Comments
Description
Transcript
Weightlifting and Power Events
Chapter 47 Weightlifting and Power Events VIC TOR A . R O G O Z K I N Introduction The success of athletes in many competitive sports is determined by the extent to which they have developed their strength–velocity characteristics: these include strength, speed and power of muscle function. Peak expression of the functional capability of the athlete requires the maximum voluntary effort that can be achieved, and thus depends not only on the characteristics of the muscle, but also on the initiation of impulses in the motor centres of the central nervous system, on the maintenance of high firing rates in the motor nerves, and on the coordination of the activation of synergistic and antagonistic muscles. Important muscle characteristics include, in addition to muscle size itself, the orientation of the muscle fibres, the proportions of the different fibre types present, and the amount and structure of the connective tissue. The basics of muscle structure and function have been reviewed in Chapter 2, and will be discussed only briefly here. The following characteristics of muscle are important for the development of force and power: 1 The maximum muscular effort that can be achieved is directly proportional to the length of the individual sarcomeres (Faulkner & White 1990). This cannot be changed with training, but will be influenced by joint angle, which will in turn change the length of the muscle. In a whole muscle, maximum force-generating capacity in an isometric contraction is largely determined by cross-sectional area (Maughan et al. 1983). Adding more sarcomeres in parallel will increase the maximum force that can be achieved, but adding more sarcomeres in series will have no effect on maximum force other than by shifting the position on the length–tension relationship at any given joint angle. 2 The maximum velocity of shortening of a muscle is dependent on the load applied. For single muscle fibres, the maximum velocity of shortening, and therefore the maximum speed of movement, is a function of the myosin adenosine triphosphatase (ATPase) activity: this determines the rate at which ATP can be used to power the interactions between actin and myosin. In fast-contracting (type IIb) muscle fibres, the maximum velocity of shortening is four times higher than in slow-contracting (type I) fibres (Burke & Edgerton 1975). 3 The power that can be developed by a muscle is a linear function of the maximum ATPase activity, and thus is closely related to the proportions of the different fibre types present. Muscles with a high proportion of type II fibres will be able to achieve higher power outputs than those where type I fibres predominate. Muscles of elite sprinters typically contain more than 60% type I fibres, whereas type I fibres predominate in the muscles of endurance athletes (Costill et al. 1976). 4 The characteristic relationship between force, or strength, and velocity referred to above was described by Hill (1938). Force is greatest during an isometric activation of the muscle, where the applied load exceeds the force generating capacity of the muscle and the velocity of shortening 621 622 sport-specific nutrition is zero: the maximum velocity, in an isolated muscle or an individual fibre, occurs during unloaded shortening. This situation cannot be achieved with the muscle in situ because of the mass of the limb segments that must be moved and other biomechanical factors, and maximum velocity is achieved when the load applied is less than 20% of the maximum isometric force that can be generated. The maximum values of isometric force that can be achieved by human muscle are approximately 15–30 ¥ 104 N · m2 (Saltin & Gollnick 1982). The maximum force per unit cross-sectional area of the muscle is not significantly different between the different fibre types (Faulkner & White 1990). The known relationships between strength and velocity of muscle contraction allow identification of the main components of a programme designed for developing the strength and power characteristics of an athlete. For development of the maximum isometric strength, training should be carried out at forces between 70% and 100% of the maximum voluntary isometric strength. To improve performance where high speeds of movement are required, the force should not exceed 70% of maximum isometric strength. Where high rates of power generation are to be developed, the force applied during training should be in the range of 40–70% of maximum isometric force. Speed–strength sports The 1996 Olympic Games included a number of very different types of sport where strength and speed are primary requirements for the participants (Table 47.1). These include: • Boxing: open to men only, including 12 weight categories ranging from 48 kg to over 91 kg. • Judo: open to men (weight categories from 60 kg to over 80 kg) and women (from 48 to over 72 kg). Table 47.1 Profile of major championship sports with a high strength component and in which competition is by weight category. Wrestling Boxing Judo Weightlifting Parameters Male Male Female Male Female Weight classes (kg) 48 51 54 57 60 63.5 67 71 75 81 91 Over 91 60 65 71 78 86 90 Over 90 48 51 56 61 66 72 Over 72 54 59 64 70 76 83 91 99 108 Over 108 46 50 54 59 64 70 76 83 Over 83 Match rules Three 2-min rounds One 5-min bout Three lifts One 5-min period Matches per day No more than one No more than three recommended in 2 days No more than one No more than three are recommended Weigh-in rules 3 h before competition 2 h before competition each day 2 h before competition Night before competition Greco-Roman and freestyle 48 52 57 62 68 74 82 90 100 130 weightlifting and power events • Weightlifting: open to men only, with 10 weight classes from 54 to over 108 kg. • Wrestling: Greco-Roman and freestyle competition, open to men only, with 10 weight classes from 48 kg to over 130 kg, giving a total of 20 competitions. In addition, strength and speed are vital components of the sprint events on the track and of all field events, including long jump, high jump, triple jump, pole vault, shot, discus, javelin, hammer throw. In cycling, there are sprint events on the track for men and women. In the Winter Olympic competition, speed skating and bobsleigh (two-man and four-man) also require 623 similar characteristics: indeed many speed skaters are also top class cyclists, and bobsleigh competitors often compete at 100 m on the track in the summer. It is clear that sports in this grouping account for the majority of medals awarded at the Olympic Games. Non-Olympic sports involving similar characteristics and demands include a variety of martial arts (karate, Tae Kwondo). Bodybuilding training follows broadly similar principles, although the training loads and numbers of repetitions performed may be somewhat different and the demands of competition are also different. (a) Fig. 47.1 In all weight category sports, a high power to mass ratio is essential. Increasing body mass moves the competitor up into a higher weight category. (a) Photo © Allsport; (b) photo © Allsport / J. Jacobsohn. (b) 624 sport-specific nutrition The two main characteristics of this group of sports, therefore, are that, at least in most of them, competition is open to men and women, and that, in many, athletes compete in specific weight categories. This latter fact places particular demands on the athlete, with special consideration required for training and diet in preparation for competition. General nutritional principles for athletes The requirements of the athlete for energy and for individual nutrients are different in different sports, and will be influenced very much by the total training load that is carried out (Rogozkin 1978). Body mass is also a major factor, as is immediately obvious when looking at the requirements of a light-flyweight boxer (48 kg weight class), a track athlete, or a wrestler in the super-heavyweight class (over 130 kg). Even for athletes with similar body size, however, the nutritional requirements will vary greatly depending on the training load: this is set in part by the demands of the sports but will also vary within any given event depending on the programme selected by the athlete and coach. Recommended energy intakes for male and female athletes in different sports are clearly influenced by many factors, but are likely to be about 14.6–23.0 MJ (3500–5500 kcal) daily for male athletes and 12.5–18.8 MJ (3000–4500 kcal) for female athletes during periods of hard training (Rogozkin 1978). The protein requirement of athletes in different sports is described in detail in Chapter 10. It is clear that the requirement for protein will depend to some extent on the specific nature of the sport, but will also be very much influenced by the amount and intensity of the training load, which will vary at different times of the season. In Russia, it is generally recommended that the daily protein intake for athletes in hard training should be about 1.4–2.0 g · kg–1 body mass (Rogozkin 1978). The requirement for carbohydrate will be closely related to the power output required in training and competition, and a daily carbohydrate intake of 8–10 g · kg–1 would be considered normal. Depending on the type of sport, fat intake should be about 1.7– 2.4 g · kg–1 · day–1. These recommendations are made in absolute amounts related to body weight rather than as a fraction of total energy intake, but if the guidelines are followed, this will give a diet with the following composition: 15–16% of total energy intake from protein, 25–26% from fat and 58–60% from carbohydrate. The fundamental principles of nutritional support which have been developed in the Russian Federation for athletes competing in strength and power events have been described in detail by Rogozkin (1993). These are summarized in the following recommendations. 1 The body must be provided with sufficient energy to meet its needs. For athletes, the energy requirement will be largely determined by the total training load. If the energy demand is not met, it will not be possible to continue with the same intensity and duration of training. 2 An appropriate nutritional balance among the various essential nutrients must be maintained. The proportions of the different macronutrients and micronutrients necessary to achieve this balance will depend on the total energy intake and on the period of preparation relative to competition. Protein intake must provide an appropriate balance of all the essential amino acids, and the dietary fat must supply all of the essential fatty acids. In addition, the intake of vitamins, minerals and fibre must be adequate for the athlete’s needs. 3 The choice of foods and nutritional products that will meet the nutrient requirements will be different during periods of intensive training, during the period of preparation for competition, during competition itself, and during the recovery phase after competition. 4 Several nutrients, mostly vitamins and minerals, play a key role in the activation and regulation of intracellular metabolic processes, and a deficiency of any of these in the diet will impair performance during training and competition. 5 Biosynthetic processes involved in tissue repair and recovery after exercise will be influ- weightlifting and power events enced by the hormonal environment: important factors include the catecholamines, insulin, corticosteroids, growth hormone, cyclic nucleotides and others. Dietary influences on the metabolic environment in the recovery phase will influence the extent of recovery from training and competition. 6 A varied diet is essential to provide all the nutrients needed by that athlete in adequate amounts, but other factors, including especially those associated with the storage and preparation of foods, will affect the availability of these nutrients from the diet. 7 The diet must be chosen to include foodstuffs that will provide all of the essential nutrients, but care must be taken to ensure that, during periods when the athlete is training two or three times per day, the meals are readily digested and absorbed and do not result in gastrointestinal disturbances. 8 Where there is a need to increase body mass, usually in the form of lean tissue, and specifically in the form of muscle, the diet must contain sufficient protein and other nutrients to ensure that the increased requirement is met. For athletes competing in weight category sports, and for others where a low body mass or a low body fat content are important, there must be special attention to the composition of the diet to ensure that all nutritional requirements are met from the restricted total energy intake. 9 The diet must be chosen to take account of the individual physiological, metabolic and anthropometric characteristics of the individual athlete, and should consider the condition of the athlete’s digestive system. It must also take personal tastes and preferences into account. Only if the diet is selected in the light of these considerations is it possible to meet all of the requirements imposed by training and competition and to optimize the athlete’s performance. Strength training Muscle, fat and bone are the three major structural components that determine the body shape and size of the individual. Body build is to a large 625 degree genetically determined, as is the ability to achieve success in sport. Specific types of physical training can modify the expression of the individual’s genetic endowment, resulting in changes in body composition. Weight training is effective when the aim is to increase muscle mass, whereas endurance training can alter energy balance and reduce fat mass. An appropriate weight-training regimen, however, will also be effective in reducing body fat content if combined with a suitable diet. There are several categories of strength exercise that can be included in a weight training programme: these include isometric (static) contractions, which are not truly contractions, as the muscle is not allowed to shorten during activation and the angle of the limb is fixed. Because of stretching of the elastic components, however, there will be some shortening of individual sarcomeres. Isokinetic exercise involves shortening of the muscle at a fixed velocity, and requires special apparatus to keep the velocity of shortening constant while measuring the applied force. Isotonic exercise, in which a constant load is applied to the muscle is the type of training most familiar to and popular with coaches and athletes (Fahey 1986). The applied load may be in the form of free weights or a resistance machine. Isotonic strength-training techniques may include constant or variable load, and may involve lengthening of the muscle (eccentric activation) as well as the more normal shortening (concentric activation) when the load is applied. Plyometric and speed loading techniques may also be included in a strength programme. It has been shown that greater increases in strength can be achieved following a programme of maximum-force concentric and eccentric activation than when concentric activation alone is used (Fahey 1986). The available evidence suggests that eccentric activity results in some degree of damage to the muscle, involving disruption of the muscle membrane and possibly also some disruption of the contractile components, and the subsequent repair process seems to be important for the increase in the size of muscle fibres that results from a strength training 626 sport-specific nutrition programme (Faulkner & White 1990). Strength training with high loads leads to an increase in the cross-sectional area of the muscle without any appreciable change in muscle length, and changes in cross-sectional area of the muscle can be used as an index of the gain in muscle mass. Both type I and type II fibres increase in size in response to this type of training stimulus, and increases in cross-sectional area of 39% for type I fibres and 31% for type II fibres have been reported after a programme of heavy resistance exercise (MacDougall et al. 1980). Increases in force-generating capacity after strength training may be large (30–40%) in the early stages of a training programme, and are invariably greater than the increase in cross-sectional area (Maughan 1984). Some of the increase in muscle strength is therefore likely to be the result of changes in the muscle recruitment pattern and in neural drive. In pennate muscles, where the individual fibres lie at an angle to the long axis of the muscle, increases in the size of the individual fibres will result in an increase in the angle of pennation, which will have the effect of decreasing the force relative to the anatomical crosssectional area (Maughan 1984). Release of a variety of hormones is stimulated during and after high resistance training: these include growth hormone, testosterone, catecholamines and cortisol (Sutton et al. 1990). The release of these hormones will be influenced by the intensity of training, the length of rest periods allowed, and the level of training of the athlete. The response to training is specific to the muscle, so there must be a change in the sensitivity of the active muscle to the circulating hormones and growth factors so that changes in the systemic concentration results in specific changes in protein synthesis. This may involve a change in receptor number or sensitivity and/or release of local growth factors (including insulin-like growth factor) in the working muscle in response to hormonal stimulation. Increases in muscle strength and muscle hypertrophy have been shown to be greater after prolonged fatiguing contractions than after short, intermittent contractions (Schott et al. 1995). The authors speculated that the enhanced response after fatiguing contractions indicated an involvement of changes in intracellular metabolite levels and pH in determining the response of the muscle. In addition to the changes in muscle size and strength, weight training will have a significant effect on bone mass. Peak bone mass, which is normally reached in the third decade of life, can be increased by any form of weight-bearing exercise, and will help to protect the skeleton against the stresses imposed on it. These processes are described in detail in Chapter 23. As the muscle becomes stronger with training and the load that can be applied increases, so the stimulus for new bone formation should also be increased to a degree consistent with the imposed load or relative intensity of the exercise. The imposed load is more important for determining the response of bone than the number of loading cycles completed. Progressive resistance training should therefore allow the bone mass to increase until it reaches the genetically determined peak bone mass. Given the greater length of time required for new bone formation relative to the adaptation of skeletal muscle, which is apparent within a few days of training beginning, changes in bone mass require long-term adherence to a training programme that will effectively load the skeleton. Training diet The adaptive changes that occur in the various organs and tissues of the athlete in response to the training load occur in a phasic manner. The acute responses to a single bout of exercise are translated into a permanent (at least as long as the training persists) condition by a series of events that may be described as fatigue, restoration and supercompensation. The adaptations which occur in response to training result in an increased capacity for force generation, power output or endurance, depending on the type of training. This will be manifested during the weightlifting and power events effort itself, but there must be, during the postexercise period, an altered gene expression to cause an enhanced synthesis of specific proteins. To achieve these aims during the training period, athletes normally follow a training programme containing microcycles lasting 3–5 days. Each training microcycle is constructed to allow adaptation of all of the different functions which respond to the specific training undertaken. Complete adaptation in response to this type of training usually appears after three to five repetitions of the cycle (Lamb 1984). The diet consumed by the athlete during this training phase should be designed to supply the necessary energy and nutrients in order to maximize the efficiency of the training process. Preparation of the diet requires a knowledge of the total energy demand, but also some understanding of the specific character of the training programme at any given time. Energy expenditure of strength and power athletes during periods of heavy training is typically about 14.6–18.8 MJ (3500–4500 kcal), depending on body weight, and the preparation of a balanced diet is not difficult to achieve. However, it appears that at some times in the training cycle of these athletes, there is a need for an increase in the dietary protein intake if muscular development is to occur. To meet the protein requirement of weightlifters, sprinters and throwers, for example, it is recommended that the daily protein intake should be 1.4–2.0 g · kg–1 body mass (Rogozkin 1993). This is slightly higher than the intake of 1.4–1.7 g · kg–1 recommended by Lemon (1991). It is not only the total protein intake that is important, but also the content and balance of the essential amino acids, and the proteins in meat, fish and dairy produce have a higher biological value than those in other foods. Dairy products have a high content of the sulphur-containing amino acid methionine, which is indispensable for the synthesis of muscle protein (Williams 1976). The fat intake for athletes from these sports should be approximately 2 g · kg–1 · day–1, and a significant part of this will be provided by the protein-rich foods in the diet, especially meat 627 and dairy produce. Vegetable oils, however, including sunflower seed, corn and nut oils, are valuable sources of the essential polyunsaturated fats, which may comprise as much as 50–60% of their total fat content. Dietary fat is also important in ensuring an adequate supply and uptake of the fat-soluble vitamins A, D and E. A carbohydrate intake of 8–10 g · kg–1 · day–1 should be sufficient to meet the needs of the organism even during the heaviest training. The requirements of the strength athlete for vitamins and minerals have been identified, and the recommended intakes are shown in Table 47.2 (Rogozkin 1993). The following general and specific recommendations are made. 1 The energy requirement for the athlete in training should be completely satisfied from nonprotein sources (carbohydrate and fat). 2 The diet should contain an increased amount (15–20%) of energy from protein, consisting of biologically valuable and easily assimilated proteins from various sources, including meat, fish, milk and eggs. 3 Meals with a high protein content should be eaten no less than five times per day. 4 There must be optimal conditions for the assimilation of the protein components of foods. After training, meat should be taken together with vegetables, and during the intervals Table 47.2 Recommended daily intakes of vitamins and minerals for athletes during periods of intensive strength training. Vitamins C B1 B2 B3 B6 B9 B12 PP A E Minerals 175–200 mg 2.5–4.0 mg 4.0–5.5 mg 20 mg 7–10 mg 0.5–0.6 mg 4–9 mg 25–45 mg 2.8–3.8 mg 20–30 mg Phosphorus Calcium Potassium Magnesium Iron Zinc Iodine Chromium 2.5–3.0 g 2.0–2.4 g 5.0 –6.0 g 0.5–0.7 g 25–35 mg 25–35 mg 150–200 mg 10–15 mg 628 sport-specific nutrition between training sessions, special protein supplements should be taken. 5 It is necessary to ensure an adequate intake of vitamins (B1, B2, B6, C and PP) which promote protein synthesis and the accumulation of muscle mass. Careful attention to diet is necessary during periods of intensive weight training in order to create the appropriate metabolic environment to allow increases in muscle mass to occur. Diet and weight control Restriction of energy intake sufficient to result in a negative energy balance is an essential part of any successful weight-control programme (Williams 1976). Most fad diets that promise rapid loss of body weight stress weight loss rather than fat loss, and may seriously affect the athlete’s performance because loss of lean tissue is likely to account for much of the loss in weight. These diets are often unpalatable and unhealthy, and do not represent an eating pattern that would be possible to sustain on a long-term basis. A rebound gain of the lost weight is almost inevitable. The goal of the dietary programme when weight loss is required should be a loss of body fat followed by maintenance of that loss. Many popular diets promote a low carbohydrate intake, and these diets may be successful in causing large weight losses, perhaps as much as 5–10 kg in a few weeks. However, a diet that is low in carbohydrate will result in depletion of the liver and muscle glycogen stores and in a loss of water from tissues. Although the weight loss seems impressive, there may be little loss of body fat. Additionally, glycogen depletion greatly diminishes exercise capacity, leading to a decreased exercise level, which in turn means a decreased level of energy expenditure. Periods of low exercise levels in combination with restricted energy intake result in a loss of muscle tissue. A successful weight-loss programme requires a negative energy balance. Given that the energy content of 0.45 kg of fat is about 14.7 MJ (3500 kcal), which is as much as most athletes expend in day, it is clearly impossible to lose more than a few pounds of fat in a week. Empirical evidence suggests that, if weight is lost at a faster rate, the loss must come increasingly from loss of muscle mass. Diets that promise large decreases in fat in a short time are misleading: they are potentially dangerous and will impair performance. Weight loss and making weight The aim of all weight-loss programmes should be to restrict food intake so that the body’s fat reserve is gradually reduced while the normal functions of the body are maintained. The only successful approach is to reduce energy intake while ensuring that the nutrient density, and in particular the carbohydrate content, is kept high. The reducing diet will therefore be achieved by restricting fat, rather than carbohydrate, intake. Foods should be chosen to provide not only carbohydrate, which should be present mostly in the form of complex carbohydrates, but also vitamins, minerals and trace elements in adequate amounts, rather than simply being high in fibre. All visible fat should be removed from meat, and low-fat foods should be substituted for high-fat alternatives where these are available. If the diet is already very low in fat, the only available option is to reduce the overall amount of food being eaten. Making weight is a different situation from a gradual weight-loss programme. This situation arises when athletes have to prepare to compete in a particular weight category. Most athletes participating in sports with specific weight categories, including boxing, judo, wrestling and weightlifting, compete in a class that is 5–10% below their usual weight. Typical weight reduction techniques used to induce large weight losses in a short time include dietary restriction, fluid restriction, dehydration through exercise in the heat or in a rubber suit, or sitting or exercising in a sauna or steam room. Less commonly used techniques include the use of diuretics and laxatives, vomiting and spitting. Athletes will commonly lose weight rapidly in the last few days before competition (3–4 kg in weightlifting and power events the space of 3–4 days) by a combination of sweating and severe restriction of food and fluid intake. This practice of making weight may be repeated very often in a competitive season, as the lost weight is quickly regained. A more gradual weight loss (3–4 kg over 3–4 weeks) achieved by a more modest restriction of energy intake and increased energy expenditure would probably allow a better hydration state to be maintained. Prolonged dietary restriction, however, would inevitably involve restriction of protein and carbohydrate intake, and might lead to some loss of body proteins and glycogen stores. Although dehydration has a much smaller impact on high-intensity exercise than on endurance activities, and does not seem to compromise muscle strength or performance in events lasting less than 30 s, some reduction in function may occur (Sawka & Pandolf 1990). Dehydration is better tolerated by trained athletes than by sedentary individuals, with less impact on thermoregulation and exercise performance (Sawka & Pandolf 1990). The trained person has an increased body water reserve, and may be able to tolerate a fluid deficit of up to 5% of body mass without a significant detrimental effect on some aspects of physiological function (Rehrer 1991). Athletes should be encouraged to maintain a relatively stable body weight and to lose unwanted fat gradually. The practical experience of athletes and coaches, however, indicates that the most successful performers often undergo severe weight-loss regimens in the few days before competition. The use of diuretics, and competition after their use, is to be discouraged. Not only does this impair performance, but also poses a health risk. Gaining weight A high body mass is an advantage in many sports, including the throwing events in athletics, and the top weight categories in weightlifting, wrestling and judo. If too much of this weight is made up of fat, however, performance will suffer. The principles of weight gain are the 629 same as those for weight loss: a positive energy balance will result in weight gain, and a negative energy balance will result in weight loss. Athletes who are seeking to gain weight should strive to ensure that as much as possible of the gain is in the form of lean tissue. This can be achieved most effectively through a vigorous weight-training programme that stresses the large muscle groups in the legs, hips, shoulders, arms and chest. Increases in muscle mass occur only slowly, and may take many years to be fully realized, but this is preferable to the increase in body fat that is quickly added by the use of high-energy weightgain supplements. Eating a high-protein diet will not in itself result in an increase in muscle mass (Lemon 1991). Any protein consumed in excess of the body’s requirement will simply be used as a fuel for oxidative metabolism, and the excess nitrogen will be excreted. The common practice of eating large amounts of meat, dairy produce and eggs is expensive, and is potentially detrimental to the athlete’s health and performance. Abnormal eating habits established during the years of training are not easily altered in later life, and consumption of a relatively high fat diet, which almost invariably accompanies a high intake of these foods, may lead to an increased risk of cardiovascular disease. In addition, if the intake of protein and fat is too high, there will be little room left in the diet for high-carbohydrate foods. Without an adequate dietary carbohydrate intake, the athlete is unlikely to be able to train to full potential and will be unable to maximize the benefits that accrue from consistent intensive training. Many weightlifters and bodybuilders use specific amino acid supplements in an attempt to stimulate output of growth hormone and insulin, as both of these hormones are involved in the stimulation of protein synthesis and thus in the processes of muscle growth and repair. In a carefully controlled trial, however, supplementation with the amino acids that are purported to be effective at a dosage equal to that commonly used by power athletes (1 g arginine, 1 g ornithine and 1 g lysine, twice daily), had no 630 sport-specific nutrition effect on serum growth hormone or insulin concentrations (Fogelholm et al. 1993). There seems to be no substantial evidence to support the use of these supplements. The addition of medium-chain triglycerides, which include fatty acids with a carbon chain 6–12 atoms long, to the diet of athletes is a new phenomenon (Manore et al. 1993). Medium-chain triglycerides are metabolized differently from longer chain fatty acids. They are absorbed rapidly in the gut and transported via the portal vein to the liver, rather than through the lymphatic system in the form of chylomicrons. As with longer chain fatty acids, oxidation occurs in the mitochondria, but carnitine is not required for transport across the mitochondrial membrane. They are rapidly oxidized after ingestion. The use of medium-chain triglycerides is becoming popular with athletes, especially bodybuilders, because they are energy dense (35.3 kJ · g–1, 8.4 kcal · g–1), providing twice the energy of carbohydrate on a weight basis. A single dose of 25–30 g of medium-chain triglycerides does not cause any gastrointestinal problems, but some symptoms may occur with higher doses (Berning 1996). They are, however, relatively expensive. Also, ingestion of large amounts will stimulate ketone body formation if not consumed with an adequate amount of carbohydrate, and have a strong thermogenic effect. Creatine supplementation in an appropriate dose can provide improved performance for athletes in explosive events: these include all events lasting from a few seconds to a few minutes. The effects and use of creatine are described fully in Chapter 27. One commonly reported side-effect is a gain in weight of 1–2 kg within a week of beginning supplementation. Most of this extra weight is accounted for by water, but this may have implications for athletes in weight category sports. References Berning, J.R. (1996) The role of medium-chain triglycerides in exercise. International Journal of Sport Nutrition 6, 121–133. Burke, R.E. & Edgerton, V.R. (1975) Motor unit properties and selective involvement in movement. In Exercise and Sport Science Reviews, Vol. 3, pp. 33–81 (ed. J.H. Wilwore & J.F. Keogh). Academic Press, New York. Costill, D.L., Fink, W.J. & Pollock, M.L. (1976) Muscle fiber composition and enzyme activities of elite distance runners. Medicine and Science in Sports 8, 96–100. Fahey, T. (ed.) (1986) Athletic Training: Principles and Practice. Mayfield, Mountain View, CA. Faulkner, J.A. & White, T.P. (1990) Adaptations of skeletal muscle to physical activity. In Exercise, Fitness and Health (ed. C. Bouchard, R.J. Shephard, T. Stephans, J.R. Sutton & B.D. McPherson), pp. 265–279. Human Kinetics, Champaign, IL. Fogelholm, G.M., Naveri, H.K., Kiilavouri, K.T. & Härkönen, M.H. (1993) Low-dose amino acid supplementation: no effect on serum human growth hormone and insulin in male weight lifters. International Journal of Sport Nutrition 3, 290–297. Hill, A.A. (1938) The heat of shortening and the dynamic constants of muscle. Nutrition 126, 136–195. Lamb, D.R. (1984) Physiology of Exercise: Responses and Adaptations. Macmillan, New York. Lemon, P.W. (1991) Effect of exercise on protein requirements. Journal of Sports Science 9, 53–70. MacDougall, J.D., Elder, G.C., Sale, D.G., Moroz, J.R. & Sutton, J.R. (1980) Effects of strength training and immobilisation on human muscle fibres. European Journal of Applied Physiology 43, 25–34. Manore, M., Thompson, J. & Russo, M. (1993) Diet and exercise strategies of a world-class bodybuilder. International Journal of Sport Nutrition 3, 76–86. Maughan, R.J. (1984) The relationship between muscle strength and muscle cross-sectional area and the implications for training. Sports Medicine 1, 263–269. Maughan, R.J., Watson, J.S. & Weir, J. (1983) Strength and cross-section area of human skeletal muscle. Journal of Physiology 338, 37–49. Rehrer, N.J. (1991) Aspects of dehydration and rehydration during exercise. In Advances in Nutrition and Top Sport Medicine and Sport Science (ed. F. Brouns), pp. 128–146. Karger, Basel. Rogozkin, V. (1978) Some aspects of athletes’ nutrition. In Nutrition, Physical Fitness and Health. International Series on Sport Science (ed. J. Parizkova & V. Rogozkin), pp. 119–123. University Park Press, Baltimore, MD. Rogozkin, V.A. (1993) Principles of athletes’ nutrition in the Russian federation. World Review of Nutrition and Diet 71, 154–182. Saltin, B. & Gollnick, P.D. (1982) Skeletal muscle adaptability: significance for metabolism and performance. In Handbook of Physiology (ed. L.D. Peachey, weightlifting and power events R.H. Adrian & S.R. Geiger), pp. 555–631. Williams & Wilkins, Baltimore, MD. Sawka, M.N. & Pandolf, K.B. (1990) Effects of body water loss on physiological function and exercise performance. In Perspectives in Exercise Science and Sports Medicine. Vol. 3. Fluid Homeostasis during Exercise (ed. C.V. Gisolfi & D.R. Lamb), pp. 1–38. Benchmark Press, Carmel, IN. Schott, J., McCully, K. & Rutherford, O.M. (1995) The role of metabolites in strength training: short vs. long 631 isometric contractions. European Journal of Applied Physiology 71, 337–341. Sutton, J.R., Farrel, P.A. & Harber, V.J. (1990) Hormonal adaptation to physical activity. In Exercise, Fitness and Health (ed. C. Bouchard, R.J. Shepard, T. Stephans, J.R. Sutton & B.D. McPherson), pp. 217–257. Human Kinetics, Champaign, IL. Williams, M.H. (1976) Nutritional Aspects of Human Physical and Athletic Performance. Charles C. Thomas, Springfield, IL.