Comments
Description
Transcript
Hints and answers
MATRICES AND VECTOR SPACES 8.40 Find the equation satisfied by the squares of the singular values of the matrix associated with the following over-determined set of equations: 2x + 3y + z x−y−z 2x + y 2y + z 8.41 8.42 8.43 =0 =1 =0 = −2. Show that one of the singular values is close to zero. Determine the two larger singular values by an appropriate iteration process and the smallest one by indirect calculation. Find the SVD of 0 −1 1 , A= 1 −1 0 √ showing that the singular values are 3 and 1. Find the SVD form of the matrix 22 28 −22 −2 −19 1 . A= 19 −2 −1 −6 12 6 Use it to determine the best solution x of the equation Ax = b when (i) b = (6 − 39 15 18)T , (ii) b = (9 − 42 15 15)T , showing√that (i) has an exact solution, but that the best solution to (ii) has a residual of 18. Four experimental measurements of particular combinations of three physical variables, x, y and z, gave the following inconsistent results: 13x + 22y − 13z 10x − 8y − 10z 10x − 8y − 10z 9x − 18y − 9z = 4, = 44, = 47, = 72. Find the SVD best values for x, y and z. Identify the null space of A and hence obtain the general SVD solution. 8.20 Hints and answers 8.1 (a) False. ON , the N × N null matrix, is not non-singular. 1 0 0 0 (b) False. Consider the sum of and . 0 0 0 1 (c) True. (d) True. 2 (e) False. Consider bn = an + an for which N n=0 |bn | = 4 = 1, or note that there is no zero vector with unit norm. (f) True. (g) False. Consider the two series defined by a0 = 12 , 8.3 an = 2(− 21 )n for n ≥ 1; bn = −(− 12 )n for n ≥ 0. The series that is the sum of {an } and {bn } does not have alternating signs and so closure does not hold. (a) x = a, b or c; (b) x = −1; the equation is linear in x. 314 8.20 HINTS AND ANSWERS 8.5 8.7 8.9 8.11 8.13 8.15 8.17 8.19 Use the property of the determinant of a matrix product. 0 − tan(θ/2) . tan(θ/2) 0 2 (e) Note that (I + K)(I − K) = I − K = (I − K)(I + K). (b) 32iA. a = b cos γ + c cos β, and cyclic permutations; a2 = b2 + c2 − 2bc cos α, and cyclic permutations. (a) 2−1/2 (0 0 1 1)T , 6−1/2 (2 0 − 1 1)T , 39−1/2 (−1 6 − 1 1)T , 13−1/2 (2 1 2 − 2)T . (b) 5−1/2 (1 2 0 0)T , (345)−1/2 (14 − 7 10 0)T , (18 285)−1/2 (−56 28 98 69)T . C does not commute with the others; A, B and D have (1 − 2)T and (2 1)T as common eigenvectors. For A : (1 0 − 1)T , (1 α1 1)T , (1 α2 1)T . For B : (1 1 1)T , (β1 γ1 − β1 − γ1 )T , (β2 γ2 − β2 − γ2 )T . The αi , βi and γi are arbitrary. Simultaneous and orthogonal: (1 0 − 1)T , (1 1 1)T , (1 − 2 1)T . αj = (v · ej∗ )/(λj − µ), where λj is the eigenvalue corresponding to ej . (d) S = (a) x = (2 1 3)T . (b) Since µ is equal to one of A’s eigenvalues λj , the equation only has a solution if v · ej∗ = 0; (i) no solution; (ii) x = (1 1 3/2)T . 8.21 8.23 8.25 8.27 8.29 8.31 8.33 8.35 8.37 8.39 8.41 U = (10)−1/2 (1, 3i; 3i, 1), Λ = (1, 0; 0, 11). √ 2 + 2), with stationary values at y = ± 2 and corresponding J = (2y 2 − 4y + 4)/(y √ eigenvalues 2 ∓ 2. From √ of A, the third eigenvalue equals 2. √ the trace property Ellipse; θ = π/4, a = 22; θ = 3π/4, b = 10. The direction of the eigenvector having the unrepeated eigenvalue is √ (1, 1, −1)/ 3. (a) A = SA S† , where S is the matrix whose columns are the eigenvectors of the matrix A to be constructed, and A = diag (λ, µ, ν). (b) A = (λ + 2µ + 3ν, 2λ − 2µ, λ + 2µ − 3ν; 2λ − 2µ, 4λ + 2µ, 2λ − 2µ; λ + 2µ − 3ν, 2λ − 2µ, λ + 2µ + 3ν). (c) 13 (1, 5, −2; 5, 4, 5; −2, 5, 1). The null space is spanned by (2 0 1 0)T and (1 − 2 0 1)T . x = 3, y = 1, z = 2. First show that A is singular. η = 1, x = 1 + 2z, y = −3z; η = 2, x = 2z, y = 1 − 3z. L = (1, 0, 0; 13 , 1, 0; 23 , 3, 1), U = (3, 6, 9; 0, −2, 2; 0, 0, 4). (i) x = (−1 1 2)T . (ii) x = (−3 2 2)T . √ A is not positive definite, as L33 is calculated to be −6. B = LL√T , where the of L are non-zero elements √ L11 = 5, L31 = 3/5, L22 = 3, L33 = 12/5. √ √ 3 2 −1 √ 1 1 1 1 . , U= √ 2 A† A = 0 2 , V = √ √ √ 1 −1 6 2 −1 − 3 2 √ √ The singular values are 12 6, 0, 18 3 and the calculated best solution is x = 1.71, y = −1.94, z = −1.71. The null space is the line x = z, y = 0 and the general SVD solution is x = 1.71 + λ, y = −1.94, z = −1.71 + λ. 8.43 2 1 1 2 315