Comments
Transcript
VitaminsEffects of Exercise on Requirements
Chapter 21 Vitamins: Effects of Exercise on Requirements JIDI CHEN Introduction Vitamins are a group of organic compounds required in tiny amounts in the diet of humans for proper biological functioning and maintenance of health. Vitamins do not supply energy, but act mainly as regulators of the numerous and diverse physiological processes in the human body including vision, skin integrity, bone ossification, DNA formation, metabolism of carbohydrate, fat, and proteins, mitochondrial metabolism, utilization of oxygen in the cells, red blood cell (RBC) formation and other functions which are closely related to energy production and resultant physical performance (see Chapter 20). The human body is not able to synthesize the majority of the vitamins or the amount synthesized in the body cannot meet the needs. It is clear that a certain amount of each of the vitamins is essential in the diet and that lack of a specific vitamin can cause a specific deficiency disease (Williams 1985; Daniel 1991; Chen & Wu 1996). Due to the many and varied roles of vitamins, they are probably the most widespread nutrients taken as supplements by both the general and athletic population. Furthermore, vitamins meet with great interest in the world of sports because of their supposed role in enhancing physical performance (Williams 1989; van der Beek 1991, 1994; Singh et al. 1992b; Weight et al. 1998a, 1998b). Exercise enhances energy metabolism and increases the total energy expenditure which gives rise to a number of concerns: • Does exercise training result in increased needs or deficiencies of vitamins? • Is the vitamin status of athletes normal? • Is it necessary for athletes to take vitamin supplements? The answers to these questions have varied through the years and the balance of opinion continues to change as new evidence appears (Clarkson 1991, 1995; van der Beek 1991; Fogelholm 1994; Armstrong & Maresh 1996). The focal points of the concerns for vitamin nutrition of athletes are the assumption that athletes need an increased vitamin intake, the optimum recommended dietary allowance (RDA) for athletes under different conditions, and the true effects of vitamin supplementation on physical performance. It is accepted that the prevalence of vitamin deficiency diseases is low in the general population in industrialized societies. Theoretically, the athlete may have an increased requirement for dietary intake of vitamins induced by decreased absorption in the gastrointestinal tract, increased excretion in sweat, urine and faeces, increased turnover, as well as the adaptation for the initial stage of vigorous training and/or acute physical exercise which may enhance energy metabolism (van der Beek 1991, 1994). It is generally agreed that moderate physical activity per se does not adversely affect vitamin status when recommended amounts of vitamins are consumed in the diet (Clarkson 1991). Marginal vitamin deficiencies have been observed in athletes, but many of the published reports of vitamin defi- 281 282 nutrition and exercise ciencies in athletes are invalid for methodological reasons: a shortfall in recommended intake relative to published recommended intakes is not indicative of a deficiency (van der Beek 1991, 1994; Chen & Wu 1996). Athletes with a balanced diet should receive the RDA provided energy intake is sufficient to balance expenditure (Shoorland 1988; Rokitzki et al. 1994a), although it must be recognized that not all athletes have a high energy intake, and not all eat a varied diet. Unfortunately, there are limited and conflicting data with regard to the micronutrient status of physically active individuals (van der Beek 1985; Belko 1987; Fogelholm 1992). Methods for the assessment of vitamin status are often inadequate, as outlined in the preceding chapter. Dietary surveys and food records have been used to assess the vitamin status of athletes, but tables of vitamin content are inherently unreliable, and the vitamin loss attributed to vitamin availability, processing, storage, and preparation of the foods is often not taken into account. Blood or other tissue levels of vitamins are affected by several factors including acute exercise and they may not be entirely accurate as measures of the nutritional status of athletes; caution should therefore be taken in interpreting the results (see Chapter 20). Furthermore, the RDAs are designed primarily to avoid nutritional deficiencies and do not focus on exercise or stressful environments. The RDA is determined by various professional bodies to designate the level of intake of a micronutrient that will meet the known nutritional needs of practically all healthy persons (Armstrong & Maresh 1996), and is based on an average-sized person with an average amount of physical activity and an average physiological requirement. This is then adjusted by a variable factor to compensate for incomplete utilization by the body, the variation in requirements among individuals and the bioavailability of the nutrients from different food sources (US National Research Council 1989). The definition of RDA is not identical for all nations and organizations (van der Beek 1991). It is not clear that the RDA established for the general population may apply to athletes, labourers, or soldiers in heavy training (Shoorland 1988). There have been few reports on the setting of separate RDAs for athletes (Yakovlev 1957; Sports Science Committee of Japanese Association 1977; Grandjean 1989; Chen et al. 1992). The majority of dietary surveys conducted on athletic population clearly indicated that the vitamin intakes of all but a small minority of athletes exceed the RDA levels if a well-balanced diet is typically consumed (Sobal & Marquart 1994). Although vitamin intakes of less than the RDA do not indicate vitamin deficiencies per se, the further the intake falls below the RDA, the greater is the risk of developing a deficiency state. Athletes have been targeted as a significant group for vitamin supplements, and dietary surveys and questionnaires of athletes confirm the widespread use of the vitamin supplements. Questionnaires completed by 2977 college and high school athletes have found that 44% of those surveyed took one or more vitamin supplements (Parr et al. 1984). In other, smaller surveys, 31% of 80 Australian athletes and 29% of 347 non-elite runners (Nieman et al. 1989) and 42–43% of football players, gymnasts and runners (Sobal & Marquart 1994) took vitamin supplements. Some studies have documented even higher percentages of athletes taking supplements, including 71% of female runners (Clark et al. 1988) and 100% of female bodybuilders (LamarHildebrand et al. 1989). Supplementation is purported to enhance performance, delay fatigue, and speed up recovery by some ill-defined ergogenic mechanism. Despite the lack of evidence that large intakes of vitamin have positive effects on performance, many athletes are still taking vitamin supplements, because of a lack of nutritional knowledge and lack of familiarity with the dietary guidelines, and quite a number take very large doses. The concern is that not only the amounts of supplementation can be financially costly because of the large doses of up to 5000 times the recommended levels, but there vitamins: effects of exercise on requirements is also the possibility that these excessive amounts may be harmful to health (see Chapter 20). In the following sections, for each of the vitamin, there will be a brief description of exercise-induced changes in vitamin status and requirements, the effects of vitamin supplements, harmful effects of overdoses of vitamin intakes and the main food resources of vitamins (see Chapter 20). Vitamins are commonly classified into two groups, the fat soluble and the water soluble. Vitamins A, D, E and K are fat soluble. Vitamin C and members of the vitamin B complex are water soluble. Fat-soluble vitamins can be stored in appreciable amounts in the body, and their function is largely independent of energy metabolism. Water-soluble vitamins are not stored in large quantities in the body and must be ingested on a regular basis. Clinical symptoms can be developed in individuals with a diet deficient in B vitamins. Vitamin B12 can be stored in the liver for a year or longer. Thiamin (vitamin B1) Vitamin B1 as thiaminpyrophosphate (TPP, cocarboxylase), plays an important role in the oxidative decarboxylation of pyruvate to acetylcoenzyme A (CoA) for entry into the Krebs cycle and subsequent oxidation to provide for adenosine triphosphate resynthesis. Thus, there is a possibility that the increased demand for acetylCoA during exercise would not be met in athletes with a thiamin deficiency. If this occurred, more pyruvate would be accumulated and converted to lactate, with the possibility that fatigue would develop more rapidly and aerobic performance could be impaired. Thiamin deficiency could also result in a reduced availability of succinate, a coingredient of haeme, leading to inadequate haemoglobin formation, another factor that could influence aerobic exercise capacity. However, little evidence has shown that ingestion of a vitamin B1 supplement by athletes consuming a well-balanced diet has any effect on performance. 283 It has been noted that there is a good linear relationship between thiamin intake and energy intake (van der Beek 1994). It is generally accepted that the vitamin B1 requirement is dependent on the total energy expenditure and is influenced by carbohydrate intake because vitamin B1 is essential for the intermediary metabolism of carbohydrate. The vitamin B1 necessary to meet the body’s requirement intake may vary according to energy intake (Clarkson 1991), and 0.5 mg thiamin · 4.2 MJ–1 (1000 kcal–1) is recommended for adults in most countries (US National Research Council 1989). Any increased requirement induced by exercise should be met by increased energy intake and well-balanced diet. However, reports from the Soviet Union in the early days indicated that the output of urinary vitamin B1 of athletes decreased as the training load increased; it was reported that blood pyruvate levels increased by 30–40% as compared with sedentary individuals when vitamin B1 intake was 2–3 mg · day–1 (Yakovlev 1957). In order to keep pyruvate at normal levels, it was recommended that the vitamin B1 intake should be 3–5 mg · day–1 in the general population and 5–10 mg · day–1 for athletes undergoing endurance training (Yakovlev 1957). Vytchikova (1958) indicated that the usual content of thiamin 1.5–2.0 mg · day–1 in food rations of athletes is considered insufficient and that medical observation recommend approximately 10–20 mg daily supplementation. Athletes do not have a lower intake of vitamin B1 than the RDA and only very few have any signs of a biochemical deficiency (Fogelholm 1992), but athletes who are on energy-restricted diets for weight control are likely to have a less than adequate intake, and athletes who take a high percentage of their energy from low nutrient-density food such as candy, soda, etc. may be at risk (Clarkson 1991). Nutrition surveys in Chinese elite athletes indicated that about half of the athletes investigated had vitamin B1 intakes that were lower than the RDA. The average dietary intakes of vitamin B1 of the athletes undergoing vigorous training was 0.37– 284 nutrition and exercise Table 21.1 Vitamin RDA for Chinese athletes. From Chen et al. (1992). Condition Vitamin A (RE)* Vitamin B1 (mg) Vitamin B2 (mg) Niacin (mg) Vitamin C (mg) Training 1500 3–6 2.5 25 140 Special condition† 2400 5–10 2.5 25 200 * RE, retinol equivalent. † Special condition refers to intensive vision for vitamin A, endurance training for vitamin B , competition period 1 for vitamin C. 0.48 mg · 4.2 MJ–1 (1000 kcal–1), and 25% of them have been found to be in a state of vitamin B1 insufficiency as assessed by TPP method (blood transketolase coefficient) (Chen et al. 1989). In addition, systematic nutritional investigation showed that there has been a trend towards a decrease in vitamin B1 intake because the consumption of cereal, especially whole grains, has decreased and the intake of animal foods has increased. The RDA of vitamin B1 for Chinese athletes has been set at 3–6 mg · day–1, which is about 1 mg · 4.2 MJ–1 (1000 kcal–1) (Table 21.1) (Chen et al. 1989, 1992). The US National Research Council reported that the increased need of vitamin B1 for athletes should be met by the larger quantities of food consumed. There has been no evidence for vitamin B1 toxicity through oral ingestion. Good food sources of thiamin are identified in Chapter 20. Riboflavin (vitamin B2) Riboflavin functions as a coenzyme for a group of flavoproteins concerned with cellular oxidation: flavin adenine dinucleotide and flavin mononucleotide are the most common, and these act as hydrogen carriers in the mitochondrial electron transport system, being a component of oxidative enzymes, and are thus considered important for aerobic endurance activities. These coenzymes may also be important for the efficient functioning of glycolytic enzymes, and may have an effect on anaerobic type performance as well. The RDA of vitamin B2 for adults is 1.5– 1.7 mg · day–1 for males and 1.2–1.3 mg · day–1 for females (US National Research Council 1989; Chinese Nutrition Society 1990). Since riboflavin is a component of several respiratory enzymes, the requirement is usually linked to energy intake, and the level of riboflavin intake recommended by the WHO is 0.5 mg · 4.2 MJ–1 (1000 kcal–1). The RDA of vitamin B2 for Chinese athletes has been set at 2.5 mg · day–1 (Chen et al. 1992). Exercise training may increase the need of vitamin B2. Using a RBC enzyme as an indicator of riboflavin status, it was noted that at an intake of 0.6 mg · 4.2 MJ–1 (1000 kcal–1), young women who started a jogging programme developed a riboflavin deficiency (Belko et al. 1983), although riboflavin supplements have not been shown to have an effect on physical performance or aerobic capacity (Belko 1987). Most athletes have an adequate or greater than adequate intake of vitamin B2 (Guilland et al. 1989; Burke & Read 1993), although biochemical insufficiencies were found for some athletes. The incidence of vitamin B2 insufficiency has been reported to be relatively lower than that for thiamin (Haralambie 1976; Chen et al. 1989, 1992). Overdose problems have not been reported, and there is no evidence of toxicity. The possibility of riboflavin deficiency should be a concern for the vegetarian athlete if all dairy foods and other animal protein sources are omitted. Good sources include wheat germ, yeast, green leafy vegetables, and enriched cereals (see Chapter 20). Niacin (nicotinamide, nicotinic acid) Niacin is a component of two important cofactors: nicotinamide adenine dinucleotide and vitamins: effects of exercise on requirements nicotinamide adenine dinucleotide phosphate which serve as hydrogen acceptors and donors in glycolysis, fatty acid oxidation, and in the electron transport system. Niacin deficiency may possibly impair glycolysis and/or the oxidation processes of the citric acid cycle, so both anaerobic and aerobic type performances may be affected adversely. On the contrary, niacin supplementation in high doses may suppress free fatty acid release through decreased lipolysis which would result in a decreased availability of a major fuel source, forcing the muscle to rely more on its glycogen stores, and this may also adversely affect prolonged exercise performance (Williams 1985; Clarkson 1991). The RDA for niacin is expressed as niacin equivalent because niacin may be synthesized in the body from tryptophan (1 mg of niacin is equivalent to 60 mg of dietary tryptophan). The requirement for niacin also usually is linked to energy intake which means that athletes who have a large energy intake need a proportionally higher niacin intake. The RDA for niacin in the general population has been set at 6.6 mg · 4.2 MJ–1 (1000 kcal–1) or about 14–19 mg · day–1 for adults. The RDA for niacin for Chinese athletes has been set at 10 times that for riboflavin: 25 mg · day–1. Since niacin is widely distributed in plant and animal food sources, most athletes show no evidence of niacin deficiency except those who have a chronically reduced dietary intake for weight control. Niacin deficiency symptoms may easily be solved by a well-balanced diet without recourse to specific supplementation. Good sources of niacin include poultry, meats, grain products, peanuts, yeast, fish, etc. (see Chapter 20). Pyridoxine (vitamin B6) Vitamin B6 exists in five forms: pyridoxine, pyridoxal, pyridoxamine, pyridoxal phosphate (coenzyme form), and pyridoxamine phosphate (coenzyme form). The pyridines function in protein and amino acid metabolism, gluconeogenesis, and in formation of haemoglobin, myoglobin, and cytochromes, and are also a 285 component of glycogen phosphorylase which plays a key role in glycogenolysis. Because exercise stresses metabolic pathways that use vitamin B6, it has been suggested that the requirement for this vitamin is increased in athletes and active individuals (Manore 1994). Vitamin B6 is essential in coenzymes related to nitrogen metabolism, and the requirement for vitamin B6 is closely related to dietary protein intake. Currently the RDA for vitamin B6 is 2.0 mg · day–1 for men and 1.6 mg · day–1 for women. If the dietary protein is more than 100 g · day–1, then the intake of vitamin B6 should be more than 2 mg · day–1 (US National Research Council 1989; Manore 1994). Although the requirement for vitamin B6 appears to increase when a high protein diet is consumed, vitamin B6 is found in meats and other animal foods, and sufficient may be provided if these foods are the major source of protein in the diet. The incidence of acute toxicity of vitamin B6 is low. Intakes of 117 mg of vitamin B6 for more than 6 months can result in neurological impairment (US National Research Council 1989). Chronic ingestion of 2– 6 g pyridoxine · day–1 has been shown to result in sensory neuropathy (Clarkson 1991). Some studies reported that athletes have low or marginal dietary intakes of vitamin B6 (Hickson et al. 1987; Weight et al. 1988b; Guilland et al. 1989), whereas others reported mean intakes at or above the RDA (Faber et al. 1991; Singh et al. 1992a, 1992b, 1993). Young female athletes and those participating in sport training emphasizing low body weights need to be monitored regularly. Deficiencies should be corrected by a wellbalanced diet, and if necessary, small amount of supplements within the RDA (Rokitzki et al. 1994a). There is no evidence suggesting that supplementation enhances athletic performance, so the use of vitamin B6 as an ergogenic aid is contraindicated. Good food sources include meat, poultry, fish, whole grain, peanuts, soybeans, seeds, yeast and eggs (see Chapter 20). Cobalamin (vitamin B12) Vitamin B12 is involved in a variety of metabolic 286 nutrition and exercise processes. It is an essential component in the formation and function of red blood cells. Because of this role, it is sometimes thought by athletes and their coaches that vitamin B12 supplement should enhance the oxygen-carrying capacity of the blood and improve performance in those events where oxidative metabolism is important. In practice, however, vitamin B12 supplementation will only help in cases of pernicious anaemia or macrocytic anaemia, and will not show benefits for the athlete with iron deficiency anaemia or for athletes whose iron stores are replete. In spite of this, vitamin B12 injection is a common practice in sport, and it has been noted that some athletes have been receiving 1000 mg about 1 h before competition (Ryan 1977). The RDA for vitamin B12 for the general adult population is 2 mg · day–1, and the average diet contains about 5–15 mg · day–1, so deficiency is rare. As for the general population, deficiency in athletes is rare, except for those who are complete vegetarians. This group may be susceptible to vitamin B12 deficiency as the vitamin is found only in animal protein including meat, poultry, fish, egg, milk and milk products, and some fermented soybean products (see Chapter 20). Most vegetarians, however, are well aware of the need to ensure an adequate intake. Pantothenic acid Pantothenic acid is a part of CoA, thus making it important in metabolism involving the Krebs cycle. The RDA for pantothenic acid is 4– 7 mg · day–1 (Williams 1985). Inadequate intakes of pantothenic acid are rare for the individual who has a normal diet, because it is widely distributed in foods including animal and plant foods such as eggs, yeast, whole grains, etc. It is not known if exercise increases the requirement for pantothenic acid. Results of studies on the effect of pantothenic acid supplementation on performance are equivocal (Nice et al. 1984; Litoff et al. 1985; Clarkson 1991). Nice et al. reported that supplementation with 1 g pantothenic acid · day–1 (10 000% RDA) for 2 weeks had no effect on a treadmill run to exhaustion, pulse rate, blood glucose levels, or several other blood measures in highly trained distance runners; it was concluded that pantothenic acid in pharmacological dosages has no significant effect on human exercise capacity (Nice et al. 1984). Folic acid (folate) Folic acid acts as an coenzyme functioning in DNA synthesis for red blood cell formation, and is also important for nucleotide and amino acid metabolism. A deficiency state may cause anaemia, and at least in theory, a deficiency may affect aerobic endurance performance. The RDA has been set at 400 mg · day–1 for non-trained adult males (US National Research Council 1989). The RDA set by the FAO/WHO is 200 mg · day–1. No study is known to have been performed on the effects of folic acid supplements on physical performance. Since folate is present in large amounts in vegetables, fruits, and animal foods, a balanced diet would appear to provide adequate amounts of this vitamin (see Chapter 20). Vitamin B complex Because of the close association of the vitamins in the B complex, the effects of deprivation of or supplementation with various combinations of the B vitamins have been studied. Results of some of the early studies showed that a deficiency of the B complex vitamins over a period of time, a few weeks at the most, could create a definite decrease in endurance capacity (Berryman et al. 1947). It is extremely unlikely that athletes on a well-balanced diet will encounter this level of deficiency. However, the effects of vitamin B complex supplements remain contradictory and further study is needed to determine the usefulness of vitamin B complex supplemention for athletes (Read & McGuffin 1983; Clarkson 1991). Ascorbic acid (vitamin C) Vitamin C functions in the biosynthesis of collagen, catecholamines, serotonin and carnitine. It is also a powerful antioxidant which may aid intra- vitamins: effects of exercise on requirements cellular oxidation-reduction reactions. Vitamin C also helps non-haem iron absorption, transport and storage. The deemed benefits of the effects of vitamin C supplements include stimulation of immune function and resistance to infection (Chen 1988) and a reduction in fatigue and muscle soreness, enhancing performance capacity and protecting cells from free radical damage (Kanter 1994), and thus it is perhaps the most widely used and studied of the vitamins. The US RDA for vitamin C is 60 mg · day–1 (US National Research Council 1989), but recommended intakes vary widely between countries. In some countries, specific recommendations have been made for athletes, and the RDA for vitamin C has been set at 140 mg · day–1 during training and 200 mg · day–1 during competition periods for Chinese athletes on the basis of maintaining vitamin C in a saturation status as shown by urinary output (Chen et al. 1962, 1963, 1992). Most athlete groups studied have been reported to exceed the RDA for vitamin C, but a small percentage of athletes, particularly young gymnasts, have been found to have a less than adequate intake of vitamin C (Loosli et al. 1986; Chen et al. 1989). Megadoses of vitamin C can cause iron loading, may affect the availability of vitamin B12 from food, and may also promote the formation of urinary stones, yet high intakes of vitamin C are relatively harmless (Clarkson 1991). A single bout of exercise may increase blood levels of ascorbic acid but decrease the ascorbic acid content of other tissues (Chen et al. 1965; Gleeson et al. 1987). Increases in plasma ascorbic acid levels correlate significantly with the increase in plasma cortisol, suggesting that exercise may cause ascorbic acid to be released from the adrenal gland or other organs into the circulation along with the release of cortisol. The effect of vitamin C supplementation on physical performance has been investigated intermittently over the past 50 years, but the results of these studies have been contradictory. The possible benefits of vitamin C supplementation on exercise-induced muscle damage remain doubtful and need further study. Vitamin C is present in fresh fruits and vegeta- 287 bles, primarily the citrus fruits such as oranges, grapefruit, lemons and limes. Other good sources are broccoli, green peppers and greens. There is little doubt that a severe deficiency of vitamin C would have an adverse effect on work performance: the feelings of weakness and lassitude and the possibility of iron deficiency anaemia would certainly not be beneficial (Hodges 1980). Exercise may increase moderately the body’s need for vitamin C, but to what extent exercise training will change an athlete’s requirement for vitamin C is still not entirely clear. However, the inclusion of additional fruits and vegetables in the athletes’ diet is advised. Vitamin A (retinol) Vitamin A designates several compounds including retinol, retinaldehyde and retinoic acid. Vitamin A plays a major role in maintenance of proper vision and epithelial tissues, and is also involved in the development of bones and teeth as well as playing an important function in the body’s immune response. b-carotene, the major carotenoid precursor of vitamin A, plays a role as an antioxidant. The need for vitamin A can be met by intake of carotenoid precursors commonly found in plants. The RDA for vitamin A is expressed in retinol equivalents (RE); one RE equals 1 mg retinol or 6 mg b-carotene. The RDA for vitamin A is 1000 RE (1000 mg retinol or 6000 mg b-carotene) for adult males and 800 RE (800 mg retinol or 4800 mg b-carotene) for adult females (US National Research Council 1989). Russian research suggested that extra vitamin A is needed in athletes requiring good visual acuity and alertness and during periods of stress (Williams 1985). The RDA for vitamin A for Chinese athletes was set at 1500 RE · day–1 (Chen et al. 1992). The vitamin A intake of elite athletes has generally been found to be adequate, although it has been reported that 10–25% of the athletes investigated were ingesting less vitamin A than the RDA (Clarkson 1991). Studies that have assessed the vitamin A, C and E status of athletes have found that most had adequate blood levels of 288 nutrition and exercise these vitamins (Weight et al. 1988b; Guilland et al. 1989; Fogelholm et al. 1992). Serum vitamin A levels of 5% of 182 athletes investigated had a value of less than 30 mg · dl–1 (Chen et al. 1992). There has been no evidence of serious biochemical deficiencies of vitamin A existing in athletes. It is unlikely that vitamin A supplementation will enhance performance. Vitamin A supplementation is not necessary for athletes on an adequate diet (Williams 1985; Clarkson 1991). Whether the antioxidant role of b-carotene can reduce exercise damage due to free radical activity remains to be studied. Vitamin A is one of the fat-soluble vitamins and hence may be stored in the body for considerable periods of time, unlike water-soluble vitamins. Overdosage over a period of time may cause a condition known as hypervitaminosis, characterized by anorexia, hair loss, hypercalcaemia, and kidney and liver damage (Aronson 1986). Sustained daily intakes exceeding 15 000 mg · day–1 of retinol can produce signs of toxicity (US National Research Council 1989). However, high doses of b-carotene are not generally considered to be toxic (US National Research Council 1989; Clarkson 1995). Bodily stores are available for short-term deficiency periods, and thus, no significant decrements would be revealed during short periods of reduced dietary intake of vitamin A. Good sources of vitamin A in the diet include liver, fish liver oils, butter, whole milk, cheese and egg yolk. Rich sources of the carotenoid are dark-green leafy vegetables, the yellow or orange fruits and vegetables (see Chapter 20). Vitamin D Vitamin D represents any one of several sterol compounds in the body; vitamin D2 (ergocalciferol) is the result of the irradiation of ergosterol. D3 (cholecalciferol) is the naturally occurring compound in the skin, formed by exposure to the sunlight. The major function of vitamin D is its hormone-like action in the process of mineralization of bones and teeth and the regulation of calcium metabolism. It promotes absorption of calcium from the intestine and helps to prevent calcium deficiency. The RDA for vitamin D is 5 mg · day–1 for adults (US National Research Council 1989), and no separate recommendations appear to have been made for athletes. Overdoses of vitamin D are potentially toxic and result in hypercalcaemia and hypercalciuria (US National Research Council 1989). Levels of five times the RDA are considered dangerous; intakes of 50 mg · day–1 (2000 IU · day–1) for a prolonged time may pose considerable risk. Hypervitaminosis D leads to loss of weight, vomiting, nausea, lethargy and loss of muscle tone; calcium released from the bones may deposit in the soft tissues, in the walls of the blood vessels and in the kidneys. Vitamin D deficiencies are rare in athletes with adequate intake of dairy products and exposure to sunlight, but those who have inadequate milk consumption and lack of sunshine may be at some risk for inadequate vitamin D nutriture. No known controlled research has been conducted on the role of vitamin D in physical performance (Van der Beek 1991). The role of vitamin D in providing calcium for newly forming muscle tissue is not clear and needs further investigation (Clarkson 1991). Vitamin D is present in fish liver oil and milk fortified with vitamin D (see Chapter 20). Vitamin E Vitamin E is a fat-soluble vitamin. Its activity is derived from a number of tocopherols, the most active one of which is a-tocopherol. Vitamin E functions as an antioxidant of polyunsaturated fatty acids in cellular and subcellular membranes, and thus it serves as a free radical scavenger to protect cell membranes from lipid peroxidation. The RDA for vitamin E is 8–10 mg of a-tocopherol · day–1. Vitamin E is relatively non-toxic up to 800 mg · day–1 (US National Research Council 1989). Dietary records showed that between one third and one half of the athletes investigated consumed less than two thirds of the RDA (Loosli et al. 1986; Guilland et al. 1989). Guilland reported that the mean vitamin E vitamins: effects of exercise on requirements intake of athletes was 77% of the RDA. However, vitamin E deficiencies are rare in athletes with a well-balanced diet. Although megadoses of vitamin E are relatively harmless, some individuals experience gastric disturbances and weakness when taking supplements ranging from 200 to 1000 IU (Clarkson 1991). Acute exercise has been shown to result in an increase of plasma levels of tocopherol, and the author suggested that tocopherol was mobilized from adipose tissue into the blood to be distributed to exercising muscles; however, this study did not correct for haemoconcentration and the small increase in plasma tocopherol was back to baseline after 10 min rest (Pincemail et al. 1988). This response to exercise has not been reported in another study (Duthie et al. 1990). It is not clear if the disparate findings are due to different exercise loads, different testing methods or to other factors. Many studies have reported a significant effect of vitamin E supplementation on exercise performance, but the actual benefits are doubtful since many of these experiments were not well controlled. Those studies that have been well controlled have generally shown that vitamin E supplementation has no effect on performance (Shephard et al. 1974; Watt et al. 1974; Lawrence et al. 1975). On the contrary, supplements of vitamin E showed a beneficial effect on maximum oxygen uptake and a partially protective effect on cell membranes at high altitude; it was reported that mountain climbers with a vitamin E supplement working at an altitude of 5000 m exhaled lower levels of pentane, a marker of lipid peroxidation, and exhibited a higher anaerobic threshold than controls (SimonSchnass & Pabst 1990). Another study also showed that the impairment of blood flow parameters was attenuated by vitamin E supplementation in mountaineers at altitude (Simon-Schnass & Korniszewski 1990). The positive effect may be due to the antioxidant properties of vitamin E. At high altitudes, vitamin E may counteract the effect of the increased lipid peroxidation of red blood cell membranes caused by the decreased availability of oxygen 289 (Williams 1989). Vitamin E may also play a role in reducing muscle damage and oxidative stress, as shown by a reduction in muscle-specific enzyme levels in serum after strenuous exercise (Rokitzki et al. 1994b). However, results are equivocal as to whether muscle damage can be reduced by vitamin E supplementation (see Chapter 20). In short, there has been much debate on the vitamin requirements of athletes, yet carefully controlled studies are limited. Conclusion The following is a summary of the main viewpoints. 1 Vitamin deficiencies may result in decreased exercise performance, and it has been demonstrated that vitamin supplements improve performance in persons with pre-existing vitamin deficiencies. 2 Vitamin supplements are generally unnecessary in athletes consuming well-balanced diets. 3 Athletes participating in strenuous training may need monitoring of vitamin status even if consuming the RDA levels of vitamins. 4 Vitamin supplements should be suggested for athletes in special conditions including those who are on a weight loss diet, or have eating disorders, or low energy intakes. Supplementation is only warranted when there is reasonable evidence to suggest that a deficiency may be present. 5 Excessive vitamin intake, especially of the fatsoluble vitamins, can be accumulated to a level that may be toxic. Prolonged excessive intake of water-soluble vitamins also may be harmful and cause nutritional imbalances. Attention to food choices, rather than specific supplementation, is the preferred option. References Armstrong, L.E. & Maresh, C.M. (1996) Vitamin and mineral supplements as nutritional aids to exercise performance and health. Nutrition Reviews 54, S149– S158. Aroson, V. (1986) Vitamins and minerals as ergogenic aids. Physician and Sports Medicine 14, 209–212. 290 nutrition and exercise Belko, A.Z. (1987) Vitamins and exercise: an update. Medicine and Science in Sports and Exercise 19, S191–S196. Belko, A.Z., Obarzenek, E., Karwalf, H.J. et al. (1983) Effect of exercise on riboflavin requirements of young women. American Journal of Clinical Nutrition 37, 507–517. Berryman, G., Henderson, C.R., Wheeler, N.C. et al. (1947) Effects in young men consuming restricted quantities of B-complex vitamines and proteins, and changes associated with supplementation. American Journal of Physiology 148, 618–647. Burke, L.M. & Read, R.S.D. (1993) Dietary supplements in sport. Sports Medicine 15, 43–46. Chen, J.D. (1988) Some sports nutrition researches in China. In China’s Sports Medicine (ed. M.Y. Qu & C.L. Yu), pp. 94–113. Medicine and Sport Science, Vol. 28. Karger, Basel. Chen, J.D. & Wu, L. (1996) Nutrition of vitamins and sports. In Practical Sports Medicine (ed. M.Y. Qu), pp. 244–246. Beijing Science and Technology Publishing House, Beijing. Chen, J.D., Yu, X.X. & Nie, F.E. (1962) The study of vitamin C status and requirement of the gymnasts and middle-long distance runners. Journal of Chinese Medicine 7, 454–457. Chen, J.D., Liao, G.Z. & Yu, C.Y. (1963) Primary approach of the vitamin C requirement of athletes during competition period from the excretion of urinary vitamin C. Journal of Chinese Medicine 49, 256–260. Chen, J.D., Liao, G.Z. & Yu, C.Y. (1965) The vitamin C metabolism of organism in sports. Journal of the Beijing Medical College 1, 1–72. Chen, J.D., Wang, J.F., Li, K.J., Wang, S.W., Jiao, Y. & Hou, X.Y. (1989) Nutritional problems and measures in elite and amateur athletes. American Journal of Clinical Nutrition 49 (Suppl.), 1084–1089. Chen, J.D., Wang, J.F., Wang, S.W., Li, K.J. & Chen, Z.M. (1992) Recommended dietary allowances for Chinese athletes. In Integration of Medical and Sports Sciences (ed. Y. Sato, J. Poortmans, I. Hashimoto & Y. Oshida), pp. 336–341. Medicine and Sport Science, Vol. 37. Basel, Karger. Chinese Nutrition Society (1990) Document of the Chinese Nutrition Society: illustration of the recommended dietary allowances of the Chinese. Acta Nutrimenta Sinica 12, 1–10. Clark, N., Nelson, M. & Evans, W. (1988) Nutrition education for elite female runners. Physician and Sports Medicine 16, 124–136. Clarkson, P.M. (1991) Vitamins and trace element. In Ergogenics. Vol. 4. Enhancement of Performance in Exercise and Sport (ed. D.R. Lamb & M.H. Williams), pp. 123–182. W.C. Brown, USA. Clarkson, P.M. (1995) Micronutrients and exercise: anti- oxidants and minerals. Journal of Sports Sciences 13, S11–S24. Daniel, L.J. (1991) Vitamins. In The Encyclopedia Americana (international edn). Vol. 30, pp. 183–191. Grolier, Danbury, CO. Duthie, G.G., Robertson, J.D., Maughan, R.J. & Morrice, P.C. (1990) Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Archives of Biochemistry and Biophysics 282, 78–83. Faber, M. & Spinnler Benade, A.-J. (1991) Mineral and vitamin intake in field athletes (discus-hammer, javelin-throwers and shot-putters). International Journal of Sports Medicine 12, 324–327. Fogelholm, M. (1992) Vitamin and mineral status in physically active people. In Physical Activity and Nutritional Status: a Theoretical Basis for Balance in Vitamin and Mineral Status in Physically Active People (ed. M. Fogelholm), pp. 3–19. Publications of the Social Insurance Institution, Turku, Finland. Fogelholm, M. (1994) Vitamins, minerals and supplementation in soccer. Journal of Sports Sciences 12, S23–S27. Fogelholm, M., Rehunen, S., Gref., C.-G. et al. (1992) Dietary intake and thiamin, iron, and zinc status in elite nordic skiers during different training periods. International Journal of Sport Nutrition 2, 351–365. Gleeson, M., Robertson, J.D. & Maughan, R.J. (1987) Influence of exercise on ascorbic acid status in man. Clinical Science 73, 501–505. Grandjean, A.C. (1989) Macronutrient intake of US athletes compared with the general population and recommendation made for athletes. American Journal of Clinical Nutrition (Suppl.) 49, 1070–1076. Guilland, J.-C., Penaranda, T., Gallet, C., Boggio, V., Fuchs, F. & Klepping, J. (1989) Vitamin status of young athletes including the effects of supplementation. Medicine and Science in Sports and Exercise 21, 441–449. Haralambie, G. (1976) Vitamin B2 status in athletes and the influence of riboflavin administration on neuromuscular irritability. Nutrition and Metabolism 20, 1–8. Hickson, J.F., Duke, M.A., Risser, W.L., Johnson, C.W., Palmer, R. & Stockton, J.E. (1987) Nutritional intake from food sources of high school football athletes. Journal of the American Dietetic Association 87, 1656–1659. Hodges, R.E. (1980) Ascorbic acid. In Modern Nutrition in Health and Disease (ed. R.S. Goodhart & M.E. Shils), pp. 259–273. Lea and Febiger, Philadelphia, PA. Kanter, M.M. (1994) Free radicals, exercise, and antioxidant supplementation. International Journal of Sport and Nutrition 4, 205–220. Lamar-Hilderbrand, N., Saldanha, L. & Endres, J. (1989) Dietary and exercise practices of college-aged vitamins: effects of exercise on requirements female bodybuilders. Journal of the American Dietetic Association 89, 1308–1310. Lawrence, J.D., Bower, R.C., Riehl, W.P. & Smith, J.L. (1975) Effects of Alpha-tocopherol acetate on the swimming endurance of trained swimmers. American Journal of Clinical Nutrition 28, 205–208. Litoff, D., Scherzer, H. & Harrison, J. (1985) Effects of pantothenic acid supplementation on human exercise (abstract). Medicine and Science in Sports and Exercise 17, 287. Loosli, A.R., Benson, J., Gillien, D.M. & Bourdet, K. (1986) Nutrition habits and knowledge in competitive adolescent female gymnasts. Physician and Sports Medicine 14, 118–130. Manore, M.M. (1994) Vitamin B6 and exercise. International Journal of Sport and Nutrition 4, 89–103. Nice, C., Reeves, A.G., Brinck-Johnsen, T. & Noll, W. (1984) The effects of pantothenic acid on human exercise capacity. Journal of Sports Medicine and Physical Fitness 24, 26–29. Nieman, D.C., Gates, J.V., Butler, L.M., Pollett, S.J., Dietrich, S.J. & Lutz, R.D. (1989) Supplementation patterns in marathon runners. Journal of the American Dietetic Association 89, 1615–1619. Parr, R.B., Porter, M.A. & Hodgson, S.C. (1984) Nutrition knowledge and practices of coaches, trainers, and athletes. Physician and Sports Medicine 12, 126– 138. Pincemail, J., Deby, C., Camus, G. et al. (1988) Tocopherol mobilization during intensive exercise. European Journal of Applied Physiology 57, 189–191. Read, M.H. & McGuffin, S.L. (1983) The effect of Bcomplex supplementation on endurance performance. Journal of Sports Medicine and Physical Fitness 23, 178–184. Rokitzki, L., Sagredos, A.N., Reub, F., Büchner, M. & Keul, J. (1994a) Acute changes in vitamin B6 status in endurance athletes before and after a marathon. International Journal of Sport and Nutrition 4, 154–165. Rokitzki, L., Logemann, E., Huber, G., Keck, E. & Keul, J. (1994b) Alpha-tocopherol supplementation in racing cyclists during extreme endurance training. International Journal of Sport and Nutrition 4, 253–264. Ryan, A. (1977) Nutritional practices in athletes abroad. Physician and Sports Medicine 5, 33–41. Shephard, R.J., Campbell, R., Pimm, P., Stuart, D. & Wright, G.R. (1974) Vitamin E, exercise, and the recovery from physical activity. European Journal of Applied Physiology 33, 119–126. Shoorland, F.B. (1988) Is our knowledge of human nutrition soundly based? World Review of Nutrition and Diet 57, 126–213. Simon-Schnass, I. & Pabst, H. (1988) Influence of vitamin E on physical performance. International Journal of Vitamin and Nutrition Research 58, 49–54. Simon-Schnass, I. & Korniszewski, L. (1990) The influ- 291 ence of vitamin E on rheological parameters in high altitude mountaineers. International Journal of Vitamin and Nutrition Research 60, 26–34. Singh, A., Moses, F.M. & Deuester, P.A. (1992a) Chronic multivitamin-mineral supplementation does not enhance physical performance. Medicine and Science in Sports and Exercise 24, 726–732. Singh, A., Moses, F.M. & Deuester, P.A. (1992b) Vitamin and mineral status in physically active men: effects of high-potency supplement. American Journal of Clinical Nutrition 55, 1–7. Singh, A., Evans, P., Gallagher, K.L. & Deuster, P.A. (1993) Dietary intakes and biochemical profiles of nutritional status of ultramarathoners. Medicine and Science in Sports and Exercise 25, 328–334. Sobal, J. & Marquart, L.F. (1994) Vitamin/mineral supplement use among athletes: a review of the literature. International Journal of Sport and Nutrition 4, 320–334. US National Research Council Food and Nutrition Board (1989) Recommended Dietary Allowances, 10th edn. National Academy Press, Washington, DC. Van der Beek, E.J. (1985) Vitamins and endurance training. Food for running or faddish claims? Sports Medicine 2, 175–197. Van der Beek, E.J. (1991) Vitamin supplementation and physical exercise performance. Journal of Sports Science 9, 79–89. Van der Beek, E.J. (1994) Vitamin supplementation and physical exercise performance. In Foods, Nutrition and Sports Performance (ed. C. Williams & J.T. Delvin), pp. 95–107. E & FN Spon, London. Vytchikova, M. (1958) Increasing the vitamin B1 content in the rations of athletes. Chemistry Abstracts 52, 147–187. Watt, T., Romet, T.T., McFarlane, I., McGuey, D., Allen, C. & Goode, R.C. (1974) Vitamin E and oxygen consumption (abstract). Lancet 2, 354–355. Weight, L.M., Myburgh, K.H. & Noakes, T.D. (1988a) Vitamin and mineral supplementation: effect on the running performance of trained athletes. American Journal of Clinical Nutrition 47, 186–191. Weight, L.M., Noakes, T.D., Labadarios, D., Graves, J., Jacobs, P. & Bermen, P.A. (1988b) Vitamin and mineral status of trained athletes including the effects of supplementation. American Journal of Clinical Nutrition 47, 192–195. Williams, M.H. (1985) The role of vitamins in physical activity. In Nutrition Aspects of Human Physical and Athletic Performance, 2nd edn (ed. M.H. Williams), pp. 147–185. Charles C. Thomas, Springfield, IL. Williams, M.H. (1989) Vitamin supplementation and athletic performance, an overview. International Journal of Vitamins and Nutrition Research 30, 161–191. Yakovlev, N.N. (1957) Sports nutrition. Nutrition Problems (in Russian) 16, 58–59.