Comments
Description
Transcript
Surface integrals
11.5 SURFACE INTEGRALS independent of the path taken. Since a is conservative, we can write a = ∇φ. Therefore, φ must satisfy ∂φ = xy 2 + z, ∂x which implies that φ = 12 x2 y 2 + zx + f(y, z) for some function f. Secondly, we require ∂φ ∂f = x2 y + = x2 y + 2, ∂y ∂y which implies f = 2y + g(z). Finally, since ∂g ∂φ =x+ = x, ∂z ∂z we have g = constant = k. It can be seen that we have explicitly constructed the function φ = 12 x2 y 2 + zx + 2y + k. The quantity φ that figures so prominently in this section is called the scalar potential function of the conservative vector field a (which satisfies ∇ × a = 0), and is unique up to an arbitrary additive constant. Scalar potentials that are multivalued functions of position (but in simple ways) are also of value in describing some physical situations, the most obvious example being the scalar magnetic potential associated with a current-carrying wire. When the integral of a field quantity around a closed loop is considered, provided the loop does not enclose a net current, the potential is single-valued and all the above results still hold. If the loop does enclose a net current, however, our analysis is no longer valid and extra care must be taken. If, instead of being conservative, a vector field b satisfies ∇ · b = 0 (i.e. b is solenoidal) then it is both possible and useful, for example in the theory of electromagnetism, to define a vector field a such that b = ∇ × a. It may be shown that such a vector field a always exists. Further, if a is one such vector field then a = a + ∇ψ + c, where ψ is any scalar function and c is any constant vector, also satisfies the above relationship, i.e. b = ∇ × a . This was discussed more fully in subsection 10.8.2. 11.5 Surface integrals As with line integrals, integrals over surfaces can involve vector and scalar fields and, equally, can result in either a vector or a scalar. The simplest case involves entirely scalars and is of the form φ dS. (11.8) S As analogues of the line integrals listed in (11.1), we may also encounter surface integrals involving vectors, namely φ dS, a · dS, a × dS. (11.9) S S S 389 LINE, SURFACE AND VOLUME INTEGRALS S dS dS S V C (a) (b) Figure 11.5 (a) A closed surface and (b) an open surface. In each case a normal to the surface is shown: dS = n̂ dS. All the above integrals are taken over some surface S, which may be either open or closed, and are therefore, in general, double integrals. Following the is replaced notation for line integrals, for surface integrals over a closed surface S / by S . The vector differential dS in (11.9) represents a vector area element of the surface S. It may also be written dS = n̂ dS, where n̂ is a unit normal to the surface at the position of the element and dS is the scalar area of the element used in (11.8). The convention for the direction of the normal n̂ to a surface depends on whether the surface is open or closed. A closed surface, see figure 11.5(a), does not have to be simply connected (for example, the surface of a torus is not), but it does have to enclose a volume V , which may be of infinite extent. The direction of n̂ is taken to point outwards from the enclosed volume as shown. An open surface, see figure 11.5(b), spans some perimeter curve C. The direction of n̂ is then given by the right-hand sense with respect to the direction in which the perimeter is traversed, i.e. follows the right-hand screw rule discussed in subsection 7.6.2. An open surface does not have to be simply connected but for our purposes it must be two-sided (a Möbius strip is an example of a one-sided surface). The formal definition of a surface integral is very similar to that of a line integral. We divide the surface S into N elements of area ∆Sp , p = 1, 2, . . . , N, each with a unit normal n̂p . If (xp , yp , zp ) is any point in ∆Sp then the second type of surface integral in (11.9), for example, is defined as a · dS = lim S N→∞ N a(xp , yp , zp ) · n̂p ∆Sp , p=1 where it is required that all ∆Sp → 0 as N → ∞. 390 11.5 SURFACE INTEGRALS z k dS α S y R dA x Figure 11.6 A surface S (or part thereof) projected onto a region R in the xy-plane; dS is a surface element. 11.5.1 Evaluating surface integrals We now consider how to evaluate surface integrals over some general surface. This involves writing the scalar area element dS in terms of the coordinate differentials of our chosen coordinate system. In some particularly simple cases this is very straightforward. For example, if S is the surface of a sphere of radius a (or some part thereof) then using spherical polar coordinates θ, φ on the sphere we have dS = a2 sin θ dθ dφ. For a general surface, however, it is not usually possible to represent the surface in a simple way in any particular coordinate system. In such cases, it is usual to work in Cartesian coordinates and consider the projections of the surface onto the coordinate planes. Consider a surface (or part of a surface) S as in figure 11.6. The surface S is projected onto a region R of the xy-plane, so that an element of surface area dS projects onto the area element dA. From the figure, we see that dA = | cos α| dS, where α is the angle between the unit vector k in the z-direction and the unit normal n̂ to the surface at P . So, at any given point of S, we have simply dS = dA dA = . | cos α| |n̂ · k| Now, if the surface S is given by the equation f(x, y, z) = 0 then, as shown in subsection 10.7.1, the unit normal at any point of the surface is given by n̂ = ∇f/|∇f| evaluated at that point, cf. (10.32). The scalar element of surface area then becomes dS = |∇f| dA |∇f| dA dA = = , |n̂ · k| ∇f · k ∂f/∂z 391 (11.10) LINE, SURFACE AND VOLUME INTEGRALS where |∇f| and ∂f/∂z are evaluated on the surface S. We can therefore express any surface integral over S as a double integral over the region R in the xy-plane. Evaluate the surface integral I = S a · dS, where a = xi and S is the surface of the hemisphere x2 + y 2 + z 2 = a2 with z ≥ 0. The surface of the hemisphere is shown in figure 11.7. In this case dS may be easily expressed in spherical polar coordinates as dS = a2 sin θ dθ dφ, and the unit normal to the surface at any point is simply r̂. On the surface of the hemisphere we have x = a sin θ cos φ and so a · dS = x (i · r̂) dS = (a sin θ cos φ)(sin θ cos φ)(a2 sin θ dθ dφ). Therefore, inserting the correct limits on θ and φ, we have π/2 2π 2πa3 dθ sin3 θ dφ cos2 φ = . I = a · dS = a3 3 0 0 S We could, however, follow the general prescription above and project the hemisphere S onto the region R in the xy-plane that is a circle of radius a centred at the origin. Writing the equation of the surface of the hemisphere as f(x, y) = x2 + y 2 + z 2 − a2 = 0 and using (11.10), we have |∇f| dA x (i · r̂) I = a · dS = x (i · r̂) dS = . ∂f/∂z S S R Now ∇f = 2xi + 2yj + 2zk = 2r, so on the surface S we have |∇f| = 2|r| = 2a. On S we also have ∂f/∂z = 2z = 2 a2 − x2 − y 2 and i · r̂ = x/a. Therefore, the integral becomes x2 I= dx dy. 2 a − x2 − y 2 R Although this integral may be evaluated directly, it is quicker to transform to plane polar coordinates: ρ2 cos2 φ I= ρ dρ dφ a2 − ρ 2 R a 2π ρ3 dρ cos2 φ dφ . = a2 − ρ 2 0 0 Making the substitution ρ = a sin u, we finally obtain π/2 2π 2πa3 cos2 φ dφ a3 sin3 u du = I= . 3 0 0 In the above discussion we assumed that any line parallel to the z-axis intersects S only once. If this is not the case, we must split up the surface into smaller surfaces S1 , S2 etc. that are of this type. The surface integral over S is then the sum of the surface integrals over S1 , S2 and so on. This is always necessary for closed surfaces. Sometimes we may need to project a surface S (or some part of it) onto the zx- or yz-plane, rather than the xy-plane; for such cases, the above analysis is easily modified. 392 11.5 SURFACE INTEGRALS z dS a S a a y dA = dx dy C x Figure 11.7 The surface of the hemisphere x2 + y 2 + z 2 = a2 , z ≥ 0. 11.5.2 Vector areas of surfaces The vector area of a surface S is defined as S = dS, S where the surface integral may be evaluated as above. Find the vector area of the surface of the hemisphere x2 + y 2 + z 2 = a2 with z ≥ 0. As in the previous example, dS = a2 sin θ dθ dφ r̂ in spherical polar coordinates. Therefore the vector area is given by a2 sin θ r̂ dθ dφ. S= S Now, since r̂ varies over the surface S, it also must be integrated. This is most easily achieved by writing r̂ in terms of the constant Cartesian basis vectors. On S we have r̂ = sin θ cos φ i + sin θ sin φ j + cos θ k, so the expression for the vector area becomes π/2 2π 2 2 cos φ dφ sin θ dθ + j a2 S=i a 0 0 2π + k a2 π/2 dφ 0 2π 2 sin φ dφ 0 π/2 sin θ dθ 0 sin θ cos θ dθ 0 = 0 + 0 + πa2 k = πa2 k. Note that the magnitude of S is the projected area, of the hemisphere onto the xy-plane, and not the surface area of the hemisphere. 393 LINE, SURFACE AND VOLUME INTEGRALS C dr r O Figure 11.8 The conical surface spanning the perimeter C and having its vertex at the origin. The hemispherical shell discussed above is an example of an open surface. For a closed surface, however, the vector area is always zero. This may be seen by projecting the surface down onto each Cartesian coordinate plane in turn. For each projection, every positive element of area on the upper surface is cancelled by the corresponding / negative element on the lower surface. Therefore, each component of S = S dS vanishes. An important corollary of this result is that the vector area of an open surface depends only on its perimeter, or boundary curve, C. This may be proved as follows. If surfaces S1 and S2 have the same perimeter then S1 − S2 is a closed surface, for which 0 dS − dS = S1 dS = 0. S2 Hence S1 = S2 . Moreover, we may derive an expression for the vector area of an open surface S solely in terms of a line integral around its perimeter C. Since we may choose any surface with perimeter C, we will consider a cone with its vertex at the origin (see figure 11.8). The vector area of the elementary triangular region shown in the figure is dS = 12 r × dr. Therefore, the vector area of the cone, and hence of any open surface with perimeter C, is given by the line integral S= 1 2 0 r × dr. C For a surface confined to the xy-plane, r = xi + yj and dr = dx i + dy j, and we/ obtain for this special case that the area of the surface is given by A = 12 C (x dy − y dx), as we found in section 11.3. 394 11.5 SURFACE INTEGRALS Find the vector area of the surface of the hemisphere x2 + y 2 + z 2 = a2 , z ≥ 0, by / evaluating the line integral S = 12 C r × dr around its perimeter. The perimeter C of the hemisphere is the circle x2 + y 2 = a2 , on which we have dr = −a sin φ dφ i + a cos φ dφ j. r = a cos φ i + a sin φ j, Therefore the cross product r × dr is given i j a cos φ a sin φ r × dr = −a sin φ dφ a cos φ dφ and the vector area becomes S = 12 a2 k by k 0 0 2π = a2 (cos2 φ + sin2 φ) dφ k = a2 dφ k, dφ = πa2 k. 0 11.5.3 Physical examples of surface integrals There are many examples of surface integrals in the physical sciences. Surface integrals of the form (11.8) occur in computing the total electric charge on a surface or the mass of a shell, S ρ(r) dS, given the charge or mass density ρ(r). For surface integrals involving vectors, the second form in (11.9) is the most common. For a vector field a, the surface integral S a · dS is called the flux of a through S. Examples of physically important flux integrals are numerous. For example, let us consider a surface S in a fluid with density ρ(r) that has a velocity field v(r). The mass of fluid crossing an element of surface area dS in time dt is dM = ρv · dS dt. Therefore the net total mass flux of fluid crossing S flux of energy is M = S ρ(r)v(r) · dS. As a another example, the electromagnetic / out of a given volume V bounded by a surface S is S (E × H) · dS. The solid angle, to be defined below, subtended at a point O by a surface (closed or otherwise) can also be represented by an integral of this form, although it is not strictly a flux integral (unless we imagine isotropic rays radiating from O). The integral r̂ · dS r · dS = , (11.11) Ω= 3 r r2 S S gives the solid angle Ω subtended at O by a surface S if r is the position vector measured from O of an element of the surface. A little thought will show that (11.11) takes account of all three relevant factors: the size of the element of surface, its inclination to the line joining the element to O and the distance from O. Such a general expression is often useful for computing solid angles when the three-dimensional geometry is complicated. Note that (11.11) remains valid when the surface S is not convex and when a single ray from O in certain directions would cut S in more than one place (but we exclude multiply connected regions). 395