Comments
Description
Transcript
A useful generalisation
EIGENFUNCTION METHODS FOR DIFFERENTIAL EQUATIONS 17.6 A useful generalisation Sometimes we encounter inhomogeneous equations of a form slightly more general than (17.1), given by Ly(x) − µρ(x)y(x) = f(x) (17.53) for some Hermitian operator L, with y subject to the appropriate boundary conditions and µ a given (i.e. fixed) constant. To solve this equation we expand y(x) and f(x) in terms of the eigenfunctions yn (x) of the operator L, which satisfy Lyn (x) = λn ρ(x)yn (x). Working in terms of the normalised eigenfunctions ŷn (x), we first expand f(x) as follows: b ∞ ŷn (x) ŷn∗ (z)f(z)ρ(z) dz f(x) = n=0 a b ∞ ρ(z) = a ŷn (x)ŷn∗ (z)f(z) dz. (17.54) n=0 Using (17.29) this becomes b ρ(x) f(x) = a ∞ ŷn (x)ŷn∗ (z)f(z) dz n=0 = ρ(x) ∞ b ŷn (x) a n=0 ŷn∗ (z)f(z) dz. (17.55) Next, we expand y(x) as y = ∞ n=0 cn ŷn (x) and seek the coefficients cn . Substituting this and (17.55) into (17.53) we have b ∞ ∞ ŷn (x) ŷn∗ (z)f(z) dz, (λn − µ)cn ŷn (x) = ρ(x) ρ(x) n=0 a n=0 from which we find that cn = ∞ n=0 b a ŷn∗ (z)f(z) dz . λn − µ Hence the solution of (17.53) is given by b b ∞ ∞ ∞ ŷn (x) ŷn (x)ŷn∗ (z) y= ŷn∗ (z)f(z) dz = f(z) dz. cn ŷn (x) = λn − µ a λn − µ a n=0 n=0 n=0 From this we may identify the Green’s function G(x, z) = ∞ ŷn (x)ŷ ∗ (z) n n=0 572 λn − µ .