Comments
Transcript
Taylors theorem for manyvariable functions
PARTIAL DIFFERENTIATION Thus, from (5.17), we may write ∂ ∂ sin φ ∂ = cos φ − , ∂x ∂ρ ρ ∂φ ∂ ∂ cos φ ∂ = sin φ + . ∂y ∂ρ ρ ∂φ Now it is only a matter of writing ∂ ∂ ∂f ∂2 f ∂ = f = 2 ∂x ∂x ∂x ∂x ∂x ∂ ∂ sin φ ∂ sin φ ∂ = cos φ cos φ g − − ∂ρ ρ ∂φ ∂ρ ρ ∂φ ∂g ∂ sin φ ∂ sin φ ∂g cos φ = cos φ − − ∂ρ ρ ∂φ ∂ρ ρ ∂φ = cos2 φ + ∂2 g 2 cos φ sin φ ∂g 2 cos φ sin φ ∂2 g + − ∂ρ2 ρ2 ∂φ ρ ∂φ∂ρ sin2 φ ∂g sin2 φ ∂2 g + ρ ∂ρ ρ2 ∂φ2 and a similar expression for ∂2 f/∂y 2 , ∂ ∂ cos φ ∂ cos φ ∂ ∂2 f sin φ g = sin φ + + 2 ∂y ∂ρ ρ ∂φ ∂ρ ρ ∂φ 2 cos φ sin φ ∂2 g ∂2 g 2 cos φ sin φ ∂g − + 2 2 ∂ρ ρ ∂φ ρ ∂φ∂ρ cos2 φ ∂g cos2 φ ∂2 g + . + ρ ∂ρ ρ2 ∂φ2 = sin2 φ When these two expressions are added together the change of variables is complete and we obtain ∂2 f ∂2 g 1 ∂g ∂2 f 1 ∂2 g + 2 = 2 + . + 2 2 ∂x ∂y ∂ρ ρ ∂ρ ρ ∂φ2 5.7 Taylor’s theorem for many-variable functions We have already introduced Taylor’s theorem for a function f(x) of one variable, in section 4.6. In an analogous way, the Taylor expansion of a function f(x, y) of two variables is given by ∂f ∂f ∆x + ∆y ∂x ∂y 2 ∂2 f ∂2 f 1 ∂ f 2 2 ∆x∆y + (∆x) + 2 (∆y) + + ··· , 2! ∂x2 ∂x∂y ∂y 2 f(x, y) = f(x0 , y0 ) + (5.18) where ∆x = x − x0 and ∆y = y − y0 , and all the derivatives are to be evaluated at (x0 , y0 ). 160 5.7 TAYLOR’S THEOREM FOR MANY-VARIABLE FUNCTIONS Find the Taylor expansion, up to quadratic terms in x − 2 and y − 3, of f(x, y) = y exp xy about the point x = 2, y = 3. We first evaluate the required partial derivatives of the function, i.e. ∂f = y 2 exp xy, ∂x ∂2 f = y 3 exp xy, ∂x2 ∂f = exp xy + xy exp xy, ∂y ∂2 f = 2x exp xy + x2 y exp xy, ∂y 2 ∂2 f = 2y exp xy + xy 2 exp xy. ∂x∂y Using (5.18), the Taylor expansion of a two-variable function, we find ! f(x, y) ≈ e6 3 + 9(x − 2) + 7(y − 3) " + (2!)−1 27(x − 2)2 + 48(x − 2)(y − 3) + 16(y − 3)2 . It will be noticed that the terms in (5.18) containing first derivatives can be written as ∂f ∂ ∂ ∂f ∆x + ∆y = ∆x + ∆y f(x, y), ∂x ∂y ∂x ∂y where both sides of this relation should be evaluated at the point (x0 , y0 ). Similarly the terms in (5.18) containing second derivatives can be written as 2 ∂2 f ∂ ∂2 f 1 ∂2 f 1 ∂ 2 2 ∆x∆y + + ∆y (∆x) + 2 (∆y) f(x, y), = ∆x 2! ∂x2 ∂x∂y ∂y 2 2! ∂x ∂y (5.19) where it is understood that the partial derivatives resulting from squaring the expression in parentheses act only on f(x, y) and its derivatives, and not on ∆x or ∆y; again both sides of (5.19) should be evaluated at (x0 , y0 ). It can be shown that the higher-order terms of the Taylor expansion of f(x, y) can be written in an analogous way, and that we may write the full Taylor series as f(x, y) = n ∞ ∂ 1 ∂ + ∆y f(x, y) ∆x n! ∂x ∂y x0 ,y0 n=0 where, as indicated, all the terms on the RHS are to be evaluated at (x0 , y0 ). The most general form of Taylor’s theorem, for a function f(x1 , x2 , . . . , xn ) of n variables, is a simple extension of the above. Although it is not necessary to do so, we may think of the xi as coordinates in n-dimensional space and write the function as f(x), where x is a vector from the origin to (x1 , x2 , . . . , xn ). Taylor’s 161