Comments
Description
Transcript
The Female Athlete
Chapter 31 The Female Athlete KATHE A. GABEL Introduction As increasing numbers of women participate in sport and exercise, recommendations for their dietary intake to enhance general health and performance become important. Unfortunately, physical and metabolic differences between men and women generally have not been considered in the development of current dietary guidelines, except for calcium and iron. However, gender differences exist that could potentially affect a woman’s energy and nutrient needs: upper body muscle mass and strength (Miller et al. 1993), endurance capacity in isometric and dynamic exercise at relatively low intensities (Maughan et al. 1986), resting metabolic rate (Arciero et al. 1993) and heart rate measured during different exercise modalities (Kravitz et al. 1997). Rather than deriving recommendations from research involving mixed-gender or female populations, dietary guidelines for protein (Lemon 1995) and carbohydrate (CHO) (Williams 1989) intakes have been developed from studies using male subjects. In consideration of dietary guidelines for the female athlete, this chapter will address limitations of the use of current recommendations for athletes, present evidence for gender differences related to lipid and substrate metabolism and provide discussion regarding macro- and micronutrient recommendations. A brief clarification of terms used to define nutrient needs and recommendations for intake to meet these needs in populations and in individuals will precede these topics of discussion. Clarification of dietary guideline nomenclature Terms that reflect estimates of nutrient requirements vary among countries. In the United Kingdom, nomenclature consists of dietary reference values (DRV), estimated average requirement (EAR), lower reference nutrient intake (LRNI) and reference nutrient intake (RNI) (Department of Health 1991). The term recommended dietary allowance (RDA) (National Research Council 1989) has traditionally been used in the United States, but is expected to change in the next edition of guidelines to terminology similar to that currently used in the UK. In Canada, recommended intakes of energy and certain nutrients are called recommended nutrient intakes (RNI) (Health and Welfare Canada 1983). To simplify reading, dietary guideline will be used in this chapter when referring to RNI, RDA or terms used by other countries. Limitations of the use of current dietary guidelines for athletes Dietary guidelines used in the US are expressed as quantities of a nutrient for a reference individual per day, a term that should be interpreted as an average intake over time (National Research Council 1989). For dietary assessments of athletes, food intake should be recorded for a 417 418 special considerations Fig. 31.1 Performances of elite female athletes have improved rapidly with increased opportunities for participation and increased training loads. Photo © Allsport / John Gichigi. minimum of 3 days. Dietary guidelines of most nutrients are intended to be intakes averaged over at least 3 days and over several months for those nutrients stored by the body, e.g. vitamin A. Physical activity levels, climate and other factors can change dietary requirements. Anyone who exercises and/or is exposed to cold or hot environments may require different levels of some nutrients as compared to levels listed in current guidelines. As the reader evaluates dietary assessments of physically active populations, these limitations of the dietary guidelines should be considered. Requirement for energy Energy needs are related to body mass. In the UK, median weights and heights of the population, recorded in 1980, are used to calculate energy needs (MJ · day–1). Total energy expenditure (TEE) is expressed as a multiple of the basal metabolic rate (BMR) and is affected by the physical activity level. Examples of TEE calculations for men and women can be found in the UK Report on Dietary Reference Values (Department of Health 1991). Current US energy calculations are based on median heights and weights found in the second National Health and Nutrition Examination Survey with empirically derived equations developed by the World Health Organization (WHO 1985) specifically used to estimate resting energy expenditure (REE). To estimate total energy expenditure (TEE), REE is multiplied by a factor that represents an activity level which needs to be recorded over a sufficiently long time accounting for weekdays and weekends to increase validity of the estimate of energy expenditure. Examples of this calculation can be found in the US reference (National Research Council 1989). Agreement regarding which equation to use for TEE estimation does not exist. As published in the WHO’s Report on Energy and Protein Requirements, BMR forms the basis of the factorial method to estimate TEE (WHO 1985). However, examination of the calculations indicates that the equations overestimate BMR of some population groups (Piers et al. 1997). Carpenter et al. (1995), in a meta-analysis of 13 studies that utilized doubly labelled water technique as the method to measure TEE in free-living humans, concluded that there are insufficient published data to permit development of practical models to predict TEE in adults. Acknowledgement of potential limitations of TEE calculations and of the derivation of energy recommendations is necessary to prevent inappropriate energy-related conclusions made in sports nutrition research or recommendations the female athlete given to athletes. It is also expected that most female athletes will have a different weight/ height ratio as compared to the women in the UK or US surveys. This difference is illustrated by comparing estimates of body fat and weights for national-level competitive female rhythmic gymnasts to controls of the same age and height. Female gymnasts averaged 10% body fat (range, 6–17%) as compared to controls, whose mean percentage body fat was 19% (range, 14–27%). An average weight of the gymnasts was reported to be 42 kg as opposed to 54 kg average weight for the controls (Sundgot-Borgen 1996). Depending upon desired level for accuracy of energy estimates and in spite of the identified limitations, TEE equations may still be useful to calculate an estimate of energy expenditure for the female athlete. Additional research is needed to better predict TEE for athletic populations and understand the influence of exercise on TEE, particularly in relation to the female athlete. Gender differences in substrate metabolism as discussed in the next section also support this need. Substrate metabolism Levels of triacylglycerol, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein (LDL-C) can be affected by the presence of oestrogen. Major proteins for HDL and LDL are apo A-1 and apo B, respectively, and were investigated in 25 female runners and 36 age-matched nonexercising women (controls) (Lamon-Fava et al. 1989). Lower concentrations of TC, apo B, triacylglycerol and higher apo A-1 to apo B ratios were observed in the eumenorrhoeic female runners (n = 16) as compared with nonexercising controls. All blood parameters in the amenorrhoeic runners (n = 9) were similar to levels in the controls, except that apo B-values were 20% lower. Except for the effect on apo B levels, the positive effects of exercise on serum lipids were negated in those females with decreased oestrogen, i.e. amenorrhoeic runners. In considering oestrogen’s effect on lipid metabolism, one may ask whether there is a 419 difference between men and women in the substrates used for energy during exercise. Tarnopolsky et al. (1990) matched subjects for maximal oxygen consumption, training status, and competition histories; tested females during the midfollicular phase of their menstrual cycles; and controlled the macronutrient content of the diet to prevent confounding effects of these factors on results. Subjects ran 15.5 km on a treadmill at a velocity requiring oxygen consumption of about 65% of maximal. Glycogen utilization was estimated from muscle biopsies, with respiratory exchange ratio (RER) used to determine substrate utilization during the exercise. Females demonstrated greater lipid utilization based on RER values, less muscle glycogen use and less urea nitrogen excretion than males during moderate-intensity, long-duration exercise. Given that a female athlete could oxidize greater fat stores while preserving CHO and protein, females would have an advantage in endurance and ultra-endurance events in which fat oxidation becomes metabolically more important. However, one may also argue that controlling for training level and substrate availability between genders is unlikely. This presents researchers with a challenging task in answering the question of gender-related substrate use. Hormonal status of the female may need consideration by the researcher and sport nutritionist when evaluating energy intake of the female athlete. Barr et al. (1995) provide evidence that energy intakes of normally ovulating women are higher during the luteal phase of their menstrual cycles. While it is possible to ignore differences when conducting cross-sectional studies, it would be necessary to consider these energy intake differences in longitudinal studies. Whether a dietary assessment is taken over time or for 1 day, inquiry about the athlete’s menstrual cycle may provide useful information related to energy intake, as well as nutritional and health status. Carbohydrate recommendations Recommended percentages of energy from CHO 420 special considerations in the total diet have been listed as 55–70% for those engaged in exercise and training (Williams 1995). The percentage of energy (E%) derived from CHO may be helpful in comparison of dietary intakes, but has limited value for counselling athletes and, if used alone, can be misleading. For example, an endurance cyclist could consume a diet of 63% energy from CHO which would normally be considered less than the recommended level of 70% for the intake of an athlete engaged in endurance-type exercise. Yet, when the actual daily intake of approximately 18 g CHO · kg–1 body weight (BW) is considered (Gabel et al. 1995), intake of the athlete cycling 14–16 h · day–1 is greater than current recommendations. To obtain a greater understanding of an athlete’s food intake, the optimal analysis would include values for g CHO · kg–1 BW, E% from CHO and total amount of CHO. Reports of dietary intakes for female athletes illustrate a lower than expected energy and CHO intake in relation to current dietary recommendations for those engaged in exercise and training. Review of CHO and energy intake in female athletes (Walberg-Rankin 1995) revealed consumption of 3.2–5.4 g CHO · kg–1 BW · day–1 and energy intakes of 6.4–9.6 MJ · day-1 (1540–2300 kcal · day-1) for female athletes involved in anaerobic sports (bodybuilding, gymnastics, basketball). Ranges of 4.4–6.2 g CHO · kg–1 BW · day–1 and 7–10 MJ · day-1 (1660– 2400 kcal) were reported for those participating in aerobic sports (running, cycling, triathlons). In preparation for a 90-km ultramarathon, 23 South African female runners consumed an average of 49.5% of their energy intake (7.5 MJ) from CHO or 4 g CHO · kg–1 BW · day–1 as part of their training diet (Peters & Goetzsche 1997). The female athletes reported running an average of 73.4 (± 12.1) km · week–1. Dietary assessments included two 24-h food records obtained 4 weeks prior to the race and no associations were found among energy, macro- and micronutrient intake and performance in the event. The use of 24-h records limits interpretation of these results. Steen et al. (1995) reported average energy and CHO intakes of female heavyweight collegiate rowers below those expected for athletes engaged in training for 12 h and 2 h of weight training per week. Average intakes of 11 MJ (2630 kcal; range, 2025–3858 kcal) and 51% of energy from CHO (4.9 g · kg–1 BW) were estimated from 5-day food records (3 weekdays and 2 weekend days). Simonsen et al. (1991) investigated energy needs of 24 collegiate rowers during 4 weeks of twice daily training 6 days per week. A high-CHO diet providing 10 g CHO · kg–1 BW promoted greater muscle glycogen content and greater power output than a diet containing 5 g CHO · kg–1 BW. However, the moderate-CHO diet provided a constant level of muscle glycogen (119 mmol · kg–1) and did not lead to glycogen depletion or performance impairment. Dietary recommendations for CHO intake do not differentiate for gender nor are the current CHO dietary recommendations derived from female athletic populations. Current recommendations include a minimum CHO intake of 5 g · kg–1 · day–1 that has been suggested for a recreational athlete (Clark 1990) and increased levels for a more competitive athlete. For counselling women who participate in endurance and ultra-endurance events, sports nutritionists are encouraged to use recommendations of more than 6 g CHO · kg–1 BW currently suggested to athletes involved in endurance sports and a minimum of 5 g CHO · kg–1 BW for other female athletes. Researchers are encouraged to pursue the question of macro-nutrient needs of female athletes at all levels of exercise intensity and related performance. It is worth repeating the advice for analysing the female athlete’s food intake using values of g CHO · kg–1 BW, E% from CHO and total amount of CHO. The findings from Simonsen et al. (1991) suggested that 10 g CHO · kg–1 BW will promote greater muscle glycogen content and power output. If this CHO recommendation was used for a female rower who weighed 60 kg, consider the ramifications. the female athlete 10 g CHO kg BW ¥ 60 kg BW = 600 g CHO ¥ 16.7 kJ (or 4 kcal) g CHO = 10 MJ (or 2400 kcal) If perchance the athlete consumed a total of 10.9 MJ · day-1 (2600 kcal · day-1) (Steen et al. 1995), only 840 kJ (200 kcal) would remain for protein and fat needs. This yields an impossible task not only in providing adequate levels of protein and fat, but in a practical sense as well. Another CHO recommendation comes in the form of total amount of CHO per day. The currently used 500–600 g CHO · day–1 recommendation was derived from four trained male runners whose average weight was 80 kg (Costill et al. 1981). As illustrated and reflected in current intakes of females, these higher recommended levels of CHO are not practical for the typically lower weight female athlete. Protein recommendations When compared with CHO and fat, protein is a nutrient with greater biological diversity in the body, greater methodological challenges in its study and with corresponding controversy in the findings. The reader can find in-depth reviews of amino acid metabolism in Chapter 9 and of protein requirements in Chapter 10. Recognized as important for the athlete, protein is an energy nutrient that has a dietary guideline of about 0.75 g · kg–1 · day–1 in the UK (Department of Health 1991) and US (National Research Council 1989). As previously mentioned, these recommendations are not set with consideration for the effects of physical activity or climate. Rationale for using the recommended level of protein for both sexes stems from limited evidence found during a nitrogen balance study of six young women that requirement values, when expressed per kilogram of body weight, are not substantially different from those for young adult men. Calloway and Kurzer (1982) also noted in their study the importance of hormonal influences on the gain and loss of nitrogen and cautioned others that failure to consider the 421 effect of the menstrual cycle could lead to inaccurate estimates of nitrogen/protein requirements. Endurance athletes have greater protein requirements than those of sedentary persons (Tarnopolsky et al. 1988; Meredith et al. 1989). Phillips et al. (1993) considered protein needs for individuals engaged in habitual physical exercise and concluded that 0.86 g · kg–1 · day–1 was inadequate for endurance athletes. Females in the study were eumenorrhoeic, not taking oral contraceptives and matched to training levels of males with the use of training and performance histories. Male athletes exhibited higher absolute leucine oxidation than females, yet an increase in oxidation with exercise was proportionally greater in the females. This was not explained by the authors. In respect to methodology, a 15N-glycine isotope revealed a higher protein turnover in elderly women (n = 6) after they consumed 20% of their total energy as protein than after a 10% protein diet and no difference was observed when a [1-13C] leucine method was used (Pannemans et al. 1997). Care must therefore be taken in choosing the stable isotope tracer to measure protein turnover. The age of these subjects and small sample size limit the application of this research to female athletes, yet may pose questions for researchers who investigate protein utilizing leucine as a tracer. While investigations of the most appropriate isotope tracer may redirect protein research, the more traditional nitrogen balance studies still support increased protein needs for active individuals. Without support for a specific protein requirement for the female athlete, reliance on a thorough dietary assessment of protein quality and energy intake followed with the provision of current recommendations for protein is suggested. Lemon (1995) suggests that endurance athletes consume protein levels of 1.2–1.4 g · kg–1 · day–1 and increased amounts for the strength athlete, 1.4–1.8 g protein · kg–1 · day–1. Unfortunately, these recommendations are based on data derived from male subjects aged 20–40 years. In consideration of recent data suggesting gender differences in substrate utilization, the protein 422 special considerations levels may be excessive for the female; however, Lemon (1995) suggests that any adverse effect of excessive protein intake is minimal for individuals with normal kidney function. Concern regarding protein intake for the female athlete stems from whether or not the individual consumes a low-energy intake or a strict vegetarian diet. Negative nitrogen balance can result in situations when energy intake is insufficient or consumed protein is of lesser biological quality. In these situations, heightened attention to the protein quality and adequate energy levels is warranted in the dietary assessment. Fat Dietary fat guidelines promoted by different countries and agencies (James et al. 1988; Committee on Diet and Health 1989) vary from 20 to 35 E%. Developed for the general public, these levels stem from research that associates high fat intake with a variety of chronic diseases. Some have proposed the use of high-fat diets or fat loading to improve endurance capability of athletes. In their review of studies testing the fat-loading hypothesis, Sherman and Leenders (1995) concluded that the use of high-fat diets to improve endurance is not supported by a sufficient number of valid, credible and replicated studies. See Chapter 14 for more support of this conclusion. Concern for a lower weight and percentage of body fat, as indicated by a score on the Eating Attitudes Test, motivates amenorrhoeic female athletes to consume less fat (11 E%) than eumenorrhoeic athletes (17 E%) (Perry et al. 1996), while other female athletes could benefit from counselling to reduce fat content in their diets (Steen et al. 1995). Consideration for the female athlete’s weight history, appropriate goals for body composition and weight, current eating habits and serum lipid chemistries, family history of disease, and factors that influence energy and fat intake is important in the development of appropriate recommendations for fat intake. For the sport nutritionist, a thorough dietary and health assessment will provide the best basis for any recommendation that can be made for fat intake by female athletes. Vitamins It is generally supported that vitamin supplementation is not needed for those athletes consuming a variety of foods and that vitamin supplementation in athletes with an adequate vitamin status has no effect on performance (van der Beek 1991). For further discussion of vitamins, see Chapters 20 and 21. For the female athlete, research on vitamin B6 and the antioxidant vitamins requires further discussion in this chapter. Vitamin B6 Energy metabolism during exercise relies on several biological functions of vitamin B6. The six biologically active forms of vitamin B6 may function as a cofactor for enzymes used in metabolic transformation of amino acids, in gluconeogenesis and glycogenolysis. Other functions related to exercise include serotonin formation and synthesis of haemoglobin and carnitine. With the possibility of an increased need for this vitamin in young women, it may be beneficial to consider vitamin B6 intake of the female athlete. Female athletes tend to report vitamin B6 intakes that are less than two thirds of the dietary guideline. However, it is important to note the possible influences of underreporting, low energy intakes or inadequate vitamin B6 data in dietary computer software programs as possible contributors to the reported lower than expected intakes of vitamin B6. Manore (1994) summarized post-1985 studies reporting average dietary intakes of vitamin B6 for female athletes. With the majority of researchers using a 3-day record to record intakes, 10–60% of the subjects reported consumption of less than two thirds of the dietary guideline for vitamin B6. However, levels of the vitamin expressed as milligrams of vitamin B6 per gram of protein were not below the currently the female athlete recommended level of 0.016. The results of a study by Huang et al. (1998) provide recent evidence that the level of 0.016 mg vitamin B6 · g–1 protein is inadequate for young women. Their study of eight women residing in a metabolic unit for 92 days suggests that 0.019 mg vitamin B6 · g–1 protein is needed to normalize vitamin B6 measures to controlled baseline values. If vitamin B6 needs are indeed higher than current guidelines for young women, more attention to an adequate intake of this vitamin is needed for female athletes. It is advisable for those working with athletes who typically report low energy intakes, i.e. gymnasts, figure skaters, and runners, to appropriately assess food intakes while noting completeness of the nutrient data bank used to estimate vitamin B6 intake. Based on a thorough assessment, one may potentially proceed to recommend consumption of additional vitamin B6rich foods. Antioxidant vitamins Exercise-induced oxidative stress may be a concern for an athlete. Oxidative stress occurs at submaximal levels of exercise (Leaf et al. . 1997), and at peak Vo2max. (Viguie et al. 1990). The human body constantly forms free radicals and other oxygen-derived species that can damage DNA, lipids and proteins. When exposed to mild oxidative stress, the body can respond by increasing its defensive antioxidant enzymes and proteins; however, severe damage may lead to cell transformation and the increased oxidative damage has been associated with human disease, specifically cardiovascular disease and cancer (Halliwell 1994). To diminish the effect of naturally occurring oxidative damage, it has been suggested that antioxidant nutrients should be added to the diet (Jacob & Burri 1996). Carotenoids, ascorbic acid, a-tocopherol, flavonoids, and other plant phenolics are a few of those suggested as important in protecting against oxidative damage. In other words, inclusion of fruits and vegetables in the athlete’s diet can partially provide a solution to 423 the concern for increased oxidative stress from exercise. Some reports suggest that supplementation with antioxidant nutrients, such as vitamin E, can attenuate the exercise-induced lipid peroxidation (Sumida et al. 1989). A daily combination of 294 mg vitamin E, 1000 mg ascorbic acid and 60 mg ubiquinone was found to be effective in preventing LDL oxidation in male endurance athletes; however, 4 weeks’ supplementation with the antioxidant nutrients did not reduce LDL oxidation products, i.e. conjugated dienes (Vasankari et al. 1997). Limited data specifically on female athletes are again noted in the area of antioxidant research. For possible increased antioxidant vitamin requirements for those who exercise, the recommendation for an increased fruit and vegetable intake is worthy of emphasis. Dietary guidelines from several US organizations recommend five or more daily servings of fruits and vegetables to help reduce the risk of heart disease and certain kinds of cancer (Jacob & Burri 1996). For the female athlete, increased intake of fruits and vegetables can provide additional CHO and several essential nutrients. For those athletes limiting energy intake to reduce body fat, these foods will provide a higher nutrient to calorie ratio known to be beneficial for consuming a more nutrient adequate food intake. Minerals Macrominerals: calcium A nutrient worthy of consideration for supplementation to the female athlete’s diet is calcium. For detailed discussion of this mineral’s roles in the body, calcium intake and its relationship to exercise, refer to Chapter 23. Discussion supporting the concern for adequate intake of this mineral and of practical ways to increase calcium intake in female athletes follows. Peak bone mass development depends upon adequate calcium intake during skeletal growth (Matkovic 1991; Johnston et al. 1992) as well as for gain in bone mass until the third decade of life 424 special considerations (Recker et al. 1992). The combination of suboptimal calcium intakes by female athletes (Chen et al. 1989; Steen et al. 1995; Peters & Goetzsche 1997) and differences of opinion regarding recommended dietary guidelines for this mineral (Health and Welfare Canada 1983; National Research Council 1989; Department of Health 1991) prompts some concern and questions among those who care for, work with or feed female athletes. Why should one have concern? Since physical activity, particularly high impact, is associated with greater bone density (Dook et al. 1997), one might expect that female athletes need not worry about the possibility of bone loss. However, identification of a syndrome of disordered eating, amenorrhoea and reduced bone density (Loucks 1987) overshadows this positive aspect of physical activity and may contribute to a greater consideration for adequate calcium intakes in female athletes. The important questions regarding calcium are: 1 What is an optimal calcium intake to promote and support adequate bone density in a female athlete? 2 How can suboptimal calcium intakes be improved? The answer to the first question is currently unknown. Differences of opinion regarding optimal calcium intakes for adults exist among countries, agencies and researchers. Even though physical activity has been identified as a positive factor in promoting greater bone density, no one has identified either the optimal level of exercise or calcium intake to support adequate bone density in the female athlete. To recommend an appropriate level of calcium intake, one needs to rely on a thorough nutritional, exercise and medical history of the athlete. Answers to questions about the following will provide added perspective on whether to recommend the dietary guideline for calcium or potentially a higher level. • Family history of osteoporosis • Typical intake of calcium, fluoride, other bonerelated minerals, protein and energy • Training intensity and type of sport • Menstrual history and current status • Supplement and/or drug use and any malabsorption conditions For the athlete who avoids calcium-rich foods or is restricting energy intake to lose weight, discussion of low-fat calcium-rich foods, food choices not normally recognized as calcium-rich or those that are fortified with calcium, e.g. calcium-fortified orange juice, is recommended. Consumption of a mineral water that has a high calcium content may also be appropriate for a possible source of dietary calcium (Couzy et al. 1995). The second choice would be that for supplementation of the female athlete’s diet with calcium tablets. Determination of the typical calcium intake from food will help determine the appropriate level of supplement to recommend. However, supplementation with minerals is not without potential adverse effects. Wood and Zheng (1997) report that high dietary calcium intakes during a 36-day study reduced zinc absorption in healthy postmenopausal women. Limitations of the study include that activity level was not reported for the subjects and that differences will exist in nutrient absorption between a postmenopausal female and a young female. Cook et al. (1991) reported calcium supplements could inhibit the absorption of ferrous sulphate when consumed with food, although Reddy and Cook (1997) found no significant influence of calcium intake on non-haem iron absorption when varying levels of calcium (280–1281 mg · day–1) were consumed as part of the diet. In general, most experts agree that a calciumrich diet is the most appropriate dietary prescription to promote and support optimal bone density. If this is not possible, consideration for low to moderate levels of a calcium supplement in addition to the dietary calcium intake to meet optimal levels is reserved for an alternative action. The relationship between the macrominerals and microminerals warrants more attention as athletes look to supplementation as solutions to their possible dietary inadequacies. Lukaski (1995) has expressed concern for the adverse the female athlete effects of trace mineral supplementation, particularly magnesium, zinc, and copper; while Clarkson and Haymes (1994) recommend a multivitamin/mineral supplement containing no more than the dietary guideline to athletes whose diets may be less than optimal. Microminerals: iron Iron is another mineral worthy of consideration for supplementation. Deficiency of this mineral has the distinction of being common in female athletes and is frequently reported in physically active populations. In a comparison of 111 adult female habitual runners with 65 inactive females of comparable age, Pate et al. (1993) found serum ferritin levels, indicative of iron status, 28% lower in the runners than controls. However, frank iron deficiency indicated by suboptimal haemoglobin levels was rare in both groups. Dr Eichner provides insight into the reasons for iron depletion and expanded discussion of the effect of exercise on this mineral (see Chapter 24). Challenges in maintaining adequate iron stores in the female athlete include the complexity of the mineral’s absorption, lower intakes of energy by females, low levels of iron in food, avoidance of meat products, and monthly menstrual losses. More challenge is added to understanding this issue when one needs to decide which haematological assessment to use for iron status determination. Lack of standardization of the blood parameters and values used to classify the stages of iron depletion lends to the variability reported for the incidence of iron depletion in athletic populations. However, most agree that iron supplements are appropriately given to those athletes who are diagnosed with iron deficiency anaemia (Haymes 1987). This is related to reports by some researchers that aerobic capacity in female athletes with mild anaemia can be improved with iron supplementation (Fogelholm 1995). Supplement use by athletes Sobal and Marquart (1994) reviewed 51 studies 425 in which 10 274 athletes were investigated regarding the prevalence, patterns and explanations for their vitamin/mineral supplement use. Mean percentage of supplement use among female athletes was 57% (33 study groups). Several reasons were noted by the athletes for their supplement use: performance enhancement, prevention of illness, substitute for inadequate diet, provision of additional energy, and the meeting of specific nutrient demands for exercise. It was also noted that vitamin and mineral supplements were more frequently used by female athletes consuming low energy diets. Small sample sizes (< 50 athletes) of most of the reviewed studies (56%) and the minor focus on supplements in the studies limits our understanding of supplement use by athletes. The authors recommended that those who study dietary intake of athletes consider vitamin/ mineral supplement use as an important part of their study designs and sport nutritionists include a vitamin/mineral supplement history as part of their dietary assessment. If the female athlete consumes adequate amounts of a variety of foods, she does not require vitamin/mineral supplementation to her food intake. However, for those athletes who consistently restrict energy intake, a one-a-day multiple vitamin/mineral supplement can provide some insurance in meeting nutrient needs for overall good health and exercise. Fluid intake and recommendations Due to the wide variation in individual fluid losses during exercise, it is not reasonable to differentiate hydration recommendations for the female athlete. In spite of the physical, physiological and hormonal differences between males and females, individual variations in fluid balance surpass any gender differences (R.J. Maughan, personal communication). Conclusion Dietary guidelines based on data from sedentary or male populations pose challenges, as well as opportunities, for the sports nutritionist and 426 special considerations researcher who are interested in the nutritional needs of the female athlete. Since macronutrient dietary guidelines for athletes have been based on male subjects and micronutrient needs derived from non-athletic populations, the researcher has the opportunity to explore these needs of the female athlete, while faced with the challenge of understanding and controlling for the hormonal influences on metabolism. The sports nutritionist is presented with opportunities to systematically collect food intakes and supplementation information from female athletes, yet challenged with the lack of dietary guidelines specifically designed for the female athlete. Presently, information obtained from a thorough diet, supplement and health history, 3–5-day food record, and training schedule; estimation of energy expenditure during exercise; plus anthropometric and biochemical data can provide a good basis for providing appropriate nutritional advice. Observation of the female athlete while training and competing, as well as during meal times, can also help to understand better the energy and nutrient requirements of the individual. References Arciero, P.J., Goran, M.I. & Poehlman, E.T. (1993) Resting metabolic rate is lower in women than in men. Journal of Applied Physiology 75, 2514–2520. Barr, S.I., Janelle, K.C. & Prior, J.C. (1995) Energy intakes are higher during the luteal phase of ovulatory menstrual cycles. American Journal of Clinical Nutrition 61, 39–43. Calloway, D.H. & Kurzer, M.S. (1982) Menstrual cycle and protein requirements of women. Journal of Nutrition 112, 356–366. Carpenter, W.H., Poehlman, E.T., O’Connell, M. & Goran, M.I. (1995) Influence of body composition and resting metabolic rate on variation in total energy expenditure: a meta-analysis. American Journal of Clinical Nutrition 61, 4–10. Chen, J.D., Wang, J.F., Li, K.J. et al. (1989) Nutritional problems and measures in elite and amateur athletes. American Journal of Clinical Nutrition 49, 1084–1089. Clark, N. (1990) Sport Nutrition Guide: Eating to Fuel Your Lifestyle. Leisure Press, Champaign, IL. Clarkson, P.M. & Haymes, E.M. (1994) Trace mineral requirements for athletes. International Journal of Sport Nutrition 4, 104–119. Committee on Diet and Health, National Research Council (1989) Diet and Health: Implications for Reducing Chronic Disease Risk. National Academy Press, Washington, DC. Cook, J.D., Dassenko, S.A. & Whittaker, P. (1991) Calcium supplementation: effect on iron absorption. American Journal of Clinical Nutrition 53, 106– 111. Costill, D.L., Sherman, W.M., Fink, W.J., Maresh, C., Witten, M. & Miller, J.M. (1981) The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. American Journal of Clinical Nutrition 34, 1831–1836. Couzy, F., Kastenmayer, P., Vigo, M., Clough, J., Munoz-Box, R. & Barclay, D.V. (1995) Calcium bioavailability from a calcium- and sulfate-rich mineral water, compared with milk, in young adult women. American Journal of Clinical Nutrition 62, 1239–1244. Department of Health (1991) Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. HMSO, London. Dook, J.E., James, C., Henderson, N.K. & Price, R.I. (1997) Exercise and bone mineral density in mature female athletes. Medicine and Science in Sports and Exercise 29, 291–296. Fogelholm, M. (1995) Indicators of vitamin and mineral status in athletes’ blood: a review. International Journal of Sport Nutrition 5, 267–284. Gabel, K., Aldous, A. & Edgington, C. (1995) Dietary intake of two elite male cyclists during 10-day, 2,050mile ride. International Journal of Sport Nutrition 5, 56–61. Halliwell, B. (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 334, 721–724. Haymes, E.M. (1987) Nutritional concerns: need for iron. Medicine and Science in Sports and Exercise 19, S197–S200. Health and Welfare Canada (1983) Recommended Nutrient Intakes for Canadians. Bureau of Nutritional Sciences, Health Protection Branch, Health and Welfare, Ottawa. Huang, Y.-C., Chen, W., Evans, M.A., Mitchell, M.E. & Shultz, T.D. (1998) Vitamin B-6 requirement and status assessment of young women fed a highprotein diet with various levels of vitamin B-6. American Journal of Clinical Nutrition 67, 208–220. Jacob, R.A. & Burri, B.J. (1996) Oxidative damage and defense. American Journal of Clinical Nutrition 63, 985S–990S. James, W.P.T., Ferro-Luzzi, A., Isaksson, B. & Szostak, W.B. (1988) Healthy Nutrition: Preventing Nutrition- the female athlete Related Diseases in Europe. WHO Regular Publication, European Series, no. 24, WHO, Copenhagen. Johnston, C.C., Miller, J.Z., Slemenda, C.W. et al. (1992) Calcium supplementation and increases in bone mineral density in children. New England Journal of Medicine 327, 82–87. Kravitz, L., Robergs, R.A., Heyward, V.H., Wagner, D.R. & Powers, K. (1997) Exercise mode and gender comparisons of energy expenditure at self-selected intensities. Medicine and Science in Sports and Exercise 29, 1028–1035. Lamon-Fava, S., Fisher, E.C., Nelson, M.E., Evans, W.J., Millar, J.S., Ordovas, J.M. & Schaefer, E.J. (1989) Effect of exercise and menstrual cycle status on plasma lipids, low density lipoprotein particle size, and apolipoproteins. Journal of Clinical Endocrinology and Metabolism 68, 17–21. Leaf, D.A., Kleinman, M.T., Hamilton, M. & Barstow, T.J. (1997) The effect of exercise intensity on lipid peroxidation. Medicine and Science in Sports and Exercise 29, 1036–1039. Lemon, P.W.R. (1995) Do athletes need more dietary protein and amino acids? International Journal of Sport Nutrition 5, S39–S61. Loucks, A.B. (1987) Skeletal demineralisation in the amenorrheic athlete. In Exercise: Benefits, Limits and Adaptations (ed. D. Macleod, R. Maughan, M. Nimmo, T. Reilly & C. Williams), pp. 255–269. E. & F.M. Spon, London. Lukaski, H.C. (1995) Micronutrients (magnesium, zinc, and copper): are mineral supplements needed for athletes? International Journal of Sport Nutrition 5, S74–S83. Manore, M.M. (1994) Vitamin B6 and exercise. International Journal of Sport Nutrition 4, 89–103. Matkovic, V. (1991) Calcium metabolism, and calcium requirements during skeletal modeling and consolidation of bone mass. American Journal of Clinical Nutrition 54, 245S–260S. Maughan, R.J., Harmon, M., Leiper, J.B., Sale, D. & Delman, A. (1986) Endurance capacity of untrained males and females in isometric and dynamic muscular contractions. European Journal of Applied Physiology 55, 395–400. Meredith, C.N., Zackin, M.J., Frontera, W.R. & Evans, W.J. (1989) Dietary protein requirements and body protein metabolism in endurance-trained men. Journal of Applied Physiology 66, 2850–2856. Miller, A.E.J., MacDougall, J.D., Tarnopolsky, M.A. & Sale, D.G. (1993) Gender differences in strength and muscle fiber characteristics. European Journal of Applied Physiology 66, 254–262. National Research Council (1989) Recommended Dietary Allowances, 10th edn. National Academy of Science, Washington, DC. Pannemans, D.L.E., Wagenmakers, A.J.M., Westerterp, 427 K.R., Schaafsma, G. & Halliday, D. (1997) The effect of an increase of protein intake on whole-body protein turnover in elderly women is tracer dependent. Journal of Nutrition 127, 1788–1794. Pate, R.R., Miller, B.J., Davis, J.M., Slentz, C.A. & Klingshirn, L.A. (1993) Iron status of female runners. International Journal of Sport Nutrition 3, 222–231. Perry, A.C., Crane, L.S., Applegate, B., MarquezSterling, S., Signorile, J.F. & Miller, P.C. (1996) Nutrient intake and psychological and physiological assessment in eumenorrheic and amenorrheic female athletes: a preliminary study. International Journal of Sport Nutrition 6, 3–13. Peters, E.M. & Goetzsche, J.M. (1997) Dietary practices of South African ultradistance runners. International Journal of Sport Nutrition 7, 90–103. Phillips, S.M., Atkinson, S.A., Tarnopolsky, M.A. & MacDougall, J.D. (1993) Gender differences in leucine kinetics and nitrogen balance in endurance athletes. Journal of Applied Physiology 75, 2134–2141. Piers, L.S., Diffey, B., Soares, M.J., Frandsen, S.L., McCormack, L.M., Lutschini, M.J. & O’Dea, K. (1997) The validity of predicting the basal metabolic rate of young Australian men and women. European Journal of Clinical Nutrition 51, 333–337. Recker, R.R., Davies, K.M., Hinders, S.M., Heaney, R.P., Stegman, M.R. & Kimmel, D.B. (1992) Bone gain in young adult women. Journal of the American Medical Association 268, 2403–2408. Reddy, M.B. & Cook, J.D. (1997) Effect of calcium intake on nonheme-iron absorption from a complete diet. American Journal of Clinical Nutrition 65, 1820–1825. Sherman, W.M. & Leenders, N. (1995) Fat loading: the next magic bullet? International Journal of Sport Nutrition 5, S1–S12. Simonsen, J.C., Sherman, W.M., Lamb, D.R., Dernbach, A.R., Doyle, J.A. & Strauss, R. (1991) Dietary carbohydrate, muscle glycogen, and power output during rowing training. Journal of Applied Physiology 70, 1500–1505. Sobal, J. & Marquart, L.F. (1994) Vitamin/mineral supplement use among athletes: a review of the literature. International Journal of Sport Nutrition 4, 320–334. Steen, S.N., Mayer, K., Brownell, K.D. & Wadden, T.A. (1995) Dietary intake of female collegiate heavyweight rowers. International Journal of Sport Nutrition 5, 225–231. Sumida, S., Tanaka, K., Kitao, H. & Nakadomo, F. (1989) Exercise-induced lipid peroxidation and leakage of enzymes, before and after vitamin E supplementation. International Journal of Biochemistry 21, 835– 838. Sundgot-Borgen, J. (1996) Eating disorders, energy intake, training volume, and menstrual function in high-level modern rhythmic gymnasts. International Journal of Sport Nutrition 6, 100–109. 428 special considerations Tarnopolsky, L.J., MacDougall, J.D., Atkinson, S.A., Tarnopolsky, M.A. & Sutton, J.R. (1990) Gender differences in substrate for endurance exercise. Journal of Applied Physiology 68, 302–308. Tarnopolsky, M.A., MacDougall, J.D. & Atkinson, S.A. (1988) Influence of protein intake and training status on nitrogen balance and lean body mass. Journal of Applied Physiology 64, 187–193. van der Beek, E.J. (1991) Vitamin supplementation and physical exercise performance. Journal of Sports Science 9, 77–89. Vasankari, T.J., Kujala, U.M., Vasankari, T.M., Vuorimaa, T. & Ahotupa, M. (1997) Increased serum and low-density lipoprotein antioxidant potential after antioxidant supplementation in endurance athletes. American Journal of Clinical Nutrition 65, 1052–1056. Viguie, C.A., Frei, B., Shigenanga, M.K., Ames, B.N., Packer, L. & Brooks, G.A. (1990) Oxidant stress in human beings during consecutive days of exercise (Abstract). Medicine and Science in Sports and Exercise 22, 86S. Walberg-Rankin, J. (1995) Dietary carbohydrate as an ergogenic aid for prolonged and brief competitions in sport. International Journal of Sport Nutrition 5, S13–S28. WHO (1985) Energy and Protein Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation. Technical Report Series 724, World Health Organization, Geneva. Williams, C. (1989) Diet and endurance fitness. American Journal of Clinical Nutrition 49, 1077–1083. Williams, M. (1995) Nutrition Related to Fitness and Sport. Brown and Benchmark, Dubuque, IA. Wood, R.J. & Zheng, J.J. (1997) High dietary calcium intakes reduce zinc absorption and balance in humans. American Journal of Clinical Nutrition 65, 1803–1809.