Comments
Description
Transcript
Hints and answers
EIGENFUNCTION METHODS FOR DIFFERENTIAL EQUATIONS 17.14 Express the solution of Poisson’s equation in electrostatics, ∇2 φ(r) = −ρ(r)/0 , 17.15 where ρ is the non-zero charge density over a finite part of space, in the form of an integral and hence identify the Green’s function for the ∇2 operator. In the quantum-mechanical study of the scattering of a particle by a potential, a Born-approximation solution can be obtained in terms of a function y(r) that satisfies an equation of the form (−∇2 − K 2 )y(r) = F(r). −3/2 Assuming that yk (r) = (2π) exp(ik·r) is a suitably normalised eigenfunction of −∇2 corresponding to eigenvalue k 2 , find a suitable Green’s function GK (r, r ). By taking the direction of the vector r − r as the polar axis for a k-space integration, show that GK (r, r ) can be reduced to ∞ 1 w sin w dw, 4π 2 |r − r | −∞ w 2 − w02 where w0 = K|r − r |. [ This integral can be evaluated using a contour integration (chapter 24) to give (4π|r − r |)−1 exp(iK|r − r |). ] 17.8 Hints and answers 17.1 17.3 17.5 17.7 17.9 17.11 17.13 17.15 Express the condition h|h ≥ 0 as a quadratic equation in λ and then apply the for no real roots, noting that f|g + g|f is real. To put a limit on condition y cos2 kx dx, set f = y 1/2 cos kx and g = y 1/2 in the inequality. Follow an argument similar to that used for proving the reality of the eigenvalues, but integrate from x1 to x2 , rather than from a to b. Take x1 and x2 as two successive zeros of ym (x) and note that, if the sign of ym is α then the sign of ym (x1 ) is α whilst that of ym (x2 ) is −α. Now assume that yn (x) does not change sign in the interval and has a constant sign β; show that this leads to a contradiction between the signs of the two sides of the identity. (a) y = an Pn (x) with 1 n + 1/2 f(z)Pn (z) dz; an = b − n(n + 1) −1 3 (b) 5x3 = 2P3 (x)+3P1 (x), giving a1 = 1/4 and a3 = 1, leading to y = 5(2x −x)/4. (a) No, gf ∗ dx = 0; (b) yes; (c) no, i f ∗ gdx = 0; (d) yes. 1/2 The normalised eigenfunctions are (2/π) sin nx, with n an integer. y(x) = (4/π) n odd [(−1)(n−1)/2 sin nx]/[n2 (κ − n2 )]. λn = (n + 1/2)2 π 2 , n = 0, 1, 2, . . . . (a) Since yn (1)ym (1) = 0, the Sturm–Liouville boundary conditions are not satisfied and the appropriate weight has to be justified by inspection. The √ function −x/2 2e sin[(n + 1/2)πx], with ρ(x) = ex . normalised eigenfunctions are −x/2 e sin[(n + 1/2)πx]/(n + 1/2)3 . (b) y(x) √ = (−2/π 3 ) ∞ n=0 −1/2 2 2 yn (x) = 2x sin(nπ ln x) with λn = −n π ; √ e√ −(nπ)−2 1 2x−1 sin(nπ ln x) dx = − 8(nπ)−3 for n odd, an = 0 for n even. Use the form of Green’s function that is the integral over all eigenvalues of the ‘outer product’ of two eigenfunctions corresponding to the same eigenvalue, but with arguments r and r . 576