive RL-117C・ob ---------be-------------- Fr- V- 8 std. 1 3-295 TL Chromatogram of RL-117C Fig. 2 1eez .ez g t2 F-t e .ee se 1SZ 1ee 1eee 2e.ee >oz hi Hz M++1 }-rl He M!E Z M+ .ez -i t 2SZ 2ee Fig. 3-296 FI-Mass Speetrum of RL-li7C 483 M!E IZZ 5 se, 6Z 191 2Z3 218 95 43 4Z t- 235 55 az 67 *5.Z 81 IZ7 lez 5Z Fig. 3-297 121 16Z 147 178 15e 2ZZ 25Z EI-Mass Spectrum of RL-117C :・ i- 1 ;5 6 7 6a 1) 1・1i 1+ /, 1, I Ii[ri11 l.1-;illLi;,.+li I!l i l・:. l, ;i・ l・ 'l li. Is i, l -1.Il..ll-..ili .i ::' Tl; l i , j・i・'I・i',i 3 E: -- L' 21 HY-77- t1lL`.1,L;+rY,1l-i--i--tTi'iJ-T-IT.---'r,T:;i. :1ii・il・E,i--l,Fl,;l・-iV : 'i' -l・-'.l.Ji'1/i-'Ii・ ll/:' :ii' .-t.u:u-.k'L--i.+-..H. l,.l-i.l /,; ''lii-.・ :'r- 4・'J.Jli.1,I[:1.l i'""'rl' 'iir.1'l,/:・;.i ,' l・ll,・l.l・・l1l・li.fi;・-lli・lil-T-.I Hrin rirrIi-=-r・r'rlrsT,=-t-nr,li, i.LTI-l,,L-LI6,tiL'Li,i,i.L-.i-1・-l,.i rl'iilILlliiIll-liiiIii-PI.'ll Ij L .i ' ' :' t' i -.a:':t) - ---- tL+ "' ' :i .t], 1// t; :, :-L,1 '.H I.llll・i eEl=-i- Fev-Ll'- 'l.・,--"y-.--.-- ・- ft.!L-tH-i/l-=i'lirrrt i・i/l.l'':l'rf,-i: li:,:l'.・i・-:'i1 -F・--T"-//-'T,J;T,,tTI--i.rrTi-.,i: . i,il ;・ ` :;' '''::4::1 :U IR Spectrum of RL-117C 484 ./4/r."r:: !/Li:1':.tn:z/. V,i・--,i.i・L・"・i ,t i ;E., .,:2:- 1 Fig. 3-298 :'''J ..="-L・-t?1.L=・-Ll-!:・・-i :.Ll.,,+ :, 11rL.---tt :・.,,..I r・-ve:HI/・"-'"T f:'-÷-1r 1: 'li.l' V'L- ''ili.ii.ll,;ii,,y,Li:,ll・l tt t・+,-lr si'・i: 'L.L'kiiLl'--LT-il'-.rrL'.in.liL---l...l:L'--+¥.rEi-2=L----i':':-i-Lil'---LLit/i-}:t'Lli'`'L-i'i;'-;:='i -I I・・ ;・; ;inL-・-:-.L'-1-tl--r-'f'F:''/"-t-'.s I・11i['g I-'I--""i;;・・'l//[-':,-":l'---'-'r'-'n i/':''!'--" .V;'''rl--J'"・:,1 ..il''i.,i-.,T'- I・i/. F=rmL.iJ'i+'-- t;t t. l1,-..t・,;H--. 4¥/A'[・・-: /u.m;LtS!i(XiA-../i.NL. iI;l'it'/"L--".r.m.s.Ft.7-+Lz--..-III i・'---+- iJ sii = .n,.m.-,-..i/v'" -1:O 25 u] tt-L--t ..-LL.-.ll'.-FY-+i ' TL+t:-"r' lii " ;・ -+ri++"'lnv:"L"i・-+1 WE-rT -t. -i.i.l.ii-i''.-.,"-;-..L.'..+..--...-.. !---÷-・ II3 II; :・IS ill,li v ... T. 1-. -.L- -- l T :' '-i' ・ ' ; 35e 3ee iJl; :, el) ' ' dF.o ' L' ''icL} 薯 0 6 8 一 一 8 9 & 一 蔑 8 一 雨 (⑩ 需 ∩ ⑩ ← Q 8 審 ぜ ・7→ 一 “ 鴇 富 ⊂⊃. ー= 『〔L 一 L∩〔L 8 ) 一 3 め 臼 託 州 州 1 舶 臨 ← Q卜 網 図 二 呂 o o ゆ 。 8 r、こ ρ o 8 面 Φ 8 6 ヨ の 1 & 8 函 一 ① σ) N l Oり 8 爲 べ ご 8 δ ● bβ ・r→ 国 9 d 9 φ 485 Tab1e 3-111 1 H-IVMR chemical shift values of RL-117C (5oo MHz , in C6D6, TMS as an int . std.) 6H 9 6 3 . 283 . 067 . 361 345 2 2 ' 056 2 1 1 074 . 708 . 569 1 482 1 466 1 1 1 1 o Assignment IH s IH ddd J= 8.8, 3.3, 3.2 Hz IH IH IH IH IH IH dddd .T= 15.3, 5.1, 2.3, O.8 Hz m dvid. d .T= 13.9 Hz dd J= 15.1, 8.8 Hz ddd .T= 12.2, 9.1, 9.0 Hz br. d J= 15,1 Hz ddd .T= 12.2, 11.1, 1.7 Hz IH m IH m IH m . 245 . 20 (approx.) IH overlapped d-like . 148 , 088 . 951 935 o o Coupling ' 564 IH dddd J= 12.6, 12.6, 12.5, 2.2 Hz IH ddd J= 11,O, 10.5, 8.1 Hz 3H s 3H s 3H s C-14-H C-5-H C-3-Ha C-2-Ha C-6-Ha C-10-H C-6-Hb C-1-H C-9-Ha C-3-Hb C-8-Ha C-9-Hb C-2-Hb C-8-Hb C-12-H3 C-13-H3 c-l5-H3 486 9 8 6 ア 5 2 3 4 。 ・・僻 o 匹 一 1 … o 葛 國 N てΣ 馬 ㊥〔∋ 、・語 ’ 爲昌・睡。 盈’〔1◎踵・ o θ 齪 鴨⑳ q ㊥匙 マ の り O D∴ ◎ 一 爾 o ⑩ o 。 o Fig・ 3-300 COSY Spectru班 of RL-117C (270 MHz・ in C6D6) 487 霧毒 一 葬 ぎ{ 鼻 } 2 ヨ 9 妻 , 一 雷 9 親 ( 9 一 山 国 響 H 8 蔚 8 お ℃ 自 o o 2 £ ⑩ ∩ 8 o 8 ・H ⑩ 9 一一 ま 屋 受 貫 £ ’ § 些 屋 一 Σ oo ゆ ) o卜 州 州 l q 輌 o ヨ 呈 嘆 ρ o £ Φ 舅 の 婁 量 婁 { l o H ◎り 罠 雪 Ho σり 婁 1 σり 」 享 488 £ 室 ・▼→ 国 塗 Tab1e 3-112 13C-ALISfR chemical shift values of RL-11 7C (78 MHz, COM and INEPT , in C6D6, TMS as an int . std.) 6c CHx l93 Assignment* 3 CH C-14 152 . 8 CH C-5 146 . 6 C C-4 73 . 3 C C-11 56 . 5 CH C--1 53 . 1 CH C-1O 43 . 5 CH2 C-6 42 , 3 C C-7 8 CH2 C-8 3 CH3 C-12 7 CH3 C-13 1 CH2 C-9 6 CH2 C-3 1 cH2 C-2 3 CH3 C-15 41 32 . 27 , 27 . 25 . 23 19 ・ 489 Tab1e 3-113 Physicochemical properties of hydroxycarotanaldehyde (14) N CHO ; : H OH 14 A colorless syrup Vanillin-H2S04 color: brown --) pale pink FI-MS m/z (%): 237 (M++1, 30), 236 (M+, 18), 221 (25), 219 o!+- ' H20+1, 34), 177 (46), 59 (100). EI-MS rdz (%): 236 (M', O.2), 235 (O.4), 221 (1.4), 218 4.2), 203 (4.0), 191 (5.3), 178 (8.4), 175 (8.2), 149 (12), 147 (12), 145 (11), 136 (11), 135 (11), 107 (15), 105 (13), 95 (43), 93 (20), 81 (24), 79 (20), 59 (100), 55 (23), 43 (40), 41 (32). IH- and 13c-NMR data are shown in Tables 3in111 and 112, respectively. 490 (M+-H20 , 160 (17) ' 121 (15) ' (20), 67 3-7-4 Carota-trienaldehyde and Its Related Compounds 1) Dehydrodaucenaldehyde RL-D showing M+ 216 in GC-MS was a further dehydrogenated form of carota-1,4-dienaldehyde (3), daucenaldehyde (10) or isodaucenaldehyde (13). During the HPLC of the RL fraction, RL-D was detected as the third peak (Fig. 3-302) and was obtained as a colorless oil (1.8 mg). The EI-MS of the isolate was agreeable with GC-MS of RL-D (Fig. 3-303), and its IH- and 13c-NMR spectra were indicative of the triene form (Fig. 3-304, 305 and Tables 3114, ll5). Decoupling experiments revealed two -CH2-CH2- units relayed by a homoallyl coup}ing each other. In addition, -C(CHO)=CH-CH2-, -C(CH3)=CH2 and -C-CH3 moieties were visible. Thes' e results formulated RL-D as 15, and the proposed structure was supported by detection of four non-hydrogen-bearing olefinic carbons ' at 6c 146.7, 144.7, 141.9 and 137.0. Compound 15, a dehydrogenation product of 9 or i2 was given a trivial name, dehydrodaucenaldehyde. , s i. : l I -:t - ; l --.--L-.. ; /1 i l・ RL-D 'f- 'J .tb,. :. o i' l T I- ・--- 1 :・ l'' N) ; l -"'-r'', ; t'------'-'-l -iM'----'----'-----'--- ;i .O ;. i 'i Fig. 3-302 HPL-Chromatogram of RL-D Detected at UV 230 nm 491 ez 1 216 1 145 8Z 91 6e 173 16Z 41 . 117 77 4Z 1Z5. 55 187 2Zl 69 65 2Z 181 5Z lez IZZ 2ZZ 15Z 1 251 3ZZ 2S.Z 3ZZ 9 8Z 146 6Z 4e 91 41 IZ5 133 le7 77 2e 216 55 161 65 5Z Fig. 3-303 IZZ 173 2Zl 15Z 2ZZ GC-Mass (top) and EI-Mass (bottom) Spectra of RL-D 492 11 匡 。 ‘二) 8 日 雨 8 貯 諺 面 面 累 曾 8 純 L$ 附 呂 面 臼 9 純 ( ⑩ o⑩ o 8 コ 。【1 9 繋 純 “ 。_ ⊂》4. ,巳、. Lρ〔;一 霧 9 丙 8 oo 鴎 雨 。 ∩ 1 ω 面 .日 幅 臼 雨 ) 8 8 。 8 面 日 べ ρ o 9 Φ ぜ 3 q の 潟 8 諸 1 ぜ 禺‘ ¶脚→ ・ 8 d 8 唱 マ. o Qり l 呂 8 5 oり の 8 ヨ (⊃ ω 493 舞 ● bO ・Fl 山 Tab1e 3-114 1 H-ALIttR chemical shift・ va1ues for RL-D (5oo MHz , in CDC13, TMS as an int . std.) 6H Assignment Coupling 247 IH s 6 066 IH 4 935 IH ddd .J= 8.1, 5.3, 2.0 Hz dd .T= 2.9, L5 Hz 788 IH O08 IH . 693 IH . 327 IH . 248 IH 039 g22 IH . 854 IH . 726 3H br. s . 689 IH . 539 IH . 468 IH br. dd .T= ca 16, ca 14 Hz ddd J= 12.4, 8.4, 4.6 Hz ddd .f= 12.4, 8.7, 7.3 Hz . 800 3H s 9 4 . . 3 2 2 2 2 1 l 1 1 1 1 o . . IH d J= 1.5 Hz ddd J= 15.1, 5.5, 31 Hz ddd J= 16.2, 5.5, 3.3 Hz dddd J= 15.8, 8.7, 8.4, 2 dddd J= 15.8, 7.3, 4.6, 1 dd J= 14.4, 53 Hz dd J= 14.4, 8.1 Hz br. dd J= 15 -p 1 ca 14 Hz 494 C-14-H C-5-H C-12-Ha C-12-Hb . 8 Hz o Hz C-3-Ha C-2-Ha C-9-Ha C-9-Hb C-6-Ha C-6-Hb C-3-Hb C-13-H3 C-2-Hb C-8-Ha C-8-Hb C-15-H3 .・一 9り 国国 Q o B, σq o c} 日 鶏 穿 鼠 躬習 ℃ 呂葱. ド o ρo ぎ 風 ⑩ 一9∩ ⑩ o ・F→ 需q 〔., .一 熟 N ョつマ_ 一・ 錐 〔・Σ! 一ヨゆ @(N ,・ 州 ) 1 臼 も 旧邸 一 』 臼 .尉 9 一 ζ為 の 呂因 j ρ〇 一 力 ーl r’ 8剛 8 一 ゆ 一塗あ 8響 国 e刈 495 Table 3-115 13C-IVMR chemical shift vaZues of RL-D (125 MHz, COM and INEPT, in C6D6, TMS as an int. std.) 6c 192.8 152.1 146.7 144.7 141.9 137.0 113.9 50.2 41.4 39.0 32.6 24.1 24.0 23.3 22.6 CHx Assignment CH2 C-14 C-5 C-1 C-4 C-11 C-1O C-12 C-7 C-6 CH2 C'-8 CH2 C-9 C-13 C-3 C-2 C-15 CH CH C C C c CH2 C CH3 CH2 CH2 CH3 496 Table 3-116 Physicochemical properties of dehydrodaucenaldehyde (15) CHO 15 A colorless oil Vani11in-H2S04 color: brown GC-MS Jn/z (%): 218 (M", 12), 203 (6.3), 189 (4.6), 176 (6.8), 175 (14), 162 (6.4), 149 (11), 147 (9.7), 136 (14), 135 (11), 133 (14), 121 (17), 109 (15), 107 (26), 105 (16), 95 (13), 94 (15), 93 (28), 91 (22), 81 (14), 79 (30), 77 (16), 68 (100), 67 (35), 55 (17), 53 (21), 41 (28). EI-MS m/z (%): 216 (M+, 27), 201 (M"-CH3, 17), 199 (6.2), 188 (11), 187 (M"-CHO, 38), 173 (16), 161 (20), 159 (16), 146 (64), 134 (26), 133 (41), 131 (28), 119 (100), 105 (39), 93 (26), 91 (57), 79 (22), 77 (27), 55 (20), 41 (43). IH- and 13c'NMR data are shown in Table 3-114 and 3-115, respectively. 497 2) Dehydrodaucenoic Acid In the Fr-VIIA-6, a quenching spot was detected (Fig. 3-306). From t.he fraction of 1/10 volume, the focused compound was successfully isolated by PTLC (H-EA-F 30:20:1) to give a eolorless syrup (ca 3 mg). The isolate showing M+ 232 in EI-MS (Fig. 3-307) was tentatively deduced as 16, since the eompound exhibited a quit・e similar IH-NMR spect,rum to that of dehydrodaucenaldehyde (15) (Fig・ 3-308' ). As well as carota-1,4-dienoic acid (4) or isodaucenoic acid (l3), t,his sesquiterpene acid whose corresponding aldehyde was also contained was also present in Rosa rugosa leaves as a minor constituents, and was named dehydrodaueenoic acid. H-EA-F 30:10:1 O quenching under UV 254 nm Dehydrodaucenoic Acid a 9 o --------g,,F------. Fr-VIIA-6 Fig. 3-306 TL Chromatogra]n of Fr-VIIA-6 Containing a Carotane Trienoie Acid lez 1 9 8Z 177 6Z 91 41 4Z IZ5 77 55 ae 187 133 145 6e 232 15g 171 199 5Z Fig. 3-307 IZZ 213 2zz 2se 3zz i5Z EI-Mass Spectrum of Dehydrodaucenoic Acid 498 蓄 」 旨 li L’ } 戸、 〉 一 薫 。 一 一扇 o o Q 藁 , 圏 一 一 ~ 驚 “童 《 の州 。 ・H ハN 『 め 対 こ\」 しり o の o !r竃 噂 ゆ 二 ゆ N ・r→ り く 円 q. 麻ヨ 己¢ L (レ 『 州 一 Lρ GつΣ二 騨 ・α_ ▼一cL 鴨 の o oり N ロ 丙 達 麦 1. o (⊃ の 鉢→ ○ 『 1ω しニつ ρ 雨 N N 『 o 「\ ω の Σ oz しり 隊 1 ミ L 茎 ト σ) 「i ユ の 一・一 一== てゴ r 、 B ln OO レ.・ 1 l α) ○ σり 1 『σつ σヤ b三 い 「許 『 帥 し 499 Tab1e 3-117 .Physicochemical properties of dehydrodaucenoic acid (1 6? COOH 16 Colorless syrup Vanillin-H2S04 color: dark pink EI--MS m/z (%): 232 (lv:[', 15), 217 (6.3), 187 (44), 177 (72), 145 (22), 134 (29), 133 (39), 131 (31), ,119 (100), 105 (36), 93 '(23), 91 (52), 77 (28), 55 (26), 44 (41), 41 (50). iH-NMR 6gR8i3(soo MHz): 2.763 (iH, ddd, J= i4.i, 6.o and 2.g Hz, C-2-Ha), 1.909 (IH, br. dd, J= 14.1 and 13.5 Hz, C-2-Hb), 2.852 (IH, ddd, J= 15.0, 6.0 and 2.9 Hz, C-3-Ha), 2.107 (IH, br. dd, .J=15.0 and 13.8 Hz, C-3-Hb), 7.233 (IH, ddd, 7.2, 7.2 and 1.8 Hz, C-5-H), 2.335 (2H, d, J= 7.2 Hz, C-6H2), 1・738 (IH, m, C-8-Ha), 1.681 (IH, m, C-8-Hb), 2.411 (IH, dddd, J= 16.1, 8.3, 8.2 and 2.9 Hz, C-9-Ha), ca 2.30 (IH, overlapped, C-9-Hb), 4.941 (IH, dd, J= 2.3 and 1.4 Hz, C-12-Ha), 4.719 (IH, d, J=2.3 Hz, C-12-Hb), 1.842 (3H, br. s, C-13-H3), 1.005 (3H, s, C-15-H3). 500 ・ 3) Dehydrodaucer}aldehyde Hydroxyl Derivative RL-119A was mainly isolated from Fr-VH-9 (See pp. 586) as a minor constituents. By PTLC, the compound was isolated as a colorless syrup (Fig. 3-309). In EI-MS, the parent ion (m/z '234, 11 %) and successive dehydration peak (m/z 216, 23 %) were observed, suggesting a hydroxylated compound for RL-119A (Fig・ 3310). In the IH-NMR spectrum, some signals characteristic of a tt earotane aldehyde were visible [e.g. an a,B-unsaturated aldehyde group at 6H 9.345, a bridgehead inet,hyl group at 6H O.822 and an isopropenyl group at 6H 5.104, 4.988 (exomethylene) and 1.787 (allyl methyl)] (Fig. 3-311 and Table 3-118). As the signal perttern was similar to that of isodaucenaldehyde (13, See Fig. 3275, pp. 486), the compound was expected to be a hydrate of 13. By the 13C-NMR analyses of RL-119A (COM and INEPT), a oxygenat'ed sp3 carbon was detected at 6c 86.7 (Fig, 3-312 and Table 3-ll9). On the other hand, only one methine carbon was observed at c 66.5, unlike 13. The presence of these two carbons suggested that either C-1 or C-10 was hydroxylated and gave a deshielding effect on the adjacent methine carbon. The position of hydroxylation was considered to be C-10 by comparison of t,he IH-NMR spectrum with that of 13. Namely, C-10 ]nethine proton which may be deshielded characteristically around 3 ppm by the C12/C13 olefinic bond (e・g・ 6H 2.989 in 13) was not, detectable in RL-119A. The methine proton of RL-119A resonated ln an upfield (6H 1.946, dd, J= 11.8 and 1.5 Hz) was rather favorably assigned tQ C-1-H (cf. C-1-H of 13; 6H 1.921, ddd, .J= 12.3, 11.6 and 2.0 Hz). Thus, the compound was proposed to be 17 which is a relative of dehydrodaucenaldehyde (15), and was named hydroxyisodaucenaldehyde. 501 H-EA 3:1 C-M 50:2 O quenching under UV 254 nm N6 RL-119A RL-119A -. ・v .---・d---'-"'t'-" Fr-VH-9 Isolated Fig. 3-309 ze RL-119A TL Chrofiiatogram o£ 6 41 84 se 6e le9 91 119 55 4Z 79 97 133 146 2Z 151 216 lg7 l61173 ' 2Zl 234 Z6 ' se Fig. 3-310 lze !5Z 2ZZ EI-Mass Spectrufn ef RL-119A 502 2sz3ee ¶ まり \ \ 5 、 \、 ノ ほ 一 摯 \. 層k 幽、\ \r 一 7} `・ ㌔・, ’」 ヘロ 」 》 3 需闇廟胴r=一. 一 ~ ~ 、 ξ 蓬 一 、\気 ノ 一』 黶サ. ≦ ~ ⑩ 自 ⑩ o 「 ぐ 」 ・r一盛 { 儀 『 ヘノ 矯、 L~ 〉 う 。 卜 Q { 1 ) ≦ノ… < ① 白 州 【 り 臼 ㍉ ダ 輌 ㍗』一 。 霞 、 ≧ ~ 臼 鯉 ~ 。 Φ の ユ 1=ま “ H 、 ζ「 州 し7魑 鳥 503 l 。 州 Qり 1 0り ■ 山 ・セ→ Table 3-118 IH-IVMR cheinica2 shift values of RL-119B ' ' -(500 MHz, in CDC13, T)IS as an int. std.) 6H Coupling ' Assignment 9.345 IH s 6.713 IH ddd J= 8.8, 3.3 and 3.3 Hz 5.104 IH br. s 4.988 IH dd J= L5 and O.7 Hz 3.083 IH ddd J= 13.6 '4.8 and 2.9 Hz 2.643 IH dd .T= 15.4 and 8.8 Hz 2.354 IH br d J= 15.4 Hz 2.300 IH ddd .T= 13.6, 11.7 and 6.6 Hz 1.946 IH dd J= 11.8 and 1.5 Hz 1.912 IH ddd J= 12.5, 12.1 and 7.7 Ilz 1.787 3H d .T= O.7 Hz 1.77 (approx.) IH m 1.690 IH ddd .T= 15.8' 6.2 and 2.9 Hz 1.596 IH dd J= 12.5, 7.0 and 5.5 Hz 1.58 (approx.) IH m 1.208 IH ddd-like m O.822 3H s 504 C-14-H C-5-H 'C-12-Ha C-12-Hb C-3-Ha C-6-Ha C-6-Hb C-3-Hb C-1-H C-9-Ha C-13-H3 Cr2-Ha C-9-Hb C-8-Ha C-8-Hb C-2-Hb C-15-H3 彦 要 .__■」 ◎つξ Q 巴ll 妻 N o Ql’ 一 蓬 雲 蒙 〇 一 番 彗 崩 一 垂 茎 一 一 耳 一’._ 3 ==二二達 サ 4 il 垂 垂 晋 多 ま 妻 ↑ 一『’ コ ま 摩 妻 歪一一 董 。 ~ o~ o ハ れ ρ、 髪 .釜 喰・ { oq 垂 o噌 垂 ρ 妻 の 督、 茎 垂 o ρ σ 6 四 一 9 多 ’ 罫 h _し_____タ _.一・・甲一■ 多 _ .一=========罵訂=..・ ←一一一一 ρ .塁 垂 一一『二’.ボニ, .三 菱 の h 茎 毒 富 (⑩ ⑩ Q ξ 擁 毫 蓄 ・7→ “ ω い 葺 窒 葺 ρ φ N 国 の ホ 妥 垂 垂 ぎ o o 一 寺 ・レ ∫ 一 重 i 孟 ∫ 5 一 董 .憂 一石 。 ま も= コ 雪 き 1 { チ ぎ 茎 夢 ,耀 4 享 弧 .一 ’ゆ 一』郭 垂 茎 { 二 、 彊 需ゴ ゐ σり 一の 茱 鴛 蓋 妄 茎 ぎ 一 」、 層h 凶 更3 ツ、 H HN oり } ◎り 婁 2 塁 } 卵 り 「■P 一 孝 3 の しrく 虫 蚕 妻 Φ 書 ‘ } 蓼 { o 一口 り 事 覧 チ ゴ Σ 弄 ρ .,、 ‘.. 亨 日 ⇒ 『.2 」 醤 曝 婆 ‘ 口 触 1 冨 < ① 州 州 1 葦 曇 孝 二 .自 ⑩ ) 垂 雫 3 ◎o し、 r.h -一一i 505 ● ・H 隅 Tab1e 3-119 13 C-IV7VIR chemical shift values of RL-119B (78 MHz, COM and INEPT , in CDC13, T)IS as an int . std,) 6c CHx Assignment 9 CH C-14 3 CH C-5 148 7 C C-4 145 7 C C-1l 112 2 CH2 C-12 7 C C-1O 5 CH C-1 44 4 CH2 C-6 43 3 C C-7 3 cH2 C-8 1 CH2 C-9 25 o CH2 C-3 21 8 CH2 C-2 21 4 CH3 C-13 19 4 CH3 C-15 194 . 154 . 86 . 66 . . , 39 38 . . . . . 506 Tab1e 3-120 PhysicochemicaZ properties of hydroxyisdaucenaldehyde (1 7? COOH 17 A colorless syrup Vanillin-H2S04 color: brown EI-MS m/z (%): 234 (M', 11), 216 (M'-H20, 23), 206 (4.6), 201 (11), 187 (19), 173 (12), 161 (13), 151 (15), 150 (14), '149 '(15), 146 (24), 137 (24), 133 (33), 125 (40), 123 (29), 119 (42), 109 (51), 107 (35), 105 (33), 97 (30), 95 (29), 93 (38), 91 (44), 84 (83), 81 (31), 79 (35), 77 (26), 69 (100), 67 (34), 55 (39), 53 (25), 43 (54), 41 (92). IH- and 13c-NMR data are shown in Tables 3-118 and 3--119, respectively. 507 3) Carotane Trienaldehyde Derivative During the survey of rugosic acid A methyl ester (5), a compound showing a dull orange color on the peroxide test・ was detected in the fraction contained 5 (See pp. 402). This compound denoted RL-PERO-4 was also isolated by PTLC (Fig. 3-313). As the result, 12.8 mg of a colorless syrup denoted as RL-PERO-4 was ' obtained. The isolate showing M+ 232 in FD- and EI-MS (Fig. 3-314 ' to be a dioxygenated carotanoid. In the IHand 315), was expected NMR spectrum, it was revealed that RL-PERO-4 posessed an olefinic bond in the seven-membered ring and the olefinic protons were vicinally coupled with each other (.J= 12.0 Hz of isolated cis coupling) (Fig. 3-316, 317 and Tables 3-121, 122). Informatlon for its oxygenation form was provided by 13C-NMR analyses (COM and DEPT) (Fig. 3-318 and Table 3-123). Only a methine earbon 6c 29.0 and two oxygenated carbons (6c 78.3 and 72.3) were clearly dirrerenciated among 10 sp3 carbons. Especially, the latter carbons were both non-hydrogen-bearing. These facts were suggest・ive of the presenee of an epoxy ring on C-1/C-10. A proton coupling sequence of -CH2-CH2- was assignable to C-8/C-9. However, there were t,wo possible st・ructures (D and E) for RL-PERO-4 as shown in Fig. 3-319. As a deshielding effect, of C-14 aldehyde group was observed on an olefinic proton at 6H ca 6.79 in CDC13 (cf'・ 6H 5.904, br. dd, J= 8.1 and 2.3 E{z, in C6D6), it was suggestive of the presence of ct,B-unsaturated aldehyde group. Since its UV max was observed at 270 nm, that olefinic bond was expected to be further conjugated with this aldehyde group to form a,B;a;B'unsaturated one. By the NOE experiments, NOE between one of the allylic methylene proton (6H 1.981 in C6D6) exhibited an NOE with C-15-H3 and C-12-H3. These NOEs are only compatible when the rnethylene carbon allocates to C-2 (Fig. 3-320). Accordingly, the structure was presumed to be D. To confirm the proposed structure, chemical conversion of this compound was carried out. 508 H-EA ,4 :1 o RL-PERO-4 quenching under UV 254 nm de peroxide test: + N@ iEllil> Fr-V-3 TL Chromatogram of RL-PERO-4 Fig. 3-313 M+ 2 1eez se.ee 'X'-. o dz i HZ t-1 "-'t Z se , , - d, ii- - -, t- -- Y s 2se lse 2ez 1ee tt+t va.?e M!E :'; 1eee se.ez -)- H. i-l oo z' di F・ z f-'t .?.ee e Bez Fig. 3-314 4ee 3SZ 4se FD-Mass Spectrum of RL-PERO-4 509 szeM/E lze 1 3 8Z 129 6Z 4e 43 157 171 115 91 51 63 71 5Z Fig. 3-315 214 199 77 2Z 189 IZ5 IZZ 15Z 2zl EI-Ma,ss Spectruln of RL-PERO-4 510 25Z 3ze レ ’ 8 面 掌 8 雨 (6 $ q⑩ o 8 ⊂:)甲. 好 昏註1 ・7→ _:a “ 8 8Σ 噌・ 頃 吹F o o め ) 9 寸 I 8 8 め o 餌 嵐 山 1 丙 繭 8 軸 。 べ 饅. L 丁 d φ ρ o 8 Φ 南 の 累 8 じ ご 寓 1 8 φ 国 H ⑩ H σり 8 「く .累 1 8 甲6 済 σり 。 一 ・F→ 国 $ ド 511 Table 3-121 1 H-N?YR chemical shift }ralues foi' RL-PERO-4 (5C)C M'Hz, in C6D6, TMS as an lnt. std,) 6H 9.107 7.042 5.904 5.537 2.447 1.981 1.710 1.592 1.544 1.212 O.987 O.923 O.718 O.603 Coupling Assignment (for 18) ' IH C-5-H IH d .J= 12.0 Hz IH dd .T= 8.1 and 2.3 Hz C-3-H IH IH dd J= 18.5 and 2.3 Hz C-2-Ha IH dd J= 18.5 and 8.1 Hz C-2-Hb IH dd .J= 13.6 and 8.2 Hz C-9-Ha IH IH ddd J= 13.6, 10.5 and 8.0 Hz C-9-Hb IH br. ddd .T= 11.9, 10.5 and 8.2 Hz C-8-Ha 3H IH dd .f= 11.9 and 8.0 Hz C-8-Hb 3H 3H d J= 12.0 Hz C-4-H sept J= 6.9 Hz C-11-H d J= 6.9 Hz C-12-H3 d J= 6.9 Hz CH13hH3 512 (』, 2 9 r、; 窮 5 9Qつ 囲 面 o r「} ∩ o 雪 詩 丙 9・r→ ロ 臼 の 「N o o. 〔.) 一⊂) 1 α〕 費 ま 済 8 ーゆ 一『・・) 」⊃L 可 iO ぐ〉ζ』 国 Cl ω臼 ⊂⊃.一.. 占 .o詮’ 餉 o 丙q. r〕臼 ・『コ 【臼 ρ o ① の 零国 臼 z l ’ . F→ φ ・・,芝= 器 ω 雰 卜 σ;F弓 9 oり 1 め σり 9鉾 9山 513 TabZe 3-re2 IH-IVMR cheJnical shift values (500 TvlHz, in CDCI3, TMS as an ip.t. std. ' 6H Coupling ' fO 1' RL-PERO-4 ) AssignIIIent (for 18) ' C-14-H C-5-H 9.397 IH s 6.79 (approx.) IH in 6.784 IH d J= 12.2 Hz 5.705. IH d J= 12.2 Hz 2.757 IH dd .J= 18.6 and 2.619 IH dd J= 18.6 and C-3-II 2 8 1.916 IH m 1.904 IH m 1.806 IH sept .l= 6.9 Hz 1.313 IH m 1.308 IH m 1.111 3H d .T= 6.9 Hz 1.009 3H d J= 6.9 Hz O.884 3H s 514 . 6 Hz o Hz C-4-H C-2-Ha C-2-Hb C-9-Ha C-9-Hb C-11-H C-8-Ha C-8-Hb C-12-H3 C-13-H3 C-15-H3 L k Q Qり 寓国 oo σq o 臼 臼 ( 白 山 国 。 ・窮 穿麗 .⊂)芝 L「1 0O ・5Qつ の δ 一臼8 9・7一{ “ N 9謁 ゆ 。σq _(=,F→ 一轟) ぐ .ヨ1 一・ 国 五 一屋舶 。,Ω→ 一21 o .冑雲 ぢ ぷ巴 の 鵡餌 一ω:Σ1 1 6Q 一“ .一 u\⊂つ 一’ .零 @H oo 一 ◎り 潔σつ 1 bO (=つ ・州 N山 一く=) 515 Table 3-123 13C-AUlfR chemical shift values of RL-PERO-4 ' ,(78 MHz, COM and INEPT, in CDCI3, TMS as an int, stde) ' 6c CHx Assignment* 193.5 CH 153.8 CH 138.6' C 127.2 CH 125.5 CH C-14 C-3 C-4 C-5 C-12 78.3 C C-1 72.3 C C-10 42.1 C C-7 38.8 CH2 C-8 33.3 CH2 C-9 29.0 CH C-11 24.0 CH2 ・ C-2 20.7 CH3 C-15 19.0 CH3 C-12 18.4 CH3 . C-13 * The assigmnent for RL-PERO-4 is according to the proposed structure 18. 516 By tveatment・ of RL-PERO-4 with thiourea/MeOH, a polar product possessing MW 232 was obtained in a 34 % yield (fine prisms, 2.3 ing from 6.8 mg, Rf O.26 in C-M 50:2) (Fig. 3-321). As the ' spectroscopic data were indicative o£ 10-hydroxycarota-1,3,5-triene aldehyde, the product was introduced an olefinic bond through the epoxy ring cleavage (18a) (Fig. 3-322, 323 and Tables 3-124, 125). The olefinic bond formation shoiild occur by electron transformation via B-hydrogen transferation (C-2) to result in the epoxy clevage (Ckl-O) (Scheme 3-34). Accordingly, the structure of RL-PERO-4 was proved to be 18. s- zfil cHo XN cHo --- : Fig. 3-319 Two Possible Structure for RL--PERO-4 . /.. CH, H <---c ,,, H CHO ' N t 't . "- o H iii[iiij7 H3C CH3 Fig. 3-320 NOEs Observed on RL-PERO-4 517 H-EA 3:1 O :'i':;1/'t':::' @ quenching under UV 254 nm vanillin-H2S04 test: + @ Reaction Std.18, MIX. Fig. 3-321 TL Chr'omatogram of RL-PERO-4-TU Obt,ained by Treat,ment of RL--PERO-4 wit,h Thiourea s・- : / CHO o thiourea N・= : HO Scheme 3-34 N 1 CHO Conversion of RL-PERO-4 into a hydroxyl derivative 518 1e2e M+ l 1 2 -(・,e ,ee l ' ttt ・>・ tr, o' 5 7' "" e '' 'I t 1ee S2 >ez ' '`i's'ti' 1SZ 'lh .e ,ze M./E. p,; 1eze -(ie.ee -) tI' oz hi t'' -'-" t o.?e e 35e 3ee 4se 4-ze 5eeM/E FD-Mass Spectrum of RL-PERO-4-TU Fig . 3-322 IZZ 1 3 8Z 128 6Z 43 4Z 115 91. 2e 157 77 51 63 71 5Z Fig. 3-323 171 189 214 19S 232 ---L---r---"-------------*IZ,Z IZ5 IZZ 15Z 2ZZ 25Z EI-Mass Spectrum of RL-PERO-4-TU 519 3ze !: 8 8 面 累 ( σり H 80 ・8 器 臼 累Σ ・7→ 一島 の 鰍 宰飼 ゴΣ1 9Σ 謁 ま 留 ω 8 話 純 の oo ゆ 8r ) 一,‘・.=⊃ の「乙 ク岡 1 寸 l o 〔⊃国 マ→ 一。⊃ 9 臼 べ ω ω1 口 輌 o の 一『露 r・5 9 rく 臼 べ ρ o ① q (⊃の _(コ 面山 1 8州 σ;rr N 1 8弱 σり σり 9蔵 .520 Tab1e 3-124 1 H-Al7itrR chemical shift va1ues fOl- RL-PERO-4-TU (500 MHz , in CDC!3, TMS as an int. std.) 6H Coupling Assignment・ (for 18) 9 7 6 6 5 2 2 2 1 567 IH . 219 . 640 . 478 . 487 . 118 . 056 041 d J= 6.7 Hz IH d J= 10.2 Hz IH d J= 6.7 Hz IH d J= 10.2 Hz IH ddd J= 12 .7, 6.4 and 6.1 Hz IH dd J= 12. 7, 6.5 Hz IH sept. J= 6.8 Hz IH ddd J= 12 .9, 7.3 and 7 2 Hz IH ddd J= 12 .8, 7.8 and 7 4 Hz 3H d J= 6.8 Hz 3H d J= 6.8 Hz 664 3H ・ . 119 1 o 023 ss3 541 1 1 C-14-H . . s IH . s 521 C--5-H C-3-H C-6-H C-2-H C-9-Ha C-8-Ha C-11-H C-8-Hb C-9-Hb C-12-H3 C-13-H3 C-15-H3 ・” ____ cつ c9 巨=霞鵠 盾?Q s』 9 9臼 山 国 窩 ∩ ℃ 9 O o 掌 ◎り 同 o o o 呂 尺ε “ 8、遷 ゆ 目 ) ㌃㌣ 9マO 炉4 国 日餌 一 1 口 触 o 鶏 _ 臼 9邸 ぢ 量. の 妄言 〒 臼8 H 一器 ゆ 鍔 8あ bD N8唄 匡1 522 Table 3-125 13 C-IVIYR chemical shift values of RL-PERO-4-TU (78 M'Hz, COM and INEPr-x, in CDC13, Trvl'S as an int. std.) ' ' 6c CHx Assignment* 193.3 l61.6 ' ' CH C-14 C C-1 142,7 CH 138.5 C 136.7 CH 120.5 CH 111.8 ' C-3 C-4 C-5 C-6 CH C-2 85.5 C C-10 45.1 C C-7 38,7 CH2 C-8 34.8 CH2 C-9 33.7 CH C-11 20.3 CH3 C-15 18.2 CH3 C-12 17.0 CH3 C-13 * The assignment・ for RL-PERO-4 is according structure 18. ' 523 t,o t,he proposed Tab1e 3-126 Physicochemical pi'operties of isotrienecat・oanal epoxide (18) '- ,,, / CHO o 18 A colorless oil Vanillin-H2S04 color: brown UVX,M,89H: 270 nm FI-MS m/z (%): 233 (M++1, 24), 232 (M+, 100) EI-MS m/z (%): 232 Ol", 13), 2!4 (4.9), 189 (3.8), 176 (6.2), 175 (14), 162 (5.8), 149 (12), 147 (9.0), 136 (14), 135 (12), 133 (12), 121 (17), 109 (17), 107 (25), 105 (16), 95 (12), 94 (15), 93 (27), 91 (26), 81 (16), 79 (28), 77 (16), 68 (100), 67 (31), 55 (22), 53 (20), 44 (37), 41 (34), 40 (48) IH- and l3c-NMR data are shown in Tables 3-124 and 3-125, respectively. 524 . Tab1e 3-127 Physicochemical properties of RL-PERO-4-TU (18a) CHO 18a A colorless prism from n-hexane, mp. 145-1460C Vanillin-H2S04 color: brown FI-MS m/z (%): 232 (M+, 100) EI--MS m/z (%): 232 (M', 13), 203 (4.9), 189 (3.8), 176 (6. 2), 175 (14), 162 (5,8), 149 (12), 147 (9.0), 136 (14), 135 (12), 133 (12), 121 (17), 109 (17), 107 (25), 105 (16), 95 (12), 94 (15), 93 (27), 91 (26), 81 (16), 79 (28), 77 (16) , 68 (100), 67 (31), 55 (22), 53 (20), 44 (37), 41 (34), 40 (48) IH- and 13c-NMR data are shown in Tables 3-153, 3-154 and 3-155, respectively. 525 3-7-5 Conelusion As the result of a survey of carotanoids in Rosa rugosa leaves, it was found that some carotane aldehydes and their oxygenated derivatives were also contained. In particular, simple carotane aldehydes, daucenaldehyde (10), isodaueenaldehyde (12) and 11,12-dehydrodaucenaldehyde (16) are in the position as precursors of further oxygenated minor carotanoids mentioned above. Those isomers and the triene aldehyde are speeulated to be formed as a by-product in the biosynthesis of carota-1,4-dienaldehyde (3) pathway, since the contents of those compounds are markedly lower than that of 3. The author eannot discuss the significance o£ those minor carotanoids; however, they provided several informat,ion about the spectroseopic properties of carotanoids. The proposed biosynthetie relations amoung isolated compounds are shown in schemb 3-3s. 526 o 工 。 グ 三 ●匿。 工 O o o o O o o 工 O .多7 o o o 工 。 ’.,\ 器 グ ク’ グ 工 o 工 ”9’・’呑1 \ り’ \呈/ 茶(吉 §/ グ グ \ 一 § 甲→ ・F→ o 舌 吉8 7、》て詳. グ 、エ\ ち o 工 O 工 。 グ 工 o ρ,’り。 Nこ o 。 「 o自 一 o工 ’, ’ヘミミ エ o o ’, ち グ 1睡工 殴 工 o 工o oo 工 o O o O .【→ ○ o 二’「’o ’ ρ o o 鏑 。 の ・P唖 ① ① o _乳_ノ 。1-1 β囲 め のI グ ノ 。 工 。 佳 ノ。一一 Qり o O コ= グ/ /一__一一・ ,\ミ ”o oり 工 工 o o o Q o o o 傷囑・’詳’”δミ ~軌・・壱→側昭 527 Φ 自 ① ‘ o の ・3-8 Bisabolanoids of Rosa rugosa 3-8-1 Introduction Rugosa rose (Rosa rugosa) leaves were revealed to contain various kinds of carotane sesquiterpenoids, which were regiospeeifically oxygenated at the C-14 earbon to yield an ct,B; unsaturated aldehyde, an a,B-unsaturated carboxyl or an a,Bunsaturated methoxycarbonyl part structure. On the other hand, carotanoids of Umberifellae and Compositae are mostly not oxygenated at C-14, wit,h only a exception [43]. Umberifellae and ' Coinpositae are also known as terpenoid-rich plants. Especially, ' both families contain some species as an abundant source of bisabolanoid [55,56] whose biosynt,hetic pathway is partly overlapped with that of carotanoid. The presence of bisaboianoids in Compositae and Umberifellae may be recognizable as an evidence for relationships of bisabolanoids to carotanoids in their biosynthesis. Indeed, for both sesquiterpenoids cis-transfarnesyl-pyrophosphate pathway is proposed [57]. In Rosa rugosa leaves, some sesquiterpenes of non-carotane class are also found. During a survey of constituents in rugosa rose (Rosa rugosa) leaves, those non-carotane sesquiterpenes were obt・ained and elucidated their structures to be bisabolanoids. In tt this section, the author describes those Rosa rugosa bisabolanoids ' and discusses on the relationship between carotanoids and bisabolanoids in this plant. 528 3-8-2 Bisaborosaol A 1) Isolation During the author's initial experiments, the fresh and nondamaged leaves of Rosa rugosa were soaked in aq. 3 mM CuCl2 solution to survey some stress compounds, which were expected to be diffusable into the water layer [136]. Although no stress compound was detected in the preliminary experiment, a noticeable quenching spot showing a reddish purple color with vanillin-H2S04 reagent was found as one o£ the major extractives. The focused compound denoted RL-116 was detectable both in the CuC12 solution and in the fresh water (control experiment). RL-116 was suceessively aimed to isolate and elucidate t・he structure. To obtain the eompound, 2.0 kg of fresh leaves of Rosa rugosa were collected (Sample I) and soaked in 3 mly[ CuC12 solution (25 liters) for 19 hr and successively in the same volume of tap water for another 24 hr. The former and the latter layers water were respectively extracted with EtOAc (1000 ml water/600 ml x 2), and the organie layer was dried over Na2S04 and concentrated. As the results, total 3.6 g of extractives (2.1 g and 1.5 g, respectively) were obtained (Scheme 3-36). Since these extracts showed almost indistinguishable pattern in TLC, those were combined and coated on 40 ml o£ silica gel. The gel was put onto the Wako gel column settled i,n n-hexane (gel volume, 150 ml), and the constituents were eluted with Et20/hexane mixtures (Table 3-i28 and Fig. 3-326). Another 4.0 kg of leaves (sample I) was also soaked in 30 liters of 3 mM CuC12 solution and successively in 30 liters of tap water. The total 60 liters of water layers were extracted wtth EtOAc as described above to obtain 9.5 g of constituents which were also fractionated over silica gel c,olumn (volume 500 ml) with Et20/n-hexane mixtures as eluting solvent (Table 3-129 and Fig. 3327). 529 Fresh Leaves 2,O k soaked in 3 mM of u'"uCl2 soln. (25 liters) standing for 19 hr. Residue soaked in tap water (25 liters) standing for 24 hr. )WYA!,9-L!.t{t L Water La er filtrated extracted with EtOAc (each 30 liters) dried over Na2S04 concentrated lst Extractives 1.9 . 2nd Extractives 1.5 mixed (3.4 g) siliea gel column chromatography Fraetions Containin RRL-116 (--- Fractions from another 4 kg leaves combined (1.4 g) re-columnchromatograhy RL-116 ca 200 m Scheme 3-36 Fractions containing RL-116 obtained by coIumn chromatography of the Sample I (TLC pattern is shown in Fig. 3309) Tab1e 3-128 Fraction Fr-Ia-1 Fr-Ia-2 Fr-Ia-3 Fr-Ia-4 Fr-Ia-5 Fr-Ia-6 Fr-Ia-7 Fr-Ia-8 Fr-Ia-9 Fractions obtained by silica gel column chromatograph.v of extractives from Sample l Eluting solvent 10 10 10 20 35 35 50 50 100 % % % % % % % % % Et20/hexane Et20/hexane Et20/hexane Et20/hexane Et20/hexane Et20/hexane Et20/hexane Et20/hexane Et20/hexane ・530 Volume 100 200 200 200 ml ml ml ml 150 inl 150 150 150 150 ml ml ml ml H-EA 3:1' C> o' o O ooo 98gg quenching under UV 254 nm & sie o o ao 1 2 3 4 5 6 7 8 9 Fig. 3`326 TL Chromatogram of Fractions Obtained by Silica Gel Column Chromatography of Exudates from Sample I A fraction containing RL-116 in the second extractives (FrIa-8 and Fr-Ib-8) was combined with the former one (total 1.4 g) to rechromatograph over silica gel column (volume 150 ml). The ' constituents were suceessively eluted with EtOAc/n-hexane mixtures as fo]lows: FFr-1; washings with 25 % EtOAe/hexane (100 ml), FFr-2; eluted with 25 % EtOAe/hexane (50 inl), FFr-3; eluted with 25 % EtOAc/hexane (50 ml). The focused substance appearing as a single spot on TL plate was contained in FFr-2. The pure colorless syrup (ea 200 mg of a colorless syrup) was finally obtained by PTLC in hexane-acetone 4:l (Rf O.28). For the spectroscopic analyses, RL116 was further purified by PTLC in hexane-EtOAc 4:1. FFr-3 also contained marked amount of RL-116 (Fig. 3-328). 531 TabZe'3-129 Second fractions obtained by silica ge1 co1umn chro]natography of extractives from Sample l (4 kg) Fraction Volume Eluting solvent 30 % Et20/hexane 30 % Et20/hexane 50 % Et20/hexane 50 % Et20/hexane 55 % Et20/hexane Et20 Et20 EtOAc EtOAc Fr-Ib-1 Fr-Ib-2 Fr-Ib-3 Fr-Ib-4 Fr-Ib-5 Fr-Ib-6 Fr-Ib-7 Fr-Ib-8 Fr-Ib-9 500 200 200 200 ml ml ml ml 200 lnl 200 ml 200 ml 200 ml 200 ml H-EA 2:1 o <g b o / RRL-116 8 9 a o 1 Fig. 3-327 2 ・3 4, 5 6 7 8 9 TL Chromatogram of Fractions Obtained by Silica Gel Column Chromatography of Exudates from Sample I (4 kg) 532 H--EA 2;1 O RL-116 tr'- (]])> quenching under UV 254 nm (1> e o o ObOO o o 8 o 1 Fig. 3-328 2 3 4 5 6 7 TL Chroinatogram of Fractions Obtained by Re-column Chromatography 533 2) Structure Elucidation by Spectroscopic Methods RL-116 showed the parent ion M+ at m/z 266 (100 %) in FI-MS (Fig. 3-329) and the EI-HR-rvlS vevealed its molecular formula C16H2603 (M+ 266・184, ealcd・ 266.188). The EI-MS fragments at m/z 266 (M+, 1.1 %), 248 (M+-H20, 23 %) and 217 (M+-H20riOCH3, 5・2 %) indicated the presence of an -OH group (Fig. 3-330). The UV spectrum showed the absorption maximum at 218 nm due to an ct,Bunsaturated hydroxycarbonyl group. Its infrared spectrum (KBr) was also indicative of the presence of hydroxyl (3500 cm-1 , broad), carbonyl (172ocm-1, sharp) and ether (126ocra-1, sharp) moieties ' (Fig. 3-331). Z 1eos -gs.ee ・:>- tr, oz I!i z e F-- rTTTTTTrilTMTITTrrMTTTrTTpmTTITrlnTTTTTTTVM-TMTITtTrTTTttTMttttTrPitTITTtltTTtrTTMTftITTTTirlTiii-FTTTIin,ITrrTlrttrr se 15e 1ee M+ 1eze va.ee 2eOM!E 2 --4s.ee iii eil i -z He 2ee 2se 3ee Fig. 3-329 FI-Mass Spectrum of RL-116. 534 .ze S5eM!E lze r69 8Z 6e 14Z 266 163 4Z ss 79 ISI ' 2Z i89 2Z5 119 ? 2.6k 1! l- 1l・ ; I. T [ 1 .:,1 'Tl i l i t , 11 4 t p. 5 t'l1t } I l± ±[ l f l l. h![I 'rb i: Ee irl i' l. Iu,i[ t? L t' ,[ ,V il j, 1, l l- L"s l! I:LIt ilAi ".,- l!" ili"J l,i 'i-IE,. ii 9 lili illitlll ,JiL・,J : :ll :s・ 11 i Ni; O' VI I・ : t+ :: i iI1. il ll・ :]II l・ltl i'li I l・ I'1 l' '-rm l' ii l ・e' i+ g 11r i [ +:"' iT ii' j ,b -l't/i.i-i,i l l 't 5 ll・・ :-LL/ 't' 1・ 'i 1 1 8 li li・ l ] I,l IT il ":,. T1Fl l [ i 8P 35Z gze i nll・ I 1' l I・ 25Z EI-Mass Spectrum of RL-116 'I'' -1・ i 90 e・ 216 233 15Z 2ZZ Fig. 3-330 10D 178 IZZ 5Z *2z.e a4B 99 .ii , l- '1 [ 6 5' n l-, 'I ] l l li I 1. -! v :f" L i '-i 4. 'i i' : i I [ 'I'' 3L l. T I l・ 2C l l -/1,- ll.ii 1' l. to 1. ; l- l/ l l-- .l l. o 4e EL' ?tAvENutlBE3Rs.oocM",- Fig. l tt/1 boeo 3--331 bso6 .- ; ' 2000 'iSOO' t l' 'lr 'rago'' '"' IR Spectrum of RL--116 535 i :1-. l,. l4no' i200 ioob' aoo '6od -'400 In IH-NMR spectrum (in CDCI3: 500 MHz), two isolated olefinic protons were detected at 6H 7.005 'and 5.125 (Fig. 3-332 and Table 3-13o). The 13c-NMR spectruin revealed four sp2 carbons [6c 139・8 (C), 132.0 (CH), 129.9 (CH) and 124.3 (C)] attributable to two' -' C=CH- moieties (Fig. 3-333 and Table 3-131). Two allylinethyl groups (6H 1.696, br. s, and 1.665, br.d, .T= 1.0 Hz) and an ,. olefinic prot,on (6H 5.125, IH, multiply divided triplet, J= 7.2 and l.O Hz) were all characteristic of protons of 3,3-dlmethylallyl group. In COSY-NMR spectrum, the proton network system (substructure A) including this 3,3-dimethylallyl group was revealed (Fig. 3-334 and 335). The olefinic proton showed a cross peak. with a pair of methylene protons (multiplet, 2H around 6H 2.0), in addition to a cross peak with one of the allylmethyl signals due to an allyl coupling. Furthermore, the methylene ' ' proton (6H 2.0) indicated another coupling with a triplet signa} at 6H 1・536 (2H, J= 8.3) attributable to a pair of equivalent methylene protons. The proton-prot,on coupling sequence was closed there to give a side chain [(CH3)2C=CHCH2CH2-INI. Substructure A was also confirmed by the two point-homodecoupling experiment irradiated at 5.125 ppm and 1.536 ppm. As a result, the nonequivalent methylene protons (6H 2.090 and 2.029 geminally coupled with J= 14.6 Hz) became feasible (Fig. 3-336). On the other hand, another substructure involving the conjugation system was also yaised by the IH-NMR spectrum. A methyl proton assignable to a methoxycarbonyl group was detected at 6H 3.750 (3H, s). The presence of the methoxycarbonyl group was also proved by 13 C-NMR detection of two carbons at 6c 51・5 (CH3) and 167.9 (C) both attributable to the -COOMe carbon. Since two sp2 carbons out of four have had been attributed to substrueture A, the remaining two had to be assigned to the olefinic bond to form a conjugation with the carbonyl group. The geometry of the conjugated C,C-double bond was dedueed to be E (cis regarding the COOMe and an olefinic proton at 6H 7.005) configuration since the 536 Lノ 工 俄 “ 円一 一、r .F ( ◎う Ho ∩ o ・r→ 響 N Σ ooゆ ) ⑩ H- . 創 1 口 舶 。 ⇒ ρ o Φ q の o ■ 乞 1 一 N h σり Qり 1 ◎り ● bO ・7→ 」 537 Tab1e 3-130 z H-IVMR chemical shift values of RL-116 (500 MHz , in CDCI3, TMS as an int . std.) .O05 2 .337 2 .087 1 .610 1 .907 1 .249 2 .525 2 .168 3 .729 1 .536 1 .160 2 .090 2 .029 5 .135 1 .692 1 .626 7 Assignment Coupling 6H IH IH IH IH IH IH IH IH 3H 2H 3H IH IH IH 3H 3H br. m m-dvid, d* m-dvid. dd .J= 18.6 Hz J= 18.6 , ca 15 Hz C-4-H C-5-Ha m m dddd J= 12. 7, 12.2 , 12.2, 5.4 Hz m-dvid. d m-dvid. d C-2-H C-3-Ha C-3-Hb J= 17.6 Hz J= 17.6 Hz s C-5-Hb C-6-Ha C-6-Hb C-7'-H3 s c-9-H2 C-1O-H3 ddd J= 14 6 , 8.3, 7.3 Hz ddd J= 14,6 , 8.3, 7.3 Hz C-11-Ha C-11-Hb m-dvid. dt J= 7.3, 1.0 Hz d .1= 1.0 Hz C-12-H C-14-H3 br. s c-15-H3 t .J== 8.3 Hz * multiply divided doublet 538 顕講f く.)o o 婁し. 1. 一日 に1- /. 3.ε 国 諸 H で .錦 自 .138 い σり ・R 囲 oQ o L 鵠 ・「→ 51 “ N .8 …註} L‘ r⊃ ゆ ひq ・ 一N )頃 ⑩ .臼 一◎o 州⑩ 1 臼+⊇ lll } ,・ ? 累 1 く⊃ .し9 餌¢ q司の 。Φ 鐸コ 5の 臼の →一)Φ o日 Φ Ω璽の の邸 ▼, .汗 ・ Σ← 寓ρ司 i国 Q窺 州 σつ トー司 3 σり 一3 Qり Qり 1 ¶● ◎り 〔.) しコ ビ b幻 ・rl 幽 539 TabZe 3-131 i3C-IWlfR chemical shift valties of RL-116 and comparisons of the shifts with those of a-bisabolol (g4? (125 MHz, in CDC13, TMS as an int. std.) ' 6c Property Assignment 94 [137] 167.9 -COO- C-7 23.15 139.8 =CHC-2 120.53 132.0 =C- C-1 (or C-13) 134.00 129.9 =C- C-13 (or C-1) 131.54 51.5 42.5 39.5 26.8 124.3 =CH- C-12 124.58 74.1 -C-O C-8 74.21 -O-CH3 C-7' CH C-4 ・ 42.94 CH2 C-3 CH2 C-9 40.08 (or C-5, C-6, C-11) 26.88 25.7 CH2 C-6 (or C-3, C-5, C-11) 31.00 23.8 23.3 25.2 CH3 C-14 25.65 CH3 C-10・ 23.28 CH2 C-5 (or C-3, C-6, C-11) 22.02 22・3 CH2 C-11 (or C-3, C-5, C,-6) 23.25 17.7 CH3 C-15 17.59 * Hydrogenation degree are elucidated by INEPT experiment -540 u- i i , e : , t t-tLt- ttt"-ttt l i. egl)i , , i・ "-' t l I l lt ttt/tntHtttt:t ..... mt I -- Q--I Il .... -e6 ---- t...." ''TT'r Ol l l -1i -.-" .I QI il I' i ii I't Li' li IIe I l' i l i ll l, i l・ I, -l ll l i .r. I l , : l 1 i ' t '-'" l i l ' i' "" r' -'"rrrm ' i/ ll i ! l i "'"L" e 7.0 6. {i 6.0 5.5 5.0 4.5 Fig. Il [l lr 11 ll ll[ l'' I f"...i 4--..v ... 11! l Oi d i ・, i: l , ....- l-・ -- - a i ''' i' t' ・pai o ? ."1.e .・ li I l l l io I lt iE lli llll ci r 1 i 11. 1't II 'I l [l ll '-'T'L------dt L.. 10 1 ii l.ttt ttfi-tt-tfi-lt thtttrrrtt i l.. ttt t t tt ttt t i'"' E l lli t" L;l I・ l・+1 T'-L-u- -'11 L--"' l 1/ . '"t' t't't"t i''u' I: i - -l-- i lsi e iFi!l o q.OPPVI 5.5 3.0 2.5 2.0 e6 l l T"' "'I/' " e l' g ii : j ;t ttt t ttt . c -l-- 2. [) l 1 l- 'i"- l l ! il l l l- l I 4.0 i I 4. [5 li i l 1 l・ ・ I -1-- l i it - 5. {] . s. [s - 6.0 I 6. [{ l i l ... .t - 7.0 ll5 1]o !s olo "P!'1 3-334a HH-COSY Spectrum of RL-116 (500 MHz, in CDC13) 541 " 3,.[] - i/- - 3. ts i I I L 2. t) I I i'' oo li tmttt-t-rtrm.. r..t.tt. ...-t.;.ttLttt. .tJ. - 1. ts l l i -h-.-+--L - ll -= -u n -- i- .- uL. ... l・ ll 11 -- .- "Gi'- : O @i, l ee ol・ iT'+' ...-tLuLt r ll: ci・ oo ge ib li i lt II ![ jl ;I II I l: I・ i il -. i.o r i ll 7 --- ---i- =".. --.- l, av " ge 1, -..- -------・ l ta ・i tsp 'tw a, l -,< csn'lg ---------- lll t t tn'-""---';/ 7 ..L il i' ・ :' ''' l ・ - e. it"'7 " Oo -- i I l '" """T"'-1 I i I T i '-"'T:t "ttt.t ttrr 1 ttt -Jt I/.t..tt rtt ... l i tt 'i" '" '-' i-'rl""i l?, Il'' '" '" l=1 -- H.t+--l/ r..-t... 'i' f l l. i i I l d9, i aj io 'o,? l i fi'i es ・oq d ..." .. c. ..1. ""i ..l ttt tttt. tt r' "' i i t tttt t tt tlt t t. ttt tt ttt rttt-trN-Lnn -- o '+--''L=' i' ;"r' "i ""' l I l I j l I " l.H ` . It .. tttrt-m'ttt t'ti tttt 4m-.mm"m. . i i i if ' i l T .t5 a 1, ' i , : Q o t , " l e l I i l l i t l l I t l l ;/ tt. tt .t t.t ttL t4 ..t l・ ii ' l, {iil i' l i l・ li l -- l・ : (" l l l oo, 1/ lt, - 1, ・---- -- -・- --- h- l 'i l l f' 'l l i /1 l' ttt- -t l/ l l l l i l o t ttt tt tt . o'l i ql "i e.....I.. Q ,,iipi!59"'h- f I -1 e !- i esip gg{E:Slli) i ((E) Ll gii? -- @l'-- i' 11 l l l oi-i 1 i 1・ Clllll}q i .: - s・-I l !. ・-- l $6 l c) o ,t ii l i' } { g i i t l :c LO - . i l・ (li) . /e' )' l {l -"". . -..".m., i lt -(gl:s, ・ -----+ i isr .5 l f t, l i i-' I i Cf$e .t .'"'f''' '" ''' ・ lo q ll ,s,g l t/ ' l I i ! I l l l lt t e ee g I I l i i Fig. 3-334b l l l l ! l I ...,{IIi -ii l I tltt--tt'ftt-t'- t "ttt i i l l 'i'' i ll -l t tr-ttt t tt tt ttmtn t- ttl r't @l ttt -t i" .-- l/ t T di i' l i l i ., .l. .. il I/ll l -t El -t ii ll ti :i lI +I ;l :l ll ll !ll liitI l・ 'fi ' "-"''- --mh' 1・ l l l "''r'i' l il tttaLt.."t-tvt- 1.,5 .w 2.0 - 2.5 I - 3.0 il tt l l.t oee l o Il d l i o nyt .tt i -''i- :: 't ll li Il ii!, "tt ttt'tl -ttt- -tttt' t't l . e o i -. tt-t-t. ll -- 3.[5 i l I ..4ttt- -rm tit " Continued (Magnified in High Magnetic Field) 542 .- 4.0 !r..-,・H H H Hi CH3 ' N COOCH3 H H HH CH3 substructure A substructure H B CH3 S /OH /cx substructure Fig. 3-335 c ' Substructures (A, B and C} of RL-116 Elucidated by Proton Coupling Sequence M xN."vtl 2 Fig・ 3--336 ' Proton Signals Changed .by Irradition of 6H 5・125 and 1.536 543 chemical shift value of the olefinic proton on the B-position was detected at a markedly lower field, due to a deshielding effect of the ' 6arbonyl group. The HH-COSY, CH-COSY and spin-spin decoupling experiments also proved the presence of a proton coupling network for substructure B (Fig. 3-337 and Table 3-132). The olefinic proton resonat・ed at・ 6H 7.005 showed a vicinal coupling with a pair of methylene protons at 6H 2.337 and 2.087 geminally coupled each other with .1= 18.6 Hz (cross peak with C-3 methylene carbon at 6c 26.8). In the HH-COSY, this coupling sequence showed a further extension to a proton signal resonating at 6H 1.610 (IH, overlapped) that afforded a cross peak with C-4 methine'carbon at 6c 42.5 in the CH-COSY speet,rum. When the olefinic proton was irradiated, together with those vicinal methylene prototis (6H 2.337 and 2.087), another pair of methylene protons at 6H 2.525 (br. d, .I=17.6 Hz) and 2.168 (m) both assignable t,o methylene carbon 6c 25.7 (C-6) were changed their signal patterns. The lattey fact was suggestive o£ the presenee of an allyl coupling between them. These allylic methylene protons were remarkably deshielded to show their chemical shifts in a downfield by the carbonyl group, and further coupled with a pair of methylene protons at 6H 1.907 (IH, br. d, J= 12.7 Hz) and 1.249 (IH, dddd, J= 12.7, 12.2, 12.2 and 5.4 Hz) revealing ' at 6c 23.3 (C-5). Coupling a cross peak wit,h a methylene carbon ' CH=C-CH2-CH2 side was further extended to the sequence of the methine proton at 6H 1.610 that was coupled with the methylene protons at 6H 2.337 and 2.087. Consequeritly, t,he substructure B was revealed to be a 1,4-disubstituted 1-eyclohexene ring (See Fig. 3-335). The only sp3 methine carbon at 6c 42.5 which showed a eross peak with the proton at 6H 1.610 in CH-COSY was reasonably assigned to the C-4 methine carbon. 544 c 1 , , l f, 4 li t" i'' c.) G f' - ti: t) t' tb ;l il 1 i i d [ t i td E L l : "ttt 'tr 'i ''Tt'.'t7..t. L ii .L・ i ri・ c) ::'l li I 1i I i -I i c) I i i.L.. tL...t .t.. It ・-I-- ・-- .tl"+L-+'-rrr-t i[' f"-' 1 t;' I l ' l i l i i l to s i i' tJ' l I `"i l itl / : 1 ' ;J', : l- c) i 1 1i 1 ; , 'r 'l l j 1 l l 1 1.,- j " ! : : 1al!' ` t i・ lj' l l i[・ 1 ll・ ,1, //. 3 t' . ittTt. .... :1' p l i:1 II 1: ' I 1[ 1 'II ll i t 1:II-ttt"' {:l f) i ' l dl. Iii l 1: I ll' ii i .・//l, 1 l! "'' , (. l 1' l 4 1 1・ ' 1, l 1/[ ' 1 l・l ! ' ll r・-. ... , L : -- r ' l C.1 I・i L .t. I 1 1 i 1 l l i t E : 1 1 1,・ l i i F t.J..l . .t. 1 E liL". .., 1." ....- I- l d i e ".". i I L ! l I I l i i 1 l p 1 l 11 l l -- l l .1. ... l ・-・-i--・ i ll I i l・ i l l l t' 't t 't' tt' '' 1 h I I i I 1. ntttt- tttt l r L / .. I I I 1! '1 l l ''t-'tlr/ tnv'-rrT ] T"'' '7""dT''= I J ' / i Jtt4t' - "- l '' r .L. t.. - t . l - . IJ. 'J .=, r'1'r'' 1 / i / ! l Ii -- tt 1- l tr'=-'- iti IJ i'T ..-."-t-"--r- : 1 t" 1 l I i ''' ' : l t/ ll Ii il L+l' '---l t) 'J t) Cl- t)' tr: -' l i' ; 11 /1 l 1/ i' t/ l 1' lll j' t/ /] ld ;/t ' Ji u-.--.L-Lh 1 l i l・ ' i i 1 I d I 1 l I l ] l E ' -]"-.. : '" r'-i't "'- - 1 -・.- -- .-..rt. ' n"L t't"t..tr .t /'t"-tI l・ l i.. -d- i・,i i lt I ] J ' l / 't""'""' -I l i r ll il tl I. I 1 i s 1 a; rl i: i 11 : 1 G .-..;t-"ut--ttt lt-tJtt' -tt-tutt ; t i t I tt l I I t ! 5 l 11''ti' 'L+tL-I '+'TtL i Tm"T'"tr 1 l l II al --i tttt'iutt r l i -t. i l' l i ! I I ttttt..tJ.tt. l tt t/ II ji /1 ll j ll 11 -T' mtT17 r li 1 i' l it 1 el ! 1 /: 1 // /: I l・ Li I +l 11 i !, 11 l II ,T II L, l 'I l ,l l i`t T al --・ 1 il , 1 1 i 1 l l 1 1 Hl, '1/ ' ; l ! , ! li・ l l j l i l l i : L 1 ' l 1I ' /1 ll ll /l t/ /e 1I l[' a ... g J -l l i I + 7 i l Il 1/ tt' , l , t'Ttr'7t''t 'fi 1' ' I l d 1i l/I tt 1 d- l t- t (} t-- :) t.J. t- l r'T''T'T'I'i'r'rr''T'TTT'-'1"T'-rrT-T''rl-T-Lr'T'rT"rT---r'rlr'r-TrlLrrT-rm rr'J--1-r'rr-r'i-T-T-r-T-ITrTrrrlrl--rLr-'LT'1 -T-- x.1 en m en W・ Jl C) ut Fig. 3-337a m b ' . c) LJI Ln o -S-v NN U {N LN .o ut " e ' ut ' o o -. ¢o CH-COSY Spectrum of RL-116 (500 and 270 MHz, in CDC13) 545 II r F' tr tr I- tH't i'-t t-ttt t- i l i・ 'lt-"T'-"t--'-'vFtt-t-t"t------."-t-t.-L.-tt. t il n- '---'-t-Hu-''"m-'----"----m-'mu-t4--' ji 'T-"""'nd'' L # F ;-- t! i・ e [ + l ,l H.--・e"- --- -' ""'-'-+--r, ,ii-iIl t- : L L L L ' I l-- ..- ttt- tt "-t-t -t-t-t-Vt.tt-HNrt'-vttH----t= t-- l l L L ' I l -..-... T 1'"'-'r {-.H L L F l l・ 1 1 'I i ] s 1 l --A+f'-'-"-+-'---"'-r'mh F ' -. -tH.t t-+t-t..tt-.t h4 Jt--tttt"--. + - t-- L ' s,a K [-; Ll1) 1 f i -- -q L. J T"' r r ...-- .-. ......."-- --・ -T 2,a L ' l IS L ' t 1..e F t ull ,5 t-' i l i:・ e i i4.r-------...--v.-.".-. .-. """-'-"--.; i ` iS i : , F .... - -...u'.-..-.---..-.--m---.-- l l l I i : i t l i il lI 'l ` o,o F li..- .H..-"n..t+.-.+--...---t-.--t--L..H-t-.tt-. 't-'r't-t.'.. -. .'. -,. t.- .- t.- t-. i' '--.' '" " "'' F a,e ;・ : r"" r"-"""-p ""-.--r.'"-. "-."ijr."-e "v"-r,-"v. e"..-r'". "'. '-"-"t , . Ce Fig. 3-337b :' =e JJ ;c・ :-,LZ : 2・; :v-t Continued (Magnified in High Magnetic Field) 546 . v ・i l./r -+ 'J .- Tab1e 3-132 Relation between carbon and proton signa1s by CH-COSY of RL-116 (500 and 125 MHz , in CDC13, TMS as an int . std.) Carbon (6c) 139 . 124 . 51 . 42 . 39 . 26 . 25 . 25 . 23 . Proton Assignment (6H) 7 7.005 C-2 3 5.135 C-12, 5 3.729 C-7' 5 1.610 C-4 5 2.090, 2. 029 C-9 8 2.337, 2. 087 C-3 7 i.692 C-14 3 2.525, 2. 168 C-6 8 1.160 23 4 1.907, 1. 249 C-10 C-5 23 . 1 1.536 C-11 17 . 7 1.626 C-15 . 547 The methyl group detected at 6H 1.160 as an isolated signal ln the IH-NMR was fqvovably allocated to a hydroxylated tertlary carbon (C-8) resonating at 6c 74.1 (C) (See Fig. 3-335), and this methyl group on the tertiarily hydroxylated carbon was deduced to be the third substrueture (C). Thus, all the carbons of total i6 were characterized. To give a planar structure for the compound, substructures A and B should be eombined through the tertiary hydroxylated carbon in the substructure C. Then, these three substructures forin a . T/ bisabolane skeleton known as one o£ typical sesquiterpenoid skeleton. Both ct-carbons to the hydroxylated one gave a reasonable chemical shift values (6c 39.5, in substructure A, and 6c 42.5, in substructure B), whieh were compatible well with the proposed planar structure 19 (Fig. 3-338). 10 OH 3 8 9 2 ll 4 l 5 1 6 13 15 7' 7 ooMe 14 Fig. 3-338 Pianar Structure of RL-116 548 Aecording to the literature search, it was found that this compound had been reported by Harwood et al. as an epimeric byproduet (9sa + 95b) during an alkyl cation reaction of (-)-methyl perillate (96) (Scheme 3-37) [1381, and its EI-MS, IR and IH-NMR (100 MHz) spectra of 95a + 95b were approximat,ely agreeable with those of i9. However, isolation of this compounds as a natural product was the first example. Therefore, 19 was given a trivial naine "bisaborosaol A". From Rosacea, bisabolane class sesquiterpene is the first report, so far as the author's investigation. Even though some C-7 oxygenated compounds are known among naturally occurring bisabolanoids, those are quite rare [139145) (Fig. 3-339)・ cooMe + HCOOH. 'h, ,,, ti OH cheme 3-37 H s"N H 96 S' HO cooMe 95 Allyl radical addition to yield a bisabolane sesquiterpene t138] 549 Tab1e 3-133 PhysicocheJnical properties of bisaborosaol A (19? HO.ttt H : ' l COOCH3 i9 A colorless syrup Vanillln-H2S04 color: reddish purple [ct]D: + 78 O (c O.06 in acetone) UVX,IX!ilil.OH: 218 nrn (e 174OO) FI-l-IS m/z (%): 266 (M+, 1OO) EI-HR-MS: 266.184 (C16H2603, calcd. 266.188) EI-MS m/z (%): 266 Oi+, 1.1), 248 (M'-H20, 23), 233 (M'-H20-CH3, 4.4), 217 (M'-H20-CH30. 5.2), 216 (M'-H20-CH30H, 6.3), 205 (17), 192 (6.9), 189 (M'-H20-COOCH3, 16), 188 (8.0), 178 (6.2), 164 (15), 163 (48), 151 (25), 140 (57), 139 (11), 137 (22), 110 (11), 109 (100), 108 (12), 107 (12), 105 (17), 93 (18), 91 (12), 83 (10), 82 (29), 81 (19), 80 (13), 79 (29), 77 (13), 71 (17), 69 (87), 67 (26), 59 (10), 57 (10), 55 (27), 53 (13), 45 (28), 43 (97), 41 (72). IH-NMR and 13c-NMR data are shown in Tables 3-131 and 3-132, respectively. 550 工 閃 1-3・ σq ハ H oω ω 1 ) ω ω 口 ⑩ O 工 〇 ミ 一 ε ヨ 彷 轟 包 膳 ○ 工 。 ω o ヨ 0工 ① z 6 Gり く α δ σq Ω. α o◎ び 。 ト 。 卜』・ α ω ○ × σq Φ 8 Φ 望. 00 0工 口⑳ ωΩ. ⑩α 一 o 工 o ○ ≦ ←」・ 一 o ) ○ H・ 工 1川工 ( ⑩ 司 Hト o ぐQ. δ o ε_ 口 巴 o o 0 工 O ド 。 戯 ) グ\o 工 ハ H oド ー ミ ロ < 、 ⊆ 川に= (D 口_ 轟」く◎ 口 9QO 心 凸 0 0 0工 O⊃ 工 ) 工 ⊂ _ Oo O O工 ζ Φ 口 ○ 幽 工 O 随 警 oN ⊂ < 口 蒔 巴 o工 0 ⊆ o ⊃ (D ロー 夢・ ⑩ 巳¢ 1 ) 刈 551 o阻;1工 ≦⊇. ) P ユ= ミ ど ド げ Q- (D Oo Oζ Φ ・ 3) Stereochemistry To elucidate the absolute stereostructure of bisaborosaol A (19), chemical modification of 19 at the C-7 methoxy carbonyl group into allylic methyl group was conducted. The expected product would be directly compared wtth authentic 4S,8S-(-)-ct-bisabolol (g4) in 13c-NMR and [q]D. According to the conversion scheme (Scheme 3-38), the methoxycarbonyl group of 19 was reduced with ' LiAIH4 as the first step. To 24.4 mg of 19 dissolved in 1.5 ]nl of CHC13 was added an excess amount of LiAIH4 (ca 50 mg), and the reaction mixture was stir.red overnight at room temp. After that, 1 ml of EtOAc was added under cooling in an ice bath to stand for further 3 hr, and the mixture was then diluted with 15 ml'of E'tOAc. The resulting ' solution was washed with a saturated NaCl solution containing O.2 N HCI. The organic layer was dried over Na2S04, eoncentrated, and then chromatographed (PTLC) in hexane-EtOAc 1:1. Together with unchanged material (6.4 mg, 29 %, Rf O.71), a non-quenching product (RL-116-LAH, 19a) at Rf O.32 showing pinkish blue with vanillin' 13.lmg in a yield H2S04 reagent was isolated as a colorless syrup of 60 % (Fig. 3-340). The product・ was confirmed its structure by FI- and EI-MS, and 1 H- and 13 C-NMR analyses (Fig. 3-341, 342, 343, 344 and Table 3134). In addition to the molecular weight 238, the C-7 carbinol group was detected a't 6H 4.026 and 3.994 (each d, J= 11.1 Hz, C!!20H) in IH'NMR, and at・ 6c 67.4 (-gH20H) in 13C-NMR, respectively. 552 HO LiAIH4 HO cooMe CH20H TsCl 4・ LiAIH4 i7C . CH20-Ts CH3 Reduction of bisaborosaol A with LiAIH4 and further scheme for converslon into or-bisabolol Scheme 3-38 H-EA 1:1 (> RL-116-LAH O o :: i.:・t'il.:: quenching under UV 254 nm vani11in-H 2S04 test: + sl・li"',"' i' ;.i-- Reaction MIX. Fig. 3-340 Std.19 TL Chromatogram of Reduction Product Obtained by Treatment of Bisaborosaol A 553 M+ 1eee Z B.ee t l -) H go hZ i -z He idLb1ee 1 sz Lz.ee Tt 1SZ l 2sz t 2ee M!E 2 s.ee 1eee 'M -H o z Hz H hi e ii ldi 1-st, 1-- 3ee 3EJj2 Fig. 3-341 1ZZ Le.zo t l-It ld tt -t F'D-Mass Spectrum 5ZeM/E 45e 4-ze of RL-116-LAH 4 69 8Z IZ9 6Z 7g 93 4Z 55 2Z 135 2 119 5Z Fig. 3-342 IZZ 147 159 15Z 177 189 2Z2 22Z 2ZZ EI-Mass Spectrum of RL-116-LAH 554 25D 1. (5 8 器 8 ,」 3 臼 80 .κ, ロごつ w N 一・ 錆 ⊂⊃ 丙 9 ・H “ .『誠 ぐ⊃ N 「Σ1 o o 日 匪。 当 .3 ( の d ∩ )ョ ⊂〕▽・ ・( w己.寓 q ω血 姦; 一『一一一一 黶D 8 ρ 噌 ゐ ご 8山 ゆζビ 鯛 。 9 ぜ 賃 8籍 rく+⊃ o Φ ω ⊂⊃α自 .oΣ 06z l $ 5 9 め 臼 Lδ 爲 H 8專 I σ;cつ Qり 面 β霞 9 の 555 曇 一(⊃ Cつ (N 餌巨= 韻⇔ ・9 oo 一詔 へ 臼 ご国 げ)o で ・雪器 Σ oo .いく) い の 段IH o ∩ o 臼 甲→ N ゆ NH ⊂つ 〔D い ・9 (〕 } に=1 < oニ:1 コ 實 一日マ 日 .. メCτ 「. 覇哨 o o邸 一噌臼 ぢ 3践 一の .8望 Io 一:乙 oぐつ 一「㌔ 一?→ 器寸 一r野 oり [ .3α∋ “ 0 甲イ …G)匡8 N 556 Tab1e 3-134 13 C-NMR cheinicaZ shift va1ue of RL-116-LAH (1 9a) (125 MHz , in CDC13, COM and DEPT, TMS as an int . std.) 6c Assignment H 137.5 C C-1 132.1 c C-13 124.6 CH C-12 i22.9 CH C-2' 74.5 c C-8 67.4 CH2 C-7 43.6 CH C-4 39.6 CH2 C-9 26.8 CH2 C-3 26.0 CH3 C-10 25.9 CH2 C-6 24.2 CH3 C-14 23.8 cH2 C-5 22.5 CH2 C-11 17.9 CH3 C-15 557 Tab1e 3-135 Physicochemical properties of RL-116-LAH (19a) HO, ttt H CH20H 19a A .colorless syrup Rf; O.32 (H-EA 1:1) Vanillin-H2S04 color: pinkish blue UvAiMtgg?H: featureless above 210 nm FI-MS m/z (%): 238 (1OO) EI-MS m/z (%): 220 (M'-H20, 4.1), 202 (M'-2H20, 3.2), l89 (3.4), 187 (2.2), 177 (2.6), 159 (4.0), 147 (3.0), 135 (24), 133 (10), 119 (8.1), 109 (66), 107 (14), 105 (16), 95 (13), 94 (24), 93 (40), 91 (18), 82 (20), 81 (12), 79 (39), 71 (18), 69 (84), 67 (21), 55 (21), 44 (79), 43 (100), 41 (55). IH-NMR 6TCMD sC13(500 MHz): ca 5.71 (IH, br. C-2-H), 5,l37 (IH, br. t, .T=7.1 Hz, C-11-H), 4.026 (IH, d, J=11.1 Hz, C-7Ha), 3.994 (IH, d, J=11.1 Hz, C-7-Hb), ca 2.15 (2H, d x 2, C-3-Ha and C-6-Ha), ca 2.07 (IH, overlapped, C-3- Hb), 2.062 (2H, m, C-10-H2), 1.937 (IH, m, C-6-Hb), 1.881 (IH, m, C-3-Hb), 1.693 (3H, br d, J=O.7 Hz, C-14H3), 1.629 (3H, br s, C-13-H3), 1.612 (IH, m, C-4-H), 1.527 (2H, t, J=8.1 Hz, C-9-H2), 1.283 (IH, dddd, J=12.2, 12.2, 12.1 & 5.5 Hz, C-5-Hb), 1.154 (3H, s, C15-H3)・ 13c-NMR data are shown in Table 3-172・ 558 On the other hand, 4S,8S-(-)-7-hydroxy-a-bisabolol (101) having the .same planar structure with that of RL-116-LAH has been isolated as a naturally occurring sesquiterpene from Vanillosmopsis arborea (Compositae) by Matos et al. [144]. As the absolute stereostructure of 101 has also been determined by a chemicat1 correlation method (Scheme 3-39), 19a was compared its physicochemical properties with those of 101. In their paper, however, [odD and 13C-NMR chemical shi£t values were recorded only for the 7-acetyl derivative (101a)・ The diol 19a (8.2 mg) was therefore acetylated in acetic anhydride/ pyridine [1 ml (1:1, v/v), at 80 OC for 1.5 hr]. From the reaction mixt・ure diluted with excess amount of toluene was removed all the solvent. The main product RL-.116-LAH-AC (16b) was obtained by PTLC (hexane-EtOAc 3:1, Rf O.43) as a colorless syrup (7.0 mg, yield 73 %) (Fig. 3-345). The struc'ture was confirmed by EI-ry{S and IH-NMR (Fig. '3-346 and 347). HOttbttt H Ac20/pyridine HOttlt ett H N ' CH20H t CH20Ac . H2 HO lltttttt HO. H2 ttltl lt H Scheme 3-38 Conversion scheme to elucidate the absolute configuration at C-8 of compound 80 559 H-EA 3:1 t-:i-trt:t; -} ':-::.n. RL-116-LAH-AC vanillin-H2S04 test: posltive t:.:1::s7 :, 1;';f V' ;:'r- -. "'::t;"t t-tt: :-;-d Reaction Std. 19a MIX. TL Chromatogram of RL-116--LAH-AC Fig. 3-345 1Z2 4 8Z 69 6Z IZ9 4Z 22Z 26e 93 "rtlt:-nt-JJL-e--lhr----------- 79 2Z *IZ.Z 55 119133 6Z 5Z 1ze Fig. 3-346 159 177 2za 2ze 15e 25e 3ze EI-Mass Spectrum of RL-116-LAH-AC 560 35e L l∴ 1. 8 3 ”r這 レ ヒ じ1 A ぷ 98 め。 ・r→ “ き国 ’ Σ1 oo ト 需 コ ゆ ) 曾 〔)_ ¢Σo ・ll』〈 L」1 奮 く 9 l o⑩ lH ⊂⊃ 甲→ し。 呂 口 畑 。 8 ⊂)Σ= 一へ巳. r_の[二・ 卜、 ρ o ① 1 電 _: 、詳 9 一 9 5 8 面 卜 臼 臼 二 d 8の φ1と z 畳 H 8 σ;卜 寸 oり 1 ◎う 8 ・ 一⊂, 爲 一面 二∫這 561 6碧 函 Tab1e 3-136 Physicochemical properties of 116-LAH-AC (19b) HO, ttt H CH20Ac 19b A colorless syrup Vanillin-H2S04 color: pinkish blue [alD; + 33 O (c= O.1 in EtOH) UVXiM.ng9H: £eatureless above 21o nm EI-MS m/z (%); 262 (M', O.5), 220 (M'-CH2CO, O.6), 202 (M'- CH3COOH, 5.3), 187 (3.4), 177 (5.6), 159 (7.0), 133 (13), 119 (10), 109 (45), 105 (12), 94 (22), 93 (36), 91 (22), 79 (26), 69 (66), 55 (16), 43 (100), 41 (46). IH-NMR 6glil8i3(soo MHz): s.76s (IH, br, c-2-H), s.13i (IH, br t, .J= 6.9 Hz, C-12-H), 4.456 (2H, s, C-7-H2), 2.158 (IH, br d, J= 18.0 Hz, C-6-Ha), ca 2.15 (IH, d, J= 19.8 Hz, C-3Ha), ca 2.08 (IH, overlapped, C-6-Hb), 2.073 (3H, s, C-7'COCH3), ca 2.06 (2H, overlapped, C-11-H2), 1.948 (IH, br. t-like m, C-3-Hb), 1.868 (IH, br d, J= 12.4 Hz, C-5-Ha), 1.691 (3H, br s, C-14-H3), 1.627 (3H, br s, C-15-H3), ca .1.61 (IH, overlapped, C-4-H), 1.519 (2H, t, J=8.3 Hz, C-9H2), 1.292 (IH, dddd, .T= 12.5, 12.4, 12.4 & 5.7 Hz, C-5Hb), 1.148 (3H, s, C-10-H3). 13c-NMR data are shown in Table 3-135・ 562 compound lgb was, in the 13c-NMR, quite similar to (4s, 8s)(-)-7-hydroxybisabolol 7-monoacetate (iOia) prepared from 101 by Matos et al (Fig. 3-348 and Table 3-137) [143]. In 13c-NMR, the difference of a chemical shift value between two corresponding carbons in 19b and 101a was approximately within ± 1.0 ppm, except the C-2 carbon. This result suggested that 19b has at least the same planar strueture with that of 101a. However the optieal properties of 19b was opposite to that of 80a. Contrary to 101a showing laevorotatory (fa]D - 48 O, c 1.0 in EtOH), 19b was dexorotatory with [a]D + 33 O (c O.1, in EtOH). 0n the other hand, the 4S,8-epi-7-keto-7-methoxy-a-bisabolol mixture (95a + 95b) synthesized by Harwood et al. indicated laevorotately ([ct]D - 68.0 o). Moreover, they prepared two stereolsomers, 4S,8S- and 4-S,8R-7-keto-a-bisabolols (aldehyde group at C-7) (105a and 105b) which were successfully isolated by a chromatographic method. The latter isomers both showed laevorotatory with close values (105a: - 68.2 O, 105b: - 71.3 O> [137]. This fact was suggestive that optical rotations of those or-bisabolQl derivatives are mostly affected by the absolute configuration at C-4. Furthermore, it was expected that the C-8 chiral carbon provides an only small contribution to the optical rotatory values (Fig. 3-349). To prove this speculation, direct comparison with an authentic compound was requested. As it was impossible to purchase 7-hydroxy-ct-bisabolol (94), the initial conversion reaction (Scheme 3-54) was applied to 19a. However, this plan was failed since the tosylation of 19a was unexpect,edly unsuccessful. Therefore, another method was applied to the determination of absolute eonfiguration. 563 ρり 国=l Q O 卜 N o 頃. 9 9 需 ℃ 薯 oo 累 “ ぷ 呂 呂 o R ・H N 呂 頃 Σ 8 ゆN H 8 一歪 江 9 H 自 一 韮 ) o < 1 < 日 1 ⑩ H → 1 目 口 一 8 H 舶 o ρ 富 o Φ の 呂 H Σ R o 一 l の 州 器 一 OQ 哩 σり 呂 l 円 oり 周 N 564 ℃n ・r-i 鳳 Table 3-137 15C-AififR chemical shift va1ties of RL-116-LAH-AC and comparisons of its chemical shifts with those of 7-acetoxy bisabolol (101a?, (-)-a-bisaboloJ (94? and bisaborosaol A (19? C-No RL-116-LAH-AC (19b) 101a 94 [143] [137] 19 1 132.7 (C) 132.75 134' .OO 132.0 2 126.2 (CH) 124.33 120.53 139.8 3 26.9 (cH2) 26.68 26.88 26.8 4 43.1 (CH) 42.59 42.9tl 42.5 5 23.5 (CH2) 22.61 23.3 6 25.9 (CH2) 7 68.4 (CH2) 26.50 68.27 22.02 25.65 23.15 167.9 8 74.2 (c) 73.91 74.21 74.1 9 39.4 (CH2) 39.89 39.5 10 24.0 (CH3) 23.00 11 22.3 (CH2) 12 124.4 (CH) 21.89 124.33 40.08 23.28 23.25 124.58 124.3 13 131.9 (c) 131.50 129.9 14 25.7 (CH3) 25.53 131.54 31.00 15 17.7 (CH3) 17.50 17.59 17.7 5i.5 7' 171.0 7' 21.0 (C) (CH3) 170.91 20.91 565 25.2 23.8 22.3 25.7 HO HO,., H H bttll CHO CHO [a]D; - 71.30 ' [or]D; - 68.20 105a 105b Fig. 3-549 Two Epirneric lsemers of a Synthesized by Harwood et al.: These alkyl cation reaction of an isoprene HCOOH. These products were isolated chromatographic method. Bisabolane Aldehyde derivatives were obtained by + (-)-S--perillaldehyde in f`rom each other by SSSL;Ncr ts ,""gege"e'ajssSf tn t 1 Vb s" ・ "q"., ;. .cS2}ki{/-<3)/: , .cxittAl A pmD T;AsrE t . " XNoGIMiige'l.illll?, .' 1;sSls> )--t.-.- ---" NIERBZZ70re .Z7V&Ec78 ieuoo s4 recuscE 566 Doth PREue 4) Determination of Absolute Configuration at C-4 Since two diastereomers 105a and 105b (both S at C-4) were reported their [ct]D values, bisaborosaol A (19) ean be determine its stereostructure at C-4 after the compound is converted to the corresponding aldehyde derivative. The desired derivative was successiv'ely prepared from 19a by oxidation with active manganese dioxide as shown in Scheme 3-40. The produet RL-116-LAH-MO detectable with UV 254 nm and DNPH reagent on TLC was obt,ained as a colorless syrup (Fig. 3-350). ,RL-116-LAH 19a 4.5 m in CHC13.)-- added ca 50 mg of active Mn02 stirred overnight at room temp. diluted with 20 ml o£ EtOAc washed with 15 ml of distilled water dried and concentrated Rea etlon Mixture PTLC (Rf O.17 in C-M 50:1) RL-116-LAH-MO O.8 m ield 18 % Scheme 3-40 Preparation of RL-116-LAH-MO Structure of RL-116-LAH-MO (19c) was confirmed by EI-Ms, IH- and 13 C-NMR (Fig. 3-35i, 352 and 353), and the optical rotation [a]D + 77 O (c O.1 in MeOH) clearly indicated the stereocheinistry of C-4 in 19c to be R. 567 C-M ou" o '` guenching under UV 254 nm xt vanillin-H2S04 test: + DNPH test: + o RL-U6-LAH-MO e!:'i・::・",'i・:, :-:.tr-:; :f::,':i':` -----liiae:ny-..-..-=;:,: Reaction Std.19a mx. Fig. 3-350 TL Chrematogram of RL-116-LAH-MO IZZz 1 69 z 9 43 6Zz a18 2Z3 4Zz 93 2Zz 55 *5 .e e2 135 12114816e175lgz 5Z Fig. 3・-351 1ZZ 15e ael 2sz E!-Mass Spectrum of RL-116-LAH・-MO 568 3ZZ 弓 CJ 8 8 9i壼_1【L 面 oo o 「刈 N . C ’ } 5 8 Pずコ A¢ Ho ∩ o ・r→ n 8 r, N 属 Σ oo ur). ) 〔.. j.一.. .(つ1;. O 5t・. l < o、o_: o噌,N 目 1 8 o 己 へ い 甲1 ⑩ H 州 1 日 感 触 o oの ・N @(o 決黶F o 8 ド ρ o Φ r o @r, @ ■ @“】 1卜 .c⊃ 悶 卿 α 8 の く6 @ v マ 註: α一 「 シ》 .8 0; ρr 【L、 H Nゆ Qり ゥ. l om.o》 oり 8 6 甲 → ω ’ 569 ■ bf〕 ・H 函 L。 } 、Lo に ぐ・」 一需 一9 蔀 A. σう ,r・→ o o ∩ £ ・F{ 雫 一9 藁 8 “ N ゆ NH ) ○ Σ 。 φ 1 .8 一濠 a. 〈 日 1 .ヨ ⑩ 『 自 臼 o N 講 HH l 日 蜘 o -c4 謹 写 q. ρ o ⊂) 一. ャ N Φ 一雷 の 名 o -J N I 臼 o σり 州 o N .器 。り ゆ 一(5 σり 1 8 σり ● 萎 570 bO .8 N ・F1 口 Table 3-138 Physicochemica2 properties of RL-116-LAH-MO (19c? HO,ttt H CHO 19c A colorless syrup ' Vanillin-H2S04 color: pinkish blue ' [edD; + 77 e (c O.1 in MeOH) EI-MS Jn/z (%); 218 (M", 3.4), 203 (Tvl'-CHsO, 2.0), 190 (M'-CO, ' b.O), 175 (5.3), 162 (4.5), 148 (5.0), 135 (7.8), 133 (7.6), 110 (28), 109 (100), 93 (32), 82 (24), 79 (21), 69 (93), 67 (23), 55 (21), 43 (80), 41 (66). IH-N>m 6Eilii813(soo MHz): g.442 (IH, s, c-14-H), 6.s4s (IH, br. m, C--2-H), 5.143 (IH, br t, J= 7.0 Hz, C-12-H), 'ca 2.53 (IH, overlapped, C-6-Ha), 2.520 (IH, m-divid d, J= 20.0 Hz, C-3Ha), 2.237 (IH, t-like m, C-6-Hb), 2.075 (2H, m, C-11-H2), ca 2.04 (IH, m, C-3-Hb), 1.938 (IH, d-like m, C-5-Ha), 1.698 (3H, s, C-14-H3), ca 1.68 (IH, overlapped, C-4-H), 1.633 (3H, s, C-15-H3), 1.564 (2H, overlapped with H20, C9-H2), 1.218 (IH, dddd, J= 12.4, 12.4, 12.1 & 5.4 Hz, C-5Hb), 1.182 (3H, s, C-10-H3)・ 13c-NMR 6TC"?sCI3(12s MHz): lg3.g (c-7,), 151.3 (C-2), 141.3 (C-1), 134.5 (C-13), 124.2 (C-12), 74.1 (C-8), 43.1 (C-4), 39.6 (C-9) 27.・5 (C-3), 25.7 (C-6), 23.8 (C-10), 22.7(C-14 22.3 (C-5), 22.2 (C-11), 17.7 (C-15). 571 5) Determination of Absolute Configuration at C-8 As Matos et al. has reported [144], C-7-monoacetate (101a and 19b) can be converted into a mixture of cis- and trans- 1-methyl4(1'-hydroxy-1'-methyl-5'-methylhexa)-cyclohexanes by hydrogenation catalyzed with platinum black or palladium black. As (-)-qbisabolol (94; 4S, 8S) [144] was also convertible to the same products, the planar structure o£ bisaborosaol A (19) can be ・ confirmed in speetroscopic comparisons of those reduetion products. If the yield rate of cis and trans was approximately constant, furthermore, not only the planar but also stereostructure at C-8 can be deduced on 19b (namely C-8 of 19) by the direct comparison of tPe optical data with those of 94-derived reduction product (Scheme 3-4i). Hydrogenation of 19b was accordingly performed to yield a major 'and a minor products (Scheine 3-42). HO H: HO.,, , Ot,, H -t CH20Ac platinum black or palladium black /H2 HO. HO..b ttttt (?) Scheme 3'41 Catalytic hydrogenation of RL-116-LAH-AC <19b) and (-)-or-bisabolol (82) to tetrahydrobisabolol 572 RL-116-LAH-AC 19.5 m in 2 ml of MeOH added 6.3 mg of platinum black bubbled H2 gas stirred for 5 hr . at room temp. added further 6 mg of platinum black stirred for 5 hr Reaction Mixture . £iltrated concentrated PTLC (H-EA 6:1) Ma'or Product RL-116-LAC-PLH1 Minor Produet RL-116-LAC-PLH2 Scheme 3-42 Rf O.59 8.9m Rf O.26 3.1 m ield 57 % ield 16 % Hydrogenation of RL-116-LAH-AC with H2/platinum black The'minor product RL-116-LAC-PLH2 obtained by PTLC (Fig. 3354) was, by FI-MS and IH-NMR analyses, identified to be a mixture of cis- and trans-1-acethylmethyl-4-(l'-hydroxy-i'-methyl-5'methylhexa)-cyclohexanes (19d + 19e) (Fig. 3-355, 356 and Table 3-139). HLEA 6:1 D vaniilindH2S04 test: posltlve RL- 1 1 6 -- LAC-PLHI -pt 0 RL-116-LAC--PLH2 Ko Q Reaction Std. 19b mx. Fig. 3-354 TL Chroinatograrn of RL-116-LAH-AC Reduction 573 Produc 't s 2 azze 2e.ee M+ >- tr, ll?.- hi ;: ;; z se 1ze Fig. 3-355 1se ' 2ee -, 2sg 3ee FI-Mass Spectrum of RL-116-LAC-PLH2 574 -t, .? .?o' 35eM/E. ヨ c) ε_. の 9 8 8 面 ( ぐり H o 8 Q o 9 ,0 窪 ・7→ い N Σ ’ o o ゆ 》 8 窪 「 N 5ご畠 lo < 自 雰罫日 愛 日 1 ¢ 8州 ω一 1 日 8触 0 蕊 8 H 巳 臼 べ (5 ρ o Φ 8の 面国 二 ま 二 1 :z; 8 8固 『d c;くD ゆ σり σり 強 & -’ 1 U bD 8・ ・r→ 函 575 Table 3-139 Physicochemical properties of RL-U6-LAC-PLH2 (1 9d + 19e) HO t ttt HO tt 19d t t' + CH20Ac CH20Ac 19e ' A colorless syrup Rf: O.26 in H-EA 6:1 Vanill'in-H2S04 color: pinkish blue FI-MS m/z (%); 285 (M'+1, 11), 284 (M', 15) , 267 (25) 155 (15), 129 (100). D (soo ryfHz ) : 4. og3 (d, J= iH- NMR 6 CT r,igi3 7.8 Hz) , 3.885 (d Hz), 2.062 (s), 2.054 (s), 1. 160 (d, J= 7.3 Hz) 1.091 (s). 576 ' ' ' 199 (71), J= 7.8 1.100 (s), On the other hand, RL-116-LAC-PLHI was confirmed as mixture of the desired products (19f + 19g) by FI-MS, iH- and i5c-NMR tttt analyses (Fig. 3-357, 358, 359 and Table 3-140). In the IH-NMR ' spectrum, these geometric isomers 19f and 19g showed thg C-7-H3 protons as quite different siganls in their chemical shift values each other. It seemed possible to calculate the relative ratio of cis to trans form. :"; 1e?e -(ie.?? >F-t oz. M+ hi be z -t el 5Z Fig. 3-357 1oe 1se 2ee 2se FI-Mass Spectrum of RL-116-LAH-PLH2 577 2.ee M/E コ o 噌6 8 8 .8表 eJ州 o ∩ o 竃’H 9 臼 N P∫〕 い Σ o ,目9 ) N 一ゴ 9 日 .o_1 .o ア:コ= ば;鼠・ぐ 日 め コ 個 個£ .是 8篤 し。 輻 。 呂 8臼 Q Φ rく+⊃ 臼 qQ 8 8Σ ・z 1 くY) 州 8 oo 8ゆ Qり 1 。; 8 丙’ 0り ● ◎β ・r→ .8函 一6 578 ト … 『 i巴 9 呂 需 鴇 Aの 冒 呂 Ho 8 ・H o o 『 9 “ R 『 鴇 ゆ N 一 お ) 『 冒 N 呂 日 幽 8 1 一護 丁こし ⊂⊃」一 住 誘 「 0〈 口 1 ヨ ー 『 9 舘 一 零 ㊤ 州 H l 二 上 。 一 目 『 3 尋 ← ρ o Φ 鵠 『 1: 一 の 呂 Σ 1 臼 一 に 器 一 σり H ① ゆ σり I 9 尺 一 8 N 『 騨 579 Qり ● 切 ・r→ 角 Tab1e 3-140 Physicochemical properties of RL-U6-LAC-PLHI (1 9f + 1 9g? HO tt ttt 19f + 19g A colorless syrup Vanillin-H2S04 eolor: pinkish blue EI-MS m/z (%); 226 (M', 7.0), 209 (4.6), 208 Ol+-H20, 3.6), 141 (27), 130 (14), 129 (100), 97 (11) IH-NMR' 6gMDCsl3(soo MHz): 1.og7 (d, J= 6.3 Hz), O.950 (d, J= 6.1 Hz), O.887, O.885, O.880, O.873, O .866 . . i3c-NMR 6gR8i3(i2s ryfHz): 74.6, 74.s, 47.6 , 46 .9, 40.2, 40.1, 39 35.5, 35.4, 32.8, 32.1, 32.1, 28.0 ,27 .4, 26.9, 26.7, 24 24.1, 22.7, 22.7, 22.6, 21.4, 21.1 , 20 .7, 17.4. 580 7 . 1 ' ' As carried out for 19b, (-)-or-bisabolol (94) was also hydrogenated. In this ease, palladium black (30 ing) was used as a catalyst instead of platinum black. After 5 hr stirring, the 82.5 mg of starting material completely disappeared and a major product was detectable on TLC, whose response to vanillin-H2S04 test was slightly but clearly distinguishable from g4. By the PTLC separation, 59.6 mg of the product was obtained (BS-PDH, yield 71 %)・ In the speetroscopic comparisons of FI-Ms, IH- and 13c-NMR, BS-PLH were completely identical to RL-116-LAC-PLHI (19f + 19g)・ The result also supported the proposed planar structure of bisaborosaol A (19) (Fig. 3-360, 361, 362 and 363). Since relative ratio of cis and trans C-7 methyl proton signal in BS-PLH also showed a good aceordance to that of RL-116-LAC-PLHI, both optical rotation was measured. As mentioned above, the optical rotation of these derivatives were expected to be quite small; t・herefore, ORD spectra of BS-PDH and RL-116-LAC-PLHI were taken. As shown in Fig. 3-364, both showed dexorotatory at 386 nm, which indicated that the C-4 stereoehemistry of 19f and 19g was R being equal to that of 94. Consequently, absolute configuration of 19 was established as C-4S, C-8R. 581 H-EA 6:1 O vanillin-H2S04 test: + (2)) c> o Reaction Std. MIX. Fig. 3-360 94 TL Chromatogram of a-Bisabolol Reduction Product ' i(; 1eee 3s.e? >fr I"'t oZ: M+ di Hz: -i e lt,'U"'`S sg 1i ltll li . I- tll-i- l- 1ee Fig. 3-361 F l- -ll 1sa .? .ee 2ez FI-Mass Spectrurn of BS-PDH 582 2S2 M/E ll 『 o 自 」 8 面 罰 「 8_ P6ぐつ Ho ∩ o 呂混 い Σ G)o o謹。 φ江【Ω ) Q 幽 書 ぜ 8の く6自q 蝋 。 § β§ Φ oり 「\ 8芝 西そ , N 8⑩ 1 σり 6 σう bO ● ・H 6 8函 一 583 iL ト 9 『 9 目 曇 『 鴇 空 富 『. 需 8 A、 oり 囲 R 一『 誘 呂 。H “ 一『 9 8 8 岬 Q o Q 『ま 一差 εL 江 曽 ヨ N ゆ N祠 ) ー Q 『 二 の 雷 一 l 舶 『 需 。 祠 ∈i 9 鴇 一 ρ o ① 雷 一 『 の 呂 呂 一 臼 『 一 $ l eり H 器 σり 一 ⑩ 8 の oり 1 『 R 一 ■ 8 N 一『 K 584 bO ・r→ 国 E σり =1 鵠 Q O N Q ¢ 6 o ゴ 0 6 N d 6 N 0 6 κ} o ゴ め A臼 国 ∩ ) ⊂)Σ7 一⊂づ〔こ・ で Φ 月〔こ. ・r→ ρ ◎ o 温 ゴ o o Oり ⑩ oり l 0 6 Qり ● じ、 加 ・H 函 oL6 冒、 0 6 ω o語 ω (⊃ 6 「\ 585 Tab1e 3-141 Physicochemical properties of'BS-PDfl " 9f + 19g] HO, HO, 11/lz ttly /ttll 19f + 19g A .colorless syrup Vanillin-H2S04 color: pinkish blue UVAlrIneaOxH: featureless above 210 nm FI-MS m/z (%); 226 (lvl', 7.8), 209 (5.6), 208 ()I+-H20, 9.4), 141 (35), 130 (13), 129 (100), 97 (13). IH-N}vlR6CTDMCsl3(soo MHz): 1.096 (d, .J= 6.3 Hz), O.950 (d, J= 7.2 Hz), O.885, O.879, O.872, O.866. 13c-NMR 6TC MD 813(12s MHz): 74.6 (c), 74.5 (C), 47 .6 (CH) , 46 9 (CH), 40.2 (CH2), 40.1 (CH2), 39.7 (CH2), 39 .7 (CH2), 35. 5 (CH2), 35.4, (CH2), 32.8 (CH), 32.1 (CH2), 32 .1 (CH2), 28. O (CH), 27.4 (CH2), 26.9 (CH), 26.7 (CH2), 24. 1 (CH3), 24.1 (CH3), 22.7 (CH3), 22.7 (CH3), 22.6 (CH3), 21 .4 (CH2), 21. 1 (CH2), 21.1 (CH2), 20.7 (CH2), 17.5 (CH3). 586 ( 口 / ) o o ⑩ oゆ ① o 頃 。7→ の Φ ρT 鵠目 山の 1,Ω・ ・・ oo o oゆ のの鴫 Φω ℃漆邸 ℃ 煽9 邸 いΦ P{〉}¢ 1 臼・H 国。日 トコギ)臼 ρ食 ○ ゆ .・ ョ q→σ5(P l+♪ρ ooΦ 《臼で 日0 1×の ⑩①邸 Hて5武 州 oo 守 1でOD 卜4q)1 国≧o o くH,二1+) oの而 o LΩ田のり ζつ=①H 臼〉一 ρ・F→ ( り \ o l o←)目 Φ而α= 日 Ql> の・ア→q→ の 角o o餌て5⊆1 ooΦ σつO 。Φ ●r→ Qq(d u ) α司 l Qり qq 4÷∂ マ+∂㊦ り 1’ NbooO 函 、H lQ 鵠の 一(口 ・H〆⊃く♪ 1・詐 。 . o o N <o io 日 oH H }臼 餌 ど+ 臼 ◎つ ・富rl IOb鵡 訴コ噛 oゆ ・+のq ① トユ) 山 層9』 o ⑩ σつ偏葺● \ o 霞 q ①・H ( く)OQ o H o i 587 Thus, the absolute configuration of bisaborosaol A (19) was established. This stereostrueture, espeeially R at C-4 was, comparatively rare among naturally occurring bisabolanoids. Bisabolanoids whose stereochemistry has already been established are listed in Fig. 3-365 with their plant sources [146-150]. HO/1/t H H H cooMe o juvabione (gs) (-)-a-bisabolol [146] HO1/lz [147] HO H11/ (+)-hernandulcin (106) [149, 150] Fig. 3-365 (94) HO 1 -bisabolone (1O7) [148] Some of Stereochemically Established Bisabolane Derivatives 588 -3-8-3 Bisaborosaic Acid A 1) Isolation o£ an Acid Corresponding to Bisaborosaol A During a survey of acidic 6onstituents in Rosa rugosa, a ' substance showing a reddish purple color, being similar to the ' response of bisaborosaol A (19), was detected by vanillin-H2S04 test. To isolate the focused substance, acidic constituents were prepared from the diffusates of damaged leaves (11 kg) through extraction of the crude EtOAc-solubles with 5 % NaHC03 solution followed by re-extraetion of the aqueous layer with EtOAc after being acidified. The acidic extractives were coated on 80 ml of silica gel which was put on a silica gel column (gel volume, 1500 ml), and successively fractionated as follows: Fr-A-1; washings with 40 % EtOAc/n-hexane (1500 ml), Fr-A-2, 3 and 4; eluates with ' 60 % EtOAc/n-hexane (each 500 ml), Fr-A-5; eluates with 100 % EtOAc/n-hexane (500 ml). Fr-A-2 and 3 mainly contained the focused substance, and Fr-A-4 and 5 also involved it in small amounts (Fig. 3-366). From a part of Fr-A-3 (ca 1/5), the focused acid was isolated by PTLC developed in hexane-EtOAc-HCOOH 25:25:1 (Rl' O.44) to give ca 50 mg of a colorless syrup. This acid was also detected in an acidie fraction from the MeOH extract obtained of unwounded Rosa rugosa leaves (Sample V). 589 2) Structure Elucidation The isolate RL-123A showing M+ 252 in FD-MS (Fig. 3-367) afforded quite similar spectra to those of bisaborosaol A (16) in EI-Ms, IH- and 13C-NMR (Fig,. 3-368, 36g, 37o and Tables 3-142, 143). The results suggested that the isolate was an acid corresponding to 19. Aceordingly, hydrocleavage of 19 was carried out as shown in Scheme 3-43, and the reaction product RL-116-HYD was successfully obtained. H--EA 3:1 A A Aa8 Bisaborosaic Acid A a (IC5 dAA) (b O 2 Fig. 3-366 7 TL Chromatogram of Coulmn Fractions of Acidic Coristituents from Sample IV 590 M+ 2 leg. e , 7 Cl VI M iV'.l --- .t ->- }<o H z {" Hz -' e Le.ee se lse ' 1ee 29.e 2se seeM/E z 1eze 2s.ee ・" t- oZ F--l ui lt z -- e see 4ee st..-ie gz 1 de.ee see ・55eM/E FD-Mass Spectrum of RL-123A Fig. 3-367 zz , 4 rJ' ro 9 69 43 ' ' 6Z 4Z 2Z 82 55 59 5Z Fig・ 3--368 123 93 IZZ 149 164177191234 lsz2zz・2sz3ez EI-Mass Spectrum of RL-123A 591 日 ’1. P 聖=) 9 」 3 蘇 13 rj 留 3 8 ( ○り μ, 耐 。 ∩ o ρ ・H 8 “ N ’- 9 Σ 荒1 叱. 8 o o j》. し○ 叱で“ 》 旺 げ}1.・ く ρり N祠 1 乏適 日 餌 しP 伯 ◎ づ 零 90 「、 Φ の r「 ? 餌 8 Σ 1∫; 卜 !ξ 婿 そ ∫ 言. ’‘ 目 亨. ニ∫; 3 ① ⑩ σり q; 1 σり ■ ぬ。 2 .c; 1 592 ・「→ 山 Tab1e 3-142 1H-AilSfR chemical shift vralues of RL-123A (500 MHz , in CDC13, TMS as an int . std.) 6H Coupling Assigmnent 7 .145 5 .133 IH s-like br. m IH t-like m J= 7 .O Hz 2 .520 IH br.d J= 17.5 Hz IH m-dvid. d* J= 18.8 Hz 2 .165 IH br. t-like m 2 .12 (approx.) IH m 2 .377 2 .063 1 .916 1 .692 1 .626 2H m IH m-dvid.d J= 3H br. s 3H br. s 11.3 Hz (approx.) IH m 1 .542 IH t .J= 8.2 Hz 1 .62 1 .251 1 .167 C-2-H C-12-H C-6-Ha C-3-Ha C-6-Hb C-3-Hb C-11-H2 C-5-Ha C-14-H3 C-15-H3 C-4-H ,C-9-H2 IH dddd J= 12.4, 12.3' 12.3 and 5.4 Hz C-11-Hb 3H s CtlO-H3 * multiply divided doublet 593 董 cつ ぐ“ =寓 。(.) 董 r, 出 o 〔2 臼 身1 一r:1 .R (σり o 目 o o 2 ・r弓 信 ’N 撃撃 oN 州 .8 ) i4 < oう .=i三 eq H I 日 一臼 .畠 餉 o ρo .f? ぶ ・・ ① の @ α竃 .〔己 墨 ・・ @ o 州 σり 一「二 〇 卜1 .需 い. oつ σり .二;1 ℃の ・H 口 .8 L f」 594 Tab1.e 3-143 i 3c-iwsfR chemical shift values of RL-123A (125 MHz , in CDC13, TMS as an int . std.) 6c Property Assignment 172 4 -coo- C-7 142 . 3 =CH- C-2 132 1 . =C- C-13 129 . 5 =c- C-1 124 . 2 =CH- C-12 2 -c-o C-8 3 CH C-.4 39 4 CH2 C-9 27 . o cH2 C-6 25 . 7 CH3 C-14 24 . 8 CH2 C-3 23 ・ 8 CH3 C-10 23 ・ 2 CH2 C-5 22 ・ 2 CH2 C-11 17 . 7 CH3 C-15 . 74 42 : . 595 Bisaborosaol A 19.8 m Dissolved in 2 ml of EtOH added 2 ml of 1 N NaOH solution standing overnight at room temperature diluted with 20 ml of a satd. NaCl acidified to pH 3. O with 2 N HCI extracted with 15 ml of EtOAc EtOAc La er dried over Na2S04 rernoved the.solvent dn vacuo PTLC (C-M-F 100:5:2) 14.5 m of the Main Product RL-116-}IYD l9h Rf O.35 77 % ield Scheme 3-43 Alkali hydrocleavage of bisaborosaol A , The product (RL-116-HYD) was completely indistinguishable from RL-123A in TLC, EI-MS and IH-NMR (Fig. 3-371, 372 and 373). RL123A was thus characterized to be 20. 0n the other hand, the methylation product of 20 with CH2N2, RL-123A-ME also revealed to be ident,ical to 19 in EI-Ms, IH- and 13C-NMR (Fig. 3-374, 375 and 376). The methyl ester (RL-123A-ME) was further agreeable with 19 in optical votation ([a]D + 68 e, c O.1 in acetone, cL 19; + 78 O, c O.06 in MeOH). This naturally occurring bisabolane acid (20) was aecordingly proved to be a carboxylic acid derivative stereocheinically corresponding to 19 and was named bisaborosaic acid A. 596 H-EA-F 25:25:1 O quenching under UV 254 nm O O Reaction Std. 20 MIX. TL Chromatograms of RL-116-HYD Obtained by Hydrolysis of Bisaborosaol A {19}. Fig. 3-371 IZZ ez 1 43 9 69 6Z 4Z 59 2Z 55 B2 95 126 149 191 164 178 5Z lez 15e 219 2ZZ 234 25Z 3ze Fig. 3-372 EI-Mass Spectrum of RL-116-HYD: The fragmentation pattern is well agreeable with that of bisaborosaic acid A {20) 597 1 1 .=≧ 1. 日 ! 〔. j で.; 嵩 8 8 ρ; εミ A σり 8 3 Pり Ho q Q 一 甲→ ρ A 8 ぜ oo 3. 9 l」⇔ e.こ 8ぎ 8 曾 溢‘志 》 ∩ ρ」 「.1 聾 ⑩ 耐 o 3一_ 零 丙 茜 “, 1驚 H q 「 伯 臼 。 丙 田 臼 κ ρ o ① の ← 8 9 (「.} α〕 乙パ 」く 膣 H 臼 2 8 6 監∫; 卜. b oり ト σり i ◎り 8 曾 1 598 b分 ・F{ 函 zz 1 9 69 8Z 6Z 43 4Z 2S6 2Z e2 93 119 59 se Fig. 3-374 *IZ.Z 14Z 55 1ZZ 163 151 ISZ EI --Mass lsg2e524e 178217233 2ZZ25Z31Z Spectrum of RL-123A-ME 599 1 皿一 LR 『 c⊃ 鞭 .一 L 一 一 コくつ 一吋 P 鶉 / Sl ,二 R き ぐ Aの Ho o o 臼 ♂り 、 ・r-1 “ N ? Σ 8 2 享 ~ 三 d 印 「 国 1.語 1ρ の N r』 州 1 日 1.l u、 セぐう ー「 舶 。 づ N 『,心 1 ・段 く 8 噌Fl ㍉ .5 殉▼..r1・ 臼 }_ ≧ } ギ 『d ) - ,q. _ミン 臼 σこ ぎ 巳。 の 01y 葵 需 oo ’1 3 。 ① r. の ン 3 ~~曽 「 1・: 卜 α; .;、}・ ■1 「 1 鵠 例 ゆ ト 2 {, ○り l oり rη ● bO ・r→ 8 ,; 監「 600 iつ ・『 ・8 ・爾 一響 ・繋 {oり ・拙 Ho o 1? ・州 員 ・器 ・8 一9 -3 a 一1う 頃 c9 州 ) 国 1 ,ぐ φう 、臼 N 回 6 日 島1 幅 o r1 ρ o Φ .ε1 の .畠 I 忘; Q の ,3 d o卜 Qり 3 ド ξ oり 。 もめ .8 ぐ5 601 ・ドi Table 3-144 Physicochemica1 properties of hisaborosaic acid A (20? HO, ttt H = : COOH A eolorless syrup Rf O.35 (C-M-F 100:5:2) 20 Vanillin-H2S04 test: pinkish red FI-MS m/z (%): 253 (M++1, 30), 252 (M+, 100) EI-MS m/z (%): 234 (M'-H2, 4.5), 2i9 (1.3), 191 (5.6), 189 (2 .7) 178 (2.0), 177 (2.6), 164 (2.6), 151 (6.4), 150 (5.3) (11), 126 (7.8), 123 (9.0), 110 (10), 109 (100), 105 93 (7.9), 82 (22), 81 (12), 79 (17), 71 (13), 69 (80) (19), 55 (14), 45 (20), 43 (77), 41 (51). " ' IH- and 13c-NMR spectra data are shown in Tables 3-142 and 3-143, respeetively, ' 602 ' 149 (8 .5) ' ' 67 ' Tab1e 3-145 Physicochemical properties of RL-116-HYZ) (19h) HOtttt H COOH 19h A colorless syrup Vanillin-H2S04 color: pinkish red EI-MS m/z (%): 234 Ol'-H20, 5.3), 219 (1.9), 191 (7.7), 189 (2.2), 179 (1.9), 178 (2.1), 164 (2.6), 151 (6.8), 149 (11), 126 (8.5), 123 (8.0), 110 (10), 109 (100), 95 (16), 82 (27),81 (14), 79 (18), 71 (16), 69 (77), 67 (17), 59 (28), 55 (15), 45 (19), 43 (78), 41 (51). IH-NMR6CTDMCsl3(soo ryfHz): 7.144 (IH, br, s, C-2-H), 2.372 (IH, mdivid. d, J= 18.6 Hz, C-3-Ha, ca 2.12 (IH, m, C-3-Hb), 1.624 (IH, m, C-4-H), 1.917 (IH, m-divid. d, J= 12.9 Hz, C5-Ha), 1.250 (IH, dddd, J= 12.5, l2.4, 12.2 & 5.2 Hz, C-5Hb), 2.521 (IH, br. d, J= 17,7 Hz, C-6-Ha), 2.162 (IH, m, C-6-Hb), 1.541 (2H, t, J= 8.2 Hz, C-9-H2), 1.166 (3H, s, C10-H3), 2.062 (2H, m, C-11-H2), 5.133 (IH, m-like t, .T= 7.1 Hz, C-12-H), 1,692 (3H, br. s, C-14-H3), 1.626 (3H, br. s, C-15-H3)・ 603 Tab1e '3-146 Physicochemical properties of RL-123A-ME (19] HOtttl H COOCH3 19 A colorless syrup [or]D: t 68 O (c O.1 in acetone) Vanillin-H2S04 color: pinkish red EI-MS m/z (%); 266 (M', O.5), 248 (M+-H20, 7.4), 233 (2.4), 217 (2.5), 216 (2.2), 205 (8.7), 189 (6.3), 163 (19), 151 (9.6), 140 (22), 137 (14), 119 (13), 109 (100), 105 (16), 93 (24), 82 (24), 79 (22), 69 (83), 67 (20), 55 (17), 45 (18), 43 (60), 41 (50). iH-NMR 6[iili)/8I3(soo MHz): 7.oo6 (iH, ddd, .T= s.s, 2.s & 2.7 Hz, c-2- -H), 2.337 (IH, m-divid. d, .J= 19.0 Hz, C-3-Ha), ca 2.09 (IH, m, C-3-Hb), 1.612 (IH, m, C-4-H), 1.907 (IH, m-divid. d, .r= 12.7 Hz, C-5-Ha), 1.241 (IH, dddd, J= 12.4, 12.3, 12.3 & 5.1 Hz, C-5-Hb), 2.526 (iH, br. d, J= l7.7 Hz, C-6Ha), 2,171 (IH, m, C-6-Hb), 1.536 (2H, t, J= 8.2 Hz, C-9H2), 1.161 (3H, s, C-10-H3), 2.062 (2H, m, C-11-H2), 5.136 (IH, m-like t, .J= 7.2 Hz, C-12-H), 1.694 (3H, br. s, C-14H3), 1,628 (3H, br. s, C-15-H3), 3.731 (3H, s, C-7'-H3). 13c-NMR 69MDCsl3(12s MH,): 16s.o (c-7), 13g.g (c-2), 132,3 (C-1), 130.2 (C-13), 124.5 (C-12), 74.3 (C-8), 51.7 (C-7'), 42.7 (C-4), 39.6 (C-9), 26.9 (C-3), 25.9 (C-5), 25.4 (C-10), 24.0 (C-14), 23.5 (C-5), 22.4 (C-11), 17.9 (C-15). 604 3-8-4 )lonoxygenated Drivative of Bisaborosaol A 1) Isolation and Speetroscopie Analyses During the isolation of bisaborosaol A (19), two compounds showing a clear yellow color with vanillin-H2S04 reagent on TL plates were detected under the spot of 19 (in Fr-I-8), and these were tentative.Iy named RL-117B and RL-ll8B (Rf O.38 and O.34, respectively, cf. O.47 in 19). By the re-column chroniatography, RL-117B was eluted in FFr-I-3 and successive FFr-I-4 (25 % EtOAc/hexane 50 ml). The latter fraction also contalned RL-118B as the major substance. With the guidance of the characteristic ' ' response to vanillin-H2S04 reagent, each compound was isolated by PTLC (H-EA 3:1) (Fig. 3-377). Both of them showed M+ 282 in FI-MS (Fig. 3-378 and 379), although the parent ions were undetectable in EI-MS of the each compound (Fig. 3-380 and 381). The IH-NMR spectra were both similar to that of 19; however, two methyl signals were observed upfield to be assignable to a methyl group allocat,ed not to an olefinic but to an oxygenated carbon (Fig. 3-382 and 383, and Tables 3-147 and 148). Furthermore, each double-doublet, methine proton (6H 3.415 in RL-117B, and 3.553 in RL-118B, respectively) was newly detected instead of the C-12 olefinic proton of 19. The results suggested that the olefinic bond on the side chain was monoxygenated to contend the molecular weight 282 (16 + O). An exchangeable and broad singlet proton was also detectable in both of the IH-NMR spectra・ sinee each 13c-NMR spectrum of the compounds was quite similar, RL-117B and RL-118B were eonsidered to be epimerie to each other (Fig. 3-384, 385 and Tables 3-149, 150). Although from 19 three monoxygenated forms (D, E and F) were possible to draw (Fig. 3-386), D having an epoxy group was neglected due to the chemical 605 sift values of the oxygenated earbOns. These carbon shifts [e.g. 6c 86.4 (CH), in RL-117B] were too low as a methine carbon in an epoxide ring. As a matter of fact, if an epoxy group was induced to the olefinic bond, it will be cyclized by intramolecular alcoholysis wit,h the C-8-OH, as known in 1-linalool (68) and (-)-abisabolol (94), for example [151,152]. Epoxidation of 19 was therefore carried out. H-EA 3:1 0 quenching under UV 254 nm :L,1i,l7,:.'s--l-.8 8 FFr-I-4 s Fig. 3-377 TL Chromatogram of FFr-I-4 Containing RL-117B and RL-118B 606 1eee Z ] eeez i y h oz hi Hz F-l He I -l H l bl se .ee t 2eeM!E 1se 1ee Z 1eee g.ee M++1 M+ 'M k Heo Z u Hz H e l' i-+ tn l 2ee Fig. 3-378 2ZZ l, , gkVrTTT-trnrtrnTtrrrfihTtTnTritrhpfTri 'ird 'l bp t .ee t 3ee 2se 35eM/E FI-Mass Spectrum of RL-117B 4 143 8Z 264 191 6Z S9 4Z 55 2Z 85 79 67 91 5Z *25.e le7 7 1 251 125 71 IZZ Fig. 3-379 119 !37 181 2Z5 173 15Z 223235 2ZZ asz EI-Mass Spectrum of RL-1l7B 607 t 3ZZ - 35Z 2 jeee Je.e? > Ho z z e F, ur le Lft,ee , 50 1 1se 1OCI M!E Z 1ge? M++1 > h H oz hi Hz F--t je.e2 M+ hN,. "i e ,.ee 2SO. 20¢ Fig. 3-380 zz sec M!E FI-Mass Spectrum of RL-118B 1 3 191 26'4' ez 251 6Z 4S 59 S5 4Z 125 71 79 2Z 181 IZ5 93 163 173 2]5 . 5Z ` IZZ Fig. 3-381 15e *25. e 2Z5 25e 3ZZ 2ZZ ' EI-Mass Spectrum of RL-118B 608 35Z 4ZZ ll r, c」 8 9 9 臼 8 9 面 零 po A ⑩ q ⑩ o 9 曾 8,ヨ ,∫ い N 8 d Σ 承 ⊂》_ o 『llo @k) ロ、砿 9 ) 呂 面 = 臼 ζ:⊃窄一 卜左: & _:L 9マ 面 日 綱 o N 。 腔 器 8彗 hこ 臼 ρ o Φ の L コ 卜二・. 卜・・1:. $ ド, ひ1 β 配 〔て; Σ= lz じ 鵠 H ト li: .8 N c; OD oり I oり L ● 8 掌 609 bの ・目 国 Tab1e 3-147 1 H-AijSIR 'chemical shift values of RL-U 7B (500 MHz, in CDC13, TMS as an int . std.) 6H Coupling Assignment 7 057 IH br. m 3 481 3H s 3 405 IH dd .1= 10.3 and 5.2 Hz 2 655 IH br. d J= 15.0 Hz . 192 IH . 075 IH 1 975 IH t-like m m-dvid. d J= 19.3 Hz br. s (exchangeable) 1 719 IH m 1 682 IH m 1 559 IH d-like m 2 2 . 43 (approx.) . 403 . 381 1 1 1 1 249 1 221 . 074 o . 930 o . 834 1 IH IH IH 3H 3H IH 3H C-2-H C-7'-H3 IH t-like m dd .I= 9.8 and 8.6 Hz m dd .T= 9.8 and 9..O Hz s s dddd J= 12.5, 12.4, 12.4 and 5.1 Hz s 610 C-12-H C-6-Ha C-6-Hb C-3-Ha C-13-OH C-11-Ha C-3-Hb C-5-Ha C-4-H C-9-Ha C-11-Hb C-12-H C-l4-H3 C-15-H3 C-5-Hb C-1O-H3 .『 o 8 8 ,こ 8 8 9 A Nつ ぷ __ニメ, 8 爲 零q 竹 。H 」 」 NA 臼 9 -OqO ω〔LO 」 」 8 蜜 」 」 需 ⊂りr 匡Ω ) 田 3二 蓬 ω 1 口 【L 8 $ 二 」 触 。 目 べ 9_ノ 3 面 1三; 附 と冒 詞 o ① の め Q. 爲 呂 l 丙 po 1 9 H 6 0つ o◎ ト σり 1 5 82 cq ・匿 ど\ 611 0り 9 -6 ● も。 ・H h Tab1e 3-148 IH-ALMR chemical shift values of RL-118B (500 MHz, in CDCI3, TMS as an int. std.) 6H Coupling Assignment 7 3 .552 IH dd J= 8.0 and 6.0 Hz C-12-H3 3 2 .588 IH br.d .f= 17.8 Hz C-6-Ha 2 2 .106 IH m-dvid. d* ,J= l9.8 Hz C-2-Ha 1 1 1 .620' 1 1 .488 IH dddd J= 17.7, 8.7, 6.8 and 5.4 Hz C-11-Hb .138 IH t-likem C-6-Hb .788 IH s(exchangeable) C-13-OH .753. IH t-likem C-2-Hb .553 IH d-likem C-5-Ha 1 .408 IH ddd J= 12.2, 9.7 and 5.4 Hz C-9-Ha 1 1 .237 IH ddd J= 12.2, 8.6 and 7.2 Hz C-9-Hb 1 1 o .945 IH dddd J= 12.4, 12.4, 12.3 and 5.1 Hz C-5-Hb o * multiply divided doublet .40 (approx.)m C-4-H 612 聾 語}ぎ } 9 雲 層9 鴇「 9 ( 現 豊 曾 国 ∩ 零 て5 露 需 Σ ○ 9 (.) $ ㊤ ミ 忠 8 口 o ⑩ o ・H お N 8 8 § oo ㊤ ) 蔓 qq 聲 卜 州 目 1 § 日 配 皇 奨も 貫 屋 ρ o 呈 ① 甲 の 屋 oN 唖 ヨ〒 o 舅の 州 四 型 頃 N 罠 寸 ◎O Qり 1 σり 婁 o 罠 oう 田 613 bO ・P→ 蟹 函 Table 3-149 (68 rvlHz, 6c 167.3 139.5 130.4 86.4 84.6 70,1 51.1 43.3 35.8 27.9 27.7 26.4 25.7 24.8 24,1 23.4 13C-AUS:tR chemical shdft values of RL-11 7B in CDC13, TMS as an int. std., COM and DEPT) Property -coo=CH=C- -CH-O -c-o -c-o -o-CH3 CH CH2 CH3 CH2 CH2 CH2 CH3 CH2 CH3 Assigmnen't C-7 C-2 C-1 C-12 C-8 or C-13 C-8 or C-13 C-7' C-4 C-9 C-10 C-11 or C-3 C-11 or C-3 C-6 C-14 C-5 C-15 614 遷 ト シ⊃ ・一 萎 Lヨ 臼 購 A、 o臼 「∫Ω→ 国 q ロ 9 一ωΣ oo ”しつで こ 一詩“ ⑩ ㊤ ・詔Q 8・H 直 .8..Σ: 一邑 亀ゆ ぐ噸 。) r4 ’=:_ ρQ ⊂)OQ 一「4 州 州 9 「.二司 .. x)駕 鏑 o 一写 一日 角 ⊂】十」 一の 〇 一Φ oの 一ω 一α= じ 窯 O l …(.) σり 州 。 -r∫り ゆ OQ o σ) リへ 一 1 σり Oぐつ rヨ ・州 函 615 bO 3-150 Ta b1e Z3c-swR .chemica1 shift values of RL-118B (68 MHz , in CDC13, TMS as int . std.) 6c Property 167 . 139 3 -coo- C-7 5 =CH- C-2 =C- C-1 7 -CH-O C-12 5 -c-o C-8 9 -c-o -o-CH3 C-13 130 4 . 84 84 . 70 . 5i ・ Assignment 1 C-7' 5 CH C-4 8 CH2 C-9 27 7 cH2 C-il 27 5 CH3 C-10 2 CH2 C-3 5- CH2 C-6 1 CH3 C-14 5 CH2 C-5 7 CH3 C-15 43 35 26 . . 25 25 . 24 . 21 616 HO cooMe o o HO cooMe B A o cooMe OH C Fig. 3-386 Three Possible Monoxigenated Structures for RL-117B and RL-118B 617 2) Epoxidation of Bisaborosaol A m-CPBA was used to obtain a monoxygenated product of bisaborosaol A (19). In 2 ml of ice-cold CHC13, 11.5 mg of 19 and 10.0 mg of m-CPBA were dissolved, and the mixture was stirred for 1 hr, at which point, 25 ml of EtOAc was added to the reaction mixture. Then the mixt,ure was washed with 5 % aq. Na2C03 solution (25 ml x 2). From the organic layer, two major products 116-CPBA-1 and 116-CPBA-2 which were respeetively agreeable with RL-117B and RL-118B on TL plates (Rf values and responses to vanillin-H2S04 reagent) were obtained by PTLC (116-CPBA-1: 5.2 mg in 43 %, and 116-CPBA-2: 4.5 mg in 37 % yield, respectively) (Fig. 3-387). Successively, each product was confirmed to be identical t,o the authentic eompound obtained as a naturally oceurring sesquiterpene, in EI-Ms, IH- and 13c-NMR and the optical property (Fig・ 3-3ss, 389, 390, 391, 392 and 393). H--EA 3:1 O quenching under UV 254 nm RL-116-CPBA-1 ・`!・・・ (I!iil:l) 'tii`k vaniliin'H2P04 ・k !. (ill]) 7 @ test: pos1t1ve RL-116-CPBA-2 Std .21 Fig. 3-387 Reaction std,22 MIX. TL Chromatogram of Reaction Product Obtained by m-CPBA Oxidation of Bisaborosaol A (19) 618 1ez 4 8Z 6e 125 143 4Z i91 71 59 85 2Z 55 79 le7 91 67 137 119 IS3 97 5Z 1IZ 2Z5 264 223 aS5 25Z 2ZZ 15Z IZZ Fig. 3-388 17e 3ze EI-Mass Spectrum of RL-116-CPBA-1 4 se 6Z 59 4Z 125 71 55 67 191 85 79 2Z 143 137 91 IZ5 119 163 5Z Fig. 3-389 IZZ 15Z 178 2Z5 223 235 2ZZ 264 25Z EI-Mass Spectrum of RL-116-CPBA-2 619 3Ze _」}, ト’ 8 8 8 面 爲 」 る 呂魅 8 需 鴎Q 」 ・F4 “ ’⊂⊃N ま o寓 幽Σ 写 」 り 二 o o go 8 累 & ) ロ 。Σ〒 一 りじ .・;氏 9 」 臼 臼 & 4 触 o 8 1d V 臣 ? ⑩ β例 州 .ω1 8 & 秩ィ 。 ・・護. 零 二【L .. .へ 角 ρ o Φ /康 クi テ oの 8 『 .αつρ自 べ Σ z l = 8州 臼 司 ≒レ σ;o ① σり l oり } 620 目・ 6潤 随 _一 Oト 9 9 需 9 富 8 ( 臼 山 国 Q ℃ O o o㊤ ⑩ Q R ・F4 “ 出 類 自 8 一藷 ゆ N州 ) 一 1 α. < ヨ (一) 1 目 白 ⑩ 州 目 8 日 嗣 o 9 躬 ρ o Φ 呂 一 臼 の Σ 巳 。 σり 畠 H 一 ① ま oり l oり 8 N 621 bO ・H h ‘」!。 8 8 8 ,、三 証 A⑩ 〔L 8 o⑩ o 2 二 κ) ・ri 二 い N .8 Σ ゴ 9 .つ O _二 L..o } N ぐつぞ ノ 曽 臼 o言. l Lδ・・ 炉二 〈 r二 ρq ξ 山 q. 9 累 9 $ 二 Q l 3 ⑩ 旧 例 1 tO ρ _:. ア1 幅 8 。 厳 「く ρ o r 9 Φ 18ざ べ 8 の ,,1 1ド 臼 Σ 聖 .丙 国 3 H 0; 累 ぐq ① d oり 1 81 1くl1 σり 零 呂 ● ~ d .t く. 622 三.i ℃o B 山 !・ 1.. L lN lG N. A 臼 幽 国 。 j ℃ rl白 髭, 芝 O Q 1口 “ ⑩ Ll q ⑫ Q ・r→ し ドス 』 い N 頃 F8 ト 1. 8 ゆ IN 州 } N l < 〔と ρq dl Q 量 F .臼 零 E ⑩ 州 祠 1 日 鋸 L r、 Lg 綱 o ρ .一 〔⊃ o ル、 Φ の .〔乙 に F r‘ 類 z Q の l H .1}1 }:;; oり σ) oり I oり ● .8 !N L 623 ℃の 。H 函 RL-117B and RL-118B were therefore considered to be eyclizat,ion produet.s derived from the epoxy intermediate. Since m-CPBA was presumed to attack the olefinic bond in the sidechain nonstereoselect,ively to give the epoxy int,ermediate, these compounds produced via diastereo-epoxides were regarded as the diast,ereoisomeric at the newly formed C-12 chiral center (Scheme 3-44). Usually, 1-hydroxy-3-monoene derivatives, for exsample, linalool (68) or a-bisabolol (94), give tetrahydrofuran derivatives by epoxtdation with m-CPBA in CHC13, through cyclization between the epoxy group and t,he Y-hydroxyl group as the result of intramolecular alcoholysis [1511. The tetrahydrofuran type struct,ure for RL-117B or RL-118B was thus quite reasonable. The tetraydrofuran ring structure for each coinpound was furt,her supported by the presence of EI-MS fragments at, m/z 223 OI+-59) and m/z 59 (C3H70+) as shown in Fig, 3-394). Consequently, the tetrahydrofuran st・ructures were proposed for t,hese compounds. cooMe m/z 59 (C3H70') Fig. 3-394 EI-MS Fragmentation of 'the Tetrahydrofuran Derivative 624 Φ Φ Σ o o o o O o =: o ユ= o 。 ー コ= ぐ ○ qα ’, ’, 工 Q l 嬉 ρ ・H 匡 < HO の O o £ ω ・ → qa Σ o 悩 o o o o ・H 一 Φ Σ o o o 一 ρ で ・「→ ンぐ o < 田 ? ∋← ∈ブ.o / 。 窪 8 H 留 = 8 L________」h 8 甲 8 * oエ 625 国 ぢ 寸 ザ1 σり Φ 鐸 Φ 40 の Tab1e 3-151 Physicochemical properties of bisaborosaol Bl (20 H ; ; t o COOCH3 OH 21 A ¢olorless syrup ' Vanillin-H2S04 eolor: yellow [a]D + 63 O (c O,19 in MeOH) uv x"l,ligOxH: 2is nm (e ii3oo) FI-MS m/z (%): 283 (M'+1, 81), 282 (M+, 42), 265 (21), 223 (50), 143 (82), 139 (3・O, 133 (22), 112 (l8), 59 (100). EI-MS m/z (%): 267 (1.2), 264 (M'-H20, 1.5), 251 (O.9), 235 (M'H20-OCH3, 5.4), 224 (3.7), 223 (M'-COOCH3,-4.5), 205 (M+H20-COOCH3, 14), 192 (14), 191 (61), 181 (11), 173 (7.2), 163 (10), 145 (19), 143 (89), 137 (13), 125 (50), 119 (12) 107 (23), 105 (20), 93 (15), 91 (16), 85 (43), 83 (15), 81 (21), 79 (25), 77 (11), 71 (43), 69 (18), 67 (l8), 59 (48) 57 (11), 55 (25), 53 (18), 43 (100), 41 (37). IH- and 13c-NMR data are shown in Tables 3-147 and 3-149, respectively, 626 Tab1e 3-152 Physicochemical properties of bisaborosaol B2 (18) H ; ; l o COOCH3 : : - OH 22 A eolorless syrup Vanillin-H2S04 color: yellow [ctID + 68 O (c O.2 in MeOH) MeOH : 218 nm (e 12200) UV Mnax FI-MS m/z (%): 283 (M'+1, 66), 282 (M', 23), 265 (11), 223 (59), 143 (100), 139 (56), 59 (69). EI-MS m/z (%): 267 (i.8), 264 (M'-H20, 2.1), 251 (1.4), 235 (M'H20-OCH3, 9.4), 233 (3.9), 224 (8.0), 223 (tyI'-COOCH3, 8.9), 205 (M+-H20-COOCH3, 23), 192 (28), 191 (95), 181 (21), 147 (20), 145 (24), 143 (100), 125 (39), 107 (19), 105 (20), 93 (16), 91 (15), 85 (42), 81 (18), 79 (23), 71 (28), 59 (45), 55 (18), 53 (16), 43 (58), 4i (27). IH- and 13c-NMR data are shown in Tables 3-148 and 3-150, respectively. 627 Tab1e 3-i53 Physicochemical properties of 116-CPBA-1 (= bisaborosaol Bl, 21) v H '= r ;. b COOCH3 OH 21 A colorless syrup Vanillin-H2S04 color: yellow [ct]D: + 69 O (c O.2 in MeOH) EI-MS m/z (%): 264 (M+-H20, 3.0), 235 ()vCE+-H20-OCH3, 2.8), 233 (2.1), 223 (M'-COOCH3, 2.0), 205 (M'-H20-COOCH3, 8.0), 192 (6.6), 191 (34), 181 (5.2), 178 (9.1), 163 (5.7), 145 (10), 143 (46), 137 (19), 125 (55), 119 (12), 107 (15), 105 (13), 91 (12), 85 (26), 81 (11), 79 (17), 71 (34), 67 (12), 59 (26), 55 (13), 53 (12), 43 (100), 41 (22). IH-NMR 6S・}TfhE}6 (soo MHz): 7.oss (IH, br. s, c-2-H), 2.078 (IH, multiply divided d, .7i= 19.1 Hz, C-3-Ha), 1.685 (IH, m, C-3Hb), 1.429 (IH, dddd, J= 12.2, 11.8, 4.9 and 2.5 Hz, C-4H), 1.561 (IH, d-like m, .T= 12.4 Hz, C-5-Ha), O.933 (IH, dddd, J= 12.4, 12.4, 12.4 and 5.2 Hz, C-5-Hb), 2.655 (IH, br. d, .T= 17.7 Hz, C-6-Ha), 2.193 (IH, t-like m, C-6-Hb), 1.406 (IH, dd, J= 9.3 and 7.5 Hz, C-9-Ha), 1.252 (IH, dd, .T= 9.3 and 7.2 Hz, C-9-Hb), O.836 (3H, s, C-10-H3), ca l.73 (IH, m, C-11-Ha), 1.378 (IH, ddd, .T= 8.6, 7.7 and 3.3 Hz, C-11-Hb), 3.408 (IH, dd, .I= 10.4 and 5.1 Hz, C-12-H), 1;223 (3H, s, C-14-H3), 1.075 (3H, s, C-15-H3), 1.966 (IH, br. s, C-13-O!!, 3.483 (3H, s, C-7'-H3)・ 13c-NMR 6TC 1Ds6(12s MHz): 13o.4 (c-1), 139.6 (C-2), 26.4 (C-3), ty6 43.3 (C-4), 24.1 (C-5), 25.7 (C--6), 167.4 (C-7), 84.7 (C8), 35.8 (C-9), 27.9 (C-10), 27.7 (C-11), 86.4 (C-12), 70,2 (C-13), 24.8 (C-14), 23.4 (C-15), 51.1 (C-7'). 628 Tab1e 3-154 Physicochemical properties of U6-CPBA-2 (= bisaborosaol B2, 22) 1 ,, Tn = .= =o COOCH3 OH 22 A colorless syrup Vanillin-H2S04 color: yeHow [ct]D: + 65 O (c O.2 in MeOH) EI-MS m/z (%); 264 (M'-H20, 2.4), 235 (M+-H20-OCH3, 3.4), 233 (2.'2), 223 (M+-COOCH3, 2.6) , 205 (M'-H20-COOCH3, 12), 192 (10), l91 (47), 181 (8.1), 178 (11), 163 (7.9), 145 (15), 143 (48), 137 (25), 125 (47) , 119 (16), 107 (17), 105 (18) 93 (13), 91 (17), 85 (39), 81 (16), 79 (26), 77 (13), 71 (41), 67 (18), 59 (46), 55 (20), 53 (20), 43 (100), 41 (32). iH-NMR 6El&Ds6 (soo MHz): 7.oio (IH, br. s, C-2-H); 2,108 (IH, ' multiply divided d, J= 19. O Hz, C-3-Ha), 1.755 (IH, m, C-3Hb), ca 1.41 (IH, m, C-4-H) , 1.557 (IH, d-like m, C-5-Ha), O.947 (IH, dddd, .1= 12.4, 12.4, 12.3 and 5.2 Hz, C-5-Hb), 2.595 (IH, br. d, J= 17.8 Hz, C-6-Ha), 2.141 (IH, t-like m, C-6-Hb), ca 1.42 (IH, m, C-9-Ha), 1.238 (IH, ddd, J= 12.2, 8.5 and 6.5 Hz, C-9-Hb), O. 864 (3H, s, C-10-H3), 1.622 (IH, dddd, J= 12.3, 9.7, 8.1 and 7.6 Hz, C-11-Ha), 1.489 (IH, dddd, J= 12.3, 8.6, 6.8 and 5.4 Hz, C-11--Hb), 3.553 (IH, dd, .T= 8.1 and 6.8 Hz, c-12-H), 1.217 (3H, s, C-14-H3), 1.071 (3H, s, C-15-H3), 1. 780 (IH. br. s, C-13-O!l), 3.480 (3H, s, C-7'-H3)・ 13c-NMR 6!iiRIDs6 o2s MHz): 130.4 (C-1), 139.5 (C-2), 26 .2 (C-3), 43.5 (C-4), 24.5 (C-5), 25. 5 (C-6), 167.3 (C-7) , 84.7 (C8), 35.8 (C-9), 27.5 (C-10) , 27.7 (C-11), 84.5 (C-12), 70,9 (C-13), 25.1 (C-14), 21.8 (C-15), 51.1 (C-7'). 629 3) Stereochemical Analysis and Further Note While the pianar structures of RL-117B and RL-118B were thus proposed, the relative and absolute stereostructure on the tetrahydrofuran ring was elucidated by NOE experiments applied to these two compounds. When the C-9 methyl proton was each irradiated, NOE on C-12 methine proton was observed only in RL118B. On the other hand, RL-117B showed an NOE bet・ween C-9-H3 and C-13-OH (Ftg. 3-395). The relative configuration was, according to the results, elueidated as trans in RL-117B (21) and cis in RL-118B (22). Since the absolute configuration of bisaborosaol A (19) has already been determined to be 4-R, 8-S, as mentioned above, the absolute configurations of those derivatives were also solved as R in 21 and S in 22, respectively. As both eompounds were novel bisabolanoids, they were named bisaborosaol Bl and bisaborosaol B2. Unlike 21 found as one of major constituents in MeOH extracts of Rosa rugosa leaves, 22 was detected only as a minor compound on TLC in the MeOH extract. Furthermore, the amount of 19 diffused into wat,er was greatly reduced when the leaves were injured or treated with CuC12. These faets allowed a speculation that 19 is convertible to 22 by an oxigenase-like enzyme aetivat,ed during the leaves being damaged physieally or chemically. Currently, Jaenseh and his colleagues isolated a bisabolanoid possessing the same planar structure as 19 from Podolepis rugata [153]. From the source, the monoxygenated tertahydrofuran derivative is also found, as well as Rosa rugosa. The latter compound was considered to be the trans form because the chemical shift value of C-12-H was resonated to 6H 3.68, higher than C-7'-OC!!3 (6H 3,83) [153]. Furthermore, this compound showed laevorotatry ([a]D - 29e, c 1 in CHC13), indicating that the C-4 chiral center of those isolates was R (structure 95 and lq8), contrary to 19 and 21. Thus, the bisabolanoids of Rosa rugosa were confirmed to be stereochemically different group from those C-7 oxygenated 630 bisabolanoids originated in Compositae plants (Fig. 3-396) t144,145,153,154]. When (-)-ct-bisabolol (94) was metabolized by a fungus Aspergillus niger, only the cis type of tetrahydrofuran derivative (110) can be obtained as the initial metabolite [137]. Although this report may be contradictory to the fact that only trans form (21) was detectable in the methanol ext,racts of fresh Rosa rugosa leaves and 10s in the Podolepis rugata was the trans form, this fungal metabolism can be a model of the selective epoxidation and suecessive non-biochemical eyelization, CH3 CH3 H .= = -- H .= .=- 'o" o COOCH3 "NN H H= OH COOCH3 4 OH RL-117B (21) ' RL-118B (22) Fig. 3-395 NOEs Observed in the Two Compounds , and the Estabilsed Stereostructure 631 1 Hq I ' H o cooMe "NN OH H 95 cooMe 108 PodoZepis rugata [153] HO H o CHO 1OO OH CHO 109 PZeiotaxis rugosa [154] H HO o H- OH 110 94 . (--)-or--bisabolol (94) metabolite by AspergiUus nlger ' Fig. 3-396 Some Tetrahydrofuran Derivatives of Bisabolanoids and Their Precursors Found as Naturally Occurring. Bisabolahoids or Fungal Metabolites 632 4) Dehydration To obtain a chemical proof for the presence of tetrahydrofuran ring in bisaborosaol Bl and B2 (21 and 22), dehydration of 21 was earried out [155]. By the chemical eonversion, the dehydration produet containing an exomethylene protons was expected (Scheme 345). In 1 ml of pyridine, 12.7 mg of 21 was dissolved, and t,hen to the mixture '60 1 of POCI3 was added. The mixture was kept in a freezer for 24 hr and successively left at room t.emperature for 1 hr. After the reaction, to the mixture was poured 5 ml of ice water, and the resulting solution was extracted with 3 ml of Et20. The Iess polar and quenching product RL-117B-H20 (2・la) was isolated ' mg of a colorless syrup in by PTLC in hexane-EtOAc 10:1 to give 3.2 ' a yield of 26 % (reeovered 21, 1.0 mg, 8 %) (Fig. 3-397). This product affording M+ 264 in EI-MS (Fig. 3-398) showed the exomethylene part (proton: 6H 5.169 and 4.836, carbon: 6c 109.9, =cH2)in the IH- and 13c-NMR spectra (Fig. 3-399 and 4oo). Consequently, structure of RL-117B-H20 was formulated as 21a, which provided concreteevidence for the tetrahydrofuran strueture 21. Since bisaborosaol B2 (22) has given some line of evidence as a diastereomer of 21, the structure of 21 and 22 were finally established. H ; -: t o " e ' POC13 . --.m") cooMe H : -: : o : : 1 cooMe OH ' Scheme 3-45 Dehydration of bisaborosaol Bl (20): Dhehydration product is expected to show a pair of exomethylene protons at C-14 m`1 H-NMR spectrum. 633 H-・EA 10:1 O quenching under UV 254 nm RL-117B-H20 <> <gF-------(IIF------ --- Std. 21 Reaction MIX. Fig. IZZ 3-397 TL Chromatogram of Dehydration Product from RL-117B 4 125 BZ 17e 6Z 163 4Z 233 ISI 2S4 *IZ.Z IZ7 2Z 2Z5217 67 79 53 5Z 91 119 IZZ 137 15Z 2ZZ , Fig. 3-398 EI-Mass Spectrum of RL-117B-H20 634 25Z 3ez 」 !『 ぐ⊃ 8 3 r惑 島 _1 8 _二 需 2,、1一⑩ ∩ ⑩ o 9 d 8 冒 。r-1 セ1 “ N ” 爲 Σ 累 ぺ o. 」 ” 0 2芯⑩ Lρq. 》 「 .q.. 8 O $ 日 セニ N 臼 qq 甲 州 l Oぎ 目一一 8 、6 二 H l 曲 臼 器 d 』 8 弱 目 ○ 「・..: ρ o 畠 卜 ぜ 2 c6 Φ の ⊂.) 8 .∫ 窺 r∫ 8 8 H 臼 8 5 一」 σ{ ① ① oり i 1「 φ 8 6 σり ■ bρ ・r→ 言’ 山 rL 臼 L∫; 635 卜。 ◎り 巨= 口= e (一) eq o X .日 ρ .1ろ臣 Q ℃ H ・. と o Q 常 “ ォ Q⑩ ⑩ o ・トで ・F→ 裏1 蒔 Σ .霧 ゆ 日 8 一壼 ) O N .Ω 8 口q .. 川 州 州 1 P 日 ¢ .病 偏 o .9 ρ .. Q R ω の 。二 コしご _・ @@ Σ: 餌 z ‘ P.一, Ω Cつ 州 一需 o .9 o → l oり ● .8 ρ、, bO ・「{ 隔 636 Table 3-155 Physicochemical properties of RL-117B-H20 (21a? H c. ? .= o COOCH3 2la A colorless syrup Rf: O.56 (H-EA 10:1) EI-MS m/z (%): 261 (M+, 1.2), 219 (O.2), 233 Ol+-OCH3, 2.2), 217 (O.2), 207 (O.6), 205 (O.7), 204 (O.7), 178 (3.1), 161 (2.8), 137 (7.7), 126 (10), 125 (100), 107 (28), 91 (11), 81 (11), 79 (23), 77 (13), 67 (15), 55 (10), 53 (13), 43 (90), 41 (22). IH-NMR 6CT6MDs6: 7.061 (IH, br. s-like m, C-2-H), 2.190 (IH, multiply divided d, J= 19.8 Hz, C-3-Ha), 1.749 (IH, t-Iike m, C-3Hb), 1.499 (IH, m, C-4-H), 1.614 (IH, m, C`5-Ha), O.976 (IH, dddd, J= 12.3, 12.2, 12.1 and 5.3 Hz, C-5-Hb), 2.660 (IH, br. d, J= 17.0 Hz, C-6-Ha), 2.218 (IH, t-like m, C-6Hb), 1.422 (IH, m, C-9-Ha), 1.294 (IH, ddd, J= 12.0, 7.8 and 2.6 Hz, C-9-Hb), O.964 (3H, s, C-10-H3), ca 1.64 (IH, m, C-11-Ha), 1.538 (IH, m, C-11-Hb), tl.130 (IH, dd, J= 9.6 and 5.9 Hz, C-12-H), 5.169 (IH, br, s, C-14-}Ia), 4.836 (IH, br. s, C-14-Hb), 1.668 (3H, s, C-15-H3), 3.471 (3H, s, C7'-H3)・ 13c-NMR 6!i]fiDs6: 13o.4 (c, c-1), 139.7 (CH, C-2), 27.9 (CH2, C-3), -l3.4 (CH, C-4), 24.2 (CH2, C-5), 25.7 (CH2, C-6), 167.4 (C, C-7), 84.8 (C, C-8), 35.8 (CH2, C-9), 23,7 (CH3, C-10), 31.6 (CH2, C-11), 82.8 (CH, C-12), 146.6 (C, C-13), 109,9 (CH2, C-14), 18,2 (CH3, C-15), 51.5 (CH3, C-7'). 637 3-8-5 Exoperoxy Bisabolanoids 1) Isolation During a search for peroxy constituents in the Rosa rugosa leaves, a neutral fraction (Fr-VIIH-12, recovered with EtOAc) obtained as described (pp. 290) was found to eontain some compounds clearly positive to the peroxide test. Those substances were more polar than rugosal A (1) and showed properties as a neutral compound. Isolation of the compounds was accordingly carried out wit・h the guidance of the positive responce to the peroxide reagent. As the result of successive PTLCs (H-EA 1:1, C-M 50:4 and multiple development PTLC in B-EA 25:10), were isolated three peroxides all showing properties as bisabolane exoperoxides. RL-PERO-5, -6 and -7 [Rf O.25, O.23 and O.17 in B-EA 25:10] (Fig. 3-401), all showed the same molecular weight (M+ 298 in FD-MS), which suggested that those were isomeric peroxides. ' 2) Structure Elucidation of RL-PERO-5 and -6 RL-PERO-5, obtained as a colorless syrup (2.1 mg) from ca 1/3 of Fr-VI-12 showed m/z 298 (M+, 45 %) and 265 (M+-OOH, 81 %) in FIMS, and the latter fragment was indicative of -OOH partial structure for the isolate (Fig. 3-402). In EI-MS of the isolate, neither the parent ion nor the fragment due to -OOH fission was detectable (Fig. 3-403). On the other hand, its IH-NMR spectrum showed some signals similar to those of bisaborosaol A (19) [e.g. 6H 7.012 (IH, br. s-like m) and 2.587 (IH, br. d), corresponding to C-2 and C-6 protons of 19, respectively)]. This fact indicated that RL-PERO--5 was a relative of 19. As characteristic proton signals, a pair of exomethylene protons (6H 4.967 and 4.892), an oxygenated methine proton (6H 4.219, triplet, J= 6.6 Hz) and an exchangeable proton (6H 7.550, singlet) were recognizable (Fig. 3-404 and Table 3-156). 638 H-EA 3:l Q bQ Qo oo o6 o g t tttl r' (,jhj,ii o tftV x (.ol rA L ,' 1 1-..lt g- )- 'QQ t-6- Ll ,n・, tl t'g tlt k. ; fi , tt i :1 t,,, .I p t-t. k 12 34567 tn t i il :') Ci S・/ std 8 9 10 11 12 13 19 o ・::11:: B-EA 25:10 B-EA 5:1x3 jlz;?, quenching under UV 254 nm vanillin-H2S04 test: + peroxide test: + th".':I'-;E,:g-nyz x RL-PERO-7 a RL-PERO de A ------------ - peroxide test: + RL-PERO Fig. 3-401 TL Chromatograms of RL-PERO-5 639 N7 Z 1eee S,?D -" iI, 9di tL g e "t' 5Z 29en!E 1se 1ez e,?,e 2 1?ee s.?e + }{ M++1 >- :; s. ui ;・ --'i ,- ? -f ' Fig. 3-402 5S?M/El 3e2 2se 2?a IZZ ?.?? l, l ti l 't' FI-Mass Spectrum of RL-PERO--5 4 8Z 79 6Z 137 91 69 4Z le5 12S 119 55 2Z l), ii ' Fig. 163 IZZ 3-403 192 2za ll1, ,1I ,1 l t) 5Z liiill IL ll kl 177 1 2ZZ 15Z 23Z a46 262 25Z ' EI-Mass Spectrum・ of RL-PERO-5 640 3ZZ 35Z 1 o o 8 ≦ /臼 8 『べ o 一し)、 ≧ 、 lll 、 8 ぞ ξ モ 8 }べ 8 8 雨 ^・ り ⑩ Q 』 .8.賛 好 い N Σ 舘 ζ⊃ o 3 鴫 べ 、 臼 1 d L 、 .o護o rレΩ田 LΩ ) 【Ω ゐ 3 叩二 .8當 臼 、 !面 、6 幽 1 日 餌 0 8舶 記 巳、 畠 層K 唇 し {.)一. .G 一一晶==== イ 【.こ‘・ @ 箒》 /l 詞 o ω 8の 舳(6 lz } 縁 8 ゴ匿 .f 憎(∬ 1~ H寓 → o 》 1 8 1. .f 8 0り 8 「F 「ご 641 ● .’ シ; ℃o ・H 国 Tab1e 3-ls6 1ll-NMR chemical shift values of RL-l])ERO-5 (500 MHz, in CDC13, TMS as an int. std.) 6H Coupling Assignment 7.550 7.012 III s IH br, s-like 4,967 IH d J= O,9 Hz 4.892 IH dd ,J= 1.0 and O.9 Hz III t J= 6.6 Hz 4.219 3.473 3Hs br. d .1= 18.0 Hz 2.587 IH 2.112 1. 965 IH br. t-like m IH m-dvid. d J= 18.9 Hz 1.711 IH br. t.-like m 1.646 3Hs 1.55 (approx.) 2H m 1.54 (approx.) 1}I m O.900 1}I ddd J= 13.8, 10.8 and 6.4 Hz IH ddd .J= 13.8, 11.3 and 5.0 Hz IH br, t-like m IH dddd J= 12.6, 12.4, 12.4 and 5.2 Hz O.752 3H s 1.390 1.278 1.221 642 C-13-OOH C-2-H C-14-Ha C-14-Hb C-12-H C-7'-H3 C-6-Ha C-6-Hb C-3-Ha C-3-Hb C-15-H3 C-11-H2 C-5-Ha C-9-Ha C-9-Hb C-4-H C-5-Hb C-1O-H3 Disappearance of signais attributable to the 3,3-dimethylallyl ' moiety of 19 suggested that hydroperoxidation at C-12 of 19 foliowed by the coneerted olefjnic bo,nd tra-nslocatfon to C-13/C-14 yieided 23 as a proposed structure for RL-PERO-5. In addition to a coupling sequence on the 1,4-disubstituted cyclohexene moiety, HH-COSY spectrum of the compound (Fig. 3-405) clearly indicated a sequence MFC(OOH)H-CH2-CH2- attributable t・o C-9, 11 and 12 (Fig. ' The peroxylation on the sidechain was further 3-406, 407). supported by IH-NMR deteetion of an allylic methyl group at 6H 1.646 assignable to the C-15. Furthermore, Fl-MS fragment at m/z 159 (100 %), which results from fission of the sidechain, was also indicative of the structure (Fig. 3-4e7). 13 C-NMR analyses of the compound eventually proved this structure (Fig. 3-408 and Table 3-157). Two oxygenated sp3 carbons at 6c 89.5 (CH) and 73.1 (C) were assignable to C-12 and C-8, respeetiVely, and the former carbon resonating in a comparatively lower field should be reasonably assigned to a hydroperoxylated earbon as discussed in Section 4 of this chapter (See pp. 283). In addition, carbons of the sidechain part were approximately agreeable in their chemical shift values wit・h those of isoaminobisabolenol (111) found in a sponge, Theonella sp. by Kitagawa el al. (Table 3-158) [156]. The second peroxide, RL-PERO-6 showed almost, the same mass fragmentation patterns with those of 23 in FI- and EI-MS (Fig. 3409 and 410). However, the proton signals assignable to C-9-H2, C- 11-H2 and C-12-OOH, were slightly but clearly different from those of 23 (Fig. 3-411, 412 and Table 3-159). As the 13C-NMR spectrum was almost indistinguishable £rom that of 23 (Fig. 3-413 and Table 3-160), RL-PERO-6 was easily characterized to be an epiiner of 23 at C-12 (structure 24). The stereostructure of RL-PERO-5 and RL-PERO6 remained unsolved. However, the absolute configuration at C-12 will be determined, since the benzoate chirality methods is ' applicable to the compounds of this type after reduction to the diols f35,157]. 643 , 1 l , - ' ' . D.D - . s .f g fe r e. g o e v" j a LmF 'co 1,O 8e -ct . 2.0 0 D o . bo im e va 3.0 ' ' o . . 4.0 " D e 5.0 o t 6.0 i - l 1 ?.o ' i l i L-T-r-r-T- 7.5 7.0 6.5 6.D Fig. 3-405 T 5.5 ' 5.0 4.5 4.0 PPM 3.5 3.0 2.S 2,O 1.5 1.0 .s o.o HH-COSY Spectrum of RL-PERO-5 (500 MHz, in C6D6) 644 PpPM anmnniindg nnA fnnnd tn hp A nAvQl Thege t,wn iiu T v J-nnmnn"nrl Vv"-rv L-i-" : L.-i-U v .. v Tv--- =v --- v- ny We 1'A were named bisaborosao1 CI and bisaborosaol C2, respect,ively. H H H l H H H COOCH3 H Fig. 3-406 H Proton Sequence on 1 4-Disubstituted 1-Cyclohexene Moiety of RL-PERO-5 ' in/z 159 in FI-MS CH3 HO H H H H H HOO H3C H Fig. 3-407 Proton Sequence on the Sidechain Part of RL-PERO-5 645 茎 寓Q 一(⊃ ◎り 寓。 N国。 煤B ρ・d A 臼 国 ∩ 一鼠Ωイ ,ハ 一 9 で ▽コ O o 一繋Σ! 冒} ω A ⑩ ∩ ⑩ メつO 「・、 ・r→ ごr) “ ∫⊃Σ1 (』『⊃ .一 @r,, ゆ N 州 じ♂v’ ぐ⊃ 一(つr しム 【・ 良Ω 需 o, ○ 国 r⊃Ω昭 学i. C . c⊃ 一’」 ? ■ 1 日 c⊃ 駒 黶Cつ す .一 o 9 o @「丁 ρ @ず.¶ o ① ‘』) ・一 kハ 「 の , 一 c 一ωΣ 一しΩ 暫 ■ G 一ト 炉 . (つ 一σ} ● , o 一σ1 1 H ◎O o 寸 5 0り o. . ● o 一‘⊃ f刈 646 切 ・r→ 函 3-157 Tab1・e Z3C-MY[R ehemicaJ shift va1ues of RL-PERO-5 (125 MHz ・, in CDC13, COM and DEPT, TMS as an int . std.) 6c Property 167 . 144 . 139 . Assigmnent 3 -coo- C-7 3 =C- C-13 5 =CH- C-2 130 4 =C- C-1 113 8 .CH2 C-14 89 5 -CH-O -c-o C-12 C-8 1 CH3 C-7' 42 9 CH C-4 35 3 CH2 C-9 8 CH2 C-3 7 CH2 C-6 2 CH2 C-11 6' cH3 C-1O 23 4 CH2 C-5 17 6 CH3 C-15 . 73 51 26 r . . 25 25 . 23 . 1 . 647 Table 3-158 wi.th C-No Co]nparison of RL-PERO-5 cai'bon chemical shift・ those of isoaminobisaboleiiol (111) and bisaborosaol A (1 9) RL-PERO-5 111 [156] i9 1 130.4 134.0 132.0 2 139.5 120.0 139.8 3 26.8 26.2 4 42.9 42.4 5 23,4 23.7 6 25.7 30.9 26.8 42.5 23.3 25.2 7 167,3 23.2 167.9 8 73,1 57.3 7i4.1 9 35.3 29.2 10 23.6 22.2 11 25.2 33.7 39.5 23.8 22.3 12 89.5 75.6 124.3 13 144.3 147.3 129.9 14 i13.8 110.9 25.7 15 17.6 18.2 17.7 7' ira1 tt es 51.1 51.5 H2N ,, 11/z H HO isoaJninobisabolenol (111) 648 r/, poo :ri C.' r.1 r.1 s ]?fi ->- h b-: oz: thrr".,agLe di ;・ Eev -t . z ' .ptL- -- . f -t 1ez tt?・ ・? .2? ,d itt・Z 2e?・in./E 2 1?ee M+ +1 M+ L.・ F, sv ?e N Lr) ・' Z y. ・- -?" lt't ? .e .?? t lli-:T÷,=rH:`rtlt pt 1 H-" hl` -}- - t-IL l-t--i----t--llt+-d t--. tT-- et-- t''"e --Gl4-t-i--- ;d.-Lt--- 2[JO 2?Z l ・i,, 3S2l,1/Eil e・z'Le Fig. 3-409 FI-Mass Spectrum of RL-PERO-6 IZZ BZ 6Z 79 S9 4Z 91 137 IZ5 119 55 177 145 2Z 163 51 IZZ Fig. 3-410 2Z2 2RZ , 15Z 2ez ' 246 26a 25Z EI-Mass Spectrum of RL-PERO-6 649 sze 3' 5Z 1零 」 」 r3 τり ‘, o o 「.つ . 一 oo N でj , r. j e; 0N o一 N ● 一 口 r. o附 o N N C 「「 ぐo rイ, の 一 幽 『 Q⑩ o ・r→ ⊂) oq (一) い 「」 二 芝 oい 1=~:・一 一 1・・ Σ 巳 に ぜ【L 」,【・ くΩ l 。 ¢ { 「. m r., 〉 o q⊃Σ o 国 q q国 1誠 一 o貸 o o lo ) しし、 , 一 .【L l 触 c団Ω一 oqD 。 r, 「⊃ コ 回 「、 ρ o Φ ~ の 。 ㎝ r, ザ, 8差 q. ぽ、 べし 餌 Σ z l oo 寓 円 頃 (} r.) n】 州 H → l Qり 累託 hこ【し ‘」 「. D」 ℃o ・「咽 で⊃ ミ 650 鳳 Ta bl e 3-159 IH-A[IYR chemical shift values of RL-PERO-6 (500 MHz, in CDC13, TMS as an int,. std.) 6H Coupling Assignment 7 .7 4 4 .894 IH dd J= 1.5 and 1.5 Hz C-14-Hb 4 .183 IH dd .T= 6.9 and 5.6 Hz C-12-H 3 2 2 1 ,949 IH m-dv .i d. d .T= 19.0 Hz C-3-Ha 1 1 1 3 1 1 1 .1 .225 IH dd J= 12,5 and 5.0 Hz C-9-Hb 1 o .906 IH dddd J= 12.5, 12.5, 12.4 and 5.2 Hz C-5-Hb o .O19 IH br. s-like C-2-H .590 IH br.d .T= 17.7 Hz C-6-Ha .123 IH br. t-likem C-6-Hb .717 IH br. t-likem C-3-Hb .65 (approx.) IH in C-11-Ha .5・-16 IH in ' C-5-Ha .46 (approx.) IH m C-11-Hb .222 IH br. t-likem C-4-H ' ' 651 t l t J nv 7., ac nc s.' oe' E tlO , a.Do , 3.ne ?.oe c.e :・ J: : ae o o.o t"' e 1 o 'b ・:a .Ifg) e ; ' H---Hnvg) -pt a D9 r- ps. e .di i.. e -v' e -'i . g ge dy pt b " e 1.0 @r 2.0 as I" a 3.0 pt -t eO . ' o e .- t 6 e . @ ew -- 4.n e 5.0 .o ' 6.n . -- e,・ o o be "t e = 4 7.0 -oo . 1 7.5 Fig. ?,o 6.5 3-412 t 6.0 t S.5 5.0 4.5 4.0 PPM 3.5 5.0 2.5 2.0 !s 1.0 .5 HH-'COSY Spectrum of RL-PERO-6 (500 MHz , in C6D6) 652 o.o PPPM .一一一 鵠 澱 o Q 一く⊃ 試 σq レ Q F 卜臼 9 A 臼 自 国 曾 董 ∩ ℃ 3 ,パ N Σ 話 o Q ⑩ 縞 直 柄 q① o ・F1 『 日 9 Σ W …き一 ‘L o ■o N例 } ⑩ l o 『 爲 .臼 国 氏 1 .紹 日 ㎏ o ,曾 ぷ ρ o ① の 。 一しΩ ρ 1 φう 州 、器 ぐ、 一P ミへ の 一 面 1 σり 一8 ℃o f馳」 ・r→ 山 653 C-ALMR chemica1 shift i'alues of RL-PERO-6 and Table 3-160 13 comparison of the shlft values with those of RL-PERO-5 (23] ' (68 MHz, in CDC13, TMS as an int. std.) 6c propert,y Assignment 167.3 -COO- C-7 23 167.3 144.4 =C- C-13 14-1 .3 130.4 =C- C-1 130.4 139.4 =CH- C-2 113.8 =CH2 C-14 89.5 -CH-O C-12 73.1 -C-O C-8 139.5 113,8 89.5 73.1 51.1 CH3 C-7' 51.1 35.-l CH2 C-9 35.3 42.7 CH C-4 42.9 26.8 CH2 C-3 25.7 CH2 C-6 25.1 CH2 C-11 23.6 CH3 C-10 23.5 CH2 C- 5, 17.6 CH3 C-15 26.8 654 25.7 ・ 25.2 23.6 23.4 17.6 Tab1e 3-161 Physicochemical properties of bisaborosaol Cl (RL-PERO-5, 23? COOCH3 HOO 23 A colorless syrup Vanillin-H2S04 color: pinkish red FI-MS m/z (%): 299 (M'+1, 57), 298 (M', 45), 281 (29), 265 (81), 183 (40), 159 (100), 141 (41), 139 (76). EI-MS m/z (%): 262 (4.2), 246 (3.1), 230 (6.4), 202 (5.7), 192 (12), 178 (20), 177 (21), 176 (13), 145 (19), 139 (20), 137 (45), 125 (28), 119 (23), 107 (32), 105 (34), 93 (27) 91 (43), 79 (63), 77 (40), 70 (35), 69 (39J, 55 (23), `13 (100), 41 (85). IH- and 13c-N>IR data are shown in Tables 3-156 and 3'157, respectively. 655 Table 3-162 Physicochemical propert・ies of bisaborosaol C2 (RL-PERO-6, 24) HO COOCH3 sss HOO's 24 A colorless sYrup Vanillin-H2S04 color: pinkish red FI-rylS ni/z (%): 299 (M++1, 86), 298 (M', 43), 281 (36), 265 (100), 183 (34), 159 (92), 141 (57), 139 (73). EI-MS in/z (%): 262 (6.1), 260 (3.6), 246 (3.1), 230 (8.5), 202 (7.i), 192 (8.0), 178 (26), 177 (31), 176 (21), 163 (11), 148 (21), 145 (29), 137 (・l7), 125 (29), 119 (32), 107 (32), 105 (42), 93 (31), 91 (51), 79 (56), 77 (38), (36), 69 (47), 55 (27), 43 (100), 4! (99). IH- and 13c-NMR data are shown in Table 3F159 and 3-160, respectively. 656 70 3) Structure Elucidation Of RL-PERO-7 RL-PERO-7 obtained as a golorless syrup (4.1 mg) showed a weak parent ion at m/z 298 in FI-MS together with the base fragment at m/z 183+ (Fig, 3-414). In EI-MS, however, the compound,afforded neither the parent ion nor the fragment at m/z 183 (Fig. 3-415)・ On the other hand, this compound also indicated some signals characteristic of a bisabolanoid in the IH-NMR and HH-COSY spectra, where the 1,4-disubstituted cyclohexene structure was vis-ible (Fig. 3-416, 417, 418 and Table 3-163). Furthermore, some signals attributable to the sidechain were indicative of,its partial structure on the sidechain. In the IH-NMR speetrum, two olefinic protpns were detected at 6H 5.690 (IH, ddd, J= 14.8, 7.5 and 7.2 Hz) and 5.516 (IH, br. d, .T= 14.8 Hz) which showed a clear trans couplipg with each other. Since the £ormer proton was further coupled vicinally with a pair of methylene protons with J= 7.5 and 7.7 Hz, a substructure I-CH2-CH=CH- became feasible. In addit,ion, two singlet methyl groups at 6H 1.261 and 1.250 were reasonably assigned to an oxygenated isopropyl group. The structure of the sidechain was therefore elucidated as shown in Fig. 3-419. Cleavage of the sidechain was responsible for the fragment at m/z 183. By the 13c-NMR speetroseopy, this substrueture was proved (Fig. 3-420 and Table 3-164). The carbon cheinical shifts for side chain carbons in RL-PERO-7 showed a good correspondence those of a bisabolane alkaroid, aminobisabolenol (112) which also been isolated from the sponge together with isoaminobisabolenol (111) by Kitagawa et al. (Table 3-165) [156]. Furthermore, the clear deshielding effect on the C-13 carbon PERO-7 was reasonably attributed to hydroperoxylation at the of RL-PERO-7 was elucidated as 25, and this novel bisabolane exoperoxide w-as named bisaborosaol D. 657 the with has in RL- f't 1zee J5v?? >" :1 M++1 S・i- W. 'Zl ? t-t dwpmtrh,F"v "pt -t sg 2?-2 '! sg 102 .9 .?? 2SO 3. 5e tr1/E vv,ez FI-Mass Spectrum of RL-PERO-7 Fig. 3-414 IZZ l)hrrtvdril・・・rrJ,ErtfrfttTTT rt,,.l-i,,tgli,4i!tt.T"i"Fl・4LEriitts-r, 4 8Z 6Z 139 79 , IZ7 4Z 262 rf"4lr----------r 2Z 55 67 391 *5.Z 15Z 119 , 163 17619Z 2z3 5Z Fig. 3-415 21e 15Z lez ' 246 231 25Z EI-Mass Spectrum of RL-PERO-7 658 3ZZ 35Z 1 し 。⊃ 帽。; 8 8 べ 8 ド; へ ⑩ ∩ り Q 8 9 ・H 「コ “ N し8。 一 Σ 二註 8 8ぎ 【ず;‘L 面 } 卜 6 臼 二 9 0 & 8 。 『 国 α 1 、5 日 7・ 臼. O o LO 面 駒 。. 8 賃 「・ ρ L8 o $ ① .fq r、: ざ 9 d :r 最 鼠 の Σ 1 8 6 8 .鼠 8 α; 縫; H ⑩ H坤 l ぼ r・、 Qり 【L. 曾 $ 8 監∫{ 卜 659 ● bO δ ・r→ ,一・ 賊 Table 3-163 Physicochen]ical properties of bisaborosaol D (25? ' (500 MHz, in C6D6, TMS as an int. std.) 6H Coupling Assignment 5.690 IH ddd J= 14.8, 7.5 and 7.2 Hz C-11'H 5.516 IH dd, .T= 14.8 and O.8 Hz C-12-H 2.630 IH br.d J= 15.3 Hz C-6-Ha 2.182 IH t-likem C-6-Hb IH m-dvid. d* J= 19.4 Hz C-3mHa 2.082' 2.019 IH br. dd J= 13.7 and 7,5 Hz C-9-Ha 1.937 IH br. dd J= 13.7 and 7.2 Hz C-9-Hb 1,639 IH m-dvid.d J= 12.3 Hz C-5-Ha 1.396 ,IH br, t-like C-4-H O.958 IH dddd .J= 12.4, 12.4, 12.4 and 5.1 Hz C-10-H2 * muJtiply divided doublet 660 PE o一 0.0 o o 亀 . 8 1』 . 璽0・ 亀08 範 “幽。一 2.0 S 9 α90 ⑨調 ⑨ 脇 @匂 3.0 oo 曹 ρ 一 4.0 o 昌. 覆 o 5.0 認 6.0 フ.0 ・o ℃ o ‘フ.5 フ。0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.〔} 1.5 1.0 .5 0.0 PP岡 Fig・3-417 HH-COSY Spect・um・f RL-PERO-7(500 MH・・‡n C6D6) 661 PP H H H H H COOCH3 H H H Fig. 3-418 Proton Sequence on 1, 4-Disubstituted 1-Cyclohexene Moiety of RL-PERO-7 m/z 183 ko CH3 H ij H H CH3 H3C OOH Fig. 3-419 Proton Sequence on the ・Sidechain Part of RL-PERO-7 662 o 一L. N Q σり QQ 踏国 臼 ・驚臼 へ 曾 、E℃ 鴇 『 鵠 国 Q で 蔀 oo 5 い ⑩ ∩ ⑩ じ〕 萬 『 鴻 ℃ 鴇 『 溜 一黛 o .8’H 直 8顕 ゆ uIH 自N 一・ I」 ) 円 崖 9 卜l o 口 山 臼 1 口 一島1 触 O .曾 溶 妻 マc 甲’ の .5α自 7’ lz .9 州 か.’ 『 穿 認 .辞麟 亀. 『 曽 ー @ζつ 0 σq ごつ 寸@cつ 一r,・ 1 ,璽 o~ 切 ・H 一。) 賄 663 Tab1e 3-164 13 C-Nme chemical shift vaZues of RL-PERO-7 (125 MHz, in C6D6, TMS as an int . std., COM and DEPT) 6c Property Assignment 167 4 -coo- C-7 139 6 =CH- C-2 138 4 =CH- C-12 130 4 =C- C-1 126 . 2 =CH- C-11 81 . 5 -CH-O C-13 3 -c-o C-8 1 cH3 C-7' 9 CH C-4 42 8 CH2 C-9 26 9 CH2 C-3 7 CH2 C-6 7 CH3 C-14 24 4 CH3 C-15 23 8 CH3 C-10 23 CH2 C-5 . . . . 73 51 . 42 . 25 . 24 . . . . 5 664 Tab1e 3-165 Comparison of RL-PERO-7 carbon chemical shift values with those of aminobisabolenoZ (112? and bisaborosaoZ A (19) C-No 112 [156] RL-PERO-7 1 130.4 133.9 2 139.6 119,7 3 26.9 25.9 4 42.9 41.1 5 23.5 23.6 6 25.7 30.7 7 167.4 23.2 8 73.3 59.0 9 42.8 39.4 10 23.8 21.5 11 126.2 119.4 12 138.4 144.7 13 81.5 70.7 14 24.7 29.3 15 24.4 29.3 7' 19 51.1 H2N ,, /tlz H OH aminobisabolenol (112) 665 Bisaborosaol D (25) is probably formed from bisaborosaol A (19), as well as bisaborosaol Cl (23) and bisaborosaol C2 (24). Unlike 23 and 24, the derivative only gave the trans form which requests much less energy than the cis form. As it has been proved that t・he radieal reactlon on an olefine having 3,3-dimethylallyl part indicates neither stereoseleetivity nor position-selectivity [126], 19 may be convertible to these hydroperoxide isomers (Scheme 3-46). The fact that only the trans form was isolated from the Rosa rugosa leaf extracts therefore seems to be compatible. HO HO -Hb Hb l COOM --- cooMe e: Ha l l'Ha HO HO /'le --- j tu COOM ;- HO HOO cooMe J cooMe h OOH HO HO i SNS HOO l cooMe cooMe HOO Scheme 3--46 Froination of the Bisabolane Hydroperoxides (23 - 25) froin Bisaborosaol A (19> 666 Tab1e 3-166 Phiysicochemical properties of bisaborosaol D (RL-PERO-7, 25) HO H : : t " ・'・b COOCH3 OOH 25 A colorless syrup Vanillin-H2S04 color: pinkish red ' 281 (29), 265 FI-MS m/z (%): 299 (M"+1, 57), 298 (M", 45), ' (81), 183 (40), 159 (100), 141 (41), 139 (76). EI-MS m/z (%): 262 (4.2), 246 (3.1), 230 (6.4), 202 (5.7), 192 (12), 178 (20), 177 (21), 176 (13), 145 (19), 139 (20), 137 (45), 125 (28), 119 (23), 107 (32), 105 (34), 93 (27) 91 (43), 79 (63), 77 (40), 70 (35), 69 (39), 55 (23), 43 (100), 41 (85). IH- and 13c-NMR data are shown in Tables 3-164 and 3-165, respectively. 667 4) Discussion on the Exoperoxy Bisabolanoids In the f-ormation routes, these exoproxy bisabolanoids are considered to be yielded through a radical reaction as shown in Seheme 3-46. Firstly, hydrogen radieal abstraction oecurs either at C-14 or C-11. Successive allyl radicals of two type (G and H) are attacked by 302 moleeule. Since C-12 radical is more stable than C-14 in G, and C-13 than C-11 in H, those are accordingly peroxylated at C-12 and C-13, respectively, to yie!d 23, 24 (both from G) and 25 (from H). As mentioned above, the nonstereoselectivity in the peroxylation at the C-12 and the selective trans-olefinic bond formation of the C-13-exoperoxide are compatible with the radical reaction .scheme. In the Rosa rugosa leaves, these bisabolane peroxides are contained wit,h less amounts than those of carotane peroxides. eontained in the Rosa rugosa leaves with less amounts. However, these compounds which are unexpectedly stable as the isolated state may provide a possibility that in the leaf tissues some oxidative condition is set up and unignorable amounts of free radieals are yielded. Since t,hese peroxybisabolanoids show a stable property, bisaboyosaol A (19) which'is considered to be their precursor may function as a radical seavenger. 668 3-8-6 Relation between Bisaboranoids and Carotanoids of Rosa rugosa In addition to the carotanoids which are contained as the major sesquiterpenes in Rosa rugosa, bisabolanoids are also found as the major part of the constituents. In particular, some of those bisabolanoids such as bisaborosaol A (19) are involved in the leaf extractives in a high content (ca 50 - 100 mg/kg f.w.). Since bisabolanoids and carotanoids are closely related in their biogenesis, resemblance of those two in their regto-specific oxygenation at the methyl groups (C-14 and C-7 in the carotanoids and bisabolanoids, respectively) are reasonable. Significance or physiological roles of those bisabolanoids has not been known. However, some facts; (1) several bisabolanoids are contained in Rosa rugosa leaves and some of them are found with around 50 ppm coneentration, (2) the oxygenated forms of t,hem are comparatively stable, and (3) those bisabolanoids were more detectable than the carotanoids in the diffusate of the unwounded leaves soaked in tap water, may be indicative of some roles of the bisabolanoids in the tissues. They may function as a radical scavenger as mentioned above, or may take a part in an antifungal agent (See Section 10, pp・ 703) (Scheme 3-47). 669 Φ Σ o o o ① こ く ① o o o 石 、 の 。 Do レ o o Φ== 。 / H 石 邸 邸 o 」Q 嶋 N ) o 、 / 9 。/ 、 。 £ α o」 〉 α > oり Φ ⊂ 工 )q Φ ①Ω1 ℃臼. 〉}ω 韮慧 聲 邸oo 奉お ℃ql 量ロコ 寸。 “も0 7_弓田 1角 ↑ o 工 。 吋 コ / へ・H 。つ。 ・H や 、 .…2 匡 飢 。 壽巷 工0 8壼 十 邸 、 ツ ω 0り 的 で .’ ¢ 邸 。H ρQ Σ / 一 二 ω o 」Q O 邸 ρ .Io o o o \ 工 回 CM亀 ) ) く ω 。 δ 臼 ρ =[ o のA. ① oつ Oσ) .辺 、 曽 創 0 、 o マ弓 ( こ く 6き§ ヨ _クF’ ρ嚇 ooo 臼。 “黛 。 鯛 qO Φω Φ 津・H ρ【o ΦΦ £q ① ρ4わ。 。r→o ↓ 謂・H ↑ ωρq oり ) o ① η 〉 ‘ 工 。 、 Φ oΦ .,→項 ρρ Fl鵡 Φ・H ⊇ グ ⊂ .9 量 ノ \グ / 十 670 マ 立 丁 ε / 卜 寸 9 8 ⇔ ① 目 ① o の 3-9 Aeoranoid in Rosa rugosa 3-9-1 Isolation and St,ructure Elucidation of Rosacoranone In RL fraction containing carota-1,4-dienaldehyde (3), daucenaldehyde (10), isodaucenaldehyde (13), and dehydrodaucenaldehyde (16), a new compound RL-B was also involved as the fifth constituent, The fourth peak of RL-fraetion in HPLC (Fig. 3-421), deteet,ed as a constituent close to isodaucenaldehyde (13) was roughly isolated and further purified next by HPLC in the same system to give ca 3 m'g of a colorless syrup. EI-Mass spectrum of the isolat,e was agreeable with the GC-Mass spectrum of RL-B (M+ 218, ClsH220, 218・184 in EI-HR-MS) (Fig. 3-422), Its met,hanolic UV absorption maximum was exhibited at 228 nm. These physicoehemical properties・of RL-B suggested its carotane dienaldehyde structure isomeric to 3. By the IH-NMR spectrbscopy, however, it was revealed that RL-B possesses no formyl proton. On the other hand, an exomethylene group (6H 6.130 and 5.028, each d, J= 1.5 Hz), an allyl methyl group (6H 1.562, 3I{, br. s) and an isbptopyl group (6H O.721 and O.585, both 3H, d, .J= 6.7 Hz, and 1.516, IH, double sept., J= 6.7 and ca 6.5 Hz) became feasible to allow a speculation that RL-B was a non-carot,anoide sesquiterpene (Fig. 3-423 and Table 3-167). Further decoupling and HH-COSY experiments elucidated two coupling systems (Fig. 3-424). When the olefinic proton at 6H 5,028 (IH, br. m) was irradiated, a pair of methylene protons at 6H 2,180 and l.617 (eaeh IH, br. d, .J= 17.8 Hz) changed their signal patterns. In addition, the allylic methyl signal and a broad signal at 6H 1.727 (2H) became sharpened by the irradition. When the broad signal was irradiated, a pair of methylene proton at 6H 1.378 and 1.l23 collapsed into isolated doublets (geminal coupling, -T= 13・O Hz). When the 6H 1.727 signal were regarded as that of an 671 1 ω Φ 竹 !一 一.., 、1レ1 p 1. 3 l I i oo H i 賦1認. “ 軽.o l l.「 l .h 6 σ H ・Fl ω 甲i .i ・1. b1 .(r・i. 」. }. P^ )霞 Io ρq 日の 国N 1、;.■. OP 1.「一’”..層.「『-‘ 「 i_i 糎 .}. ζH> 賃“ !. 邸ゆ 角 ・ lI bON o。。 』1.1 十JLO o・ 田卜・ oの …ト) :1! .iい1.. .■20: ,:40.、i: ll. .. 秩|膚,一畠 1、: .1..∴. 1. .ll... llF .「 F『’. 目h i1 ・[ 」 1 i「 一[ .!!・ 1幽il 1il iiiI 日i由田 口→国 . ロ.:: .・ ト 謁o Q< lo 日→」 ■}. iし hト 「ll 目:i 券x 副 闇闇 HN 寸 1 の ■ bn ・H. 口 672 zz 1 8 ' 8Z 68 41 176 E 91 6Z 79 133 147 55 4Z 119 +t 2Z3 161 2Z 218 19Z 4 5Z IZZ IZZ 15Z 2ZZ 25Z 18 176 8Z a18 68 6e 41 147 ?9 4Z 133 91 2Z3 19e 59 161 12Z 2Z 5Z Fig. 3--422 IZZ 15Z 2ze 25Z 3ZZ GC-MS <top) and EI-MS (bottom) Spectrum of RL-B 673 ト 『 0 円 こぎド 『 円 一 『 一 『 N 『 陀 頃 一 円 N 『 め AΦ 一 φ 『 円 一 ∩ ㊤ 附 o 『 『 u5 ]nΣ= 一口L 吋 ・州 円 q‘ 『 円 m 一 円 一 N @ :鶉 誠 護 巳 o o IΩ ) い 1 日 へ 『 一 o⊃ 駒 。 円 qD 『 日 ρ 一 『 Q r\ Φ }・勇 の 円 r\ l 『 GD 『 N 円 。⊃ H σり N寸 1 一 d 一 め 『 ◎り o b£ 円 ㎝ 『 、 『 N Q⊃ 674 ・r→ 国 Table 3-167 1H-AuslR ehemical shift values of RL-B (500 MHz , in C6D6, TMS as an int . std.) Coupling 6H Assignment 6 .130 IH d J= 1.5 Hz 5 .239 IH br. s-like m 5 .208 IH d J= 1.5 Hz 2 .180 IH 2 .165 IH m-dvid. d* J= 17.8 Hz dd J= 18.2, 8.1 Hz 1 .953 IH dd k 18.2, 9.7 Hz 1 .727 2H br. m 1 .617 IH m-dvid. d* J= 17.8 Hz 1 .562 3H br. s 1 .516 IH d sept Ji 6.7, ca 6.5 Hz 1 .378 IH m 1 .360 IH 1 .123 IH o .721 3H o .585 3H ddd J= 9.7, 8.1, ea 6.5 Hz ddd .T= 13.0, 5 O, 4.7 Hz d .T= 6.7 Hz d J= 6.7 Hz * multiply divided doublet 675 C-15-Ha C-3-H C-15-Hb C-2-Ha C-9-Ha C-9-Hb C-5-H2 C-2-Hb C-14-H3 C-11-H C-6-Ha C-10-H C-6-Hb C-12-H3 C-13-H3 l e k.・ i --... o i:l1・lii''lI.-.Iiettttttt t+.t ttJt.-.t ,・ ,IA otttttt.....ttttttt.t.t-t.t..t. IG) ,le"6--l,i'o1・eagl/ii 1.v .- i.....t....t.t.t."t..t-ttt 1''T'.t olttttttttttttttttttt ': t 6- u".tt.... i[lL ". L! l"' t-.-... g .t.t !,-.- itt-ttLt't't' '-'t"ttttttttt F l.i.... !''"' l 'r--- i'" I 1 1 i1, I ttt i''dyiI' ll t".. E i o c・Qmplie lj1 di l,dyQl'o- `I- -tm.t. I el il・ il・ E I-i.r.-- l tt t ' o , iq ....t. ...t..... I -"+.. l[・' 4.....・. l・: l・]i9 ...-...... -.tt. rtttttttrmtt"tTvrt7tt mr.T..." llt..t7...T.....t l tltttt"tttttt l' Il・..tttttt il・i'"'''' [56. ttttt l l I ilo t' y 5'.5 Fig. 3-424a ' -l・------- r5' .t. 5.0 HH -- COSY d.S li.o L i r 5.0 , 2.5 rl 2.01. 51. 1 Spectrum of RL-B (500 MHz , in C6D6> 676 {:. ・ / .t.tt ttttt 3.5 PPM t}'t: l-.-.- tt , 1 o r5'[] tttttttttttt , 6. '" li i ;... lil..-...."...-.rf lil, t-tttttttttt It.......... o 1 iIlll.. ll.1..1 I/.........! i・ g tl Ii Il Il l`l l'[ I'1 li 4.t "t'-" ..tt.. e ! I l1・"''" ].-1....... ittttttt -"tmrt ll't"''''' .Tt.int o ;..-t-.Lt.. t; . L} s・1 l D ..! 11e&l/o i--e-T l.. .tt.. ItI--・・ liL'tttt''tmltm--t-tttu'---rt-'LtLL't. fi Icol-l--, l-.1...t........ ittttttttttttttttttlttttttttttttttt tttttttt ;1.V f .I ' o .s' ri ・・ tl Q , ,5 `cli:il) i i i t-tt .-tttt+-t.tttLtt/-tt- t- It -t. - I ll '' "'' ''' '" 1''--' l dt Lt-t t. -- t 1 l l t-. I 1 i' l l eq iag tl' e 'i'' ''" '-- t""" @ z・ 7 A l/ ((illlj t t!,.. d: l I /gl Fig. 3-424b LO ,Y,ii,iii11i i' 'l l/ I l ie a - "-`ajI} c((li) -i, o 1 r, 5 . i.-- ` "it tlx tw 9' (iliiiii , i @ (i;?e ・ ig- '---- ... .."-... -. .- ,1/ ,.-. It i' i' e- d 61ill]i L , lt i' i IL i' i' 'i'' ' (:il!> D@} ll l 1, i : -- 2.0 '"g 2.5 Continued (Magnified in High Magnetic Field) 677 equivalent methylene protons, a substructural unit (A) became N-"O / rFlq. 3-425>. ' feasib!e On the other hand, a signal at 6H 1.360 (IH, ddd, .T= 9.7, 8.1 and ca 6.5 Hz) was elearly collapsed by irradiation on the double septet signal. Therefore, the 6H 1.360 signal must be assigned to a methine proton geminal to the isopropyl group. Furthermore, it was revealed by the HH-COSY that a pair of methylene protons each appearing as a double-doublet (6H 2.165, .J= 18.2 and 8.1 Hz, and 1.953, J= 18.2 and 9.7 Hz) was vicinal to the methine proton. Consequently, the second part structure (B) was elucidated (See Fig. 3-425). Those two units were proved by 13c-NMR analyses (coM, DEPT and CH-COSY, Fig. 3-426, 427 and Tables 3-168, 169). The presence of five methylene carbons on RL-B suggested that the ' 6H 1.727 should attributed to one of the met,hylene protons at earbons. This assignment was provided a proof by the CH-COSY which revealed a correlation between 6c 27.1 Tnethylene earbon and the ' ' 1.727 protons. RL-B also exhibited a pair of exomethylene protons at 6H 6.130 and 5.280 (each d, .T= 1.5 Hz). As one of the proton was resonated in a markedly lower field, it was expected that the exomethylene proton were deshielded by something. On the other hand, the presence of a carbonyl earbon (6c 204.3) and a quarternary carbon (6c 44.5) were also revealed in the 13c-NMR spectrum. The former carbon contributed to the conjugation system (uv XmMEt£Hx 22s nm) to form an a,B-unsaturated ketone group with one of olefinic bonds on t,he molecule. As substructure A involves the non-conjugated olefinic bond, the exomethylene part should contribute to the conjugation system to form partial structure C. Subsequently, these three substructures were eonnected each other via the quarternary carbon at 6c 44.5 (See Fig. 3-425). 678 -/:i KA CH3 H .,......xx・ ;.-Nx x -CH2 "/"' c c H-.--・ Xi H A krgi ×i H ossc K/ / 7 H-'--NH 2 CH3 , CH3 B CH2 1 T ¥' s"c-s c s ta C Fig. 3-425 Two Proton Sequence of RL-B.Elucidated by Decoupling and cosy Experiments and other Partial Structures 679 「o 9 自 需 9 呂 8 A RΣl o o 8“ 8 9o ・F1 “ N oΣコ= 二匙::岩 o 臼呂 》 需甲 一繭 。 -q 自H -o 呂語 一ρ 0 H QQ 9望 1 呂8 H7→ 桝 eq 8⑩ 寸 一 1乙 1 80つ、 N b£ 9.H N 函 680 TabZe 3-168 (125 13C-Ai]etlR chemical shift values of RL-B MHz' in 6c C6D6, TMS as an int . std.) Property 204 . 154 . 3 c=o Assignment C-8 8 =C- C-7 o =C- C-4 3 =CH- C-3 115 o .CH2 C-15 8 CH C-10 5 C C-1 7 cH2 C-9 3 CH2 C-2 7 CH C-11 1 CH2 C-5 2 CH2 C-6 5 CH3 C-12 23 4 CH3 C-14 20 4 CH3 C-15 134 120 ・ . 47 . 44 38 . 37 27 . 27 ・ 25 23 . . . 681 Q l, t.nt-..t.t ttt '.Ht.N o.o - ,'t'"t'T'tttHtt.L.-. -LLLnt-t. .ttttt-.- ttt..ttttt =''---.'t'..-.. t.t+.t.+mttrtttttt t"t'tt't'tttt t't'''ttTtttt'tttt't't't tt... t.ttu.t.7.t...tt..trt .5 twu-. ttttt 1,O .. ttt .ttfttt--.ttt t.t±ttT..t7t-tt.t ,.ttt.ttt -"ua-.....t ttt tt L5 tt.tt.t .. T.t 7. .O -t..+ .-"'L"g'Lr' ' ''''' mttmtJt-tt L... tt.tttttt 2.5 d.t....t ' T.- -ttm'tt--fit't-''-ttt- t--.tttttm-ttttt..tt.t. Tt-tttt -t..u..tt..tt .-tt.-.T+..ttt.tttt Ttttt.Tm 3.0 - .tntvu.--t-...-tm t-.-tt.-.rr.Ttt-ttt -ttttttttmt.tttt.. tmtt.-tt u...rt.tttt 'ttt''ant''-ttt ttt.ttt tt-tttttt-t.tt-tt-tt t--t.-. tttt..u..t.t.t.. .tttLt--tt .Tt.mN-tt-"t.t .tT. t.t-..t.t. t7t-ttt tttt.t..t t.t.. .. ttt-tt-tJttt lttt.nt .Jttt.tt.. ttt '' 3.5 ttttumtt-tL''tt trr t.tttttL--t.ttt-. ' ttt 7nT."t--.ttt 4.5 -ttt-u. .ttt..ttt .t..t 4.0 tu.t .- 5.0 tttVttL-'-t-Tml t.ntt"t=T.t.Tt. tt tttt.t.. .tt.rTt.m T-t .-+tttt tt..-. --ttt-tt-t.t- tt.ttt"-ttJ-tt...t t. tt-tt-ttt.t-..Tttrr ,t4et2o ttttTtttt-tt ... tt-tutt--t+.-.-tt- " ,40 ttt..nnv- t.tTmttt r- - + 5. ti 6.0 PP PPM Fig. 3-427a CH-COSY NMR Spectrum RL-B (125 and 500 MHz, in C6D6) 682 Cttttttm.t7.t.t-.tt ... t... .t--+ttr tt.ttttt-ttvt.t L. .t......t .ttnrtt..ttt.tt. rt-tt.. ttttttttttt .tt tttt.tt. -t.tt.ttt-ttt-. t-llttttt.ttt.tt tt.t.tt.ttttt tt.tt t.t .. t....t..- tt......t.t...tt .-- -J .5 .8 d-. +1 Ttt+.tttrtlt.. tt...t.tt t-tt-.tt..t ...tt. tt ...... +.t...t.t ..ll..ttttt ..tttttt-t. .ttt-. tt.tttt- t.t t.tttttttt t.t tt tttttttttttttt Lt.t. -t-llt.ttt t.t...tt- ttt-tttttLtt 1.0 ttrtttTt ttttttttttttt .tt-L.tttttt L2 -t"t"tt d-ttt. trJ-mt"Tt. - .tt.-. ttttt t.t tttrtttt -.tttt.tt.tt ttttt.-tt.ttt tt.tt. t.,..,........ tt.t 'ttttt.t.- ' ttt tttttttt tt.T ttt-. t..t.. tt tJ.-t. Ld .t tttt L6 rr... tt"tt H 1.8 . i tttt-ttt tl tt.t-. 29.028.0 Fig. 3-427b l27.026.02t5.024.025.022.021 i.O20.019 PPM Continued (Magnified in High Magnetic Field) 683 2.0 Tab1e 3-169 Correlation betvfeen carbon and proton signa1s by CH'cosy of RL-B (500 and 125 MHz, !n C6D6, TMS as an int . std.) Carbon Position Proton (6c) (6H) 3 C-2 2 3 C-4 5 1 C-5 1 25 2 C-6 1 38 . 7 C-9 2 47 ' 8 C-1O 1 27 . 7 C-11 1 23 . 5 C-12 o 20 4 C-13 o 23 4 C-14 1 C-15 6 37 ' 12o . 27 . . . 115 o 180, 1. 617 ・ 239 727 . 378, 1. 123 . 165, 1. 953 . 360 . 516 . 721 585 . 562 . 130, 5. 028 684 From the unsaturation number calculated as 5, the molecule 11! -- A-1 t !- -. , De Dleycnc. As Lne quarzernary carDon ls supposea to musL destribute its single bonds (x 4) to each part. structure, RL-B must form a spiro-ring structure through the quarternary earbon. When the third unit (C) was tentativeiy fixed to combine with the quarternary earbon which is compatible with an isolated geminal coupling of the exomethylene protons, 3,8- or 5,6-bicyclic structures are aceordingly given (Fig. 3-428). In the case of 3,8bicyclic structure, the methylene prot.ons on its cyclopropane ring should have a geminal coupling around .T= 4-5 Hz [158,159]. However, the methylene protons (6H 2.165 and 1.953) which would be assignable to this position possessed a coupling constant J= 18.2 Hz as geminal coupling. The skeleton of the compound was therefore allowed to be 5,7-bicyelic. The five-membered ring can take four different structures (st,rueture D, E, F and G as shown in Fig. 3428). The latter structure F and G may be rejected because they do not cQmply with the isoprene rule. To identify the substitution pattern, reduction of t,he carbonyl group was earried out. It was expected by this experiment that not only position of the isopropyl group but also the substitution pattern around an unsaturated earbonyl group would become feasible (Scheme 3-48). Accordingly, 3.2 ing of RL-B was treated with excess LiAIH4 t,o give 2.2 mg of a non-quenching product, RL-B-LAH (Scheme 3-49) (TLC in Fig. 3-429). 685 R2 Rl Rs R2 / Rt= CH2, R2= O 3,8-bicyclic structure or Rt= O, R2= CH2 Rl R2 R2 Rl N N<i,,i 5,6-bicyclic structure A Rl== CH2, R2= O C Rl= CH2, R2= O B RI= O, R2= CH2 D RI= O, R2= CH2 Fig. 3-428 Possible Structures for RL-B 686 o CH2 CH2 o ・N(i)k N<k) B ` HO A 1 CH2 CH2 OH " x<" ,Li,tt B/ o CH2 CH2 o x<"i x<ii D s HO c ` CH2 CH2 OH " x<ii Ci D! Scheme 3-48 Newly Formed Hydroxyl Methine Proton as the Result of Reduction of the Carbonyl Group: In case the methine proton was observed as a double doublet, the structure A will be proved. 687 H--AT 4:1 (z) o t.,:i}.・F. quenching under UV 254 nm vanillin-H2S04 test: posltive 4tEISII・:・;; Reaction Std. 26 MIX. Fig . 3-429 TL Chromatogram of Reduction Product Obtained by Treatment of RL-B with LiAIH4 RL-B (3.2 mg dissolved in 2 ml of CHC132added 20 mg of LiAIH4 stirred 2 hr. at room temp. eooled and added 5 ml of EtOAc diluted with 15 ml of sat. NaCl soln. extracted with 20 ml of EtOAc dried over Na2S04 concentrated in vacuo PTLC (developed in H-AT 4:1) Product (RL-B-LAH, Rf O.45, 2.2 mg o£ syrup, 68 % yield) Scheme 3-49 Reduction of RL-B with LiAIH4 688 a eolorless RL-B-LAH, showing M+ 220 in FI-MS (Fig. 3-430), was confirmed to be not.a stereoisomeric mixture but a pure product in IH-rN'rii' spectrum, suggesting the stereo-selective reduction at the carbonyl group (Fig. 3-431 and 432), The new methine proton on the hydroxylated carbon was observed at 6H 4.449 as a broad doubledoublet. Since the methylene protons on the five-membered ring, originally detected as two double-doublets, changed into two double-double-doublets on the IH-N)IR spectrum (6H 2.224, J= 12・7, 8.0 and 6,5 Hz, and 1.444, J= 12.7, 12.3 and'7.7' Hz), the reduction product must be At (26a). Accordingly, RL-B was elucidated as structure A (26). Other proton sequences are shown in Fig. 3-433・ Thus, planar structure of RL-B was elucidated as 26 whose ske].eton has been known as an acorane, and this novel acoranoid was named rosacoranone A. Interestingly, acoranoids are closely related to carota' ndids as well as bisabolanoids, and some conversion schemes to obtain modefied carotanoids from simple carot,anoids via aeoranoids are known, in the area of organic synthesis (Scheme 350) I158,159]. * 13 C-NMR Spectra of RL-B--LAH are shown in Fig. 3-434. 689 + }I f`' 1z2,e Bg,?e・ '-'- H oZ z I-± hi ・,-t e -v -- '1' v・ - 1--- l--- i -- t se .2 ,?e - t- 1 t 1-- Iip- v - V' il ' 'l .b , 2?e 1se 1ee 2if・ertl/E k -Bo.?e 1zee >ke ltt O z -Z LJ・ t-l ? Bg2 Fig. 3-430 1ee ,t -l B::,e 'I'' t l, l- -, I, 2r.n. FD-Mass Spectrum of t'I' 'l'l 42e t' .D .?e 4E・eFl/El. RL--B--LAH 9 se 159 6Z ae 119 41 Sl 55 2Z le5 131 67 ae2 145 177 187 22Z 5Z Fig. 3--431 lez 15Z E!-Mass Spectrum of RL-B-- LAH 690 2ZZ 2se }1 o o 8 」 8 d 需 曾 9 」 」 呂 8 二 面 蓬 氏 9 $ 丙 臼 二 8^ 雨ぷ 8 0 呂●H ぜ“ N Σ 0 8Σo 》 < 日 露 8ρq めム 。α一uつ げ1自L 厚 隠 d 需 d 鯛 。 §1 量 8 器隻 そ 芝 3 6 冒 α げ N σり 寸 1 ◎り ξ に 8℃o ゴ嵐 鼠 り 691 H∩ H HO c; H 、 、 ㌔ 、, ,! 、 CH3 /てへ 〆 ノ’ @. ,’ ℃,\H Hゆ,/’ HもH) CH3 Fig. 3-433 Proton Sequences and Carbon Assignments of RL-B-LAH 692 σつ OO .畿寓 c団 ド L, =; o 臼 穿1 A り臼 ヨQ司 国 ∩ ヒ.鼎三 oo 一〔llΣ ぐニ ハ D ζつ H Q く)q .・Y}Q ・H …R “ N c〕=1 B)Σ1 〔エぱ) 「二 m .,祠 @) 一’ .旧く _」1 I qq -2q 身も 亡⊃ 1 くづ 一ロ19 …o 践 曼の 望 口l o 。:乙 oり ⊂)ア→ 一(o 岬 …I Qり σり .呂lrr .8。 Nも幻 ・r→ 隔 693 Tab1e 3-170 Physicochemical propert-ies of rosacoranone (= RL-B, 26) o N 26 A. colorless syrup VaniUin-H2S04 color: brown FI-MS m/z (%): 219 (M+, 19), 218 (M+, 100) ' EI-HR-MS: 218.184 (ClsH220, calcd. 218.188) GC-MS m/z (%): 219 OI++1, 13), 218 (M', 75), 203 (37), 190 (27), 177 (16), 176 (89), 175 (77), 161 (22), 147 (51), 133 (43), 120 (20), 108 (100), 107 (45), 105 (48), 93 (22), 92 (21), 91 (39), 80 (26), 79 (43), 77 (39), 68 (72) , 67 (31), 55 (25), 53 (25), 43 (43), 41 (54). EI-MS m/z (%): 218 Ol', 34), 203 (32), 190 (22), 176 (69), 175 (67), 161 (23), 147 (52), 133 (48), (21), 119 (34), 108 (100), 107 (44), 105 (75), 93 (25), 91 (62), 80 (32), 79 (56), 77 (52), 68 (84) (44), 55 (41), 53 (34), 43 (60), 41 (79). IH- and 13c-NtyiR data are shown in Table 3-167 and 3-168 120 (34), 92 ' ' respectively. 694 67 TabZe 3-1 71 Physicochemical properties of RL-B-LAH (26a] HO N 26a A colorless syrup Rf: O.45 (H-EA 4:1) Vanillin-H2S04 color: pinkish purple EI-MS m/z (%): 218 (M+, 34), 203 (32), 190 (22), 176 (69), 175 (67), 161 (23), 147 (52), 133 (48), 120 '(21), 119 (34), 108 (100), 107 (44), 105 (75), 93 (34), 92 (25), 91 (62), 80 (32) , 79 (56), 77 (52), 68 (84), 67 (44), 55 (41), 53 (34) , 43 (60), 41 (79). IH-NMR 6CT6MDs6 (soo rviHz): 1.6o8 (IH, ddd, .T= 12.9, 10.8 and 5.3 Hz, C-2-Ha), ca 1.53 (IH, partly overlapped, C-2-Hb), ca 2.02 (IH, br. m, C-3-Ha), 1 .913 (IH, br. d, J= ca 19 Hz, C-3Hb), 5.375 (IH, br. in, C-5-H), 2.345 (IH, br. d, .T= 17.9 Hz, C-6-Ha), 1.720 (IH , d, J= 17.9 Hz, C-6-Hb), 4.449 (IH, br. t-like, J= ca 8 Hz , C-8-H), 2.224 (IH, ddd, J= 12.7, 8.0 and 6.5 Hz, C-9-Ha), 1.444 (IH, ddd, J= 12.7, 12.1 and 7,7 Hz, C-9-Hb), 1.338 (IH, ddd, .J= 12.1, 6.5 and ca 6 Hz, C-10-H), 1.784 (IH, d sept, J= 6.8 and ca 6 Hz, C-11-H), O.961 (3H, d, .T='6,8 Hz, C-12-H3), O.897 (3H, d, .T= 6.8 Hz C-13-H3), 1.653 (3H, br. s, C-14-H3), 5.072 (IH, d, J= 1.8 Hz, C-15-Ha), 5.069 (IH, d, J= 1.8 Hz, C-15-Hb). 695 ' N") i 1 I '"i) ' .-.-------pp -- ss .-・r : OH l l ' , , 1 + .., s + ..rf: 1 l OR RO Naegeli and Kaizer [159] I Zalkow et al. [158] OH ss " ..・c : Scheme 3-50 H Some examples for chemieal conversions carotane-acorane rerationships 696 to' ' show 3-9-2 Relative Configuration of Rosacoranone Acoranoids are known to be difficult to determine their absolute or even relative configurations.' When a NOESY experiment was carried out on rosacoranone (26), some NOEs were observed (Fig. 3-435). However, those were not informative in relation to the relative configuration of 26. RL-B-LAH (26a) was therefore used for the stereostructure determination. In CsDsN, prot・ons coplanar to the C-8 hydroxyl group are expected to be deshielded [160]. As a matter of fact, C-8-H, C-15-Ha and C-9-Hb were strongly (A6H O.4-O.3), and C-15-Hb, C-3-Ha and C-2-Hb were slightly (A6E{ O.2-vO.1) deshielded in CsDsN (Fig. 3-436). As C-10 methine proton was utterly unchanged its chemical shift, it was considered as ant,iplanar (Table 3-172), NOEs between C-12-H3 and C-2-Ha and C13-H3 and C-9-Hb were, together with the deshielding of C-2-Hb and C-3-Hb, suggestive their coplanar position. Consequently, relat・ive configurations of 26a and 26 were elucidated as shown in Fig. 3437. H(> H o HHK H N H CH3 H H H3C < ili.// CH3 Fig. 3-435 NOEs Observed in RL-B (NOESY in C6D6, 500-MHz) 697 1. ’6 8 蜜 0 8 .i cJ A ⊂二← u)紀. 9 d 『〔よ に. 臼 8【◎ po κ) ’鵠 Q 尉 丙 ・H wN ⊂, “ 器 穿 丙 「==1 o o ゆ 9 。.一一) ロリ ニ註 .の=1 < q 臼 『講 ぜ I ρQ l o日 一¢ ソミ ω 呂 身 ぜ 駒 o 目角 一べぢ a L曾 濱 の 。Σ1 『:乙 【Ol 州 塁』 濱 ⑩ 80つ ’6. 臼 済 ◎り 需 。H ● bO 占 698 o国 9 Table 3-172 DeshieJding effect of RL-B-LAH in CsDsN in CsDsN C-No 2 .369 br. d (17.9) l .828 br. d (17.9) .445 br. m 2 .19 (approx.) m 1 .87 (approx.) m 5 1 .547 ddd (12.6, 11 .65 (approx.) m 4 .773 br. dd (8.1, 2 .300 ddd (12.5, 7. .o , 5.9) 1 .732 1 .340 1 .704 o .925 o .883 1 .664 5 .464 5 .233 1 6 7. 9) 6, 6.8) ddd (12.3, 12 .3 , 8.4) ddd (12.0, 6. o, 6.0) d sept (6.8, ca 6) d (6.8) d (6.8) br, s' d (1.8) d (1.8) .36 (approx.) br *A6= 6HCT51,1?;5N 2Ha 2Hb 3H 5Ha 5Hb 6Ha 6Hb 8H 9Ha 9Hb 10H 1IH 699 A6 H (ppm) * 2 .345 + O.02 1 .720 + O.09 5 .375 + O.07 2 .02 + O.17 1 .913 + O.04 1 .608 1 .53 + O.12 4 .449 + O.32 2 .224 + O.08 1 .444 + O.31 1 .338 ± o 1 .784 12H3 o .961 O.08 O.03 13H3 o .897 O.Ol 14H3 1 .653 + o.oi 15Ha 5 .072 + O.39 15Hb 5 .069 + O.16 8-OH 6,C,D,,C,i3 in CDCl3 O.06 HO o N N RL-B RL-B-LAH 3-437 Relative Stereostructures RL-B and Its Derivative rel .i R* , 10 R, '* for RL-B and rel.1R* , 8R* , 10R * for RL-B-LAH Fig. 700 3-9-3 'Relation between Bisaborosaol.A and Rosacoranone Acoranoids are found in some monocots as their common sesquiterpenoids [161.162]. On the other hand, in dicots the sesquiterpenoids are comparatively rare, and those sources are mostly primitive dicot, such as Chloranthtis plants [163] (Fig. 3438). Thus, the presenee of an acoranoid in Rosaceae which belonging to a rather evolved dicot is an interesting fact from the view point of chemotaxonomy. Although acoranoids are biochemically synthesized from cis-trans-farnesylpyrophosphate via bisabolanoids [63], 26 has a different oxygenation pattern from that of bisabolanoids originating in Rosa rugosa. Carotanoids from Rosa rugosa are, without exeeptions, resio-specificaUy oxygenated at C14 as well as the bisabolanoid C-7 carbon which is biogenet,ically equivalent to C-14 in caro,tanoids and acoranoids. In Rosa rugosa leaves, sesquiterpenoid is considered to take the biogenesis as shown in'Scherne 3-51. Significance and function of this minor sesquiterpene are not, known. ,, 7- N N ts-・ 113 [161] 114 [161] OH 115 [163] Fig. 3-438 Some Tipical Naturaliy Oceurring Acoranoids 701 l OPP l N t t , o HO, tllttt H N ・・ : Scheme 3-51 Acoranoid cooMe Biochemical Relationship between Bisaboranoids and 702 3-10 Bioassay 3-10-l Antimicrobial Activity of Rugosal A 1) TLC Bioautography The antifungal activity of rugosal A (1) was tested by TLC bioautography using Cladosporium herbarum HU 9262. Pure crystallines of 1 were dissolved in acetone to be 1000 ppm (10.0 mg/10.0 ml), and 15 vl of the solution was taken by a 50 ul microsyringe and charged onto silica gei thin-layer plates (O.25 mm thickness) to ' form a circular zone ca 10 mm in diameter (ca O.8 cm2). Suceessively, 1 ml of the original solution was steadily ' taken in a test tube by measuring pipette, and an equal volume of fresh acetone was added to the solution. The diluted ,solution (500 ppm) was similarly charged on the plate. Accordingiy, several solutions ranged from 1000 ppm to 15 ppm of 1 was prepared as shown in Scheme 3-52. ・The amount of 1 charged on the area was calculated as listed on Table 3-173. Charges of the test solution and acetone as a control experiment were duplicated. 703 m solution of 1 10.0m 10.0 ml of acetone ・charged on TLC (15 vl x 2) taken 1 ml by measuring pipet.te added 1 ml of fresh acetone shaken we1l 500 taken o .3 ml m solution charged on. TLC x2 added 2.35 ml of acetone taken 1 ml shaken well added 1 ml of acetone 60mofsolution shaken chargedonTL x2 250 taken 1 ml m solution charged on TLC x 2 added 1 ml of acetone taken 1 ml shaken 30 added 1 ml of acetone mofsolution shaken chargedonTL x2 ke n1ml I.L!!JL2.9i} 125 take solution .L-as!RiLSS charged on TLC x 2 added 1 ml of acetone shaken 1000 1ate :-M------- L uat5 soluti [ removed the organic solvent in vacuo inoculated the £ungal spore [87] incubated Scheme 3-52 Procedures for TLC-bioautography Tab1e 3-173 concn. (ppm) weight (ug) Prepared concentrations of rugosal A solution and each ca1cu1ated weight/charged area 1000 500 250 125 60 30 15 o 15 7.5 3.8 1.9 O.9 O.5 O.2 o 704 After the chqrged TLC plates were dried enough in vacuo, the spore suspension (See Chapter 2-1) was uniformly sprayed on the test plate, which were kept at 25 OC in the dark under a moistured condition. After 3 days incubation, 1 exhibited clear inhibitory zones in the range £rom 15 ug to O.9 ug/ O.8 cm2, and even with O.45 ug (15 vl of 15 ppm solution), this substance showed a marked retardation of, the fungal growth (Fig. 3-43g and Table 3-174). Tab1e 3-174 Antifungal activlty of' rugosaZ A in TLC bioautography weight (ug) activity* 15 7,5 3.8 1.9 O.9 O.5 +++ +++ ++ + + + O.2 o' * +++ . . a severe inhibition of growth (the antifungal zone ls wider than the charged area), ++ : a clear inhibition of growth (the fungal area is corresponded to the chargeds area) , + : a clear retardation of growth, ± : ambiguous retardation of growth, -: negative effeet. 2) Paper Disc Method Successively, the antimicrobial activity of rugosal A (1) was tested by t・he paper disc method, using AspergilZus flavus, C2adosporium herbarum, Saccharomyces cereviciae, Staphylococcus aureus and Echerichia coZi as test microorganisms. The result was, as indicated in Table 3-175, not clear. It was obvious that, under a nutrient-rich conditlon 1 is not toxic against Echericha coli. On the basis of this consideration, agar plates only containing defatted extracts of Rosa rugosa fruits were prepared, and antimicrobial assay was again tested using this rugosa rose-medium. 705 As shown in Table 3-176, the growth inhibition of the test microbe w a s m a r k e d] y h e i g h fv e n e d . In this series of assay, a gram-positive bacterium Staphylococcus aureus showed a clear but only thin inhibitory zone on PYG-agar culture (glucose:pepton:yeast extract= 5:1:O.1). However, in another assay carried out in Japan Tobacco Industry K.K., 1 showed a clear toxicity against BacilZus subtilis in the concentration of 25 pg. 3) Spore Germination Assay According to the resuit of antimicrobial test against several phytopathogenic microbials (Table 3-177 by Hokko Kagaku Kogyo K.K.), 1 exhibited remarkable toxicity against the following fungus; Pyricularia oryzae, Botrytis cinerea, Colletotrichum lagenariull? and Aspergillus niger, and bacterium Xanthomonas campestris pv. or/zae. I H- +H 1-- n--- 4p.-"-- T- - - - -t r -- -r - " .- -7r =t -T :trmmxanMswmmmauaNmrmrmmepa lll・lll"#.Illit1¥'¥"IZS""'"'ii2if,lj'ik'g・',",,'.:,,,iiill/l//k/,mklli,ll"il・llll,i,gg"lii,igi,,1,3,,i'2;#kS'ksi,g",le;g$s,,",,k",ts t i i { 1 15.0 7.5 3.8 1.9 O.9 O.5 O.2 O (,.) m.ss,,ts/tsi,pm,,g.wikesrree/ggaswa・ee,k'eekew t ' l i !t l l Fig. 3-435 TLC-bioautography for Several Concentrations of Rugosal A 706 ℃ o 《 相 Φ ミ 。 ’N ℃ q) 《 勅 ’ド1 9 o 盲 墨 .l l ρり l l l I の 十!塵 N 一 l I 十 『 +1十1 ON 十 Φ 9 Qo o ’H 建 ’N 相 。 頃 十 十 十十1十十1 oo N ( り Φ し∩ ロ の 隔「ヨ ℃ 1ミu】の コ。・「 = 勘;〉Φ \ N o o ム fU(D勾 ) の踊5 独Φru.d Φ u) 「「 ⊆ o 網 コ 而 め L N l 偽 q) N 心 』 【aO のコリ iミ(Dリ L コリ リ 唱 ρ ・叫甑。●喉 ⊆ ω L{陛リミ り Φq{旨・r..H o ρ QOOり u)唱=h踊 o o 。£:ぐΦ O ~_℃りQ{電 邸りr口り ・rごU4J Σgu)ひ)【q .⊆: り 【n のド 707 o o 糧 一 ●H ㍉ 一 の Φ o l l 量 l I 1 重 1 l l 1 1 ρり ● ⑩ o 1十 1十1十1 十 N 十十 ζ刀こカ ⊆⊆ コド 3:き: 十十十〇〇 ゆ 十十十~一鼻 N σ)σ) 十〇〇 oの 十十⊆⊆ 十十 の ● o r一一 9 q) 頼 N ヤ「 の o o ’N 。 。N 9 一 郎 ・ q) r=角 卜「 十」 唱ドr の嵩 。() ( o 二 ⊆ o ド ρ 而 L ρ ㎏ 』 N 6 偽 .Φ Nゆ 』 ⊆ ω り cハσ) ロ⊆⊆: ロ 3:ヨ o.0 十5」≦L σ)σ) 十十 oo oo ~_1」 Q-Q一 十 十 十十 十十 十 十十 十十十 十十十 Φ Φ ●円 」卜I Eミリリ =5’H=∫ 執5q⊃ 切ruΦ踊 5畠8{コ 〉』Φrd.H 唱Φり 【ηoN hl電 ・iミい コ コ’「→ .勾=》 Φ 唱q) 粒 コ 心・独 Iu●・→ R(D £Φり 【η 「r 【ηo ψ Φ§(Dωり リコ。りrロuり5り⊆二り「u o ⊆: 【ηコリ 賊 ∈…(Dり コリ コ・・r鋤Q・HO・・→翫oo.N ヴ ・r猟庭りqu垣輩ミ+)り《 卜{OQOり=)QQαQり 黎’&静亀嵐岩ち留毎ik監岩 OHOくq(D ()唄 《Φ ~_q)・◎り儀縄十℃り十儀¢ り創ruり邸り 唱り 邸。 ≡超冒麗胡超冒器胡紹 708 Table 3-177 lnhibitory activity of rugosal A on spore germination of several phy-topathogens spore germination MIC 1・ss (ppa) 50 os 12.5 6.3 3.1 Alternaria kikuchiana + + .v- H-t・ ・H-}・ +-H・ ・H-l・ Aspergi1lus niger - - --v± ± + .v" botrytis cinerea e ± ±.v+ + .vH -"vH+ - ± ± ±-v+ <Fungi> bercospora beticola Ciadosporium cuoumeriruim Coch:iobo1us miyabeanus Co"etotricham 1agenarium Fusarium oxysporum f. sp. oucumerinum F.roseuN C;omere;:a cingulata Gibberel1a fujikuroi Mycosphaere11a me1onis ts HHf >50 ・t-H 50 + -H-f・ ・t・H -H-i・ ・H-l・ >so ±Av+ +.H・ ・HNt. ・H-+・ as ±・ + - -H-f- ・H-t・ H-+ +・H・ >50 -N± +Av- +・H・ H-l・ ・H-・ H-}・ >50 -H-t・ HNt. -H-l・ - >50 +・H} -H-l・ H.i. ・H-t・ >50 +-H・ - HNf ・H-t・ >50 ・IH ・H-l・ .+H - H - ±"v+ + ± . . - ・H-・ + + H H-I・ -H- ・H-l H-t・ P. glumae +・H・ ・H-t・ H-・ P. solanacearum ・i-H ・H・+ P. syringae pv. phaseolicola HAvH+ H.vlTH P. syringae pv. Iachrymans 'H'--v'H'+ ' H'vH+ HAv-- Erwinia carotovora subsp. carotovora ++-vH+ -.vH+' - ± Pseudosnonas avemae X. canlpestris pv. oryzae ・H-+・H・ -HH・ Xantbomonas campestris pv. citri 50 - ± <Bacteria> ・H-- -H-・ ± Rhi2opus nigricans as +-.H PyricuIaria oryzae Penici11ium digitatum 'l"t"f' >50 .HAv-NH ' ・H-I・ >so ・H-t・ +H. >50 H-l- ・H-t・ H-t・ >sc ・H・+ +・H・ ・H-}・ .H"t' )50 ・t-H ・H-l・ ・i-H・ ・HHt >50 ・H-+ dH-t・ ・H-・ >50 +byH+ >50 - - Corynebacterium michiganense ・HNi. ・H-f ,H- A. tutaefaciens ・H-i・ ++・l- -HH・ 709 >50 -H-f - : - 6.3 +・H ・H-t・ ++.v+・H-t・ ・H.t. )se -.v+H ++Nl- ・H-i・ ・i-H ・H-f >so H+ ・H-t・ ・-H- >50 ± r2.5 3-10-2 Structure-Activity Correlation of Rugosal A Some derivatives of rugosal A (1) was also tested its antifungal activity by TLC-bioautography (Table 3-178). As the result, requirement of the fundamental strUeture of 1 became feasible. Inactivity of rugosic acid A (2) was suggestive that the polarity is important in the exhibition of antifungal aetivit.v, The endoperoxy group seems necessary, since peroxide rearranged one lost its activity at least the test derivatives. On the other hand, without a,B-unsaturated aldehyde group, RSA-NBH-i (lc) and RSA-HCL (lg) were able to exhibit the activity, while RSA-AC-1 (la) was.almost inactive suggesting C-2-OH is also necessary to the aetivity. Those results were informative to plan the search of precugsors and metaboXites. 710 Table 3-178 Antifunga1 actl vi tles of some rugosal A derivatives :D::fl9ilil':;re--.-.erlvatxve (Ag) 100 zo 2 -H- + " - " - -+ + 25 -- ・ov2 o - A OH Poizf cHo + 6Ac - .・O-d'i cHP,&",3 6H ' Ovil ,eH - /x 6H CLo'hf COOH + + . + " -H- + -- + . + q " . -H- + + 6H --d- eAc' 1 CHo crI OAc ., eH cr hf 20H dH O・dl COOCH3 - ' Each derivatives dissolved in 15 vl of EtOH was charged on O. 25 mm silica gel plates. 711 3-10-3 Ant,ifungal Activity of Bisaborosaols As tested in rugosal A (1), antifungal actvity of bisaborosaol A (19), Bl (21) and B2 (22) was also examined by the TLCbioautography. The results were showed in Tab!e 3-179. Not only 17 but also 19 and 21 exhibited an antifungal activity; however, the values of the three were 10 more time lower than that of 1 in t, his assay . Tab1e 3-179 l)repared concentrations of bisaborosaol A, Bl and B2 solutions and each antifunga・1 activity concentration (ppm) weight (ug) activity* 19 21 22 c f. 1 6600 3300 1650 830 410 210 o 100 50 25 13 6 3 o ++ ++ + ± ± ++ ++ + ± ± ++ ++ + ± ± ++++ ++++ +++ +++ * activity is according to Tab1e 3-174 712 +-+ ++ 3-10-4 Cytotoxie Assay of Rugosal A and Its Related Compounds Cytotoxieity of 1 and 2 was also tested, using the P-388 ADRS mouse cell. IDso of 1 against the cell was O.54 (ug/ml). On the other hand, 1 exhibited IDso O.21 against another cell line resistant to adriamycin (P-388r). Those results suggested that 1 possesses non-selective cytotoxicity, although the activity was not so remarkable compared with some antibiotics. Compound 3 was comparatively less active. 3-10-5 Antifeedant Assay of Rugosal A Rugosal A (1) did not showed any acute toxicit・y nor antifeedant activity against test larva (See pp. 43). The test worms tended to avoid foods containing 1 when they are not starved; however, under a starved condition they fed the foods and did' not show any physiological changes. Compound 1 was therefore considered to be a passive-typed retardant. 713 Chapter 4 Summary and Conclusion 4-1 Summary of the Thesis Rosa rugosa is known to be a rose strongly resistant to diseases. From the leaves of Rosa rugosa, an antifungal sesquiterpene, rugosal A (1) was isolated and elucidated its structure including the absolute configuration. Rugosal A (1) initially isolated from damaged leaves of Rosa rugosa exhibited its structure as a carotane type of sesquit,erpene aldehyde which possessed a unique 1,4-endoperoxide bridge whose oxygen had intramoleeular hydrogen-bond with an aHylic hydroxyl group. This or,B-unsat,urated aldehyde showed a remarkable antifungal activity on TLC bioautography using Cladosporium herbarum. Several derivatives of 1 were also prepared. As the related carotane acid, rugosic acid A (2) was also found. This aeid was accumulated in the t,issues in a considerable amount, although it was non-fungitoxie. This acid provided sorne important informations for stvuetural elucidation of 1. These carotane peroxides showed" some characteristic chemical rearrangements at the peroxide bonds, under a basie or an acidie condition. Their reaction mechanisms were further discussed. In the course of searching the precursors of 1, earota-1,4dienaldehyde (3) was isolated. This eompound was quite unstable to air, and gave 1 and 2 through an intermediate, endo-exoperoxy carotane aldehyde 3e. By the structural analyses of the int,ermediary compound and some byproducts in the oxygenation reaction of 3, conversion scheme of 3 into 1 was proposed. On the other hand, metabolic pathway of 1 through 2 was also examined. As t・he result, some peroxy-bond rearranged carotane acids were isolated in the mature leaves, and it was suggested t,hat peroxide rearrangement of 2 was the main pathway in the metabolism of the 714 carotane peroxides. Furtherinore, several minor carotanoids were also isolated and their struct.ures were elucidated. 'Thus, biogenesis of Yhe carotanoids in Rosa rugosa leaves was also suggested. Not only earotanoids, but also bisabolanoids were contained in the leaves. Bisaborosaol A (19) and its oxygenated forms were found as a major constituents of t,he plant. These bisabolanoids gave an evidence showing a correlation between bisabolanoids and carotanoids in the biosynthesis from cis-trans-farnesyl pyrophosphate. In addition, an acoranoid was also isolated as a ' minor constituent・ of Rosa rttgosa. Rugosal A (1) and rugosic aeid A (2) exhibit,ed a drastic change in amount according to t・he seasons. In the flowering season, the amount of the carotane peroxides became the highest. It was calculated that 2 and 1 should exist in the most act,ive tissues at a coneentration of more than 500 ppm (1, 200 ppm). As an ant,ifungal activity of 1 against, Cladosporittm herbarum was clearly visible at the concentration of 125 ppm on TLC plate, it seemed tha't 1 could function as a defensive agent in Rosa rugosa leaves. ;..-s(SS> .-A,.i.At.6vgzgrs YbU SEE.. HERE ,, ・× ..l N oitN k N PL,4N7:s ueLaE rw 715 .DVVZs:L6L.E ;iVFAPO/V ' 5-2 Conclusion When Rosa rugosa leaf was mechanically damaged (and also chemically damaged by NaCN solution), a typieal browning is observed on the damaged part. This brown'ing, due to hypersensitive cell disruption and accompanying accumulation of polyphenols, is known to be a defense system for some plants. In the case of Rosa rugosa, this drastic browning probably eontributes to its resistance against several pathogens. Indeed, some non-resistant roses show only a slight browning by these kinds of damaging. However, the author dearly proposes that the hypothetical disease resistanee factor of Rosa rugosa is mostly due to rugosal A (1) which is markedly rich in t,he leaves and exhibits a considerably antifungal activity. In addition, other sesquiterpenes in the leaves may also be regarded as the resistance factor. One of the experimental evidence for the proposal is that other roses, particularly some rose cultivars, were quite poor in sesquiterpenoids. In another series of studies, the author examined sesquiterpenoids of some other Rosa plantS [69]. In TLC, GC and GC-MS analyses, it revealed that Rosa aciOularis, Rosa woodsii and Rosa acicularis var. nipponesis contained some bisabolanoids but no carotanoid, and some other wild roses were rich in monoterpenoids but very poor in sesquiterpenoids. On the other hand, cultivated roses examined so far were very poor in these terpenoids, suggesting that the resistance of wild roses are due to those ehemicals. Some Rosa rugosa hybrids .examined so far (such as Hansa) were all eontained rugosal A in a marked amount. The antifungal activity of the Rosa rugosa leaf could be found, so far as the author has tested, apparently less than 10 mg of fresh leaves. When the EtOAc extract from fresh leaves was diluted in various concentrations and eaeh of the extracts was developed on TLC in a specific solvent, the compound 1 in the 716 sample showed the clearest antifungal zone on TLC-plate at the concentration of ca 2 pg/10 mg leaves. On the other hand, exudates from the damaged leaves (25 mg damaged leaves) exhibited a clear antifungal zone for 1, but no other antifungal spot. In eontrast, polyphenolics from the damaged leaves rarely showed any activity in the fungus test, As the result, it was suggested that 1 was relatively eoneentrated in exudates of the damaged leaves. Since mechanical damage is considered to eause pathogenic infections, this effective diffusion of the antifungal agent from the wounded part may be significant in the defense system of Rosa ' rugosa. The antifungal substance was accumulated in the leaf tissues as the result of oxygenation of carota-1,4-dienaldehyde (3) and further oxygenated to rugosie acid A (2) to be pooled in the tissues. As 3, exhibiting an easily oxidized nature, was present in the leaf tissues in a noticeabld amount, it was speculated that 3 functioned as an antioxidant in the leaves. Since Rosa rugosa grows under strong light in a coastal area during summer season, it may need a protection system against peroxidation of the thylacoid membrane. For t,he protection, 3 must be used as an antioxidant. As the plant must store energy by photosynthetie reaction and regeneration during a short summer season in the northern area, it may sacrifiee some membrane lipids for the effective photoreaction. The fact that Rosa rugosa contains a marked amount of B--carotene, ct-tocopherol and aseorbic acid [79] (See Fig. 1-3, pp. 43), all known as common antioxidants and radical scavengers, fully supports this hypothesis. Furthermore, its large root system also should be taken into account in the energy resource. Rosa rugosa rnust have a large and deep root system due to dry and nutrient-poor sandy soil on the coast. To support this root system, its leaves should have enough glucose produetion capacity with the photosynthetie reaction during the 717 short summer season. This, alinost overworked photosynthesis may cause a peroxidation of membrane without such an antioxidant. Indeed, during the survey of these sesquiterpenoids in Rosa rugosa, it was unraveled that the leaves are under a quite strong oxidative condition due to the presence of bisaborosaol Cl, C2 and D (23 - 25). Moreover, the presence of 6-demethoxy-4'methylcapillarisin (73) in Rosa rttgosa [78] suggests the oxidative condition. !t is likely that 73 is fromed through hydroperoxide intermediate to result in oxygen migration between C-2 and C-1'. This Hock eleavage-like pathway may be possible because in carotane peroxide, similar reaction are considerable (Scheme 4-1). Therefore, the author expects as follows. From this oxidative condition, Rosa rugosa protects its tissues by B-earot,ene, ascorbic acid, carota-1,4-dienaldehyde (3) and bisaborosaol A (19). On t,he other hand, when 3 was oxygenated, oxidized metabolites, mainly 1 were then re-utilized as antifungal substances. This seems very e£fective because the plant does not consume any other energy and carbohydrates to produce the defense compounds against microbial invasion. ' ' The resist,anee of Rosa rugosa is probably explicable with some complex factors, one of which is the aptifungal sesquiterpenes as discussed above. As the other factor, hypersensitive cell disruption with a severe browning conducting to a severe oxidative eondition in the tissues induced by a chemical or a mechanical damage is also proposed. Furthermore, 'surprisingly high contents of polyphenolics in the rhizome may contribute to the resistance of Rosa rugosa. Indeed, Rosa rugosa root extvaet shows very clear antimicrobial activity. Thus, not only the aerial part but also underground part should contribute to the highly resistant nature of Rosa rugosa against pathogens. A model of dinamic roles of the carotanoids in the aerial part are shown in Fig. 4-1. 718 HOxz :×. -Ox ON./ X Z,,,'.i i V ,,7 HO ,,7 o l 1 l OH O OMe 6--deine't hoxy-4 ' - tu 1 OMe methylcapillarisin (73) :--・ 1 OH o t HO ,,,- l peroxylation 41 o OMe tu OOH tu OH o t HO .-' l Hock cleavage OH o o tu OMe OH o t HO 41 o dehyd ration o tu OMe 1 OH o Scheme 4-1 Possible formation pathway for the phenoxychromone, via peroxylation of a flavonoid 719 The author has been eneounted several physiological aspects of the carotane peroxides, although these were not deseribed in this thesis. When a leaf-let of Rosa rugosa were slightly pressed between two sheets of filter paper which previously got wet with nhexane or MeOH, and after that, the paper was sprayed with the peroxide reagent, the shape of the leaf-let clearly appeared as a red color according to the peroxide reaction. As an interesting observation, only underside of the leaf-let showed the response, as shown in Fig. 4-2, By this simple experiment, it beeame understandable the localization of the peroxides. In short, it was suggested that the peroxides localized in the tissue of the underside of the leaf. In fact, when a flake of tissue on surface of the upside and underside of the leaf were each separated carefully and suspended in a sinall volume of a EtOH/peroxide reagent mixture in test tubes, only the test tube in which underside tissue was suspended turned a slight pink. With chlorophyli, the same result was obtained. To obtain further aspeet, the tissue stained with the peroxide reagent were'directly observed with a microscope. 'Under the mieroscopic observation, numerous numbers of trichomes are recognizable on the underside of the leaf, and some of 'them seemed to be stained to a red color as shown in Fig. 4-3. Although some effect・ of red light eannot be excluded, it is likely that the trichomes contained carotane peroxides in a high concentration as those of tomato plant which is known as a secretory and storage cell (or organ) for sesquiterpenoid of the plant [9]. These observatiQns are an interesting object, as with th'e enhancement of ratio in diffusion of carotane peroxides from the wounded part. Further investigation is requested t・o reveal a funetion of the trichomes and the carotane peroxides in Rosa rugosa. From aerial part of Rosa rugosa, callus eeln be obtalned easily. Using a pteee of callus, sesquiterpenes in the callus were 720 ① 調 ・←). ・H の も ・r→ o q 蓄 ρ 1\1 の 霞 o 0 Φ 霞 琶 o ℃ ・7→ o 40 Φ 溜 ・F1 ρ o Φ § 駒 ・H 州 1 Φ ← 囲 ω 頃① ¢銭 。 Φ Ho bO o. o邸 == (N O ℃ q r一→ N q5 唱 4 . Φ o ρ Ho g o ㊦ 知 o 工 Q Φ 。pl 自bO軸 こゴ エ ’,εo ⊂㌧・ ) グ 了 。 ・F→ ρ o邸L〆 o ω ・H鵯 ρ の q→ 邸 o ∩ q) 巽茎 .ll.触 ρ ロ 諜㎡壌 o. o 1三塁 州 2 調 o 耐 禺~ 翫 × o の 〆 1の回 触 唱 了 、藤 .う ミ. 聲 ぢ ・Frl ℃ ①霧 bP 目 H o ・H 幽 ・o ① 霞 72ユ H I 寸 ロ bO ・r-1 隔 ’腿・熱.§ミ奇2\ ℃ く ℃賃’① ωoの o 1 昭ロ⊃ 。】の 口 oΦ ・α 電臼①の 鯛島ω① 口』 o闘。 Φ邸①o H畠臼 甲 寓 邸ωΦo Φ」=〉工= Φ口〉L ←ρ引の口 ● 遷 .働 § , 8 響 こ 闇 o o 、 、 働 己 L嘲 巴遷 曾 i 日+2・H O り 二〉}引ρ lOFr二三o l唄口。∈ 二〇口 旨匡 唱 喝 邸・H 口四 1 。+2で 【=①の 臼①39N Φ>o』 1ρ咽H5=q5 1邸。雨冷 1Ω司の +♪o 臼。Φ’N lΦr→Hg i二幕捻郎 ;唄bO①q3 oo o 踏l畠国hH的 譜 。 コ 曾 o ① ニ コ 8 ヨ a 9 曽 ①電 Ol,邸調 “1 θ申 ミ ←山州 の噂∂鯛 〇 Φ・→oqH 電1臼審 晦 1 ΦΦ而 一宿溺二 i×u)臼眉 1 。邸①賃 臼匡。邸 α二 騨① 口圃の5 “ 臼 cq 寓ΦΦ 嵩調 1 唱+2や」 寸 o o臼 ・始。Φ 凶コ臼謂 ・凶』脳+⊇ 国 ■ 722 o 06 謹 ・H ・一 ゴ 。 μ oつ. 琵. 伊lq ノ、’ 〃・. v’¢, 態..書1お ・潤 『‘ 卜 鵡’.’■ ・. コ. 沼18で 二口 zlり6 耐 hρ ←Φ 一 Φq司 嵩醐 ←① ユ〆 ゆ ・・Φ ×可諄= o oo o o→∂ ゾ・ .▼叩7ミF !bo輌 A、・ll羅 騰懸 群撫 《z:「 E・ Φ£田 醗・一. V訟岬二、当① 薩鷺 鑓 へ1’〆ト・『 、、 .. ら■唱吻。口 亀’ , ・.・ ミ 風腫 竃巨 、 順 累.. 噛ポ5瓢、軍 A 凌} 、、 u5、 ,へ 陶ド“~. 呂, む一・ / ’ L‘; , ら「 ,1 、・.・「 鼻s P引 丁 1・1 』 習、 ’場 Eつ1ヅ 醒lり 翻. J .も. ..・・ら. σ 寒 oo ・一 おプ.「葦J」舞 口 ・目 層 ρ し. 、 口 曹 一誰,・9 ① 巳 Or■■■■一. 二 〇 ・一 』 臼 jrr・723 .一 ” の ‘ . ’4一『 hh .雌. 心 〃 ω ’L H 匹 。 ” 』 り preliminarily examined. Unlike leaf-tissues, callus of this plant did not contained any marked terpenoid. However, tlssue culturing is expected to be available in the near future, in studies on s ' sesquiterpenes of Rosa rugosa. Chemotaxonomically, these constituents in Rosa rtigosa are characteristic among Rosaceae plants. This.sesquiterpene phase in this Rosaeeae plant is quite similar to those of some Compositae and Umberifellae plants. Furthermore, the phenoxychromone (73) whose skeleton is quite rare as a naturally occurring compound was also reported from a Compositae plant, Artemisia capiZlaris [164]. As shown in Fig, 4-4, Rosaceae and Compositae are, however, not closely related to each other, while Umberiferae are somehow close to Rosaceae [165]. Further studies and discussion should also be carried out in this theme from the chemotaxonomical view point. Rosa rugosa has suecessfully dispersed its descendants as ' western roses, due to its important hybrid races to crossbreed with resistant nature, and will bloom out further as an ancestor of excellent rose cultivars in the gardens all over the world. Rosa rugosa is commonly distributed along coastal area bf'Hokkaido and was chosen as the flower of Hokkaido. We are proud of this excellent wild rose, and of cause we have responsibility to conserve its presence for the next generations. ・724 ASTERIDAE Compositae ROSIDAE' Rosaceae oommrNIDAE Gramineae Umberifellae (Compopetalae) LIL:IDAE MAGNOLIIDAE . (qhoripetalae) DILLENIIDAE Chloranthaceae ' rvlONOCOTYLEDONE i DICOTYLEDONE X. BRYOPHYTINA TRACHEOPHYTINA Hipataceae Xl,. .i-.c==;ia 2gg.O¥g.Cg:",.otina) PLAN!IrAE MYCOTA ' Fig. 4-4 A Possible Genealogical Tree of Plant Kingdom: The genealogical tree is based on and rearranged from the reference [165]. Rosaceae and Uinberifellae are on the same branch, while Compositae forms a branch for another group. ・725 Abstract in Japanese 北海道の沿岸地に自生するハマナス(Rosa rugosa Thunb.)は、その可憐な 花と芳香により、古くから鑑賞用に用いられてきた。しかしながらその園芸的 価値はわが国よりもむしろヨーロッパあるいはアメリカにおいて大きく評価さ れ、高められた。その理由のひとつに、ハマナスが、西洋の園芸バラで問題と なっていた幾つかの病害虫に対して顕著な抵抗性を有していたことが挙げられ る。特にバラ黒一病は鑑賞用品種の商晶価値を落とすことから大きな問題とな っていた。ハマナスはこの病気に対する抵抗性に優れていたため、ヨーロッパ へ導入された後台木あるいは交配種として急速に広まり、一部の地域では野生 化するまでに至った。 ハマナスに認められる病虫害抵抗性因子の化学的あるい は生化学的研究は、1987年にMashchenkoらが羅病性バラとハマナスを含めた 抵抗性バラの葉中cholesterol含量差に注目しこれを抵抗性因子であるとした 報告[81]が出されるまで行われていなかった。 著者は、各種植物の二部を機械的傷害処理したのち水抽出し、その水層の有 機溶媒転溶物の抗菌活性をスクリーニングした結果、本植物傷害葉抽出物中に 極めて強い抗菌活性成分を検出した。次いで活性化合物本体の構造を決定する 目的で、この活性成分の単離精製を試み、各種クロマトグラフィーにより 1.3kgの傷害処理葉から120鵬gの活性化合物を無色針状結晶として得た。こ の化合物は、M+266(C15H2204)を示し、各種機器分析により、特徴的な部分 構造として、α,β一不飽和アルデヒド基、1,5位にかかるエンドパーオキシド 架橋、および一方のパーオキシド酸素原子と分子内水素結合したアリル水酸基 が存在することが判り、文献未知のカロタン構造を有するセスキテルペンアル デヒドであることが推測された。最終的には、本化合物の各種化学変換および 対応するカルボン酸メチルエステルのINADEQUATE法によるC-C相関の測定に より本平面構造を証明し、これをルゴサールAと命名した。その立体化学につ いては、NOESY法で相対配置を、励起子キラリティー法[106]で絶対配置を決 定した。 本化合物の骨格であるカロタン型セスキテルペンは、高等植物における分布 がセリ科および小数のキク科に限られており、バラ科では例の無いものであっ た。また、C-14位における酸化はセリ科あるいはキク科ではほとんど知られて おらず、これがバラ科由来の幽幽タンにおける特徴のひとつになると考えられ る。ハマナス中には、更にルゴサールAに対応するカルボン酸(ルゴス酸)が 含まれており、その含有量は最多で500mg/kgにものぼった。ルゴス酸はその 安定性、非抗菌活性および含有量から、ルゴサールAの主解毒代謝産物である と考えられ、実際に空気酸化によりルゴサールAからルゴス酸が生じることを 確認した。 ル:ゴサールAの生成過程においては、その1,5エンドパーオキシド架橋が、 低分子天然物パーオキシドとして一般に見出される1,3ジエン体と一重項酸素 閉におこるDiels-Alder付加反応型の 1,4エンドパーオキシド架橋と異なり、 1,4一ジエン構造をもつ不飽和脂肪酸の酸化様式(エキソパーオキシドラジカル 体を中間体にとる)をとることが予想された。同様に1,5一パーオキシド架橋を 726 有するハナルピノールの生成経路[100]を比較して予想前駆体を想定しその検 索を行った結果、低極性部よりカロター1,4一ジエンアルデヒドを見い出した。こ の、前駆体と考えられたセスキテルペンアルデヒドは空気中で極めて不安定な 性質を有し、幾つかのパーオキシド試薬陽性化合物へと酸化された。そのうち の二化合物は比較的安定な結晶として得られ、それらはその立体化学も含めて ルゴサールA、ルゴス酸に一致した。これにより、カロター1,4一ジエンアルデヒ ドはル:ゴサールAの直接の前駆体で有ることを確認した。その酸化経路につい ては、中間体の捕足による解明を試み、1,5一パーオキシド架橋をもち、C-2位 にヒドロパーオキシドの置換した中間体を高収率で得ることができたことから、 C-3位の活性メチレンから水素の引き抜きを引金として三重項酸素二分子付加 を伴うラジカル反応を提出した。 ハマナス葉組織中におけるカ出撃ンパーオキシドの代謝分解は、それらの葉 の成長熟成に伴うドラスティックな消長から、酵素レベルでの制御が働くと予 想された。ハマナス葉中脳ロタノイドの最大プールであるルゴス酸の代謝産物 はそのパーオキシド架橋の変換、修飾が主な経路であると考えられたため、幾 つかの化学変換物を標準として酸性画面を検索した結果、ルゴス酸の酸処理物、 アルカリ処理物および還元体に対応する成分を天然物として単離することがで ’きた。特に、酸処理で生成するケタール体は完全に老化あるいは黄化した葉に 比較的高濃度で存在し、これが組織中で安定な物であることが示唆された。 ルゴサールA型のパーオキシド(アルデヒド基の還元によるアルコール誘導 体を含む)では、それぞれ酸あるいはアルカリによりエンドパーオキシド基の 変換が容易に起こった。その反応成生物は、従来知られているエンドパーオキ シドの変換反応と異なり、その主原因はこれらカロタンパーオキシドのコンフ ォメーションによると考えられた。 ハマナス葉山にはこれらの他に多様なカロタンセスキテルペンが微量成分と して含まれており、それらはカロター1,4一ジエンアルデヒドの異性体がさまざま な修飾(酸素化、脱水素等)を受けて生成したもの.と考えられる。 ハマナス葉にはまた、カロタン以外のセスキテルペンも比較的高含有量で含 まれていた。そのなかで100mg/kg以上の含有量を示すピサボラン二二スキテ ルペンについてその構造を絶対配置を含めて決定し、これをピサボロザオール Aと命名した。この化合物は、天然物としては珍しいC-7が酸化されたピサボ ランであり、最近Bohhannらのグループによって相次いで見出されているキ ク科のピサボランとはC-4位の絶対配置が異なり、従って右旋性を示す。本化 合物は二種の酸化物群を葉中代謝産物として与え、オレフィン側鎖に生じたエ ポキシ環のγ一位のヒドロキシル基とのアルコーリシスによるテトラヒドロフラ ン誘導体およびオレフィン部分に一重項酸素分子が攻撃して生成するヒドロバ ーオキシド誘導体として面長出物中に見出される。特に後者のグループは、生 成量こそ微量ではあるがハマナス組織が強い酸化条件下にあることを示すもの であった。 さらに、カロタンとピサボランの関係も興味をひいた。これらは共にcis一 727 trans一ファルネシルピロフォスフェートを前駆体として生合成される。ともに ファルネソールの13位に由来するメチル基が酸化されている事実は、これら 二種のセスキテルペンの密接な関連性を示すものと考えられる。 ピサボラン型に加えて、アコラン型セスキテルペンも見いだされた。この骨 格は、さきのセスキテルペン類と同じく cis-trans一ファルネシルビ。ロフオスフ ェートから生合成されるが、ファルネソールのC-13メチル由来の炭素が酸化 されておらず、ハマナス成分としては希な修飾様式を示した。 ルゴサールAの抗菌活性は、TLCバイオオートグラフィーあるいはペーパー ディスク法で詳しく検討した。本化合物は、一部の糸状菌(Cladosporlum herbarumおよびイネイモチ病菌を含む)、酵母あるいはグラム陽性菌にある程 度の抗菌活性を認め、特にイモチ病菌に対しては市販農薬のEDDPに匹敵する 抗菌活性を示した。細胞毒性はP-398「を使った試験でLD5g諸0.21μg/副を 示した。いくつかの誘導体についての構造活性相関では、パーオキシド架橋お よびアリル水酸基が活性発現に必須であること、不飽和アルデヒド基は必ずし も活性発現には必要無いがこれがカルボキシル基へ酸化されると活性が完全に 消失すること、この活性はメチル化によって回復:することがわかった。この結 果は、生体内でのカロタンの代謝、生成および意義を考察するうえで非常に有 用な情報となった。ピサボロザオールAはTLCバイオオートグラフィーでル ゴサールAの1/10程度の抗菌性を示したにすぎなかった。 一連の化学的知見に加えて、いくつかの生理的知見も得られた。最も活性の 高い開花期には1kgハマナス葉中におよそ700 mgものカロタンパーオキシ ドが含まれるが、これらのほとんどが葉裏面のトリコーム(突起様構造)に含 まれている実験:事実をいくつか見出している。また、・傷害部から浸出するルゴ サールAの相対量が著しく高いことも示唆された。これらの観察は、ルゴサー ルAが実際に葉組織中で糸状菌感染に対する防御因子となっている可能性を示 しており[9]、更に詳しい検証が望まれる。また、カ中門ー1,4一ジエンァルデヒ ドがハマナス葉組織中、特にシラコイド膜上で抗酸化剤として機能しているこ とも考えられる。この場合、ルゴサールAは酸化老廃物にしか過ぎず、ある部 分へ集積されたのち糸状菌に対する防御物質として転用されると考えられる。 これは極めて効率の良い仕組みであり、ハマナスが夏季の短い高緯度で自生し ている事実を考え併せれば、炭化水素の効率的利用型防御機構という点で興味 深い例であるかもしれない。 ・0舳δノCHO ・ρ’δノ。。OH OH OH ルゴス酸 ルゴサールA HO, \ 臼 ’’” 、 \ 5 CHO 8 カロター1,4一ジエンアルデヒド 728 COOMe ピサボロザオールA References 1. Agrios, G. N. Seetion 5, How plants defend themselves against pathogens in Plant Pathology, in "Plant Pathology", 2nd Edition (1981), pp. 72-85. Academic Press, London and New York. 2. Prof. Bailey, A. W. in the University of Alberta introduced this term during his leeture for plant pathology. 3. Tomiyama, K., Sakuma, K., Ishizaka, N., Sato, N., Katsui, N., Takasugi, M. and Masamune, T. New antifungal substance isolated from resistant potato tuber tissue infected by pathgens. Phytopathology, 58, 115-116 (i968). 4, Fukui, H., Egawa, H., Koshimizu, K. and Mitsui, T. A new ' isolavone with antifungal activity from immature fruits of Lupinus luteus. Agric. Biol. Chem., 37, 417-421 (1973). 5, Davis, E. F. The toxic principle of .luglans nigra as identified with synthetic juglone and its toxic effects on t,omato and alfalfa plant. Ara. J, Bot., 15, 620 (1928). 6. Klun, J. A., Tipton, C. L. and Brindley, T. A. 2,4-Dihydroxy-7methoxy-2H-1,4-benzoxazin-3-one (DIMBOA), an aetive agent in resistance of maize to the Europian corn borer. J. Econ. Entomology, 60, 1529-1533 (1967). 7. Nakanishi, K., Koreeda, M., Sasaki, S., Chang, M. L. and Hsu, H. Y. IRsect hormones. The structure of ponasterone A, an insectmoulting hormone from the Podocarpus nakaii. Chem. Commun., ' 915-917 (1966). 8. Green, T. and Ryan, C. A. Wound-induced proteinase inhibitor in plant leaves. Plant PhysioJ., 51, 19-21 (1973). 9. Gibson, R. W. and Pickett, J. A. Wild potato repels aphids by release of aphid alarm pheromone. Nature, 302, 608-609 (1983). 729 10. Kobayashi, A., Morimoto, S., Shibata, Y., Yamashita, K. and Numata, M. Clo-polyacetylenes as allelopathic substances in dominants in early atages of secondary succession. J. Chem. Ecol., 6, 119-131 (1980). 11. Toong, Y. C., Schooley, D. A. and Baker, F. C. Isolation of insect juvenile hormone IU from a plant. Nature, 333, 170-171 (1988). 12. Nishida, R., Bowers, W. S. and Evance, P. H. Synthesis of highly active juvenile hormone analogs, juvocimene I and II, from Ocimum basiUcum L. J. Chem. Ecol., 10, 1435-1451 (1984). 13. McFarland, D. and Ryan, C. A. Proteinase inhibitor-inducing factor in plant leaves, Plant Physiol., 54, 706-708 (1974). 14. Ingham, J. L. Diseases resistance in plants: the concept of pre-infectional and post infeetional resistance. PhytopathoZ. Z., 78, 314-335 (1973). 15. Harborne, J. B. "Introduce to Ecological Biochemist,ry" 2nd Ed., ' pp. 228, (1982), Acadeinic Press, London. 16. Mullar, K. O, and Borger, H. Experimente!le Unt,ersuchungen uber die Phytophthora-Resistenz der'Kartoffel. Arb. Biol. Anst. Reichsanst, 23, 189-231 (1940), (Ger). 17. Shimomura, T. Virus- or chemical-induced resistance in plants. Virus, 33(1), 37-45 (1983). . 18. Coxon, D. T. Phytoalexins from other plant families, pp. 106132, in Bailey, J. A. and lvfansfield, J. W. (Ed.) "Phytoalexins", (1982), Blackie & Sons Ltd., Glasgow and ' London. 19. Result of screenings in antimierobial cornpound-indueing plants after giving an abiotic stress (mechanical damages and eupric ehloride) revealed that about two-third of the wild plants did not show any response. This work was carried out by Mizutani-Plant Eeochemical Project team of ERATO Program. 20. Ebel, J. Phytoalexin synthesis: The biochernical analysis of the induetion process. Ann. Rev. Phytopathol., 24, 235-264 (1986). 730 21. Sharp, J. K., Aibersheim, P., Ossoeski, P., Pilotti, A., Garegg, P., and Lindberg, B. Comparison of the structures and Elicitor Activities of a synthetic and a mycelial-wall-derived hexa( -Dglucopyranosyl)-D-glu6itol. J. Biol. Chem., 259(18), 1134111345 (1984). 22. Murai, A., Yoshizawa, Y., Sato, K., Hasegawa, T., Masamune, T., Sato, N. and Tamura, M. Hydrogen peroxide as a dinamic eliciPor for phytoalexin production. Simposium papers, pp. 193-200. 29th Syinposium on the Chemistry of Natural Products in Japan, Sapporo 1987. 23. Snyderman, R., Smith, C. D. and Verghese, M. W. Model for leukocyte regulation by chemoattractant receptors; roles of a guanine nucleot.ide, regulatory protein and polyphosphoinositide metabolism. J. Leukocyte Biol., 40(6), 785-800 (1986). 24. Niki, E. Ascorbic acid, glutathione. pp. 321-326 in Nakano, N., Asada, K. and Ohyagi, Y. (Ed.), "Active Oxygen - Molecular ' Mechanism of Its Produetion, Scavenging and Effect in Organisms", (1988), Kyoritsu Shuppan, Tokyo, (Jpn). 25. Nakamura, T. Vitamine E. pp. 327-334 in Nakano, N., Asada, K. and Ohyagi, Y. (Ed.), "Act.ive Oxygen - Moleeular Mechanism of Its Production, Scavenging and Effect in Organisms", (1988),, Kyoritsu Shuppan, Tokyo, (Jpn). 26. Ushijima, Y. Carotenoids. pp. 335-341 in Nakano, N., Asada, K. and Ohyagi, Y. (Ed.), "Active Oxygen - Molecular Mechanism of Its Production, Scavenging and Effeet in Organisms", (1988), Kyoritsu Shuppan, Tokyo, (Jpn). 27. Hildebrand, D. F., Rodriguez, J. G., Legg, C. S., Brown, G. C. and Bookjans, G. The effect of wounding and mite infestation on soybean leaf lipoxigenase levels. Z. Naturforsch., 44c, 655--659 (1989). 731 28. Kato, T., Yamaguchi, Y., Uyehara, T. and Namai, T. Riee blast disease-resistance of rice plant and oxygenated polyunsaturated fatty acids. Kagaku to Seibtttsu, 24(3), 183-188 (1986), (Jpn). 29. Yamamoto, H. and Tani, T. Possible Involvement of lipoxygenase in the mechanism of resistance of oats to Puccinia' coronata avenae. J. Phytopathology, 116 329-337 (1986). 30. Keppler, L. D. and Novacky, A. The initiation of ]nembrane lipid epoxidation during bacteria-induced hypersensive reaction. Physiol. Molecule Plant Pathol., 30, 233-245 (1987). 31. Hamberg, M., Svensson, J., Wakabayashi, T., Samuelsson, B. Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. Proc, Natl. Acad. Sci. USA, 71, 345-349 (1974). 32. Dahlen, S., Bjork, J., Hedqvist, P., Arfors, K., Hammarstrom, S., Lindgren, J. and Samuelsson, B. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: Jn vivo effect with relevance to the acute inflammatory response. Proc. Natl. Acad. Sci. tlAS, 78, 3887-3891 (1981) 33. Yoshihara, T., Omer, E-S. A., Koshino, H., Sakamura, S., Kikuta, xY. and Koda, Y. Structure of a tuber-inducing-stimulus from potato leaves (Solanum tuberosum L.). Agric. Biol. Chem., 53(10), 2835-2837 (1989). . 34. Vernenghi, A., Einhorn, J., Kunesch, G., Malosse, C., Ramiandrasoa, F. and Ravise, A. Proprirtes inhibitrices in vitro de derives oxYgenes d'acides gras polyinsatures elabores chez le Lycopersicttm esculentum Mill. en reaction a l,infection par le Phytophthora parasitica Dast. C. R. Acad. Sc. Paris, t. 301, Serie Ill, 16, 743-748 (1985), (Fr). 35. Kato, T., Yamaguchi, Y., Hirano, T., Yokoyama, T., Uyehara, T., Namai, T., Yamanaka, S. and Harada, N. Unsaturated hydroxy fatty acids. The self defensive substances in rice plant against rice blast disease. Chemistry Letters, 409.-412 (1984). 732 36. 37. 38. 39. 40. Hashidoko, Y., Tahara, S. and Mizutani, J. Antifungal sesquiterpene from damaged Rosa rugosa leaves. Phytochemistry, 28, 425-430 (1989). Piguleviski, G. V. and Kivaleva, V. I. A new sesquiterpene hydrocarbon, daucene. Doklod.y Akad. Nauk. S.S.S.R., 141, 13841385 (1961), IC. A., 56, 14332 (1962)]. Levisalles, J. and Rudler, H. Stereochimie du earotol. Bull. Soc. Chem. France, 8, 2020-2021 (1964), (Fr). Bates, R. B., Green, C. D. and Sneath, T. C. The moleeular structure of daucyl D,L-alaninate hydrobromide. Tetrahedron Letters, 40, 3461-3463 (1969). Holub, M., Samek, Z., Herout, V. and Sorm, F. Constitution of isolaserpitin, deoxodehydrolaserpitin, and laserpitinol. Monatsh. Chem., 98(3), 1138-1157 (1967), [C. A. 67, 88276 (1967)]. Holub, M., Samek, Z., Herout, V. and Sorm, F. Constitution of lasepitin, a sesquiterpenie compound from Laserpitium latifolium root. CoUection Czech. Chem. Commun., 32(2), 591609 (1967), [C. A. 66, 65653 (1967)]. 42. Sriraman, M. C., Nagasampagi, B. A,, Pandey, R.・C. and Dev, S. Studies in sesquiterpenes - XLIX; sesquiterpene 'from Ferula jaeschkeana Vat・ke (Part 1): jaeschkeanadiol - structure, stereochemistry. Tetrahedron, 29, 985-991 (1973). 43. Gonzalez, A. G,, Fraga, B. M., Hernandez, M. G., Luis, J. G., Estevez, R., Baez, J. L. and Rivero, M. Linkiol, a new sesquiterpenes from Ferula linkii. Phytochemistry, 16, 41. 265-267 (1977). - 44. 45. Miski, M., Ulubelen, A., and Mabry, T. J. Six sesquiterpene alcohol esters from Ferula elaeochytris. Ph;ytochemistry, 22, 2231-2233 (1983). Miski, M., Ulubelen, A., Mabry, T. J., Watson, W. H., Viekovic, I. and Holub, M. A new sesquiterpene ester from Ferula tingitana. Tetrahedron, 40, 5197-5201 (1984). 733 46. 47. Miski, M. and Mabry, T. J. Daucane esters from Ferula communis subsp. communis. Phytochemistry, 24, 1735-1741 (1985). Miski, M. and Mabry, T. J. Fercolide, a type of sesquiterpene lactone from Ferula communis subsp. communis and the correct structure of vaginatin. Phytochemistry, 25, 1673-1675 (1986). 48. 49. 50 . 51 . 52. 53 . 54 . 55. 56. Diaz, J. G., Fraga, B. M., Gonzalez, A. G., Gonzalez, P. and Hernandez, M. G. Eight earotane sesquiterpenes from I7erula linkii. Phytochemistry, 23, 2541-2544 (1984). Fraga, B. M., Hernandez, M. G., Diaz, J. G., Gonzalez, A. G. and Gonzalez, P. Carotane sesquiterpenes from Ferula linkii. Phytochemistry, 25, 2883-2886 (1986). Fraga, B. M., Hernandez, M. G. and Diaz, J. G. Carotdiol esters from Ferula linkii. Phytochemistry, 28(6), 1649-1652 (1989). Valle, M. G., Appendino, G., Nano, G. M. and Picei, V. Prenylated coumarins and sesquiterpenoids from Ferula communis. Phytochemistry, 26, 253-256 (1987), Garg, S. N., Agarwal, S. K., Mahajan, V. P. and Rastogi, S. N. Feruginidin and ferugin, two new sesquiterpeno-ids based on the carotane skeleton from Ferula J'aeschkeana. J. Nat. Prod., 50, 253-255 (1987). Garg, S. N. and Agarwal S. K. New sesquiterpenes from Ferula J'aeschkeana rhizomes. J. Nat. Prod., 51(4), 771-774 (1988). Dhillon, R. S., Gautam, V. K., Kalsi, P. S. and Chhabra, B. R. Carota-1,4-B-oxide, a sesquiterpene from Daucus carota. Phytochemistry, 28(2), 639-640 (1989). Lamnaouer, D, Martin, M-T., Molho, D. and Bodo, B. Isolation of daucane esters from FeruZa communis var. brevifolia. Phytochemistry, 28(10), 2711-2716 (1989). Mahmoud, Z., Abdel Salam, N. A., Sarg, T. M. and Bohlmann, F. A earotane derivative and a eudesmanolide from Jnu2a.crithmoides. Phytochemistry, 20(4), 735-738 (1981). 734 57. Wiemer, D. F. and Ales, D. C. Lasidiol angelate: Ant reperent sesquiterpenoid from Lasinantheae frtrticosa. .T. Org. Chem., 46, 5449-5450 (1981). 58. Bohlmann, F., Ludwig, G,, Jakupovic, J., King, R, Tvl. and Robinson, H. Daucanolide and further farnesene deyivatives from Ageratum fastigiatum. Phytochemistry, 22, 983-986 (1983). 59. Huneck, S., Cameron, A. F., Connolly, J. D., McLaren, M and Rycroft, D. S. Hercynolactone, a new carotane sesquiterpenoid from the liverworts Baebiiophozia lycopodioides and B. hatcheri. Crystal structure analysis. Tetrahedron letters, 23(38), 3959-3962 (1982). 60. Tsuda, Y., Kaneda, M., Tada, A., Nitta, K., Yamamoto, Y. and Iitaka, Y. Aspterric acid, a new sesquiterpenoid of the carotane group, a metabolite from Aspergillus terretts IFO-6123. XLray crystal and molecular strueture of its p-bromobenzoate. .J. C. S. Chem. Comm., 160-161 (1978). 61. Personal letter from Prof. G. Rucker in Bonn University in Augst ' 1989. 62. Soucek, M. Biosynthesis of carotol in Daucus carota. A contribution t,o configuration of carotol and daucol. Coll. Czech. Chem. Comm., 29, 2929-2933 (1962), [C. A., 59, 674 (1959)]. 63. Devone, T, K. and Scott, A. I (Ed), "Handbook of Naturally Occurring Compounds, Vol. 2. Terpenoids", pp. 57, (1972), Academic Press, New York and London. 64. Pigulevskii, G. V., Motskus, D. V. and Rodina, L. L. Essential oil from the seed of wild carrot growing in mid-Asia. Zh. Prilcl. Khim., 35, 1143 (1962) [C. A. 57, 7396 (1962)]. . I. 65. Gottlieb, O. R. and Magalhaes, M. T. Essential oil of the wood of Vanillosmopsis erythropappa. Perfumer.v Essent. Oil Record, 711-714 (1958), [C. A., 53, 10667 (1958)]. 735 66. Hashidoko, Y., Tahara, S. and Mizutani, J. Carota-1,4dienaldehyde as possible precursor of "rugosal A". Phytochemistry, 29, in press. 67. Masada, Y. Section 43: Rose Oil, pp. 188-192 in "Analysis of Essential Oils by Gas Chromatograph and Mass Spectrometry", Hirokawa Publishing Company, Inc., Tokyo (1975). 68. Demole, E., Enggist, P., Sauberli, U., Stoll, M. and sz. Kovats, E. Structure et, synthesse de la damascenone (trimethyl-2,6,6trans-crotonoyl-1-cyclohexadiene-1,3), constituant odorant de l'essence de rose bulgare (Rosa damascena Mill). Helv. Chem. Acta.,' 53, 541-551 (1970), (Fr). 69. Author isolated froin Rosa woodsii leaves a bisabolane aldehyde whose strueture was elueidated as 4R,8S-bisabolol-7-keto derivative in direct comparisons of NtvlRs and optical rotation of the isolate with those of authentic derivative RL-116-LAH-MO (19c) from bisaborosaol A. 70. Brown, A. E. and Swinburne, T. R. Benzoic aeid, an antifungal compound formed in Bramley's seedling apple fruits following infection by Nectria gaUigena. Physi'ol. Plant Pathol, 1, 46971. Watanabe, K., Ishiguri, Y., Nonaka, F. and Morita, A. Isolation and identification of aeuparin as a phytoalexin from ' 46(2), 567-568 Eriobotrya japonica L. Agric. Biol. Cheni., (1982). 72. Kemp, M. S. and Burden, R. S. Isolation and structure determination of y-pyrufuran, a third induced ant.ifungal dibenzofuran from the wood of Pyrus communis L. infected with Chondrostereum purpureum (Pers. ex Fr.) Pouzar. J. Cheni. Soc. Perkin Trans.' I, 1441-1443 (1984). 73. Green, M. B. and Hedin, P. A. (Ed.), Natural tt Resistance of Plant to Pests. Roles of Allelochemicals. pp. 29-30, (1986), ACS' Symposium Series 296, American Chemical Society, Wqshington DC. 736 74. Saakov, S. G., Senehenko, G. G. and Kozhina, I. S. Composition of the essential oil from Rosa rugosa Thunb. grown in Leningrad. Rastit. Resur., 18(3), 388--390 (1982), (Russ), [C. A. 97, 107111 (1982)]. 75. Tronchet, M. J. Effects de talures provoquees sur les flavonoides de Paeonia suffruticosa Andr. de Rosa rugosa Thunb. et de Rosa rugosa Mill. Botanique, 15, 53-58 (1974). 76. Young, HS., ParK, JC. and Choi, JS. Triterpenoid glycosides from Rosa rugosa. Arch. Pharmcal Res, 10(4), 219-222 (1987), [C. A., 108, 218989 (1987)]. 77. 0kuda, T., Hatano, T., Yazaki, K. and Ogawa, N. Rugosin A, B, C and praecoxin A, tannins having a valoneoyl group. Chem. Pharm. Bull., 30, 4230-4233 (1982). 78. Hashidoko, Y. Master Thesis, Department of Agricultural Chemistry, Faculty of Agriculture, Hokkaido University, March 1987. 79. Nishizawa, M., Hori, H., Chonan, T., Anetai, M. and Kaneshima, H. Vitamin eontents in edible plant in Hokkaido. Report of the Hokkaido Institute of Public Health, 36, 58-62 (1986), (Jpn), [C. A., 106, 154893 (1987)]. ・ 80. Young, HS., Park, JC. and Choi, JS. Isolation of (+)-catechin ' from the roots of Rosa rugosa. Saengyak Hakholchi, 18(3), 177-179 (1987) (Chi), [C. A., 108, 81926 (1988)]. 81. Mashchenko, N. E., Mash, N. E., Kintya, P. K., Semina, S. N., Balashova, N. N. and Shvets, S. A. The investigation of rose ' leaf resistance to fungus didease. 'F. E. C. S. Int. Conf. Chem. Biotechnol. Biol. Act. Nat. P.rod. [Proc. 3] 3rd, 1985 ' (pub.), 5, 161-165 (1987), [C. A., 109, 187501 (1988)]. 82. Dewolf., Jr. G. P. (Ed.), "Taylor's Guide t・o Rose", pp. 299, Houghton Mifflin Company, Bost,on (1976). 83. Prof. A. Ogoshi and Dr. J. L. Inghail} pointed out this faet to Prof. J. Mizutani and Dr. S. Tahara, in their personal contact. 737 84. Matthews, J. S. Color reagent for steroides in thin-layer chromatography. Biocheip. Biophys. Acta, 69, 163-165 (1963). 85. Knappe, E. and Peteri, D. Z. Anal. Chem., 190, 386' (1962). 86. Mehlitz, A., Gierschener, K. and Minas, T. Chemiker-Ztg., 87, 573 (1963). 87. Homans, A. L. and Fuchs, A. Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substance. J. Chromatog., 51, 327-329 (1970). 88. American Phytopathological Society and Society of Nemat,ologists. "Met,hods for Evaluating Plant, Fungicides and Bactericides", American Phytopathological Society, 1978. 89. Hashidoko, Y., Tahara, S and Mizutani, J., Novel bisabolane alchohols from Rosa rugosa leaves. Program paper, pp. 4 in Annual Meeting of The Agricultural Chemical Society of Japan, Hokkaido Branch, Sapporo 1989. 90. Tahara, S., Nakahara, S., Mizutani, J. and Ingham, J. L. Fungal transformation of the antifungal isoflavone luteone. Agric. ' Biol. Chem., 48(6), 1471-1477 (1984).' 91. Silverstein, R. M., Bassler, G. C. and Morrill, T. C. 3: Infrared Spectrometry. Charaeterist.ic group frequencies of organtc molecules, pp. 105-135 in "Spectroscopic Identification of Organic Compounds". Fourth Edition. (1981), John Wiley & Sons, Inc., New York. 92. Jackman, L. M. and Sternhell, S. "Application of NMR Speetroscopy in Organic Chemistry", 2 Aufl., pp. 281. Pergamon ' Press, Oxford (1969). 93. Silverstein, R. M., Bassler, G. C. and Morrill, T. C. 4: Proton Magnetic Resonance Spectrometry. pp. 181-248 in "Spectroscopic Identification of Organic Compounds". Fourth Edit,ion. (1981), John Wiley & Sons, Inc., New York. 94. Yukawa, Y. and Tto, S. (Ed.). "Spectral Akas of Terpenes and the Related Compounds", pp. 176-179, Hirokawa Publishing Company, Ine., Tokyo (1973). 738 95. Krebs, K. G., Heusser, D., and Wimmer, H. Thin Layer Chromatography, A Laboratory Hand Book 2nd Ed, pp. 881, [Stahli E. (Ed.), Ashworth, M. R. F. translated], Springer, Berlin (1968). 96. Silverstein, R. M., Bassler, G. C. and Morrill, T. C. Section s: 13c-NMR spectrometry, pp. 272-273 in "Spect・roscopic Identification of Organie Compounds". Fourth Edition. (1981), John Wiley & Sons, Inc., New York. 97. Bretmaier, E, and voelter, w. "13c-NMR spectroscopy", 2nd Ed. pp. 134. Verlag Chemie, Weinhelm (1978). ・ 98. Bohlmann, F. and Zeisberg, R. 13 C-NMR-Spektren von monoterpenen Organic Magnetic Resonance, 7, 426-432 (1975), (Ger). 99. Jakupovic, J., Schuster, A., Bohlmann, F. and Dillon, M. O. Guaianolides and other eonstituents from Liabum floribundum. Phytochemistry, 27, 1771-1775 (1988). 100. Itokawa, H., Watanabe, K., Morita, H., Mihashi, S. and Iitaka, Y. A novel sesquiterpene peroxide from Alpinia japonica (Thunb.) Miq. Chem. Pharm. Bull., 33(5), 2023-2027 (1985). 101. Kaneko, C., Sugimoto, A, and Tanaka, S. A facile one step synthesis of cis-2-cyclopentene- and cis-2-cyclohexene-1,4diols from the corresponding cyclodienes. Synthesis, 876-877 102, Simpson, W. T. Two simple amidinium vinylogs. J. Am. Chem. Soc., 71, 754-755 (1949). 103. Silverstein, R. M., Bassler, G. C. and Morrill, T. C. Section 6: Ultraviolet spectrometry, pp. 305-334 in "Spectroscopic Identification of Organie Compounds". Fourth Edition. (1981), John Wiley & Sons, Inc., New York. 104. Corey, E. J., Gilman, N. W. and Ganem, B. E. New methods for the oxidation of aldehydes to carboxylie acids and esters. J. Am. Chem. Soc., 90, 5616-517 (1968). 739 Harada, N. Determination of absolute configuration of lowmolecular and organic compound by CD exciton chirality method. Kagaku To Seibutsu, 22(4), 261-338 (1984), (Jpn, title trans1ated). 106. Harada, N., Iwabuchi, J., Yokota, Y. and Nakanishi, K. A chiroptical Method for determining the absolute configuration of allylic alcohols. J. An2. Chem. Soc., 103, 5590-5591 (1981). 107. Mills, J. A. Correlation between monocyclic and polycyclie unsaturated cornpounds from molecular rotation differences. J. Chem. Soc., 4976-4985 (1952). 108 Brewster, J. H. Some applications of the conformational dissymmetry rule. Tetrahedron, 13, 106-122 (1961). 109 Harada, N., Ohashi, M. and Nakanishi, K. The benzoate sector rule, a method for determining the absolute configuration of cyclic secondary alcohols. J. Am. Chem. Soc., 90, 7349-7351 105. . . (1968). Hashidoko, Y., Iwaya, N., Tahara, S. and Mizutani, J. Absolute configuration of rugosal A, an. endoperoxy carotanoid sesquiterpene. Agric. Biol. Chem., 53(9), 2505-2507 (1989). 111 Yamasaki, M., Total synthesis of the sesquiterpene (-)-daucene. J. C. S. Chem. Comm., 606-607 (1972). 112 De Broissia, H., Levisalles, J. and Rudler, H. Total synthesis of the sesquiterpene (+)-daucene, (+)-carotol, and (-)-daueol. J. C. S. Chem. Comm., 855 (1972). ・ 113. Bassey, lvl., Bunton, C. A., Davies, A. G., Lewis, T. A. and Liewellyn, D. R. Organic Peroxides, Part V. Isotopic tracer studies on the formation and deeomposition of organic peroxides. J. Chem. Soc., 2471-2475 (1955). 114. Rigaudy, J. and Breliere, C. Transformations acido-catalysees des photoxydes meso des acenes. I. Les photooxydes meso du diphenyl-9,10 anthraeene et du dimethyl-1,4 diphenyl-9,10 anthracene. Bull. Soc. Chim. Fr., 4,・ 1390-1399 (1972), (Fr). 115. Nicolaou, K. C., Gasie, G. P. and Barnette, W. E. Synthesis and 110. . . 740 . Nicolaou, K. C., Gasie, G. P. and Barnette, W. E. Synthesis and biological properties of prostaglandin endoperoxides, thromboxanes and prostacyclins. Angevf. CheJn. Int. Ed. Eng., 17, 293-378 (1978). 116 . Hamberg, M., Svensson, J. and Samuelsson, B. Thoromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Nat. Acad. Sci. USA, 72(8), 115 2994-2998 (1975). , 117 . Salomon, R. G., Saloinom, M. F. and Coughlin, D. J. Prostaglandin endoperoxides. 6. A polar transltion state in the termal rearrangement of 2,3-dioxabicyclo[2.2.1]heptane. J. Am. Chem. Soc., 100(2), 660-662 (1978). 118 . Wilson, R. M. and Rekers, J. W. Decomposition of bicyclic endoperoxides: an isomorphous synthesis of frontalin via 1,5dimethyl-6,7-dioxabicyelo[3.2.1]octane. J. Am. Chem. Soe., 103, 206-207 (1981). 119 . Kornblum, N. and DeLaMare, H. E. The base catalyzed decomposition of a di-alkyl peroxide. Jr. Am. Chem. Soc., 73, 880-881 (1951). 120 . Allinger, N. L. Conformational analysis. 130. MM2. a hydrocarbon force field utilizing Vl and V2 torsional terms. .T. Am・ Chem. Soc., 99(25), 8127-8134 (1977). 121 . Wistuba, E. and Ruchardt, C. Migration of aptitude of cyclic and polycycllc bridgehead group in the Criegee rearrangement. Tetrahedron Letters, 22, 3389-3392 (1981). 122 . Szmant, H. H. and Halpern, A. Ascaridole in Oil of Chenopodium. tt III. The characterization of asearidol. J. Am. Chem. Soc., 71, 1133-1134 (1949). 123 . Porter, N. A., Weber, B. A., Weenen, H. and Khan, J. A. Autoxidation of polyunsaturated lipids: factors controlling the stereochemistry of product hydroperoxides. J. Am. Chem. Soc., 102, 5597-5601 (1980). 741 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. Porter, N. A. and Wujek, D. G. Autoxidation of polyunsaturated fatty acids, an expanded mechanistic study. .T. Am. Chem. Soc・, 106, 2626-2629 (1984). Bielski, B. H. J., Arud.t, R. L. and Sutherland, M. W. A study of the reaetivity of H202/02' with unsaturated fatty acids. J. Biol. Chem., 258, 4759-4761 (1983). Frimer, A. A. Ch. 7. Singlet oxygen in peroxide chemistry, pp. 201-234 in Patai, S. (Ed.), "The Chemistry of Peroxide". (1983), John Wiley & Sons, Chichester. Morita, H., Tomioka, N., Iitaka, Y. and Itokawa, H. The formation of cyclic peroxide from guaia-6,9-diene as a model for hanalpinol biosynthesis. Chem. Pharm. Bull., 36(8), 29842989 (1988). Iwaya, N. Master Thesis, pp. 71-102. Department of Agricultural Cheinistry, Faculty of Agrieulture, Hokkaido University, March 1989, ' Haywood-Farmar, J., Friedlander, B. T. and Hammond, L. M. Synthesis of tricyclo[4,4,1,1] dodee-3-en-11-one. J. Org. Chem., 38, 3145-3149 (1973). Koseki, K., Saito, F., Kawashima, N. and Noma, M. New ce]nbranoic diterpene with IAA inhibitory activity for Nicotiana tabacum. Agric. Biol. Chem., l917-1918 (1986). Jakupovie, J., Chau-Thi, T. V., Warning, U., Bohlman, F. and Greger, H. 11or,13-dihydroguaianolides from Artemisia douglasiana and a thiophene acetylene from A. schmidtiana. Phytochemistry, 25, 1663-1667 (1986). Yamainoto, S. Lipoxygenases. pp. 111-117 in Nakano, N., Asada, K. and Ohyagi, Y. (Ed.), "Active Oxygen - Molecular Mechanism of Its Production, Scavenging and Effect in Organisms", (1988), Kyoritsu Shuppan, Tokyo, (Jpn). Richardson, W. H. Ch. 5. Acidity, hydrogen bonding and complex formation, pp. 129-160 in Patai, S. (Ed.), "The Chgmistry of Peroxide", (1983), John Wiley & Sons, Chichester. 742 . Pryor, W. A. Fundations of MDERN Organic Chemistry Sr. Introduction to Free radical Chemistry. (1966), Prentice-Hall Inc., Englewood Cliffs, U.S.A., translated by Minato, H., (Jpn), Tokyo Kagaku Dojin (1968). 135 . Kovacs, M., Opauszky, I., Klincsek, P. and Podani, J. The leaves of city tree as a accumulation indicators. Tasks Veg. Sci., 7(Monit. Air Pollute. Plants), 149-153 (1982), [C. A., 100, 90536 (1984)], 136 . Adesanya, S. A., O'Neill, M. J. and Roberts, M. F. Induced and eonstitutive isoflavonoids in Phaseolus mungo L. Leguminosae. Z. Naturforsch., 39c, 888-893 (1984). 137 . Miyazawa, M., Funatsu, Y. and Kameoka, H. Bioconversion of bisabolol. Program paper, pp. 118-120, of 33th T. E. A. C. in Sendai, 1989, 138 , Harwood, L. M. and Julia, M. Les sesquiterpenes bisabolaniques par prenylations aeides. Tetrahedron letters, 21 1743-1746 (1980), (Fr). 139 . Tut,ihasi, R. and Hanazawa, T. Ketonic aeid isolated from sulfite FurpeRtine oil. J. Chem. Soc. Japan, 61, 1041-1047 134 (i940), [C. A., 37, 258 (1943)]. ` 140 . Bowers, W. S., Fales, H. M., Thompson, M. J. and Uebel, E. C. Juvenile hormone: Identifieation o£ an active compound from balsam fir. Science, 154, 1020-1021 (1966). 141 . Cerny, V., Dolejs, L., Labler, L. and Sorm, F. and Slama, K. Dehydrojuvabione - a new compound with juvenile hormone activity from barsam fir. Tetrahedron Letters, 1053-1057 (1967). 142 . Hamasaki, T., Sato, Y. and Hatsuda, Y. Isolation of new metabolites from AspergilJus sydowi and structure of sydowic acid. Agric. Biol. Chem., 39(12), 2337-2340 (1975). 143 . Bohlmann, F., Grenz, M., Gupta, R. K., Dhar, A. K., Ahmed, M., King, R. M. and Robinson, H. Eudesmane derivatives. from Verbesina species. Phytochemistry, 19, 2391-2397 (1980). 743 144. Matos, M. E. O., De Sousa, M. P., Matos, F. J. A. and Craveiro, A. A. Sesquiterpenes from VanilJosmopsis Arborea. J. Nat. Products, 51, 780-782 (1988). 145. Zdero, C., Bohlmann, F., Solornom, J. C., King, R. M. and 146. 147. 148. 149. 150. 151. 152. 153. Robinson, H. Ent-clerodanes and other constituents from bolivian Bacchais species. Ph.vtochemistry, 28(2), 531-542 (1989). Blount, J. F,, Pawson, B. A. and Sauey, G. 2YL-ray structure determination of 4R, 8R-p-menth-1-en-9-ol p-iodobenzoate. Revision of the absolute stereochemistry of natural (+)juvabione. Chem. Comm., 715 (1969). Iwashita, T., Kusumi, T. and Kakisawa, H. Synthesis and stereochemistry of or-bisabolol. Chemistry Letters, 947-950 (1979). Bohlmann, F., Zdero, C. and Schoeneweiss, S. Naturally occurring terpene derivatives, 71. The constituents of Stevia species. Chem. Ber., 109(10), 3366-3370 (1976), (Ger), [C. A. 86, 27661 (i977)]. . Compadre, C. M., Pezzuto, J. M, Kinghorn, A. D. and Kamath, S. K. Hernandulcin: an intensely sweet compound discovered by review of aneient literature. Science, 227, 417-419 (1985). Mori, K. and Kato, M. Synthesis and absolute configuration of (+)-hernandulcin, a new sesquiterpene with intensely sweet taste. Tetrahedron letters, 27(8), 981-982 (1986). David, L. and Veschambre, H. Oxidative cyclization of linalol by various microorganisms. Agric. Biol. Chem., 49(5), 14871488 (1984). Flaskamp, E., Nonnenmacher, G., Zimmerman, G. and Issac, O. Z. Naturforsh., 36b, 1023-1030 (1981). Jaensch, M., Jakupovic, J., King, R. M. and Robinson, H. Pyrones and other constituent.s from PodoZepis species. Phytochemistry, 28(12), 3497-3501 (1989). 744 ' 154 . Zdero, C. and Bohlmann, F. Sesquiterpene lactones from Oldenburgia arbuscula and Pleiotaxis rugosa. Phytochemistry, 28(12), 3345-3346 (1989). ' 155 ttand . Tahara, S., Ingham, J. L., Nakahara, S., Mizutani, J. Harborne, J. B. Fungitoxic dihydrofurnoisoflavones and related compounds in white lupin Lupinus albus. Phytochemistry, 23, 1889-1900 (1984). ' 156 . Kitagawa, I., Yoshioka, N., Kamba, C., Yoshikawa, M. and ' Hamamoto, Y., Four new bisabolene-type aminosesquiterpenes from an okinawan marine sponge, TheonelZa sp. (Theonellidae). Chem. Pharm. Bull., 35(2), 928-931 (1987). 157 . Kowalewski, J. Calculation of nuclear spin-spin coupling constants, pp. 1-78 (1977) in Emsley, J. W. and Sutcliffe, L. H (Ed.), "Progress in NMR spectroscopy" Vol II, Pergamon Press, 158 . Naegeli, P. and Kaizer, R. A new synthetic approach to the acorane-, daucene- and cedrane skeleton. Tetrahedron Letters, 20, 2013-2016 (1972). 159 . Zalkow, L. H., Clower, Jr., M. G., Gordon M., Smith, J., VanDerveer, D. and Bertrand, J. A. Formie acid-catalyzed rearrangement of carotol. XLray crystal strueture of the piodobenzoate of one of the aleohols formed. J. C..S. Chem. Comm., 374-375 (1976). 160 . Demarco, P. V., Farkas, E., Doddrell, D., Mylari, L. and Wenkert, E. Pyridine induced solvent shifts in the nuclear magnetic resonance spectra of hydroxylic compounds. J. Am. Chem. Soc., 90, 5480-5486 (1968). ' 161 . Kaiser, R. and Naegeli, P. Biogenetically significant components in vetirer oil. Tetrahedron Letters, 20, 2009-2012 (1972). 162 . Fukushi, Y. Master Thesis, Department of Agricultural Chemistry, Faculty of Agriculture, Hokkaido University, March 1983. 745 163 . Kawabata, J., Fukushi, Y., Tahara, T. and Mizutani, J. Structures of novel sesquiterpene alcohols from Chloranthus japonicus (Chloranthaceae). Agric. Biol. Chem., 48(3), 713-717 (1984). 164 . Komiya, T., Naruse, Y. and Oshio, H. Studies on "Inchinko" II. St,udies on the compounds related to capillarisin and flavonoids. Yakugaku Zasshi, 96(7), 855-862 (1976), (Jpn, abstruct Eng). 165 . Heywood, V. H., Moore, D. M. and Stearn Hon, W. T. (Ed.), "Flowering Plants on the World", pp. 13 (1978), Oxford University Press, Oxford. 746