Comments
Description
Transcript
センシシード
% % ALFAE in% % % Obihiro,%Japan%%%28%June%2014 HONDA%Kiyoshi,%Chubu%University% Akihiro%YUI,%IHI%Corp.% Amor%Ines,%Columbia%University% Apichon%Witayangkurn,%Univ.%of%Tokyo% Kumpee%Teeravech,%RBRU,%Thailand% R.%Chinnachodteeranun,%Geomove%Co.,%Ltd.% • • • • • % (GeoinformaTcs) % % % % – % – Tomorrow’s%Wheat% % Modeling on Big Data for Scenario Simulation %–% • UAV % Satellite RS • % • Model Calibration Crop Model % Cluster, GRID) % • • • • Scenario Simulation % Real Time Update % % % • • • UI% • • % Field%Touch Decision Making IHI IHI ! ! ! ! ! ! SNS / % Web Service Field%Sensor% Network Observa tories Satellite s Aircrafts UAV FieldServer s LAI_sat 4 HPC (GPGPU, • SOS,%WMS,%WCS,%WFS% • Comparison of Satellite LAI and Simulated LAI 5 LAI Weather –% Web%Service Interoperability% Agri. Machines, Applicatio n records Cloud & Data Integration Yield, Soil, etc. % • Sensor Network LAI_sim 3 2 1 0 0 30 60 90 120 150 180 210 240 270 300 330 360 DOY Ubiquitous%GeoinformaTcs% % Web % % LBS Satellite Remote Terra SAR-X Sensing 1m Radar % Global Monitoring City Modeling Disaster Management UAV Navigation Sensor Network LBS % • – % • Interoperability • OGC%(%Open%GeospaTal%ConsorTum%) % • Web%Service % % – SOS%(%Sensor%ObservaTon%Service%)% – WMS%(%Web%Map%Service%),%WCS%(%Web%Coverage%Service%)% – WFS%(%Web%Feature%Service%)% – WPS%(%Web%Processing%Service%)% • % % Plug&Play Web Service cloud Sense The project is organized by University of Tokyo, University COOP in Japan and Fujitsu Design Co., Ltd. AIT, Sensor Back- Field Sensor end Cloud Application Service OGC’s&Standard&Web&Service:&Sensor& Observa5on&Service(SOS)&enables& Rapid,&Low&Cost&and&Flexible& Applica5on&Dlevelopment - Asia&Pacific&ICT&Alliance& Award&2010& Winner! Tools and Infrastructure" Applications Category ( Data Assimilation ) - RS GA LAI LAI GA Eavpotranspiration LAI Fitting RS Spinach Promotion from Thailand to Japan. Application on the cloud Service Model Day Of Year Honda K ( Chubu U ) et.al % Reducing)uncertainty)with)updated)informa4on) • • Data assimilation % • • % % % % • model uncertainty climate uncertainty Climate forecasts planting anthesis Time harvest ◄——— PREDICTION ——— SIMULATION Weather% Generator Uncertainty • CROP MODEL • Hansen et al. (2006) Clim. Res. %_%EnKF% • • • • Integrated%data%(%RS,%UAV,%Field%Sensor/Obs.%)%for%AssimilaTon% Reducing%uncertainty%as%Tme%passes%through%by%weather%and%data% assimilaTon% Up_to_date%predicTon%as%probability%distribuTon and%filtering% Standard%Web%Services%and%Web%Interface%for%informaTon%service DSSAT%–%Crop%Model% Decision%Support%System%for%Agrotechnology%Transfer • SimulaTng% water% environment% • PracTcal% FuncTonality% • Popular% • Strong%support% • Various%plant% modules% • Going%to%be% Open%source% • Nitrogen% Satellite& B,&G,&R,&RE,&NIR& AircraM& Hyper&Spectral&/&NIR&Camera UAV& RGB/NIRGB&Camera Swinglet CAM RapidEye% 3,500km2% 6.5m%resoluTon% 2%–%3%image/month% distribuTon% Copyright©© 2013 2013 IHI All All Rights Reserved. Copyright IHICorporation Corporation Rights Reserved. Cessna% 9.9km2(4720m×2115m)% 10 50km2%%/%flight% 1 5m% Various%type%of%sensors% Sensefly%SwingletCam/%eBee% 1 10km2%/%flight% 5 10cm%resoluTon% Super%high%reso,%easy% depoloyment% RapidEye • • • • • • UAV%(%Unmanned%Aerial%Vehicle%)%became%realisTc%sensor%plaform% for%agriculture movie UAV UAV : Obihiro : 2013-08-02 UAV UAV : Obihiro : 2013-08-02 NIR (8cm) 38 images VIR (8cm) 39 images UAV 27 SOS Web Service • cloudSense Web Service Poteka Meisei Elec. AMeDAS - NIAES Memuro, Obihiro FieldServer & Field Point – elab Experience Inc. Weather Bucket Obihiro City Hall & Agri Weather • • • AMeDAS - NIAES Web Service 1 GetCapabilities Simulation System OGC API List of authorized SOS stations with its sensors 2 GetObservation User Interface for Famers Sensor Data with Timestamp Ground Measurement Weekly measurement of Spectroradiometer LAI meter Phenotypes ( Height, width… ) Sakurai-Wheat-3 : 2013-07-09 RapidEye Satellite Images to LAI Development • • • • • Vernalizing%Wheat%ObservaTon LAI%simulated%shows%becomes%0% Wheat%keeps%leaves%while%vernalizaTon% Sampling%on%25%Feb%2014% Sakurai%Farm%(%snow%depth%60cm)% Ikemori%Farm%(%snow%depth%0cm)% LAI%Measurement • Scan%_>%Cut%edges%manually(%noisy%part%)%_>%Binary% image(thresholding%%by%Sum(R,G,B)%<%500%%)%_>%LAI%% Sakurai Farm Samples Snow%Cover%Effect • Soil%Temp%under% snow%does%not%go% below%0%because%of% heat%insulaTon% effect%of%snow% • 1%Dec%–%31%Mar% • Limit%min%of%Tmin,% Tmax%to%_0.1,%+0.1% • Solar%Rad%reducTon% 0.95%% 17 Dec 24 Mar 9 Apr Ikemori Farm 1 Nov 2012 – 30 Apr 2013 ( No Camera image from 25 Mar-8 Apr ) Reference • Tokachi%Agricultural%Experiment%StaTon%( % • Growth%measurement%in%their%field%(%not%the%averages% of%Tokachi%area%)%Hokushin%–%1997_2012(14yrs)% • Kitahonami%–%2009_2013(5yrs)% – Sowing,%Emergence,%Flowering,%Maturity% – N%Leaves,%Height%and%Tllers%(%20%Oct,%May,%Jun,%Jul,% (%oct%is%fro%2005)% – Maturity%(H%of%Tiller,%L,%Density%Nseed%of%Spike)% – Yield,%Weight%of%Seed,%Quality% – FerTlizer%(%base%and%addiTonal%)% GeneTc%coefficients%of%DSSAT_CSM_Wheat%Model &" $" !#,-'./'0.1"2)' SimulaTon%Service%for%Decision%Making% How sowing date impacts expected yield #!((" 0123456,/" #!(!" !" )*+,-.,/" 345678' (9:456;<'()*+,' #!!'" #" #!!&" • All%parameters%are% unknown%in%the% calibraTon !"#$%&'()*+,' %" % • Dynamic%Filtering% – %Plaform% • – % – API%_>%Web%Service% – Big%Picture%<_%ALFAE% % • – User%I/F % • Acknowledgement Farmers%in%Obihiro% Ms.%Y.%Matsubara%(%Univ.%of%Tokyo),%% Prof.%M.%Hirafuji(NARO)%%% Dr.%T.%Kuwagata(NIAES)% Obihiro%City%Hall% and%to%all%who%provided% wisdom,%knowledge%and% materials. % Materials http://tesla2.isc.chubu.ac.jp/ www.hondalab.net www.researchgate.net