Comments
Description
Transcript
Hints and answers
12.10 HINTS AND ANSWERS 0 (a) 1 0 1 0 1 0 (c) (b) 2 4 (d) Figure 12.6 Continuations of exp(−x2 ) in 0 ≤ x ≤ 1 to give: (a) cosine terms only; (b) sine terms only; (c) period 1; (d) period 2. Sketch the graph of the function f(x), where −x(π + x) for −π ≤ x < 0, f(x) = x(x − π) for 0 ≤ x < π. If f(x) is to be approximated by the first three terms of a Fourier sine series, what values should the coefficients have so as to minimise E3 ? What is the resulting value of E3 ? 12.10 Hints and answers 12.1 12.3 12.5 12.7 12.9 12.11 12.13 12.15 12.17 12.19 Note that the only integral of a sinusoid around a complete cycle of length L that is not zero is the integral of cos(2πnx/L) when n = 0. Only (c). In terms of the Dirichlet conditions (section 12.1), the others fail as follows: (a) (ii); (d) (ii); (e) (iii). (i); (b) n+1 −1 f(x) = 2 ∞ n sin nx; set x = π/2. 1 (−1) (i) Series (a) from exercise 12.6 does not converge and cannot represent the function y(x) = −1. Series (b) reproduces the square-wave function of equation (12.8). (ii) Series (a) gives the series for y(x) = −x − 12 x2 − 12 in the range −1 ≤ x ≤ 0 and for y(x) = x − 12 x2 − 12 in the range 0 ≤ x ≤ 1. Series (b) gives the series for y(x) = x + 12 x2 + 12 in the range −1 ≤ x ≤ 0 and for y(x) = x − 12 x2 + 12 in the range 0 ≤ x ≤ 1. 1 2 n 2 2 −1 f(x) = (sinh 1) 1 + 2 ∞ 1 (−1) (1 + n π ) [cos(nπx) − nπ sin(nπx)] . The series will converge to the same value as it does at x = 0, i.e. f(0) = 1. See figure 12.6. (c) (i) (1 + e−1 )/2, (ii) (1 + e−1 )/2; (d) (i) (1 + e−4 )/2, (ii) e−1 . (d) (i) The periods are both 2L; (ii) y0 /2. So = π 2 /8. If Se = (2m)−2 then Se = 14 (Se + So ), yielding So − Se = π 2 /12 and Se + So = π 2 /6. (a) (π/4)(π/2−|θ|); (b) (πθ/4)(π/2−|θ|/2) from integrating (a). (c) Even function; average value L2 /3; y(0) = 0; y(L) = L2 ; probably y(x) = x2 . Compare with the worked example in section 12.5. n 2 2 cosh x = (sinh 1)[1 + 2 ∞ twice n=1 (−1) (cos nπx)/(n π +n1)] and after 2integrating 1 2 this form must be recovered. Use x = 3 +4 (−1) (cos nπx)/(n π 2 )] to eliminate the quadratic term arising from the constants of integration; there is no linear term. C±(2m+1) = ∓2i/[(2m + 1)π]; |Cn |2 = (4/π 2 ) × 2 × (π 2 /8); the values n = ±1, ±3 contribute > 90% of the total. 431 FOURIER SERIES 12.21 12.23 12.25 cn = [(−1)n sinh π]/[π(1 + n2 )]. Having set x = 0, separate out the n = 0 term and note that (−1)n = (−1)−n . (π 2 − 8)/16. (b) All an and αn are zero; bn = 2(−1)n+1 /(nπ) and βn = 4/(nπ). You will need the result quoted in exercise 12.19. 432