Comments
Description
Transcript
The Fourier coefficients
12.2 THE FOURIER COEFFICIENTS we can write any function as the sum of a sine series and a cosine series. All the terms of a Fourier series are mutually orthogonal, i.e. the integrals, over one period, of the product of any two terms have the following properties: x0 +L 2πrx 2πpx sin cos dx = 0 for all r and p, (12.1) L L x0 x0 +L for r = p = 0, L 2πrx 2πpx cos (12.2) cos dx = 12 L for r = p > 0, L L x0 0 for r = p, x0 +L for r = p = 0, 0 2πrx 2πpx sin (12.3) sin dx = 12 L for r = p > 0, L L x0 0 for r = p, where r and p are integers greater than or equal to zero; these formulae are easily derived. A full discussion of why it is possible to expand a function as a sum of mutually orthogonal functions is given in chapter 17. The Fourier series expansion of the function f(x) is conventionally written ∞ 2πrx 2πrx a0 + ar cos f(x) = + br sin , (12.4) 2 L L r=1 where a0 , ar , br are constants called the Fourier coefficients. These coefficients are analogous to those in a power series expansion and the determination of their numerical values is the essential step in writing a function as a Fourier series. This chapter continues with a discussion of how to find the Fourier coefficients for particular functions. We then discuss simplifications to the general Fourier series that may save considerable effort in calculations. This is followed by the alternative representation of a function as a complex Fourier series, and we conclude with a discussion of Parseval’s theorem. 12.2 The Fourier coefficients We have indicated that a series that satisfies the Dirichlet conditions may be written in the form (12.4). We now consider how to find the Fourier coefficients for any particular function. For a periodic function f(x) of period L we will find that the Fourier coefficients are given by 2πrx 2 x0 +L f(x) cos ar = dx, (12.5) L x0 L x0 +L 2πrx 2 f(x) sin dx, (12.6) br = L x0 L where x0 is arbitrary but is often taken as 0 or −L/2. The apparently arbitrary factor 12 which appears in the a0 term in (12.4) is included so that (12.5) may 417 FOURIER SERIES apply for r = 0 as well as r > 0. The relations (12.5) and (12.6) may be derived as follows. Suppose the Fourier series expansion of f(x) can be written as in (12.4), f(x) = ∞ 2πrx 2πrx a0 + ar cos + br sin . 2 L L r=1 Then, multiplying by cos(2πpx/L), integrating over one full period in x and changing the order of the summation and integration, we get x0 +L f(x) cos x0 2πpx L dx = 2πpx a0 x0 +L cos dx 2 x0 L ∞ x0 +L 2πrx 2πpx ar cos cos dx + L L x0 r=1 x0 +L ∞ 2πrx 2πpx br sin cos dx. + L L x0 r=1 (12.7) We can now find the Fourier coefficients by considering (12.7) as p takes different values. Using the orthogonality conditions (12.1)–(12.3) of the previous section, we find that when p = 0 (12.7) becomes x0 +L f(x)dx = x0 a0 L. 2 When p = 0 the only non-vanishing term on the RHS of (12.7) occurs when r = p, and so x0 +L 2πrx ar f(x) cos dx = L. L 2 x0 The other Fourier coefficients br may be found by repeating the above process but multiplying by sin(2πpx/L) instead of cos(2πpx/L) (see exercise 12.2). Express the square-wave function illustrated in figure 12.2 as a Fourier series. Physically this might represent the input to an electrical circuit that switches between a high and a low state with time period T . The square wave may be represented by # −1 for − 12 T ≤ t < 0, f(t) = +1 for 0 ≤ t < 12 T . In deriving the Fourier coefficients, we note firstly that the function is an odd function and so the series will contain only sine terms (this simplification is discussed further in the 418