Comments
Description
Transcript
モルフォ蝶
2010/1/28 宇宙理論セミナー Structural color 家 篤史 2010年1月27日水曜日 1 2006年6月8日 光の散乱と青空 2010年1月27日水曜日 2 2007年1月31日 自然と偏光 青空の観察 (2/2) 荒川区南千住 隅田川土手にて 1月27日15:50頃 N W 2010年1月27日水曜日 E 3 そして今回、 「自然と物理」シリーズ第3回 生物の色彩と光学効果 ∼モルフォ蝶の羽はなぜ青い?∼ 2010年1月27日水曜日 4 紹介論文 Structural color of Morpho butterflies G.S. Smith Am. J. Phys. 77 (2009) 1010 2010年1月27日水曜日 5 モルフォ蝶 Wikipediaより 生息地:北アメリカ南部∼南アメリカ 種類:80種ほど 分類:タテハチョウ科・モルフォチョウ亜科・ モルフォチョウ族・モルフォチョウ属 特長:体にくらべて非常に大きな翅をもち、表面は金属光 沢をもつ。この光沢はほとんどの種類で青色に発色 する(鮮やかな翅の色を持つのは雄)。 2010年1月27日水曜日 6 Morpho Rhetenor 表(背中) 裏(腹) http://www.pref.mie.jp/Haku/Hp/Osusume/morho%20rhetenor.htm 2010年1月27日水曜日 7 様々なモルフォ蝶(雄) 1 (2008) 076401 e 8. Typical male Morpho butterflies (Courtesy of The Museum of Nature and Human Activities, Hyogo, Ja S. Kinoshita, et al. Rep. Prog. Phys. 71 (2008) 076401 2010年1月27日水曜日 8 モルフォ蝶の翅の色(1) 鮮やかな青色に隠された秘密 100 !m 100 !m トルエンに浸すと(翅の左部分)、 • モルフォ蝶の翅から青色が消える 5 cm Direction of Ridge 5 cm Direction of Ridge (a) モルフォ蝶 (a) (a) (a) • ベニイロタテハ蝶の翅の色は Ridges Ridges 同じまま Lamellae Lamellae 22 cm cm (b) (b) ベニイロタテハ蝶 (学名は、Cymothoe sangaris。中央アフリカに生息) Fig. 1. !a" Photograph of the dorsal side of a male Morpho rhetenor butterFig. !a"Photograph Photograph of the dorsal of a male Morpho rhetenor butterfly.1.!b" of the dorsal side side of a male Cymothoe sangaris butterfly. 2010年1月27日水曜日 fly.For !b"both Photograph of thethedorsal of aright-hand male Cymothoe butterfly. photographs, wingsside on the side aresangaris in their natural 9 モルフォ蝶の翅の色(2) evaluated to obtain an expression for the scattered light. Numerical results obtained with this expression are presented in Sec. IV,an and theyforshow the observed evaluated to obtain expression the scattered light. Nu- blue color and iridesmerical results obtained with thisfor expression presented in In Sec. V a simplified cence observed these are butterflies. Sec. IV, and they show observed blueiscolor and to iridesversion ofthethe model used provide insight into the cence observed for these butterflies. In Sec. V a simplified thattoproduce theseinto effects. version ofmechanisms the model is used provide insight the mechanisms that produce these effects. II.FOR MODEL FOR A RIDGE II. MODEL A RIDGE 漂白すると、 (a) モルフォ蝶の翅 (a) Two main features stand out in the transmission and scanmainoffeatures standtheout in the ning electron Two micrographs Morpho scales: nearly par- transmission and scanelectron of Morpho allel, long,ning thin ridges, and micrographs the regularly spaced lamellae scales: the nearly par25 within a ridge. al. ridges, deduced from allel,Kinoshita long, etthin and their the mearegularly spaced lamellae surements that the ridges, although similar, are offset 25 ranwithinanda this ridge. Kinoshita from their meadomly in height, variation is sufficientettoal. make deduced the collective surements scattering fromthat the ridges incoherent. This inco- similar, are offset ranthe ridges, although herence implies thatin theheight, scatteringand from this a scale can be chardomly variation is sufficient to make the acterized by the scattering from a single ridge. scattering the ridges We will collective adopt the simple model for from a ridge shown in Fig. incoherent. This inco5. It contains the major featuresthat for scattering commonfrom to herence implies the scattering a scale can be charmany Morpho butterflies. this scattering model there are N identical acterized byInthe from a single ridge. lamellae, each a slab of width w and height h. The lamellae will the g.simple model for a ridge shown in Fig. are separated We by air gapsadopt of height In the longitudinal direction !y", lamellae are the inclined at thefeatures angle ! tofor the scattering common to 5. the It contains major plane of the scale, which makes the structure periodic this many Morpho butterflies. In this inmodel there are N identical direction with period l = !h + g" / sin !. A unit cell of the perilamellae, each a frame slab !dashed of width odic structure is enclosed by the lines"winand Fig. height h. The lamellae areassume separated by air gaps of height 5!a". We will that the randomness also applies in the g. In the longitudinal longitudinal direction so!y", that the the scattering from can at the angle ! to the direction lamellae area ridge inclined be characterized by the scattering from a single unit cell. The plane ofsections the scale, which makes theFig.structure periodic in this andN!b" slabs whose cross are shown in dark gray in 5!a" are thedirection structures that weperiod will analyze in + theg"remainder with l = !h / sin !. A unit cell of the peri-10 • モルフォ蝶の翅は青色のまま • ベニイロタテハ蝶の翅は脱色 して色あせる (b) 3. Photographs of wings after bleaching: !a" Morpho rhetenor and !b" mothoe sangaris. (b) ベニイロタテハ蝶の翅 ht by the Morpho butterfly scale in a way that is approprifor use in courses on electromagnetism and optics. This alysis the after majorbleaching: features of !a" the Morpho scatteredrhetenor light. In graphspredicts of wings me ways, it combines components of the earlier apngaris. 2010年1月27日水曜日 26 青い翅の秘密 • トルエン:翅の表皮とほぼ同じ屈折率(n~1.56) index-matching liquid • 漂白しても色あせない 化学的発色(色素沈着)によるものではない モルフォ蝶の翅の色は、表皮の微細構造から来る 光学特性に起因している(散乱・干渉) ⇨ 構造色 (structural color) 2010年1月27日水曜日 11 構造色研究の歴史 1665 Hooke 光学顕微鏡による孔雀や鴨の羽の観察 1917 Rayleigh 電磁気理論にもとづく構造発色の研究 1924-27 Mason 色彩と微視的構造の関係(干渉の影響) モルフォ蝶の翅の表面構造を予言 電子顕微鏡の開発(1931年)により、構造発色の 物理的メカニズムが徐々に解明 2010年1月27日水曜日 12 表面構造 鱗粉 光学顕微鏡で拡大 100 !m 71 (2008) 076401 Phys. 71 (2008) 076401 (a) 5 cm Direction of Ridge (c) (c) S Kinoshita et et al al (e)(e) (a) Direction of Ridge (a) Ridgeの電顕写真 Ridges 2010年1月27日水曜日 (b) (d)(d) (f)(f) 13 表面構造のまとめ Direction of Ridge (a) 模式図 Ridges ラメラ(lamellae)と呼ばれる膜が何 層にも積み重なった棚構造(ridges) Lamellae (注・実際はもっと不規則な構造) モルフォ蝶の翅 幾層ものラメラで散乱(屈折・ 反射)された光が s Supporting Structure Plane of Scale 1 !m 2010年1月27日水曜日 多層膜干渉 を起こした結果、青色に見える 14 多層膜干渉 S Kinoshita et al 多層膜からの散乱光がお互い干渉する ことで、特徴的な光学特性(角度依存 性・波長依存性)が現れる gure 3. Schematic illustration of multilayer interference. c.f. 薄膜干渉 hys. 71 (2008) 076401 Reflectivity S Kinoshita et al m should be satisfied because of the restriction of the ess. In particular, the relations with m = 1 and 1m" = 1 (a) (c) d=0.1µm pond to the lowest-order case, where the optical path 薄膜の表裏から反射された光が干渉すること 0.8 s, defined as the length multiplied by the refractive index, 67.5° and B layers are equal to each other. Land called0.6 this case で、波長により強め合ったり弱め合ったりする eal multilayer [25]. On the other hand, if the thickness of 0.4 45° layer does not satisfy the soap-bubble relation, while the 22.5° 0.2 f the A and B layers satisfies equation (5), the reflection at 0° –B interface works destructively and the peak reflectivity 2010年1月27日水曜日 0.1 例: CD、シャボン玉 1 15 Unit Cell Lamellae Lamellae 1 2 3 g h Unit Cell h x g 1 2 3 モデル i ETM Ai N モルフォ蝶の構造発色を理解するモデル w s N w s Effecd Medi l dn • 鱗粉表面に対して鉛直に光が入射、ridge中の各ラメラで散乱 l Plane of Scale (a) !!rc −Cuti1 (比誘電率 ) !rm = 1 + • 各ラメラは鱗粉表面に対して傾斜角 γ で等間隔に整列 !h + g Plane of Scale (a) h Fig. 6. Mo Effec the ridge. (幅 w, 長さ l, 厚さ h, 間隔 g Medi ) ! Lamellae i ETE Incident Plane Wave The semi-infinite lay x h g Fig. 6. Model used for dis est tive permittivity. We Incident large x E the ridge. E Wave region, t Plane # P param with effective E E! !r! E ! " r z ties that exist in the n y x ylarge distance from t Air lar with and region, this field is g O am unequal Top Lamella P v Effective # lae," etc. These irreg − j !# Medium ! E !r!" = e d r " in which 4 $ r z are correlated multi = rr̂ loca y k of!" the− l1 mc therefore ignore mu = lamellae ! O Top Lamella 4$r # Cuticle h 各ラメラからの散乱光の総和を計算 field within the cuti E! !r! uETMi Unit Cell i i TE 1 2 3 TE i i sr TM TM N 0 sr w s l 2 0 鱗粉表面 Plane of Scale 2010年1月27日水曜日 n rc sr cm 16 Orientation of the ridge with respect to the coordinate system !x , y , z". The large distancefrom from the ridge,ininthe theFraunhofer Fraunhoferororfar-zo far-z x scattered field islarge to bedistance computed at point P.ridge, the x cmfollowing 30,31 large distance fromdistance the ridge, from inregion, the Fraunhofer orin far-zone large thethis ridge, the Fraunhofer or far-zone 30,31 field is given by the integral: III. ANALYSIS OF THE SCATTE 30,31 region, this field is given by the following integral: 30,31 region,#thisregion, field is given by the following integral: Effective P field this is given by the following integral: $$$ $$ Radiation formula $ $$ $$ # the ridge, in thePFraunhofer or far-zone Pe distance from w 30,31 − j ! # Medium P 0 The incident light produces a polar on, this field is given−byj !the following integral: ! sr −jk r jk0r̂·r !!dV − j ! # # ! 0 0 0 E !r " = e !1 − r̂r̂·" J !r "e sr −jk r jk r̂·r sr −jk r jk r̂·r ! ! ! ! OF THE !dVe! 0 !1 − r̂r̂·" LIGHT ! !r!" = III. !!b"!r 0 !1 − r̂r̂·" E 0 SCATTERED b!!"e 0 !!dV! ! x ! ! E eANALYSIS J "e ! r ! " !r = J !r b − j!#0 V−jk r 4$ 4$ r unit volume" P r$!r sr " − j !# ! V 4 jk r̂·r ! for the bound cha per r ! 0 !1 − r̂r̂·" 0V !dV 0 sr −jk r jk r̂·r E !r " = e J !r "e ! ! ! ! ! ! b !1 − r̂r̂·" J! b!r!!"e 0 light dV! produces a polarization rE! !r!" = 4$r e 0Fig. The incident !dipole moment 2can 2 6. Model used 4 $ r be expressed as an equivalent vo for estimating the electric field within the nth lamella of V V y 2 ! " − 1" k ! " − 1" k rc fi 0 rc 0"jk0r̂·r− −jk0r !!dV −jk r jk r̂·r y per unit ! ! 1" k ! ! ! 0 0 ! rc = e !1 − r̂r̂·" E !r "e , ! ! ! 0 bound charge = e − r̂r̂·" E !r "e −jk r !1of jk0r̂·r!! dV! ! ! for the the lamellae that volume" P 2 the ridge. ! 0 入射光がラメラ部に当たると分極を起こす = e !1 − r̂r̂·" E !r "e dV! ,u ! ! !"rc − 1" −jk r 4$r k0O 2 V 4 $ r jk r̂·r ! ! ! ! ! O ! !r!!!""e 0− as V = j ! P = j ! " ! " −! 1"E , J = e 0 !1 − r̂r̂·" E dV!an , equivalent 4 $ r 1" k can be expressed volume current density, b 0 rc V rc 0 −jk r jk r̂·r ! 4$r s =V e 0 !1 − r̂r̂·"!4" E! !r!!"e 0 dV! , 電流 $$ $$ $$ # $$$$ ! c ! b = j! P ! 4=$jr!"0!"!4" ! V " = n = 2.43− j0.19 is the in which − 1"E , !3" J ; rc the lamellae, r! rc in which r!! locates the source point within (分極電場の変動) n locates the source point within the lamella in which r ! ! the the source point within the lamellae, r which r!!=locates ! rr̂ locates field point P in Fig. 5!b", and V is the volume script r" permittivity offar-zone cuticle, and !4" the source point relative within the lamellae in which r!ridge, ! locates # large distance from the in the Fraunhofer or " = n = 2.43− j0.19 is the complex !subin which 29V is the vold locates of the the field lamellae. point P in Fig. 5!b", and thelocates volume rcV =isrr̂ the field point P in Fig. 5!b", and After introducing the dimensions of the 30,31 = rr̂islocates the field point P in Fig. 5!b", and V is the volum This cur field within the lamellae. region, this field given by the following integral: he lamellae. After introducing the dimensions of the ! この分極電場をもとに散乱光が作られる: lamellae and the appropriate coordinates, Eq. !4" becomes of the lamellae. After introducing the dimensions of t is the total electric script r" permittivity of cuticle, and E of the lamellae. After introducing the dimensions of locates the source point within the lamellae, r in which r !! Eq. !4" becomes 29tered electromagnetic field that !is thet ellae and the coordinates, P appropriatefield lamellae andthe theappropriate appropriate coordinates, Eq.!4" !4"become becomr This current produces the scatwithin the lamellae. 2 lamellae and coordinates, Eq. !"rc − 1" −jk the krr̂ = locates field point P in Fig. 5!b", and V is the volume 2 0 # sr r− j ! ! 0 ! " − 1" k 十分遠方で 0 rc !r e sr electromagnetic −jk0rfield2 that is the!light we jk0r̂·r !" e=−jk0r tered !!dV u observe. At a ! ! sr!r!" = 0 E E E !r " = e !1 − r̂r̂·" J !r "e ! ! ! ! 4$r lamellae. After introducing b dimensions of the the of No. the11, N 2k01013 ! " − 1" r 成り立つ表式 4$r Am. J. Phys., Vol. 77, rc sr −jk r ! " − 1" k 4$r ! Esr! !r!" = 0 rc −jk eV0r0 N $ $ $$ $$ $ $ ! $ $ %%$$ $$ $$ $ $ ! %$ w/2 x2E !r lamellae coordinates, Eq. !4" becomes e !" = 0 x2 and 0the appropriate 4 $ r 1013 Am. Phys., 77, ! 4!r!$ %% !1 −Vol. r̂r̂·"E "r 11, November 2009ラメラ中の電場 2 !J. !No. )rse % % !1 −kr̂r̂·"E !r " ! ! ! " − 1" N rc 0 n=1 z =−w/2 0! w/2 y =−l x =x x2 jk0r̂·r!! 2 ! ! ! n=1 z =−w/2 y =−l x =x of ! ! ! 1 = k ! " − 11"e −jk0r!1 N − r̂r̂·" 0 E w/2 x !r! 2"e dV! , ! rc 0 sr −jk r !b" !!0transverse !1− −r̂r̂·"E r̂r̂·"E !r !"!" jk !x &'= cos +y &!4 &rsin '+ze &0"% jk0!x! sin & cos '+y sin!!r &sin sin +z!'cos "sin !, cos% $ ! the dimensions: Left side, " E ! dx dy dz % e !1 !r dx dy dz , % e ! ! ! V ! ! ! ! ! he he dimensions: Left side, transverse n=1 z!=−w/2 y !=−l x!=x1 4 $ r oss section. Note that the lamellae of n=1 z!=−w/2 y !=−l x!=x1 ss section. Note that the lamellae of !5" !5" !4" respecttotothe theplane planeofofthe thescale. scale.!b"!b" jk !x sin & cos ' +y sin & sin ' +z cos & " espect ! ! ! N 0 N w/2 w/2 and %0jk e0!x! sinx2& cos '+y! sin & sin '+z! cos &"dxdx !dy !dz ! othe thecoordinate coordinate system !x , y , z". The x = −&!n − 1"!h + g" + h + y sin ( ' / cos ( dy dz , % e ! ! ! 1 , y , z".− The with system x1 !x = −&!n 1"!h + g" + h + y sin (' / cos ( and ! nt P. −&!n − 1"!h + g" + y sin ( ' / cos ( . % !1 − r̂r̂·"E !r ! !" locates the source point within the lamellae, r! in which r ,t transverse P. x2 = −&!n − 1"!h + g" + y sin! (' / cos (. ! olamellae proceed with the calculation, we must know the electric n=1 z!=−w/2 y !=−l x!=x of 1 To proceed with the calculation, wepoint must know electric = rr̂ locates the field P inthe Fig. 5!b", nt2010年1月27日水曜日 and V is the volume 17 ラメラ中の電場 • 1つのridgeのみに着目(他のridgesの影響は無視) • 計算の単純化のために、 仮定 u x i. i ETE i ETM Air ! y 入射光が第n層のラメラに到達するまでを、 !!rc − 1"wh !rm を持った有効媒質での屈折とし =1+ . 比誘電率 !h + g"s て表現(左図) The semi-infinite layer below the lamella also h !!rc − 1"wh v Effective 比誘電率 tive permittivity. We model these two ! ! − 1"wh " !rm = 1 + . regions a rc Medium !rm = 1 + . !6" + g"s of the rando dn (体積平均) with effective parameters!hbecause !h + g"s ties that existThe in semi-infinite the natural scale. The ridges are layer below the lamel mc ii. lar with unequal and offset heights, bent tops, rore ラメラ内での多重反射は無視 tive permittivity. We model these two # Cuticle layer below the lamella also has this effech − 1"wh ラメラ The!!semi-infinite rc lae, etc. These also make it unlike withirregularities effective parameters because of th ラメラ中の電場 cm ! = 1 + . !6" tive permittivity. We model these twoexist regions as single layer rm are correlated multiple reflections within thes ties that in the natural scale. The ri ! ! − 1"wh Effective rc + g"s with!!h effective of the random Medium = 1 + parameters . because !6" lar =入射波+第1反射波 with unequal and offsetirregulariheights, bent therefore ignore multiple reflections and consi rm !hthe + g"s lae, etc. These irregularities also make ties that exist in natural scale. The ridges are often irregufield within the cuticle layer to be the sum of 18 6. 2010年1月27日水曜日 Model used for estimating the electric field within the nth lamella of am two rays in Fig. 6. Notice that there are two r coordinate systems shown in Fig. 6, the one !x , y associated with the overall structure in Fig. 5, and one !u , v , w" that is aligned with the lamella. The la former rotated clockwise in the x , y plane by the a The electric field within the lamella is easily dete the !u , v , w" coordinate system using standard resu reflection and refraction of a plane wave at a plana between two materials !the Fresnel equations".32 T &tion transmission coefficients: and transmission coefficients for an interface regions 1 and 2 are Fresnel’s formulae Reflection #!r1cos #1 − #!r2cos #2 R TE = , 12 #!r1cos #1 + #!r2cos #2 比誘電率 �r1 ξ1 #!r2cos #1 − #!r1cos #2 R TM = , 12 #!r2cos #1 + #!r1cos #2 T TE = �r2 12 ξ2 2010年1月27日水曜日 T TM = 12 2#!r1cos #1 #!r1cos #1 + #!r2cos #2 2#!r2cos #1 , #!r2cos #1 + #!r1cos #2 , in which #1 is the angle of incidence in region 1, an angle of refraction in region 2. Then the electric19fi sr & R−sin!ŷ"ecos! '.(a) sr 2 ˆ k2%!+x! cos!−"1"wl!h/cos ˆ !that " + % "% ! s easily determined in cm !r " = − ' " " E ! one !x , y , z" is k !r " = − ' ! ! − 1"wl!h/cos "" E jk $d cos − % "+y − % "% cm ! rceasily srin 2 TE 0 c n rc TE 0 ˆ egrations are of exponential functions". This process is latter is the ! − $x̂ sin! " + % " & e ic field within the lamella is determined Plane of Scaleand !12"" " To complete the analysis, we substitute Eqs. !11" k !r " = − ' ! ! − 1"wl!h/cos E ! # rc TE 0 andard results for the cos # − ! cos # −jkc$!dn+2h"cos %+x cos!"+%"+y sin! "+%analysis, "% −jk !12" g. 5, and a second To complete the we sub 1 r2 2tedious −jk r TM !12" & R e '. aightforward but and gives 0r 0 into Eq. !5" and perform the indicated integrations !all of the system using standard results for the e !ecoordinate cos # " . angle e , (a) −jk0ir E r2 2 Incident cm atThe a planar interface i − ŷ cos! " + % "% la. latter is the TE TE # into Eq. !5" and perform the indica e sin T E 'C !', ) &T TE TE , Plane Wave sin T E ' C ! ' , ) " &T cos # + cos # integrations are of exponential functions". This process is 32 ! A TE i A TE 1 r2 2 termined in d refraction of a plane wave at a planar interface Thethe reflecuations". am mc TET TEEam mc 4exponential ('!12" rCA!', )" fu To complete analysis, we substitute Eqs. !11" and !12" sin &T 4 ( r !by cos # −jk $!d +2h"cos % +x cos! " + % "+y sin! " + % "% TE " . the angle 2 integrations are of 32 r2! sr 2 c n straightforward but tedious and gives E ˆ the""integrations analysis, we substitute !11" and !12" mc RrcTM−complete e1"wl!h/cos '.the am Eqs. 4 ( r !r!!5" " =the − 'k& !To Einterface an between The reflecmaterials !the equations". sults for Fig. 6. nto Eq. and perform the indicated !all of Incident TE 0!Fresnel cm E N x asily determined in N ridg straightforward but tedious andthegiv # Plane Wave into Eq. !5" and perform the indicated integrations !all of the cos # − ! cos # ntegrations are of exponential functions". This process is nsmission coefficients for an interface between N 2ar interface 1 r1 2 rsr Toe−jk complete the analysis, we substitute Eqs. e!11" and$−k!12" −j!km cos cos#%"dn 2cos 0−j!k P c ˆ !12" ! cos $ −k % "d dard results for the & $C !' , k !r " = − ' ! ! − 1"wl!h/cos " " E m c n ! ( B ! cos # i rc integrations are of exponential functions". This process is TE 0 & e $C ! ' , ) " E r1 2 traightforward but tedious and gives −j!km cos $−k!all %"d"the B indicated integrations d 2 are # TET TEE into Eq.sin !5" and perform the ' C ! ' , ) " &T c2cos of n$C ! ' ,r ) " refleccos # + ! cos # A n=1 & e TE , sr 2tThe 1 r1 2 a planar interface B z ˆ am straightforward mc ! −jk0rgives E n=1 large d 4 ( r x but tedious and k !r " = − ' ! ! − 1"wl!h/cos ! e rc integrations are of exponential functions". This process is 32 TE 0 !ce cos # To complete the analysis, we substitute Eqs. !11" and !12" i n=1 y region r1 between 2 #reflecThe ons". TET !7" TEE sin ' C ! ' , ) " &T sr 2 TE ˆ A + # P !Eq. !!7" #!r!1!5" !'r2Nkcos O TopR LamellaC C! ' , ) "%, "−= −and !!rc#−+ " " E r1cos 2 1"wl!h/cos straightforward but and gives am tedious mc TE 4 ( −jk0r into perform the indicated integrations !all of the TE r TE 0 cm # C ! ' , ) "%, !13" R !7" C 2 !r1cosbetween #1 interface e , !s TEC C! ' , ) "%," sr cm 2 i E + R −j!k cos $ −k cos % "d ˆ r ! m c n , #exponential # −jk are of This process iscm sin &T TET TEETE k !r " ' ! ! − 1"wl!h/cos " " E かなり煩雑な式になる: ! & e $C ! ' , ) " N z 0r= −functions". !integrations cos # + ! cos rc B TE 0 e # r1 1 r2 2 am mc 1 # + #! cos # i srsin 'C !' 2 " −j!k cos $−k cos %"d cos 4(r ˆ ! 1 r2 2 TE TE T E , ) &T y n=1but tedious straightforward and gives , k !r " = − ! ! − 1"wl!h/cos " " E ! m c n A TE & (0 e rc −jk0r $CB!', ) TE 1" 2 am mc sr 4 ( r O e Top Lamella ! !r2cos #2 N !r " = k ! ! − 1"wl!h/cos "" E 1 i ! n=1 ! rc TM 0 −jk r sr 2 TE TE # 0 TE T ETE "i sr" e sin !13" ' C1A!'2, )#"!rc &T ! C ! ' , ) "%, R !r22cos ! cos # N !r " = k ! ! − 1"wl!h/cos E C ! #E!!srr2#cos 2 1 −+ r1 2 rc −j!km"cos $−kc cos ˆ TM 0 #1− 'cmk!7" am mc ! 4 ( r !r " = ! ! − 1"wl!h/cos " " !r " = k ! ! − 1"wl!h/cos " E TE TE ! ! sin T E ' C ! ' , ) " &T & e # , rc cos TE 0 −j!k TM A0 rc CCmc !', ) "%, !13"−jk r TE ! $−kc cos %"dn + R TE , in wh rc m am # & e $C ! ' , ) " (b) 4 ( r # cm ! 0 ( B ! cos # + ! cos # rc n=1i e #r21 #1 +1#!r1cos = rr̂ lo r1 #2 2 −jk0r N 2cos −jk r n=1 e of "the C A! ' , ) &T TMT TM−jk ETM 0 , &T i N e r 1 TE am mc 0 i 'CA!−j!k sin T TE&T ETETMT TM& ', )mC"cos!'$,!7" −kc cos %"dn ! lamell ( r e sr # 2 (C 4 TE !he cos e $C ! ' , ) " ! ' , ) "%, + R E ) " ! i mcin r1 −j!k cos&T %"dnTM C !', )" B T!TM A m cos $−kc!13" region is2ethe !r!"2of = incidence kam !C!!rc −)1"wl!h/cos ""#1( Eangle TM& 4!(srrmc1, and TE C ' , "%, + R 2 TM 0 C E cm # am $C ' , ) " A 4 ( r TM B mc N 2 ! cos # # cm !r " = k ! ! − 1"wl!h/cos " " E ! r1 1 n=1 am !s ! rc TM 0 E 4 ( r tion in region rc 2. NThen ,the electric field within he # n=1 ! f incidence#in region 1, and # is the rc −j!km cos $−kc cos %"dn ˆ 2 (b) N & e !7" !r2!7" iscos #1 + III. ANALYSIS OF THE SCATTERED LIGHT &$ ' c !ahin cos # ( −j!k cose$−jk −kc0rcos % "d N r1 2 m n TE C !cos ',C) )!"d'""%, !13" + Rcos+$$C −jk0r e ion 2. Then & the electric within C TE i field−j!k B −k % C , ) "%, !13" R 1 Fig. 5. !a" Model for the ridge showing the dimensions: Left side, transverse ˆ e n=1 1 The incident light produces a polarization !dipole moment m c n cm, ) "cm TM TM sr 2 i C &T T E ! ' sr 2 cos & e &$ ' ' sin! " − % −j!k cos $ −k cos % "d ˆ ! A ! cross section; right side, longitudinal cross section. Note that the lamellae TM m = P! for the c kbound n− TMT TME i ETM!r C ! ' , ) " −jkmdn=1 cos $rc −jk1"wl!h/cos !u+dn"cos % "&T charge of1"wl!h/c theof lamellae' thats per unit volume" " = k ! ! " !r " ! ! E ! ! cos & e &$ ' am mc A n c TM rc 0 TM 0 TE TE ( with respect to the plane of the scale. !b" the ridge are tilted at the angle ETET T e #! $e n=14(r am mc can be expressed# as an equivalent volume current density, 4( r am mc Orientation of the ridge with respect to the system !x , y , z". The !coordinate ˆ # rc n=1 rc− 1"E!" region and is1 TE theC !', )"%, − ) " − ) cos! − % − ) "%C ! ' 2 1,!r2 cos#+2 #R ! ! B scattered field is to be computed at point P. = j ! P = j ! " ! " , !3" J !13" N!u+d %C dn−jk cos $ nwithin jk % cv −jk N !u+d +2h"cos sin 0%r 1 m c cm n"cos,−jk E+ c ee−jk electric field 1 $e −jk0!subr TE R e %e ŵ, !8" ˆ in which " = #n = 2.43− j0.19 is the complex relative e sr 2 sr 2 # − ) " − ) cos! " − % − ) "%C ! ' , ) " −j!k cos $ −k cos % "d e i ! ! ˆ −j!k cos $ −k cos % "d with ˆ $r"cos! ˆpermittivity ˆ−"script B" − m c=!r n,& !c r2cos !r1TM cos #2E cm # 1 + & ˆ !%isi − msin! c % −" n&$ !r " k ! ! − 1"wl!h/cos " " = k ! ! − 1"wl!h/cos " E ! ! the total electric ofsin! cuticle, and E cos eT TM &$ ' ' ) " ) " − % − ) "%C ! ' , ) " C &T ETM ! ' ) " cos ' " + ) " − ) − cos e ' ' sin! " − % rc rc TM 0 0 ( B A III. ANALYSIS OF THE SCATTERED LIGHT TMThis C T TM ETM = −& current produces thex2scatfield within the &T lamellae. am mc TM 4 ( r #! #! !8" u+dn+2h"cos % −jk sin % v rc amthat ismc n=1 rc n=1 tered electromagnetic field the light we observe. c Toap %e ŵ, !8" The incident light produces a polarization !dipole moment4 ( rAt ˆ ˆ 1 !u+d "cos % TMC C! ' , ) "', ˆ cos ' sin!1,"and + % #−2)is" the −−jk ) per cos! " + % − ) "%R field w sc the1n! angle of incidence region ˆ sr 2 − $'in ! N −jk r for the bound charge of the lamellae that unit volume" P cos ' ' sin! " + % − ) " − ) cos! "an − $ r 0 i !" = cm −jk d−n cos $ !r k ! ! 1"wl!h/cos " " E use e 0 m ˆ rc N TM 0 TM TM ei" −can − EinTMregion T− ) T ˆe−j!k expressed as volume current density, − ) "' −, ) )"within cos! % −be ) "%C ',"an)equivalent " # B,!) action 2. Then electric field cos"$the −kc%cos %) "d"%C " − ) cos! − − ! i shown ˆ TM TM m n ! C &T T E ! ' B am mc cos & &$ ' ' sin! " − % rc e A TM TM TMC TM C &T T E ! ' , ) " − ) "%R ! ' , ) "', !14" kcv # sin!% ( $−kccontai cos ! ="%R ! ,! ' , ) "', −j!km cos!3" C am am mc rcŵ, TM with =− j!) P j!"0!"TM 1"E J!rbA !8" 4 ( rc −C cm mc & e C the coefficients lla is 4"(+r % − )" −# )ˆ cos! n=1 ness h ˆˆ cos ' sin! cm " + % −jk0r ion 1, and # is the −jk d cos $ 2010年1月27日水曜日 20 ' − $ 2 m n ˆ TMthe e % jk !u+d "cos andTM# is i ( 結果の表式 TE i TM i TE ( i TM ( ( ( ( ( Fig. 5. !a" Model for the ridge showing the dimensions: Left side, transverse cross section; right side, longitudinal cross section. Note that the lamellae of the ridge are tilted at the angle with respect to the plane of the scale. !b" Orientation of the ridge with respect to the coordinate system !x , y , z". The scattered field is to be computed at point P. ( 0 b ( rc rc 29 1013 Am. J. Phys., Vol. 77, No. 11, November 2009 ( ( & e TM &$' cos ' sin!" − ˆ% ˆ ! ˆ T = ,) − ) " − cos! " − % − ) "%C ! ' , ) " E TM n=1 ˆ cos!" − % −− ) cos ' sin! " + % − ) " − ) cos! " + % $'"%C − ) "%R C ! ' , ) "', !1 N B − ) " − ) ! ' , ) " C 1 n=1 12 #!r2−jkcos # cm −jkm dn −jk cos $v sin %B 1 !u+d%n"cosE%i−jkT − )"%R TMCC!', ) !u+d +2h"cos % # + ! cos # # TM TM c n c u+d e "e jk=nc"cos − T 1 r1 2 −j!km cos $%e −kc cos %"dn ŵ, 2 ! cos # ˆ +#R TEeTM !8" i cm r2 $ 1 ! mdn cos cos & e &$ ' ' sin! " − % am mc TM TM ( TM e !r " = − E T T E ! ˆ ˆ − ) "%R C ! ' , ) "', !14" TM ˆ cos!" + % !rccm − $n=1 TM )+cos! "12%−am=)"#mc cos! −"%C % coefficients −B# )'"%C !'$,'), "cos ' sin!" + % − )" − ) ˆT B− 'ˆ cos ' sin!" +TM,n % − )" −−cm )ˆ#)cos! "rcC−−" ) −!with %cos −") ! , ) " ! the #1 + !ofr1cos #2 # is incidence in region and #2 is the in which r2the angle with the1,coefficients sin c%v sin %ŵ, 1 jk !u+d "cos % ev −jk !8" c n ŵ, !8" &$!sin1 %−û )+"%R cosTM "e v̂the jk" % "−) ˆ+cos −ˆ2.+) "%R"TM , )"', field within C ) !14" c!u+d n"cos ˆ ˆ ˆcm%cos! C! ' C!'electric ' ' sin! + % − ) cos! +C % − $ &$!sin % û cos % "e v̂ coefficients angle of refraction in region Then the − i)" −with ) ",−jk − "', % − ) "%C ! ' , ) " cos ' ' sin! " + % − ) " − ) cos! " % − $ cm d cos $ B in region 1,Cand issinc$!k in which #1 is theCangle " =incidence sinc$!k0w/2"cos '%sinc&$k sin %the w/2"co A!', )of c#2 e mn !r!" = − ETMT TMT TMTM ! ' , ) " = A 0 + !sin %û − ˆcosam %v̂"R mc the nth lamella is # TM angle of refraction in region 2. Then the electric field within TM ! + !sin % û − cos % "R v̂ − ) "%R C ! ' , ) "', !14" TM cm + % − ) " −−) "%R " +C% , )"', !14" rc − $' cos 'Csin! C cm C! ' with the coefficients cos! , )" = sinc$!kˆ0) w/2"cos sin %the coefficients + k0 sin ' sin! " − )"%l/!2 cos "+"'k0 sin ' sin!" cm with kos cm ' %sinc&$k A!'" c md$n cos $ the nth lamella is −jkc!u+dn+2h"cos % −jkcv jk sin!u+d % % −jkc!u+d −jkmdn cos $ jkc!u+dn"cos % +2h"cos % −jkicv sin % c , n"cos &e &e %e ! TE,n n!9" &$!sin % û + cos % "e TE,T TEe v̂ %e !9"$e !r " = E T E ! TMC C! ' , ) "', + k sin ' sin! − ) "%R !14" TE " − ) "%l/!2 cos " "' & exp!j&$k %"cos + k%0 sin ' sin! "exp!j&$kc sin 0 & %sinc&$k sin % ! CA!', )" = sinc$!kcm0w/2"cos am mc−jk d cos $ cjk sin with thec coefficients with 'the coefficients i !u+d '%sinc&$kc sin % CTA!TE'e, )"m=nsinc$!k n TE 0cw/2"cos !r " = E T $e E ! !9" TE,n !u+d "cos % TE dknc"cos % # n # # TM km!sin = !%rmûk− and%the beam −jk mc !u+d "Rfollowing v̂with % −jk k−c =)"%l/!2 !rcexp!j&$k k0relations ,cos km ="c"'!sin k%0, +and the following rck0, + 0, cos & k sin ' sin! " rm −) "%l/!2becos ""'", !15" c relations n+2h"cos cv sin %ŵ, − )"%l/!2 cos TE + k sin ' sin! " 0 + R e %e !8" cm 各係数の表式: 0 with the coefficients + k% sin sin!" − )"%l/!2 !8" cos ""' ngles: % −jk' )" = sinc$!k %sinc&$k !'angles: ,C )A"!=',sinc$!k '+%sinc&$k sin n%+2h"cos tweenCthe cm'−jk 0 %e cv sin %ŵ, 0w/2"cos c sin Asin 0w/2"cos cc!u+d TE R e relations be−jk !u+d +2h"cos % −jk % v M "%l/!2 cos" ""'",!9" !15a" cm &e c & nexp!j&$kc%esin c% + −k0) ,sin ' sin! m #!10" &"exp!j&$k sin %B!+',kcos! sin '+sin! "cos!" − #!rcCsin " =#!sinc$!k %sinc&$k sin k%0%=sin sin! )C "%l/!2 "sinc&$k "'cos + sin$"'. −sin! "B!−',))cos "%l/!2 "' = #!rcsin !k'rm0 sin !10" sin'" c 0 sin $ . A!',%)= 0w/2"cos c+ ) " = sinc&$k C C ! ! , " " = sinc#$k # $ " " = cos! " − % " rm c Cc c 1 "%l/!2 cos " "'", !15a" !9" #c%!v,rcsink0%,, km = #−!+rm)k k!9" i −jk d cos $ , and the" −following relations be!& m cos n " "'", 1 the TM TM 0sin ' sin! ) "%l/!2 cos " "' e !r " = − E T T E ! − ) "%l/!2 & exp!j&$k sin % + k sin ' sin! " i air-effective −jk d cos $ exp!j&$k sin % + k sin ' sin! " 0 sin ' cos cos ) +" kexp! !10" TM,n The subscripts am, mc, and cm refer to meTM c 0 ! m n = sinc&$k cos! " − % " CB!',to)"the c 0 sin ' cos ) %h/!2 cos!"cos "' & + k 0%h/!2 pts am, mc, and cm refer air-effective meTMam TMmc − k sin e !r " = − E T T E c 0 ! # 0 TM,n TM angles: CC!medium-cuticle, !, "" = sinc#$k cos! #!!cuticle-effective +rc$" c amcos!mc# +meC ! ! , " " = sinc#$k $" # c dium, effective and C owing relations bective medium-cuticle, and cuticle-effective mefollowing relations be& exp!j&$k sin % + k sin ' sin! " rc "%l/!2 cos "cos "'", !15a" " −t − j&$k c " − %" + 0k sin−')cos − )%h/!2 "%l/!2 cos ""'"'", with c cos! " = sinc&$kc cos! CB!', )me"Eq. & exp! "jk −!u+d %%exp$− " !15a" +"cos k0 %sinj2k ' cos )+%$d − j&$kc cos! effective 0 in Fig. 6.)For n dium interfaces use in !5" we express Eqs. !d h"cos $ c n # # aces in Fig. 6. For use in Eq. !5" we express Eqs. c n − k sin ! cos " %h/!2 cos # "& 370 nm jk !u+d "cos % = ! sin % = ! sin $ . !10" − k sin ! cos " %h/!2 cos # "& C ! ! , " " = sinc#$k cos! # + $ " 0 &$!sin % û + cos % "e v̂ n " − %" " = %sinc&$k C, % rc me- − )rm C c &$!sin +, )cos v̂"e c c cos! ffective B0!,û' "%l/!2 cos ")"'", !15a" + h/2%/cos "!15 '", !8" and !9" in terms of the coordinates !x y z", sin ' cos %h/!2 cos " "' & exp! + k 400 nm j&$kc cos!" − %" + k0 sin ' cos )%$d+ in terms of the coordinates !x , y−, z", 0 n h/2%/cos "'", %exp!j#$k cos! C # + $ " − k express Eqs. 370 nm $% %exp$− j2k !d + h"cos $ % !10" c C ! ! , " " = sinc#$k cos! # + $ " − k sin ! cos " %h/!2 cos # "& c n 0 ! ' , ) " = sinc&$k cos! " − % " C %exp$− j2k !d + h"cos !10" C c 430 nm !', )" = sinc&$k cos! " − % " C0Bair-effective sin ' cos ) %h/!2 cos " "' & exp! + k TM B the c mecripts am, mc,− and cm refer to TM c n + !sin % û − cos % "R v̂ + !sin %û − cos %v̂"R0 400 nm c " − %" ++kAm. sin ' cos ) %$d j&$kc cos!1014 o " '", !15b"cm cm 0h/2%/cos n J. Phys., Vol. 77, No. 11, November 2009 460 nm 2 " = 20 ! ' , ) " = sinc&$k cos! " − % " C ective medium-cuticle, and cuticle-effective %exp!j#$k # "+"'+2h"cos $cos " −exp! k0"' sin !+ cos "−%$d %k− sin h/2%/cos #&",)%$d10 BPhys., kmesincme! cos "%h/!2 cos #+"&j2k 0"++ Am. J.the Vol.−77, 11, November 2009 Glenn S."Smith %exp$− +meh"cos $c% cos! cos ) %h/!2 cos & k0 sin 430 nm he 0 No. n %exp!j#$k cos! # $ " ! cos % c!d nk'0 sin ' cos ) %h/!2 " & exp! + −jk !u+d % −jk sin % v cos! " % k sin ' cos − j&$k to air-effective air-effective c 0 −jk !u+d +2h"cos % −jk sin % v cc n n cc c , 0 490 &e %e %e460 !9"nm !9" n +6.h/2%/cos "'", !15b" &e , rfaces in Fig. For use in Eq. !5" we express Eqs. nm 'j2k cos cos$" &cos! exp! + kmed cuticle-effective 520 nm 0 sinme%exp$− !d)n %h/!2 + h"cos %−"'j&$k +" %−h/2%/cos #cos &", !15c" %$d 9uticle-effective Glenn S. Smith 1014 %exp!j#$k # + $ k sin ! " % c n cos! " − " + k sin ' cos ) %$d with + h/2%/cos # &", !15c" %$d c 0 c 0 n cos! " − % " + k sin ' cos ) %$d − j&$k 490 nm + h/2%/cos " '", 9" inwe terms of the coordinates !x , y , z", n0 c n !5" express Eqs. #!!rc1014 ##!!rmk0k, and 45 Eq. !5" we express Eqs. with k = k , k = the following relations be# c 0 m cos! " − % " + k sin ' cos ) %$d − j&$k 520 nm Glenn S. Smith with k = k , k = , and the following relations bec n"%'", %exp!j#$k $0" −n k+0+h/2%/cos sin ! cos with c #" rc 0 rm 0 !15c" !15b" c cos!# +%$d h/2%/cos xes, y !x , z", sin!x" +with h/2%/cos "'",m !15b" , y , z", tween the&", angles: !, D tween the angles: . sinc!x" = + h/2%/cos " '", !15b" Am. J. Phys., Vol. 77, No. 11, November 2009 Glenn S. Smith ただし、 %$dwith sin!x" !15c" sin!x" n + h/2%/cos #&", x !16" #!rcsin # sinc!x" = sin "sinc!x" =. # % = ! sin $ . !10" !16" C ber 2009 Glenn S. Smith 1014 rm . = # ovember 2009 Glenn S. Smith 1014 !rcsin %x = !rmsin $ . !10" sin x" = 1014 with sin!x"Glenn S. Smith our calculations, we will be interest . The subscripts am, mc, andFor !16" sinc!x" = cm refer to the air-effective mesin!x" x ourThe For calculations, weam, will mc, be interested in of the scattered field, readily subscripts and cm toirradiance the air-effective Foreffective our !16" calculations, we will refer bethe interested in which the irradiance dium, medium-cuticle, and cuticle-effective me-is me. sinc!x" = 0.01 of the scattered field, which is readily obtained from Eqs. N, h, w, g, γ, s x パラメーター !13" and dium, effective and cuticle-effective me- 1.0 theinterested scattered which readily obtained Eqs. dium inmedium-cuticle, Fig. 6. For use inis !14", Eq. !5" we expressfrom Eqs. For our calculations, we willofinterfaces be infield, the irradiance 0.01 0.1 !13" and !14", sr !8" and !9" terms of the coordinates !x , ysr!5" , z", we express Eqs. !13" andin!14", of the scattered field, dium which isirradiance readily obtained sr Eq. interfaces in Fig. 6.from ForIEqs. use in sr (a) or our calculations, we will be interested in the I + I = I sr sr TE TM !13" which and !14", Isr obtained + ITM =!8" ITEand が決まれば、散乱光は λ, θ, Φ srterms sr の関数として与えられる。 f the scattered field, is readily from Eqs. sr !9" in of the coordinates !x , y(a) , z", I = ITE + ITM sr sr sr sr 13" and !14", sr !2009 ! 1014 sr Am. J. Phys., sr Vol. 77, No. 11,=November r̂ · $Re!S " + Re!S "% I + I = I ! ! c,TE c,TM TE TM = r̂ · $Re!S " + Re!S sr "% 2010年1月27日水曜日 21 sr TE am mc 結果の表式(続き) c,TE c,TM CC!!, "" = sinc#$kc cos!# + $" the lamellae are − tilted at the angle"#%h/!2 = 10° cos to the of the k0 sin ! cos #"&base %exp$− j2k !d + c n scale, this!orientation of the beam − k0sosin cos "%h/!2 cos #"&is what we would expect for a specular reflection lamellae. patterns c cos!# %exp$− j2kfrom + h"cos $%The %exp!j#$k c!dnthe 具体的計算 %exp$− j2kc!dn + h"cos $% # + $half " −space k0 sin "% + h/2%/cos # %$d!ncos c cos! Fig. 9. The total time-averaged power%exp!j#$k scattered into the upper I. Representative dimensions %exp!j#$k # + $for " −a Morpho k0 singround ! cosscale. "% versus wavelength. Table c cos! with #&", !15 %$dn + h/2%/cos Quantity Description Value !15c" %$dn + h/2%/cos #&", sin!x" with N Number of lamellaesinc!x" = 8. moves away from the Thickness absenceofoflamellae scattered light x 65 nm h ! = 90°. Note sin!x" !16 w sinc!x" of lamellae show that 400 nm at angles near grazing, ! = 0=° , 180°.. Width Observations For our calculations, we will be x g brown at such angles; Spacing between lamellae 155 nm the scale appears the of color is due to Fig. the scattered field, which is # Tilt angle of lamellae 10° angle pigmentation not structural scattering.we will!13" For our calculations, be interested in the irradianc and !14", 700 nm inclu s Spacing between ridges Figure 8 is of a different plot for showing the iridescence: the scattered field, which is readily from chan Eq sr obtained sr sr I = ITEof+"ITM The scattered irradiance is plotted in relief as a function !13" and !14", with モデル sin!x" パラメーター . sinc!x" = !16" x For our calculations, we will be interested in the irradiance andthe ! for the plane # = 20°. The spectrum for the scattered of scattered which is readily obtained from sr Eqs. sr 1015 field, Am. J. Phys., Vol. 77, No. 11, November 2009 ! ! sr sr sr = r̂ · $Re!S " + Re!S c,TM light clearly shifts to !from blue to vio- c,TE I shorter ITM = field: ITE + wavelengths !13" and Irradiance of !14", scattered let" as the angle of observation approaches grazing. 1 sr sr sr sr sr 2 sr 2 sr ! ! ! ! = r̂ · $Re!S " + Re!S "% = !'E ' + 'E + Ithe = ITE of A Imeasure total time-averaged power scattered at a c,TE c,TM TE TM' ", TM 2&0 given wavelength can be obtained by numerically integrating sr sr 1 ! ! sr 2 = r̂ · $Re!S " + Re!S "%! sr hemisphere, !17" for the irradiance i i ! TEthe TotalEq. power: c,TE c,TM ! ! ' ", !17 = over !'E '2 +upper 'E with 'E ' = 'E TM TE TM'. %& & '& $/2 2$2 & 0 $ sr 2 sr sr 2 2 #Psr= $ = 1 !'E + I !r, ! , # "r sin !d!d# . ! TE'! i+ 'E! TM i ' ", !17" ! IV. COLOR AND IRIDESCEN with 'E ' = 'E '. #=0 #TE =3$/2 TM !=0 2&0 2010年1月27日水曜日 22 me species. For example, the values for the lamellae h of the Morpho rhetenor range m.20,23 For our calculations, we will use the imensions for a Morpho ground scale given Fig. 7. Patterns for the scattered irradiance from a ridge. Each curve is for a different wavelength. !a" Plane ! = ) / 2. !b" Plane " = 2# = 20°. Note that the scale for Isr is logarithmic. 角度と波長依存性 on of the scattered radiation in space is conin Fig. 7!b" are “cuts” through this beam, " = 2# = 20°. The 370 nm yed using graphs akin to the polar patterns 400nm nm o scattering is most intense at the wavelengths normally asso370 2 " = 20 0 d to described400 the 430 nm radiation from antennas. nm o ◦ with blue and violet light !( = 400, 430, 460, and 490 ciated 2 " = 20 460 nm に固定 Fig. 7, the radial distance0 from the originθ at= 90 430 nm nm" and small outside of this range !( = 370 and 520 nm". 490 nm sr 460 nm that le is proportional to the irradiance I at 45 The plots in Fig. 7!b" clearly show iridescence; the domi520 nm 490 nm at the radial scale is logarithmic and that45 two!, Deg.nant wavelength !color" shifts with the angle of observation played. There 520 arenmsix curves, each for a dif!. These results are consistent with observations; the color !, Deg. gth within the range of 370 nm' ( changes from blue to blue-violet as the angle of observation ◦ curves are normalized so that the maximum (θ > 90 ) up is one.33 The inset in the left-hand side of 90 ws the relative orientation for the incident 0.01 0.1 sr 1.0 mellae of the ridge. 90 I 0.01 0.1 of srthe1.0 ! = ) / 2, shown in Fig. 7!a", (a) the beam tilted at about 20° to◦ the normal. RecallI that ◦ (a) ϕ =at 2γ = 20# = 10° に固定 tilted the angle to the base of the ϕ = 20 1.0 ientation of the beam is what we would ex90 #, Deg. lar reflection from the lamellae. The patterns 青・紫が強く発色 青から青紫へ 45 90 #, Deg. 135 45 for a Morpho ground scale. ive dimensions Description Number of lamellae 0 Thickness of lamellae 0.01 0 Width of lamellae 2010年1月27日水曜日 0.01 Spacing between lamellae (b) I sr 135 Value 0.0 V 90 400 B 120 G 500 8 Y O 150 180 R $, nm 600 #, Deg. 0.165 nmsr 1.0 180 400 nm I 180 23 0.1 155 nm 1.0 Fig. 8. The scattered irradiance as a function of the wavelength and the lae, are included in the model described in Sec. II. The sca tering of light !a plane wave" by this structure is determine in Sec. III. The scattered field is written as an integral !ra diation integral" over the total field within the lamellae. The an approximation for the field in the lamellae is obtaine using the theory for reflection and refraction of a plane wav by a planar layered medium, with appropriate simplificatio based on the randomness in the structure. The approximat field is inserted into the radiation integral, and the integral 実験との比較 Scatter (F ) Incident total power (normalized) " ! Lamella (a) Incident 9. The total time-averaged power scattered into the upper half space Fig. 4. Measured reflectance versus wavelength for a scale or a portion of us wavelength. wing of a Morpho rhetenor butterfly. Results are for normal incidence e cept those of Plattner which are for 10° from normal. 実験データと同じように青色にピーク...でもなぜ? " 2010年1月27日水曜日 ves away from ! = 90°. Note the absence of scattered1012 light Am. J. Phys., Vol. 77, No. 11, November 2009 24 cos ! i !ETE,n!r!" = ETE T TET TEe−jk $ am dn cos " cos ! なぜ青くなる? n + R TEe−jkc!u+dn+ cm E! TM,n!r!" = − モデルをさらに単純化: (c)TE Rcm = 0, Im[�rm ] = 0 mc 1 #!rc i ETM T TM am &$!sin %û + co g. 10. Schematic drawings showing the elements involved in the scatter◦ tilted g from the ridge !simplified model". !a" Scattering from a single, θ = 90 mella. !b" Scattering from an array of N equally spaced points. !c" Detail r the scattering from the nth point. TE成分のみに着目、 + !sin %û − cos の場合を考える −jkc!u+dn+2h" &e with kc = #!rck0, km = #!rmk0, tween the angles: sr k0 h < 1 ITE & k40 sinc2()kc cos!' − (" + k0 cos #*h/!2 cos '"+ 1 sin % = #!rmsi sin " = #!大体 rc ) sinc2(k0l)sin ' + sin!' − #"*/!2 cos '"+ 単一ラメラ面による散乱 The subscripts am, mc, and c 2 N 1 dium, 多層ラメラからの effective medium-cut −j)km cos!'−*"+k0 cos #*dn/cos ' e . !19" ) dium interfaces in Fig. 6. For N n=1 散乱光の干渉 !8" and !9" in terms of the co here are four factors in Eq. !19" that depend on the waveこれら2つの寄与が重要 4 ngth: k , the arguments of the two sinc functions, and the レイリー散乱の特性 , 2010年1月27日水曜日 , 25 constructive or destructive interference that occurs for the scattering from lamellae is included in term. this term. scattering from thethe lamellae is included in this antenna analysis describes the scattering InInantenna analysis the the termterm that that describes the scattering fromthethe single lamella is called the “element factor” from single lamella is called the “element factor” F, andF, and theterm term that describes scattering the array of points the that describes the the scattering fromfrom the array of points 37 isiscalled thethe “array factor” A.37A. After introducing this notacalled “array factor” After introducing this nota38 tion evaluating the the geometric series, Eq. !19" tionand and evaluating geometric series, Eq. becomes !19" becomes38 なぜ青くなる? sr sr 4 4 2 2 ITE & k #k0#k l$sin # + sin!# − %"%/!2 cos #"& I &0ksinc sinc 0l$sin # + sin!# − %"%/!2 cos #"& TE '' 0 o 0 45 !, Deg. 2 |F| 2 |A| λ =#425nm = 425 nm ( ( 2 sin#N$k cos! # − $ " + k cos % %!h+g"/!2 cos # "& m 0+ k cos % %!h+g"/!2 cos # "& sin#N$k cos! # − $ " m 0 '' N sin#$km cos!# − $" + k0 cos %%!h+g"/!2 cos #"& 2 N sin#$km cos!# − $" + k0 cos %%!h+g"/!2 cos #"& 2 2 = k40)F! % ") )A! % ") . 2 !20" 4 2 = k0)F!%") )A!%") . !20" In Fig. 11 the element and array factors from Eq. !20" are In Fig.as11polar the element array460, factors fromnm. Eq.The !20" are graphed plots for and ! = 425, and 495 =#460nm = 460 nm 2 460, 2and 495 nm.λ The graphed as polar plots for ! = 425, regions in which the two patterns, )F) and )A) , overlap are regions inそれぞれの寄与を波長毎 which thethe twooverlap patterns, )F)2 and )A)2, overlap shaded gray. Note that increases on going from are ! shaded = 425 nm $Fig.Note 11!a"% to the ! = 460 nm $Fig. 11!b"%on andgoing then from gray. that overlap increases にわけてプロット decreases for ! = 49511!a"% nm $Fig. sequence shows ! = 425 nm $Fig. to !11!c"%. = 460 This nm $Fig. 11!b"% and then ◦ that the product of these functions is11!c"%. significant over ashows θ =nm 90 $Fig. decreases for !( = 495 This only sequence の時) band shorter of wavelengths in the visible spectrum. thatofthetheproduct these functions is significant only over a To examine this point further, we in consider the angles at band of the shorter wavelengths the visible spectrum. which the maxima %m and first zeros %0 of these functions λ = 495nm = 495 nm To examine this point further, we consider the angles # at occur, λ~460nm で重なりが最大 which the maxima %m and first zeros %0 of these functions −1 % = 2 # , % = # + sin $sin # ( !!/l"cos #% !21" occur, m,F 0,F 2010年1月27日水曜日 2" = 20 0.0 0.5 I sr 1.0 90 (a) o 0 2" = 20 45 !, Deg. 0.0 0.5 I sr 1.0 90 (b) 0 2" = 20o 45 !, Deg. 0.0 0.5 I sr 1.0 90 (c) 26 %m,A = cos−1#$!/!h + g"%cos # − *)rmcos!$ − #"&, !22a" = cos−1#$!/!h + g"%!1 * 1/N"cos # − *)rmcos!$ − #"&. !22b" ピーク波長 se angles are displayed on the ! , % plane in Fig. 12.39 black dot shows the point at which the maxima of the functions coincide !! + 460 nm, % + 20°", and the ◦ gray λ ≈ 460nm, φ ≈ 20 で強度が最大 具体的な条件式: 90 !, Deg. ($ = %/2) 60 30 0 -30 330 2 |F|0 zero zero max 1.0 λpeak 2 0.5 � � � �� � √ γ −1 × cos 2γ + �rm cos sin −γ √ �rm |F|m 0.1 2 |F|0 2 zero -60 300 -90 270 300 |A|m 2 |A|0 max (h + g) = cos γ φpeak = 2γ 2 zero 400 |A|0 #, nm 500 600 !!rc − 1"wh !rm = 1 + . !h + g"s The semi-infinite layer belo ラメラの性質に依存するが、 tive permittivity. We mode with effective parameters b 枚数には依らない 12. The location in the ! , % plane of the maxima and first zeros of the 2 2 ties that exist in the natural ent factor )F) and the array factor )A) . Results are for the plane + 2010年1月27日水曜日 27 UV V B G Y %m,A = cos−1#$!/!h + g"%cos # − *)rmcos!$ − #"&, !22a" = cos−1#$!/!h + g"%!1 * 1/N"cos # − *)rmcos!$ − #"&. !22b" ピーク波長 se angles are displayed on the ! , % plane in Fig. 12.39 √the point at which the maxima of the black dot shows (h + g)(1 + �rm ) functions coincide !! + 460 nm, % + 20°", and the ◦ gray で強度が最大 λ ≈ λ460nm, peak [nm] φ ≈ 20 460 460 90 450 450 !, Deg. ($ = %/2) 60 30 0 具体的な条件式: 2 |F|0 440 440 zero zero max 430 430 1.0 2 0.5 � � � �� � √ γ −1 × cos 2γ + �rm cos sin −γ √ �rm |F|m 0.1 2 |F|0 420 420 2 -30 330 |A|m 2 |A|0 �30 �20 zero �10 -10 -30 max -60 -20 300 -90 270 300 λpeak 0|A|2 zero 0 10 10 20 20 φpeak = 2γ 30 30 γ(= φpeak /2) [deg] 400 #, nm 500 (h + g) = cos γ 600 !!rc − 1"wh !rm = 1 + . !h + g"s The semi-infinite layer belo ラメラの性質に依存するが、 tive permittivity. We mode with effective parameters b 枚数には依らない 12. The location in the ! , % plane of the maxima and first zeros of the 2 2 ties that exist in the natural ent factor )F) and the array factor )A) . Results are for the plane + 2010年1月27日水曜日 28 UV V B G Y ラメラの枚数と波長特性 sr �P � 1.0 Total power (normalized) 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 赤:32枚 マゼンタ:16枚 黒:8枚 緑:4枚 シアン:2枚 400 400 450 450 500 500 550 550 600 600 650 650 700 700 [nm] スペクトル幅は変わるがピーク波長はほぼ同じ 2010年1月27日水曜日 29 まとめ モルフォ蝶の翅はなぜ青い?その物理的メカニズム 多層膜からの散乱光の干渉に強め合う 単一ラメラによる散乱パターンの強弱 これらの条件が一致する波長域が青色だった さらにレイリー散乱が短波長側の波長特性を強調 2010年1月27日水曜日 30 人工的に構造色を作る L 50 Jpn. J. Appl. Phys., Vol. 44, No. 1 (2005) FIB-CVD(集束イオンビームによる化学的気相成長法)を用い Incident angle てモルフォ蝶の構造色を再現する3次元立体ナノ構造を作成 = 30° 2005) DLCフィルムによる多層膜構造 (Diamond-Like Carbon) Jpn. J. Appl. Phys., Vol. 44, No. 1 (2005) Jpn. J. Appl. Phys., Vol. 44, No. 1 (2005) Intensity(a.u.) Intensity(a.u.) L 50 = 20° L 49 = 5° Incident angle K. W ATANABE et al. K. W ATANABE et al. = 30° L 49 フィルムの厚さ ~200nm = 20° = 5° モルフォ蝶 wavelength(nm) (a) Incident angle Intensity(a.u.) Intensity(a.u.) wavelength(nm) (a) = 5° Θ using 3-D CAD data. This result demonstrates that FIB-CVD 2010年1月27日水曜日 Fig. 3. φ = 30°° = 20° = 5° 擬似構造 Incident angle Intensity(a.u.) Watanabe et al. (2005) Iφ Iθ = 20° Incident angle Fig. 3. Morpho-butterfly-scale quasi-structure fabricated by FIB-CVD. (a) SIM images of Morpho-butterfly-scale quasi-structure. (b) Optical microscope images of Morpho-butterfly-scale quasi-structure observed with a 5 to 45! incidence angle of white light. Fig. 2. Inclined-view SIM images of Morpho-butterfly-scale quasi-structure. = 30°° = 30° = 20° wavelength(nm) = 5° Morpho-butterfly-scale quasi-structure fabricated by FIB-CVD. (a) (b) 31 むという特性を 能工学)と呼ばれる新しい工学領域が 繊維 ォテックス 」 モルフォ蝶の積層構造を再現 が付いており、その鱗片の複雑な構造が、あ 繊維が平行にな 80年代に始まり、注目を集めている。 る波長の光だけを反射させて鮮やかな青色を を得た繊維である。 ぐに切れてしま 帝人が開発した構造発色繊維「モルフォ アマゾン河流域を生息地とするモルフォ蝶 見せている。鱗粉の断面を電子顕微鏡で拡大 工学的応用 自然界に存在する色彩を表現することは繊 テックス はメタリックブルーに輝く羽を持つ「世界で 」は、モルフォ蝶の羽からヒント 維開発の研究テーマの一つである。このよ 鱗粉そのものには色素はない。モルフォ蝶の るバイオミメティクス(生物模倣機 羽根には「鱗片」と呼ばれる粉のようなもの 能工学)と呼ばれる新しい工学領域が が付いており、その鱗片の複雑な構造が、あ 80年代に始まり、注目を集めている。 繊維どうしの結 すると、タンパク質と空気が幾層にも重なっ もっとも美しい蝶」と呼ばれている。羽根の うに生物の持つすぐれた機能に学ぼうとす を踏まなければ た積層構造になっているのを確認できる。こ 程度の収縮率が モルフォテックス の発色原理 あり、 「この構造発色を繊維で再現できれば、 図1 モルフォテックス® の発色原理 のまま色の変化 図1 図 1 れは生物に見られる構造発色という現象で モルフォテックスの発色原理 ® ス に熱をかけた る波長の光だけを反射させて鮮やかな青色を モルフォテックス • 帝人ファイバーが、日産と田中貴金属との共同研究の末、開発 帝人が開発した構造発色繊維「モルフォ 見せている。鱗粉の断面を電子顕微鏡で拡大 テックス 」は、モルフォ蝶の羽からヒント モルフォ蝶の積層構造を再現 を得た繊維である。 すると、タンパク質と空気が幾層にも重なっ アマゾン河流域を生息地とするモルフォ蝶 た積層構造になっているのを確認できる。こ 自然界に存在する色彩を表現することは繊 はメタリックブルーに輝く羽を持つ「世界で れは生物に見られる構造発色という現象で 維開発の研究テーマの一つである。このよ もっとも美しい蝶」と呼ばれている。羽根の あり、 「この構造発色を繊維で再現できれば、 うに生物の持つすぐれた機能に学ぼうとす モルフォテックス 鱗粉そのものには色素はない。モルフォ蝶の 画期的な素材になる」と考え、95年、日産自 画期的な素材になる」と考え、95年、日産自 形に影響が出な するための検討 動車株式会社と田中貴金属工業株式会社との 共同研究がスタートした。 るバイオミメティクス(生物模倣機 動車株式会社と田中貴金属工業株式会社との 羽根には「鱗片」と呼ばれる粉のようなもの 能工学)と呼ばれる新しい工学領域が • 80年代に始まり、注目を集めている。 共同研究がスタートした。 が付いており、その鱗片の複雑な構造が、あ 帝人に与えられた課題は、モルフォ蝶と る波長の光だけを反射させて鮮やかな青色を 温度で熱セット れ以上分子運動 帝人に与えられた課題は、モルフォ蝶と ることになる。 同じ輝きを繊維の上で再現すること。最も した構造発色繊維(つまり、色落ちしない) モルフォテックス 普通よりも高く 大きな課題はポリマーの選択と微細な積層 ラー上を走って 構造を実現するための装置設計であった。 ところが、これ 屈折率の異なるポリマーを交互に積層させて構造発色を実現 いくつかの方法を検討した結果、タンパク 帝人が開発した構造発色繊維「モルフォ テックス 」は、モルフォ蝶の羽からヒント 同じ輝きを繊維の上で再現すること。最も 見せている。鱗粉の断面を電子顕微鏡で拡大 モルフォテックス のパウダーが使われた化粧品 質と空気の代わりに、屈折率の異なるポリ いくつかの方法を検討した結果、タンパク れは生物に見られる構造発色という現象で マーを交互に積層させることになった。高 モルフォテックス単糸断面 あり、 「この構造発色を繊維で再現できれば、 い干渉発色を可能にするためには、2 種の 質と空気の代わりに、屈折率の異なるポリ マーを交互に積層させることになった。高 画期的な素材になる」と考え、95年、日産自 い干渉発色を可能にするためには、2 種の ポリマーの屈折率差が大きいこと、また積 ポリマーの屈折率差が大きいこと、また積 層構造を安定させるためポリマーの親和性、 動車株式会社と田中貴金属工業株式会社との 共同研究がスタートした。 層構造を安定させるためポリマーの親和性、 帝人に与えられた課題は、モルフォ蝶と 適性粘度、繊維構造発現の類似性の条件を 同じ輝きを繊維の上で再現すること。最も 満たすことが必要である。最終的にはポリ 大きな課題はポリマーの選択と微細な積層 エステルとナイロンを交互に 61 層積み重ね 構造を実現するための装置設計であった。 た構造をもつ新素材「モルフォテックス 」が モルフォテックス を使用したテキスタイル モルフォテックス のパウダーが使われた化粧品 のパウダーが使われた楽器 モルフォテックス テキスタイル 化粧品 モルフォテックス を使用したテキスタイル TEIJIN LABORATORIES 適性粘度、繊維構造発現の類似性の条件を 満たすことが必要である。最終的にはポリ エステルとナイロンを交互に 61 層積み重ね 誕生。 一層の厚みが 69ナノメートル。世界初 いくつかの方法を検討した結果、タンパク た構造をもつ新素材「モルフォテックス 」が の構造発色繊維である。 質と空気の代わりに、屈折率の異なるポリ 誕生。一層の厚みが 69ナノメートル。世界初 マーを交互に積層させることになった。高 モルフォテックス のパウダーが使われた楽器 い干渉発色を可能にするためには、2 種の 楽器 の構造発色繊維である。 ポリマーの屈折率差が大きいこと、また積 層構造を安定させるためポリマーの親和性、 衣類以外に幅広い方面で利用 適性粘度、繊維構造発現の類似性の条件を 2010年1月27日水曜日 ことには成功し 大きな課題はポリマーの選択と微細な積層 すると、タンパク質と空気が幾層にも重なっ モルフォテックス のパウダーが使われた化粧品 構造を実現するための装置設計であった。 た積層構造になっているのを確認できる。こ フォテックス S 羽根には「鱗片」と呼ばれる粉のようなもの 満たすことが必要である。最終的にはポリ 1層69nm 32 Appendix 2010年1月27日水曜日 33 ing from the ridge !simplified model". !a" Scattering from a single, ti Incident . The total time-averaged power scattered into the upper half space lamella. !b" Scattering from an array of N equally spaced points. !c" De wavelength. the simple model for the for the scattering from the nth point. olor and iridescenceScattered simi" Scattered Incident pho butterflies. However, (F ) (A ) es away from ! = 90°. Note the absence of scattered light light, !13", gles nearnamely, grazing, ! =Eqs. 0 ° , 180°. Observations show 1 sr that 4 2 cale appears brown at" such ntly complicated thatangles; the the color isITEdue&tok0 sinc ()kc cos!' − (" +2 k0 cos #*h/!2 cos '"+ mentation not !structural scattering. 2 or these characteristics are ) sinc (k0l)sin 'Point + sin!' − #"*/!2 cos '"+ gure 8 is a different plot for showing the iridescence: son theirradiance scattered lightin relief is as a function of " scattered is plotted Scatterers 2 N ! for the plane # = 20°. The spectrum for the scattered n ous. Lamella To gain some insight 1 −j)k cos! ' − * "+k clearly shifts to shorter wavelengths !from blue to vio-) m 0 cos #*dn/cos ' e . !1 eas athesimplified model. angle of observation approaches grazing. N n=1 N (a) plane = $time-averaged / 2, ignore power scattered at a the measure of the!total (b) ncle wavelength can be obtained by numerically integrating !R TE = 0" and assume There are four factors in Eq. !19" that depend on the wa 17" for the irradiance over the upper hemisphere, cm Incident Planes of Constant 4 = 2.43". $The irradiance of and length: k0, the arguments of the two sinc functions, 2$ /2 $ Phase Psr$ = + Isr!r, !, #"r2sum. sin !d!The d# . factor k4 = !2$ / ""4 is what gives rise to Rayle 0 #=0 #=3$/2 !=0 , %& & '& " Scattered (A ) !18" November re 9 is a plot 2009 of1#Psr$ versus wavelength, normalized to a mum of one. As 2 expected from the patterns for the scatradiation in Fig. 7, it is mainly light at wavelengths in Point range that is scattered from the ridge, with the lue-violet Scatterers near " = 450 nm. It is interesting to compare these caln ed results with the measurements shown in Fig. 4. For ctual scale the dimensions of the ridges are distributed N Thus, it is not difficult to imagine that a range of values. of (b) curves like the one in Fig. 9, each for slightly differdimensions, could be Planes superimposed to produce results of Constant those shown in Fig. 4. Phase 2010年1月27日水曜日 , " dn 1 dn cos (!#$% cos ! 1 $ n (c) Glenn S. Smith ! dn cos " cos ! 34 生物学的理由 そもそも、青い色素を持つ生物はほとんどいない (青く見える魚のほとんどは構造発色) 青い色素胞を持つ魚 (cyanophores) スポットマンダリン (別名:サイケデリックフィッシュ) (色素物質の化学特性はよくわ かっていないらしい) 青色自体、自然界にはそう多く存在しない 2010年1月27日水曜日 警戒色? 35