Comments
Description
Transcript
Alcohol in Sport
Chapter 30 Alcohol in Sport LOUISE M. BURKE AND RONALD J. MAUGHAN Introduction Ancient civilizations dating back to thousands of years bc recorded the intake of drinks containing alcohol (or, more correctly, ethanol) as part of social rituals. One practice which has persisted, even throughout the last decades, is the intake of alcohol before or during sport in the belief that it might improve performance (for review, see Williams 1991). Today, the major strong link between sport and alcohol is through sponsorship and advertising, with many sporting organizations, leagues, teams and events being financed by beer and liquor brewing companies. While a small number of athletes may still consume alcohol specifically to attempt to improve their sports performance, the overwhelming majority of athletes who drink alcohol, do so for social reasons. However, this is often in the context of rituals that are part of the culture of their sport. The aim of this chapter is to overview the effect of alcohol on sports performance, particularly related to the typical patterns of consumption by athletes, and to provide some guidelines for sensible use of alcohol by sports people. Alcohol use by athletes Typically, alcohol intake provides less than 5% of the total energy intake of adults, although recent UK data suggest that alcohol accounted on average for 6.9% of the total energy intake of men aged between 18 and 64 years (Gregory et al. 1990); the corresponding value for women was 2.8%. Since the contribution to total energy intake is regarded as minor, it is often excluded from the results of dietary surveys of athletes. Furthermore, while the general limitations of dietary survey methodology are acknowledged, it is likely that self-reported data on alcohol intake are particularly flawed. For example, people are unlikely to report accurately and reliably about their consumption of a nutrient or food that is regarded so emotively; there is potential for both significant under-reporting and over-reporting. These factors help to explain the lack of reliable data on the alcohol intakes and drinking practices of athletes. It is also important to note that, because many people abstain completely from alcohol, the data are skewed, and mean values may be misleading: in the survey of Gregory et al. (1990) quoted above, for example, men and women who were alcohol drinkers obtained an average of 8.7% and 4.3%, respectively, of total energy from alcohol. There are clearly gender-related differences in consumption patterns, but age, socio-economic background, and geographical location also influence drinking habits. It is not clear whether the consumption patterns of athletes are greatly different from those of the non-athletic population. In general, though, dietary surveys of athletes which include alcohol suggest that it contributes 0–5% of total energy intake in the everyday diet. However, there is evidence that this provides a misleading view of the alcohol intakes of athletes. For example, in a dietary 405 406 nutrition and exercise survey of 45 professional football players from the leading team in the national Australian Rules Football League, mean daily alcohol intake was estimated to be 20 g, accounting for 3.5% of total energy intake (Burke & Read 1988). However, these players rarely drank alcohol during the training week, in accordance with the club policy, and instead confined their intake to weekends, particularly after the weekly football match. Closer examination of the football data revealed that the mean intake of alcohol immediately after the match was 120 g (range, 27–368 g), with alcohol providing a mean contribution of 19% of total energy intake on match day (range, 3–43% of total energy intake). Such ‘binge’ drinking practices were confirmed in a separate study in these same subjects. Blood samples were taken from 41 players who attended a 9.00 a.m. training session on the morning following a weekend match. Fourteen of these players still registered a positive blood alcohol content (BAC) from their previous evening’s intake, with levels ranging from 0.001 to 0.113 g · 100 ml–1. Blood alcohol content in four players exceeded the legal limit for driving a motor vehicle (0.05 g · 100 ml–1). The lay press provides ample anecdotal evidence of binge drinking patterns of some athletes, particularly in the immediate celebration or commiseration of their competition performances, or in the offseason. In some cases these episodes are romanticized and the drinking prowess of the athletes is admired. Whether total alcohol intake, or the prevalence of episodes of heavy alcohol intake, by athletes is different from that of the general population remains unclear. Surveys which have examined this issue report conflicting results. Various hypotheses have been proposed to explain likely associations between sport and alcohol use. It has been suggested that athletes might have a lower intake due to increased self-esteem, a more rigid lifestyle and greater interest in their health and performance. Equally, alcohol has been associated with the rituals of relaxation and celebration in sport, and it has been suggested that athletes might be socialized into certain behav- iours and attitudes to drinking as a result of their sports participation. Several dietary surveys comparing different groups of athletes have reported that the mean daily alcohol intakes of team sport athletes are significantly greater than those of athletes involved in endurance and strength sports (van Erp-Baart et al. 1989; Burke et al. 1991). While these studies were not specifically designed to collect data on alcohol intake, the findings are supported by data collected in some population surveys on alcohol use. Watten (1995), in a national survey of Norwegian adults, reported that men and women involved in team sports reported a higher intake of alcohol, particularly beer and liquor, than those involved in individual sports or those with no sports involvement. However, some of these differences were explained by the age and educational backgrounds of subjects. O’Brien (1993) reported difference between sports in alcohol use by elite Irish athletes, but the overall intake of this group was exceptionally low, at an average of 0.5% of total energy intake. Clearly, while there is anecdotal evidence to suggest that some athletes may consume alcohol in excessive amounts, on at least some occasions, further studies are needed to fully determine the alcohol intake and patterns of use by athletes. Information on the attitudes and beliefs of athletes about alcohol is also desirable, since it would allow education about current drinking practices which are detrimental to the athlete’s performance or health to be specifically targeted. Metabolism of alcohol The metabolism of ethanol occurs primarily in the liver, where it is oxidized, first to acetaldehyde, and then to acetate. The first step is catalysed by a number of hepatic enzymes, the most important of which is the nicotinamide adenine dinucleotide (NAD)-dependent alcohol dehydrogenase: CH3CH2OH + NAD+ Æ CH3CHO + NADH + H+ a lco h o l i n spo rt 407 Aldehyde dehydrogenase catalyses the further oxidation of acetaldehyde to acetate: Table 30.1 A standard drink contains approximately 10 g of alcohol. CH3CHO + NADH+ + H2O Æ CH3COO– + NADH + 2H+ Drink Amount (ml) Standard beer (4% alcohol) Low alcohol beer (2% alcohol) Cider, wine coolers, alcoholic soft drinks Wine Champagne Fortified wines, sherry, port Spirits 250 500 250 The NADH which is formed in these reactions must be reoxidized within the mitochondria, but transfer of the hydrogen atoms into the mitochondria might be a limiting process leading to an alteration in the redox potential of the cell. This can interfere with the conversion of lactate to pyruvate, and explains the increased blood lactate concentration that may be observed after high alcohol intakes. Acetaldehyde is metabolized within the liver, and the acetaldehyde concentration in the blood remains low, but it is acetaldehyde that is thought to be responsible for many of the adverse effects of ethanol. The rate of hepatic gluconeogenesis is markedly suppressed by the metabolism of ethanol as a result of the altered NAD/NADH ratio and the reduced availability of pyruvate (Krebs et al. 1969). If the liver glycogen stores are low because of a combination of exercise and a low carbohydrate intake, the liver will be unable to maintain the circulating glucose concentration, leading to hypoglycaemia. The rate at which ethanol is cleared by the liver varies widely between individuals, and the response of the individual will depend on the amount of ethanol consumed in relation to the habitual intake. It is not altogether clear whether the rate of metabolism of alcohol is increased by exercise, and there are conflicting data in the literature (Januszewski & Klimek 1974). Table 30.1 indicates the amount of alcohol contained in some standard measures. Effects of acute alcohol ingestion on exercise The variety of effects of alcohol on different body tissues, and the variability of subject responses to alcohol, make it difficult to study the direct effects on sports performance. Generally, the ergogenic benefits of alcohol intake immediately before and during exercise are psychologically 100 100 60 30 driven. Alcohol has been used to decrease sensitivity to pain, improve confidence, and to remove other psychological barriers to performance. However, it may also be used to stimulate the cardiovascular system, or to lessen the tremor and stress-induced emotional arousal in fine motor control sports. Although it is no longer on the general doping list of the IOC, it is still considered a banned substance in some sports, such as shooting and fencing. In some sports, such as darts and billiards, it is still popularly used as a (proposed) performance aid, but it remains to be seen whether this simply reflects the culture of sports that are widely played in a hotel environment (for review, see Williams 1991). Exercise metabolism and performance The American College of Sports Medicine (1982), and a more recent review by Williams (1991), have summarized the acute effects of alcohol ingestion on metabolism and performance of exercise. Alcohol does not contribute significantly to energy stores used for exercise, but in situations of prolonged exercise it may increase the risk of hypoglycaemia due to a suppression of hepatic gluconeogenesis. Increased heat loss may be associated with this hypoglycaemia as well as the cutaneous vasodilation caused by exercise, causing an impairment of temperature regulation in cold environments. Studies of the effects of alcohol on cardiovascular, respiratory and muscular function have provided conflicting results, but ingestion of small amounts of alcohol 408 nutrition and exercise has been reported not to significantly alter the cardiorespiratory and metabolic responses to submaximal exercise (Bond et al. 1983; Mangum et al. 1986). Dose–response relationships, interand intrasubject variability, and difficulty with providing a suitable placebo may all help to explain the difficulty of conducting and interpreting alcohol studies. In general it has been concluded that the acute ingestion of alcohol has no beneficial effects on aspects of muscle function and performance tasks: because it may actually produce detrimental responses, it is best avoided. The few studies of acute alcohol ingestion and actual sports performance show variability in results and responses. For example, Houmard and others (1987) reported that the ingestion of small amounts of alcohol (keeping BAC below 0.05 g · 100 ml–1) did not have a significant effect on the performance of a 8-km treadmill time trial, although there was a trend towards performance deterioration at higher blood alcohol levels. Meanwhile, McNaughton and Preece (1986) tested the performance of runners over various distances ranging from 100 to 1500 m, at four different levels of alcohol consumption (BAC estimated at 0–0.1 g · 100 ml–1). Alcohol intake did not affect performance of 100-m times in sprinters, but reduced performance over 200 and 400 m as alcohol intake increased. Middledistance runners showed impaired performance in 800 and 1500 m run times, with these effects also being dose-related. An earlier study by Hebbelinck (1963) showed no effect of alcohol (0.6 ml of 94% ethanol · kg–1 body mass) on isometric strength, but a 6% reduction in vertical jump height and a 10% decrease in performance in an 80-m sprint. Motor control and skill performance There is a limited amount of information available on the effects of acute ingestion of alcohol on motor control and the performance of skilled tasks. It is, however, clear from the controlled studies that have been conducted that alcohol has an adverse effect on tasks where concen- tration, visual perception, reaction time, and coordination are involved (Williams 1995). In many of the earlier studies that showed a detrimental effect of even small doses of alcohol on components of athletic performance, the performance measures were not well standardized and the results are difficult to interpret. Hebbelinck (1963), however, showed that posture control deteriorated after alcohol ingestion, with both the extent and frequency of sway being markedly increased: this represents a mild version of the unsteadiness and ataxia that is apparent after higher levels of alcohol intake. In 1982, the American College of Sports Medicine published a Position Statement on the use of alcohol in sports, and this included a review of the research to date on the effects of alcohol on performance: this literature was also reviewed by Williams (1985). The available evidence showed a detrimental effect of small to moderate amounts of alcohol on reaction time, hand–eye co-ordination, accuracy, balance and complex skilled tasks, with no evidence cited to support the purported beneficial effects of reduced tremor. It has, however, been proposed that the ingestion of small amounts of alcohol may result in a greater feeling of self-confidence in athletes (Shephard 1972), and this may, in turn, improve performance in some situations. The interference of alcohol with the judgement and skill involved in the fine motor skills required for driving accounts for the legislation to prevent individuals who have been drinking from driving automobiles. Effects of acute alcohol ingestion on postexercise recovery There is evidence that the postcompetition situation is often associated with alcohol intake and binge drinking, and it is likely that social rituals after training or practice sessions in some sports (particularly in lower level competitions) may also involve moderate to heavy intake of alcohol. Given that athletes may be dehydrated and have eaten little on the day of competition, it is likely that alcohol consumed after exercise is a lco h o l i n spo rt more quickly absorbed and has increased effects. Therefore it is important to examine the effects of alcohol on processes that are important in the recovery from prolonged exercise, and on the performance of subsequent exercise bouts. Unfortunately, postexercise drinking is subject to many rationalizations and justifications by athletes, including ‘everyone is doing it’, ‘I only drink once a week’ and ‘I can run/sauna it off the next morning’. Rehydration The restoration of the body fluid deficit incurred during exercise is a balance between the amount of fluid that athletes can be induced to drink after exercise, and their ongoing fluid losses. The palatability of postexercise fluids is an important factor in determining total fluid intake, while replacement of sodium losses is a major determinant of the success in retaining this fluid (see Chapter 19). It has been suggested that beer is a valuable postexercise beverage since large volumes can be voluntarily consumed by some athletes! However, the absence of an appreciable sodium content (unless it is accompanied by the intake of salty foods), and the diuretic action of alcohol are factors that are likely to promote increased urine losses. A recent study (Shirreffs & Maughan 1997) examined the effect 409 of alcohol on postexercise rehydration from an exercise task which dehydrated subjects by 2% of body mass. Subjects replaced 150% of the volume of their fluid deficits with drinks containing 0%, 1%, 2% or 4% alcohol within 90 min of finishing the exercise. The total volume of urine produced during the 6 h of recovery was positively related to the alcohol content of the fluid. However, only in the 4% alcohol drink trial did the difference in total urine approach significance, with a net retention of 40% of ingested fluid compared with 59% in the no-alcohol trial, equating to a difference of about 500 ml in urine losses. Subjects were still dehydrated at the end of the recovery period with the 4% alcohol drink, despite having consumed 1.5 times the volume of their fluid deficit (Fig. 30.1). Although individual variability must be taken into account, this study suggests that the intake of significant amounts of alcohol will impede rehydration. It also indicated that beer is not a suitable rehydration drink, even in the low alcohol forms that are available, because of the low content of electrolytes, particularly sodium (Maughan & Shirreffs 1997). In practical terms, low alcohol beers (< 2% alcohol) or beer ‘shandies’ (beer mixed in equal proportions with lemonade, thus diluting the alcohol content and providing some carbohydrate) may not be detrimental to rehydration. 1000 Fig. 30.1 Whole-body water balance after exercise- induced dehydration followed by ingestion of a volume equal to 1.5 times the sweat loss of fluids containing alcohol at concentrations of 0% (䊐), 1% (䊏), 2% (䊊) and 4% (䉭). There is clearly an increasing urine output in the postingestion period as the alcohol concentration increases. Adapted from Shirreffs and Maughan (1997). Net fluid balance (ml) 500 0 –500 –1000 –1500 –2000 PrePostexercise exercise 0 1 2 3 Time after rehydration (h) 4 5 6 410 nutrition and exercise Furthermore, notwithstanding other effects of small to moderate amounts of alcohol, these drinks might be useful in encouraging large fluid intakes in dehydrated athletes. However, drinks with more a concentrated alcohol content are not advised, since the combination of a smaller fluid volume and a greater alcohol intake will reduce the rate of effective fluid replacement. Nevertheless, when aggressive rehydration is required, the planned intake of fluids containing sodium, or fluid intake in conjunction with sodiumrich foods, provides a more reliable strategy to replace fluid losses (see Chapter 19). Glycogen storage Since alcohol has a number of effects on the intermediary metabolism of carbohydrate, it is possible that postexercise intake might impair the restoration of depleted glycogen stores. In the absence of carbohydrate intake, alcohol intake is known to impair the carbohydrate status of the liver by inhibiting hepatic gluconeogenesis and increasing liver glycogenolysis. Alcohol intake has been reported to impair muscle glycogen storage in rats following depletion by fasting or exercise (for review, see Palmer et al. 1991). The effect of alcohol intake on muscle glycogen storage in humans was recently studied by Burke and co-workers (in press), who undertook two separate studies to examine refuelling over 8 h and 24 h of recovery from a prolonged cycling bout. In these studies, athletes undertook three different diets following their glycogen-deleting exercise: a control (high carbohydrate) diet, an alcohol displacement diet (kept isoenergetic with the control diet by reducing the carbohydrate intake) and an alcohol + carbohydrate diet (alcohol added to the control diet). In the two diets containing alcohol, the athletes were required to consume 1.5 g alcohol · kg–1 body mass of alcohol in the 3 h immediately after exercise (e.g. ª 100 g alcohol or 10 standard drinks). Muscle glycogen storage was significantly reduced on the alcohol displacement diets in both the 8 h and 24 h study compared with the high carbohydrate diets. There was a trend towards a reduction in glycogen storage over 8 h of recovery with alcohol + carbohydrate diet; however, glycogen storage on the alcohol + carbohydrate diet on the 24-h study was identical to the control diet. Therefore, there was no clear evidence of a direct impairment of muscle glycogen storage by alcohol when adequate substrate was provided to the muscle; however, this may have been masked by intersubject variability. The results of these studies suggest that the major effect of alcohol intake on postexercise refuelling is indirect, that high intakes of alcohol are likely to prevent the athlete from consuming adequate carbohydrate intake to optimize muscle glycogen storage. In general, athletes who participate in alcoholic binges are unlikely to eat adequate food or make suitable highcarbohydrate food choices. Furthermore, food intake over the next day may also be affected as the athletes ‘sleep off their hangover’. Further studies are needed to determine the direct effect of alcohol on muscle glycogen storage. Other effects Alcohol is known to exert other effects which may impede postexercise recovery. Many sporting activities are associated with muscle damage and soft tissue injuries, either as a direct consequence of the exercise, as a result of accidents, or due to the tackling and collisions involved in contact sports. Standard medical practice is to treat soft tissue injuries with vasoconstrictive techniques (e.g. rest, ice, compression, elevation). Since alcohol is a potent vasodilator of cutaneous blood vessels, it has been suggested that the intake of large amounts of alcohol might cause or increase undesirable swelling around damaged sites, and might impede repair processes. Although this effect has not been systematically studied, there are case histories that report these findings. Until such studies are undertaken, it seems prudent that players who have suffered considerable muscle damage and soft tissue injuries should avoid alcohol in the immediate recovery phase (e.g. for 24 h after the event). a lco h o l i n spo rt Another likely effect of cutaneous vasodilation following alcohol intake is an increase in heat loss from the skin. This may be exacerbated by hypoglycaemia, which results from the combined effects of carbohydrate depletion and impaired liver gluconeogenesis. Therefore, athletes who consume large quantities of alcohol in cold environments may incur problems with thermoregulation. An increased risk of hypothermia may be found in sports or recreational activities undertaken in cold weather, particularly hiking or skiing, where alcohol intake is an integral part of après-ski activities. As in the case of postexercise refuelling, it is likely that the major effect of excessive alcohol intake comes from the athlete’s failure to follow guidelines for optimal recovery. The intoxicated athlete may fail to undertake sensible injury management practices or to report for treatment; they may fail to seek suitable clothing or shelter in cold conditions or to notice early signs of hypothermia. While studies which measure the direct effect of alcohol on thermoregulation and soft tissue damage are encouraged, these effects are likely to be minor or at least additive to the failure to undertake recommended recovery practices. Accidents and high-risk behaviour The most important effect of alcohol is the impairment of judgement. Coupled with a reduced inhibition, it is easy to see how intoxicated athletes might undertake high-risk behaviour and suffer an increased risk of accidents. Alcohol consumption is highly correlated with accidents of drowning, spinal injury and other problems in recreational water activities (see O’Brien 1993), and is a major factor in road accidents. The lay press frequently contains reports of well-known athletes being caught driving while severely intoxicated, or being involved in brawls or other situations of domestic or public violence. There have been a disturbing number of deaths of elite athletes in motor car accidents following excess alcohol intake. Clearly, athletes are not immune to the social and behavioural 411 problems following excess alcohol intake; there is some discussion that certain athletes may be more predisposed (see O’Brien 1993). Further studies are required before it can be determined whether athletes, or some groups of athletes, are more likely to drink excessively or suffer a greater risk of alcohol-related problems. However, it appears that athletes should at least be included in population education programmes related to drink-driving and other high-risk behaviour. Effect of previous day’s intake (i.e. ‘hangover’) on performance Some athletes will be required to train (or even compete again) on the day after a competition and its postevent drinking binge. In some cases, athletes may choose to drink heavily the night before a competition, as a general part of their social activities, or in the belief that this will help to ‘relax’ them prior to the event. The effect of an ‘alcohol hangover’ on performance is widely discussed by athletes, but has not been well studied. Karvinen and coworkers (1962) used a crossover design to examine ‘next day’ performance following the consumption of large amounts of alcohol (approximately eight standard drinks), and reported that a hangover did not impair power or strength, but impaired the ability to undertake a bout of high-intensity cycling. O’Brien (1993) undertook ‘aerobic’ and ‘anaerobic’ testing of a team of Rugby Union players on a Friday night, and then requested them to return for repeat testing the next day after consuming their ‘typical Friday night’s alcohol intake’. A standardized sleep time and breakfast were fol. lowed. He reported that VO2max. was significantly reduced the following day, and that any level of alcohol intake appeared to impair this measure of aerobic capacity. However, since no control trial was undertaken, it is hard to dissociate the effects of alcohol from the effects and variability of repeated testing. Meanwhile it is interesting to note that the mean alcohol intake reported by players as typical of their prematch activities was approximately 130 g (range, 1–38 units). 412 nutrition and exercise Research in other areas of industrial work (e.g. machine handling and flying) suggests that impairment of psychomotor skills may continue during the hangover phase. Clearly this will be of detriment in team sports and court sports which demand tactical play and a high skill level. Effects of chronic alcohol intake on issues of sports performance Athletes who chronically consume large amounts of alcohol are liable to the large number of health and social problems associated with problem drinking. Early problems to have impact on sports performance include inadequate nutrition and generally poor lifestyle (e.g. inadequate rest). Since alcohol is an energydense nutrient (providing 27 kJ · g–1), frequent episodes of heavy alcohol intake are generally accompanied by weight gain. Weekend binge drinkers tend to maintain their food consumption, since alcohol does not seem to regulate total energy intake in the short term. However, erratic eating patterns and choice of high fat foods can lead to excess energy consumption. A common issue, particularly in team sports, is the significant gain in body fat during the off-season due to increased alcohol intake coupled with reduced exercise expenditure. Many players need to devote a significant part of their preseason (and even early season) conditioning to reversing the effects of their off-season activities. Clearly this is a disadvantage to performance and to the longevity of a sports career. Guidelines for sensible use of alcohol by athletes The following guidelines are suggested to promote sensible use of alcohol by athletes. 1 Alcohol is not an essential component of a diet. It is a personal choice of the athlete whether to consume alcohol at all. However, there is no evidence of impairments to health and performance when alcohol is used sensibly. 2 The athlete should be guided by community guidelines which suggest general intakes of alcohol that are ‘safe and healthy’. This varies from country to country, but in general, it is suggested that mean daily alcohol intake should be less than 40–50 g (perhaps 20–30 g · day–1 for females), and that ‘binge’ drinking is discouraged. Since individual tolerance to alcohol is variable, it is difficult to set a precise definition of ‘heavy’ intake or an alcohol ‘binge’. However, intakes of about 80–100 g at a single sitting are likely to constitute a heavy intake for most people. 3 Alcohol is a high-energy (and nutrient-poor) food and should be restricted when the athlete is attempting to reduce body fat. 4 The athlete should avoid heavy intake of alcohol on the night before competition. It appears unlikely that the intake of one or two standard drinks will have negative effects in most people. 5 The intake of alcohol immediately before or during exercise does not enhance performance and in fact may impair performance in many people. Psychomotor performance and judgement are most affected. Therefore the athlete should not consume alcohol deliberately to aid performance, and should be wary of exercise that is conducted in conjunction with the social intake of alcohol. 6 Heavy alcohol intake is likely to have a major impact on postexercise recovery. It may have direct physiological effects on rehydration, glycogen recovery and repair of soft tissue damage. More importantly, the athlete is unlikely to remember or undertake strategies for optimal recovery when they are intoxicated. Therefore, the athlete should attend to these strategies first before any alcohol is consumed. No alcohol should be consumed for 24 h in the case of an athlete who has suffered a major softtissue injury. 7 The athlete should rehydrate with appropriate fluids in volumes that are greater than their existing fluid deficit. Suitable fluid choices include sports drinks, fruit juices, soft drinks (all containing carbohydrate) and water (when refuelling is not a major issue). However, sodium replacement via sports drinks, oral rehydration a lco h o l i n spo rt solutions or salt-containing foods is also important to encourage the retention of these rehydration fluids. Low alcohol beers and beer–soft drink mixes may be suitable and seem to encourage large volume intakes. However, drinks containing greater than 2% alcohol are not recommended as ideal rehydration drinks. 8 Before consuming any alcohol after exercise, the athlete should consume a high carbohydrate meal or snack to aid muscle glycogen recovery. Food intake will also help to reduce the rate of alcohol absorption and thus reduce the rate of intoxication. 9 Once postexercise recovery priorities have been addressed, the athlete who chooses to drink is encouraged to do so ‘in moderation’. Drinkdriving education messages in various countries may provide a guide to sensible and well-paced drinking. 10 Athletes who drink heavily after competition, or at other times, should take care to avoid driving and other hazardous activities. 11 It appears likely that it will be difficult to change the attitudes and behaviours of athletes with regard to alcohol. However, coaches, managers and sports medicine staff can encourage guidelines such as these, and specifically target the old wives tales and rationalizations that support binge drinking practices. Importantly, they should reinforce these guidelines with an infrastructure which promotes sensible drinking practices. For example, alcohol might be banned from locker rooms and fluids and foods appropriate to postexercise recovery provided instead. In many cases, athletes drink in a peer-group situation and it may be easier to change the environment in which this occurs than the immediate attitudes of the athletes. Conclusion Alcohol is strongly linked with modern sport. The alcohol intakes and drinking patterns of athletes are not well studied; however, it appears that some athletes undertake binge drinking practices, often associated with postcompetition socializing. There is no evidence that alcohol 413 improves sports performance; in fact there is evidence that intake during or immediately before exercise, or that large amounts consumed the night before exercise may actually impair performance. There are considerable differences in the individual responses to alcohol intake. It is likely that recovery after exercise is also impaired; but particularly by the failure of the intoxicated athlete to follow guidelines for optimum recovery. Athletes are not immune to alcohol-related problems, including the greatly increased risk of motor vehicle accidents following excess alcohol intake. Not only should athletes be targeted for education about sensible drinking practices, but they might be used as spokespeople for community education messages. Athletes are admired in the community and may be effective educators in this area. Alcohol is consumed by the vast majority of adults around the world, and merits education messages about how it might be used to enhance lifestyle rather than detract from health and performance. References American College of Sports Medicine (1982) Position statement on the use of alcohol in sports. Medicine and Science in Sports and Exercise 14, ix–x. Bond, V., Franks, B.D. & Howley, E.T. (1983) Effects of small and moderate doses of alcohol on submaximal cardiorespiratory function, perceived exertion and endurance performance in abstainers and moderate drinkers. Journal of Sports Medicine 23, 221–228. Burke, L.M. & Read, R.S.D. (1988) A study of dietary patterns of elite Australian football players. Canadian Journal of Sports Science 13, 15–19. Burke, L.M., Gollan, R.A. & Read, R.S.D. (1991) Dietary intakes and food use of groups of elite Australian male athletes. International Journal of Sport Nutrition 1, 378–394. Burke, L.M., Collier, G.R., Broad, E.M. et al. (submitted for publication) The effect of alcohol intake on muscle glycogen storage following prolonged exercise. Gregory, J., Foster, K., Tyler, H. & Wiseman, M. (1990) The Dietary and Nutritional Survey of British Adults. HMSO, London. Hebbelinck, M. (1963) The effects of a small dose of ethyl alcohol on certain basic components of human physical performance. Archives in Pharmacodynamics 143, 247–257. 414 nutrition and exercise Houmard, J.A., Langenfeld, M.E., Wiley, R.L. & Siefert, J. (1987) Effects of the acute ingestion of small amounts of alcohol upon 5-mile run times. Journal of Sports Medicine 27, 253–257. Januszewski, J. & Klimek, A. (1974) The effect of physical exercise at varying loads on the elimination of blood alcohol. Acta Physiologica Polonica 25, 541– 545. Karvinin, E.A., Miettinen, A. & Ahlman, K. (1962) Physical performance during hangover. Quarterly Journal of Studies of Alcohol 23, 208–215. Krebs, H.A., Freedland, R.A., Hems, R. & Stubbs, M.(1969) Inhibition of hepatic gluconeogenesis by ethanol. Biochemistry Journal 112, 117–124. McNaughton, L. & Preece, D. (1986) Alcohol and its effects on sprint and middle distance running. British Journal of Sports Medicine 20, 56–59. Mangum, M., Gatch, W., Cocke, T.B. & Brooks, E. (1986) The effects of beer consumption on the physiological responses to submaximal exercise. Journal of Sports Medicine 26, 301–305. Maughan, R.J. & Shirreffs, S.M. (1997) Recovery from prolonged exercise, restoration of water and electrolyte balance. Journal of Sports Science 15, 297–303. O’Brien, C.P. (1993) Alcohol and sport: impact of social drinking on recreational and competitive sports performance. Sports Medicine 15, 71–77. Palmer, T.N., Cook, E.B. & Drake, P.G. (1991) Alcohol abuse and fuel homeostasis. In Alcoholism: A Molecular Perspective (ed. T.N. Palmer), pp. 223–235. Plenum Press, New York. Shephard, R. (1972) Alive Man: The Physiology of Physical Activity. CC Thomas, Springfield, IL. Shirreffs, S.M. & Maughan, R.J. (1997) Restoration of fluid balance after exercise-induced dehydration, effects of alcohol consumption. Journal of Applied Physiology 83, 1152–1158. Van Erp-Baart, A.M.J., Saris, W.H.M., Binkhorst, R.A., Vos, J.A. & Elvers, J.W.H. (1989) Nationwide survey on nutritional habits in elite athletes. Part 1. Energy, carbohydrate, protein and fat intake. International Journal of Sports Medicine 10 (Suppl.), S3–S10. Watten, R.G. (1995) Sports, physical exercise and use of alcohol. Scandinavian Journal of Sports Medicine 5, 364–368. Williams, M.H. (1985) Nutritional Aspects of Human Physical and Athletic Performance. CC Thomas, Springfield, IL. Williams, M.H. (1991) Alcohol, marijuana and beta blockers. In: Perspectives in Exercise Science and Sports Medicine. Vol. 4. Erogenics: Enhancement of Performance in Exercise and Sport (ed. D.R. Lamb & M.H. Williams), pp. 331–372. Cooper Publishing Group, Carmel, CA. Williams, M.H. (1995) Nutrition for Fitness and Sport. Brown & Benchmark, Madison.