Comments
Description
Transcript
Hints and answers
21.7 HINTS AND ANSWERS in V and takes the specified form φ = f on S, the boundary of V . The Green’s function, G(r, r ), to be used satisfies ∇2 G − m2 G = δ(r − r ) and vanishes when r is on S. (b) When V is all space, G(r, r ) can be written as G(t) = g(t)/t, where t = |r − r | and g(t) is bounded as t → ∞. Find the form of G(t). (c) Find φ(r) in the half-space x > 0 if ρ(r) = δ(r − r1 ) and φ = 0 both on x = 0 and as r → ∞. 21.28 Consider the PDE Lu(r) = ρ(r), for which the differential operator L is given by L = ∇ · [ p(r)∇ ] + q(r), where p(r) and q(r) are functions of position. By proving the generalised form of Green’s theorem, 0 (φLψ − ψLφ) dV = p(φ∇ψ − ψ∇φ) · n̂ dS, V S show that the solution of the PDE is given by 0 ∂G(r, r0 ) ∂u(r) dS(r), u(r0 ) = G(r, r0 )ρ(r) dV (r) + p(r) u(r) − G(r, r0 ) ∂n ∂n V S where G(r, r0 ) is the Green’s function satisfying LG(r, r0 ) = δ(r − r0 ). 21.7 Hints and answers 21.1 21.3 21.5 21.7 21.9 21.11 21.13 21.15 21.17 21.19 21.21 21.23 (a) C exp[λ(x2 + 2y)]; (b) C(x2 y)λ . u(x, y, t) = sin(nπx/a) sin(mπy/b)(A sin ωt + B cos ωt). (a) 6u/r 2 , −6u/r2 , 0, = 2 (or −3), m = 0; (b) 2u/r2 , (cot2 θ − 1)u/r2 ; −u/(r2 sin2 θ), = 1 (or −2), m = ±1. Solutions of the form r give as −1, 1, 2, 4. Because of the asymptotic form of ψ, an r 4 term cannot be present. The coefficients of the three remaining terms are determined by the two boundary conditions u = 0 on the sphere and the form of ψ for large r. Express cos2 φ in terms of cos 2φ; T (ρ, φ) = A + B/2 + (Bρ2 /2a2 ) cos 2φ. (A cos mx + B sin mx + C cosh mx + D sinh mx) cos(ωt + ), with m4 a4 = ω 2 . A En = 16ρA2 c2 /[(2n + 1)2 π 2 L]; E = 2ρc2 A2 /L = 0 [2T v/( 21 L)] dv. Note that the boundary value function is a square wave that is symmetric in φ. Since there is no heat flow at x = ±a, use a series of period 4a, u(x, 0) = 100 for 0 < x ≤ 2a, u(x, 0) = 0 for −2a ≤ x < 0. ∞ k(2n + 1)2 π 2 t 200 1 (2n + 1)πx exp − . u(x, t) = 50 + sin 2 π n=0 2n + 1 2a 4a s Taking only the n = 0 term gives t ≈ 2300 s. u(x, t) = [a/(a2 + 4κt)1/2 ] exp[−x2 /(a2 + 4κt)]. Fourier-transform Poisson’s equation to show that ρ̃(α) = 0 (α2 + q 2 )Ṽ (α). Follow the worked example that includes result (21.95). For part of the explicit integration, substitute ρ = z tan α. Φ(0, 0, z) = z(1 + z 2 )1/2 − z 2 + (1 + z 2 )1/2 − 1 . z(1 + z 2 )1/2 773 PDES: SEPARATION OF VARIABLES AND OTHER METHODS 21.25 The terms in G(r, r0 ) that are additional to the fundamental solution are ∞ ! −1/2 1 (−1)n (x − x0 )2 + (y − y0 )2 + (z + (−1)n z0 − nc)2 4π n=2 −1/2 " . + (x − x0 )2 + (y − y0 )2 + (z + (−1)n z0 + nc)2 21.27 (a) As given in equation (21.86), but with r0 replaced by r . (b) Move the origin to r and integrate the defining Green’s equation to obtain t dG 2 4πt2 G(t ) 4πt dt = 1, − m2 dt 0 leading to G(t) = [−1/(4πt)]e−mt . (c) φ(r) = [−1/(4π)](p−1 e−mp − q −1 e−mq ), where p = |r − r1 | and q = |r − r2 | with r1 = (x1 , y1 , z1 ) and r2 = (−x1 , y1 , z1 ). 774