Comments
Description
Transcript
Hints and answers
FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS 14.28 Find the solution of (5x + y − 7) 14.29 Find the solution y = y(x) of x 14.30 dy = 3(x + y + 1). dx dy y2 + y − 3/2 = 0, dx x subject to y(1) = 1. Find the solution of (2 sin y − x) 14.31 if (a) y(0) = 0, and (b) y(0) = π/2. Find the family of solutions of d2 y + dx2 dy dx dy = tan y, dx 2 + dy =0 dx that satisfy y(0) = 0. 14.5 Hints and answers 14.1 14.3 14.5 14.7 14.9 14.11 14.13 14.15 14.17 14.19 14.21 14.23 14.25 14.27 14.29 N(t) = N0 exp(−λt). (a) exact, x2 y 4 + x2 + y 2 = c; (b) IF = x−1/2 , x1/2 (x + y) = c; (c) IF = sec2 x, y 2 tan x + y = c. (a) IF = (1 − x2 )−2 , y = (1 − x2 )(k + sin−1 x); (b) IF = cosec x, leading to y = k sin x + cos x; (c) exact equation is y −1 (dx/dy) − xy −2 = y, leading to x = y(k + y 2 /2). t y(t) = e−t/α α−1 et /α f(t )dt ; (a) y(t) = 1 − e−t/α ; (b) y(t) = α−1 e−t/α ; (c) y(t) = −t/α −t/β (e −e )/(α − β). It becomes case (b). Note that, if the angle between the tangent and the radius vector is α, then cos α = dr/ds and sin α = p/r. Homogeneous equation, put y = vx to obtain (1 − v)(v 2 + 2v + 2)−1 dv = x−1 dx; write 1 − v as 2 − (1 + 1v), and v 2 + 2v + 2 2as 1 + (1 + v)2 ; A[x2 + (x + y)2 ] = exp 4 tan−1 [(x + y)/x] . (1 + s)(dȳ/ds) + 2ȳ = 0. C = 1; use separation of variables to show directly that y(t) = te−t . The equation is of the form of (14.22), set v = x + y; x + 3y + 2 ln(x + y − 2) = A. The equation is isobaric with weight y = −2; setting y = vx−2 gives v −1 (1 − v)−1 (1 − 2v) dv = x−1 dx; 4xy(1 − x2 y) = 1. which has solution x = (p−1)−2 , The curve must satisfy√y = (1−p−1 )−1 (1−x+px), √ leading to y = (1 ± x)2 or x = (1 ± y)2 ; the singular solution p = 0 gives straight lines joining (θ, 0) and (0, 1 − θ) for any θ. v = qu + q/(q − 1), where q = dv/du. General solution y 2 = cx2 + c/(c − 1), hyperbolae for c > 0 and ellipses for c < 0. Singular solution y = ±(x ± 1). (a) Integrating factor is (a2 + x2 )1/2 , y = (a2 + x2 )/3 + A(a2 + x2 )−1/2 ; (b) separable, y = x(x2 + Ax + 4)−1 . Use Laplace transforms; x̄s(s2 + 4) = s + s2 − 2e−3s ; x(t) = 12 sin 2t + cos 2t − 12 H(t − 3) + 12 cos(2t − 6)H(t − 3). This is Clairaut’s equation √ with F(p) = A/p. General solution y = cx + A/c; singular solution, y = 2 Ax. Either Bernoulli’s equation with n = 2 or an isobaric equation with m = 3/2; y(x) = 5x3/2 /(2 + 3x5/2 ). 488 14.5 HINTS AND ANSWERS 14.31 Show that p = (Cex − 1)−1 , where p = dy/dx; y = ln[C − e−x )/(C − 1)] or ln[D − (D − 1)e−x ] or ln(e−K + 1 − e−x ) + K. 489