Comments
Description
Transcript
Exercises
INTEGRAL TRANSFORMS 13.4 Exercises 13.1 Find the Fourier transform of the function f(t) = exp(−|t|). (a) By applying Fourier’s inversion theorem prove that ∞ π cos ωt dω. exp(−|t|) = 2 1 + ω2 0 (b) By making the substitution ω = tan θ, demonstrate the validity of Parseval’s theorem for this function. 13.2 Use the general definition and properties of Fourier transforms to show the following. (a) If f(x) is periodic with period a then f̃(k) = 0, unless ka = 2πn for integer n. (b) The Fourier transform of tf(t) is idf̃(ω)/dω. (c) The Fourier transform of f(mt + c) is eiωc/m ω . f̃ m m 13.3 13.4 Find the Fourier transform of H(x − a)e−bx , where H(x) is the Heaviside function. Prove that the Fourier transform of the function f(t) defined in the tf-plane by straight-line segments joining (−T , 0) to (0, 1) to (T , 0), with f(t) = 0 outside |t| < T , is T ωT , f̃(ω) = √ sinc2 2 2π where sinc x is defined as (sin x)/x. Use the general properties of Fourier transforms to determine the transforms of the following functions, graphically defined by straight-line segments and equal to zero outside the ranges specified: (a) (0, 0) to (0.5, 1) to (1, 0) to (2, 2) to (3, 0) to (4.5, 3) to (6, 0); (b) (−2, 0) to (−1, 2) to (1, 2) to (2, 0); (c) (0, 0) to (0, 1) to (1, 2) to (1, 0) to (2, −1) to (2, 0). 13.5 By taking the Fourier transform of the equation d2 φ − K 2 φ = f(x), dx2 show that its solution, φ(x), can be written as ∞ ikx 3 −1 e f(k) φ(x) = √ dk, 2π −∞ k 2 + K 2 13.6 13.7 where 3 f(k) is the Fourier transform of f(x). By differentiating the definition of the Fourier sine transform f̃s (ω) of the function f(t) = t−1/2 with respect to ω, and then integrating the resulting expression by parts, find an elementary differential equation satisfied by f̃s (ω). Hence show that this function is its own Fourier sine transform, i.e. f̃s (ω) = Af(ω), where A is a constant. Show that it is also its own Fourier cosine transform. Assume that the limit as x → ∞ of x1/2 sin αx can be taken as zero. Find the Fourier transform of the unit rectangular distribution 1 |t| < 1, f(t) = 0 otherwise. 460 13.4 EXERCISES Determine the convolution of f with itself and, without further integration, deduce its transform. Deduce that ∞ sin2 ω dω = π, ω2 −∞ ∞ 2π sin4 ω dω = . ω4 3 −∞ 13.8 Calculate the Fraunhofer spectrum produced by a diffraction grating, uniformly illuminated by light of wavelength 2π/k, as follows. Consider a grating with 4N equal strips each of width a and alternately opaque and transparent. The aperture function is then # A for (2n + 1)a ≤ y ≤ (2n + 2)a, −N ≤ n < N, f(y) = 0 otherwise. (a) Show, for diffraction at angle θ to the normal to the grating, that the required Fourier transform can be written 2a N−1 3 exp(−2iarq) A exp(−iqu) du, f(q) = (2π)−1/2 r=−N a where q = k sin θ. (b) Evaluate the integral and sum to show that A sin(2qaN) 3 f(q) = (2π)−1/2 exp(−iqa/2) , q cos(qa/2) and hence that the intensity distribution I(θ) in the spectrum is proportional to sin2 (2qaN) . q 2 cos2 (qa/2) (c) For large values of N, the numerator in the above expression has very closely spaced maxima and minima as a function of θ and effectively takes its mean value, 1/2, giving a low-intensity background. Much more significant peaks in I(θ) occur when θ = 0 or the cosine term in the denominator vanishes. Show that the corresponding values of |3 f(q)| are 2aNA (2π)1/2 and 4aNA , (2π)1/2 (2m + 1)π with m integral. Note that the constructive interference makes the maxima in I(θ) ∝ N 2 , not N. Of course, observable maxima only occur for 0 ≤ θ ≤ π/2. 13.9 By finding the complex Fourier series for its LHS show that either side of the equation ∞ ∞ 1 −2πnit/T δ(t + nT ) = e T n=−∞ n=−∞ can represent a periodic train of impulses. By expressing the function f(t + nX), in which X is a constant, in terms of the Fourier transform f̃(ω) of f(t), show that √ ∞ ∞ 2π 2nπ e2πnit/X . f(t + nX) = f̃ X n=−∞ X n=−∞ This result is known as the Poisson summation formula. 461 INTEGRAL TRANSFORMS 13.10 In many applications in which the frequency spectrum of an analogue signal is required, the best that can be done is to sample the signal f(t) a finite number of times at fixed intervals, and then use a discrete Fourier transform Fk to estimate discrete points on the (true) frequency spectrum f̃(ω). (a) By an argument that is essentially the converse of that given in section 13.1, show that, if N samples fn , beginning at t = 0 and spaced τ apart, are taken, then f̃(2πk/(Nτ)) ≈ Fk τ where N−1 1 fn e−2πnki/N . Fk = √ 2π n=0 (b) For the function f(t) defined by # f(t) = 1 for 0 ≤ t < 1, 0 otherwise, from which eight samples are drawn at intervals of τ = 0.25, find a formula for |Fk | and evaluate it for k = 0, 1, . . . , 7. (c) Find the exact frequency spectrum of f(t) and compare the actual and √ estimated values of 2π|f̃(ω)| at ω = kπ for k = 0, 1, . . . , 7. Note the relatively good agreement for k < 4 and the lack of agreement for larger values of k. 13.11 For a function f(t) that is non-zero only in the range |t| < T /2, the full frequency spectrum f̃(ω) can be constructed, in principle exactly, from values at discrete sample points ω = n(2π/T ). Prove this as follows. (a) Show that the coefficients of a complex Fourier series representation of f(t) with period T can be written as √ 2π 2πn cn = . f̃ T T (b) Use this result to represent f(t) as an infinite sum in the defining integral for f̃(ω), and hence show that ∞ ωT 2πn sinc nπ − , f̃ f̃(ω) = T 2 n=−∞ where sinc x is defined as (sin x)/x. 13.12 A signal obtained by sampling a function x(t) at regular intervals T is passed through an electronic filter, whose response g(t) to a unit δ-function input is represented in a tg-plot by straight lines joining (0, 0) to (T , 1/T ) to (2T , 0) and is zero for all other values of t. The output of the filter is the convolution of the input, ∞ −∞ x(t)δ(t − nT ), with g(t). Using the convolution theorem, and the result given in exercise 13.4, show that the output of the filter can be written ∞ ∞ 1 ωT y(t) = e−iω[(n+1)T −t] dω. x(nT ) sinc2 2π n=−∞ 2 −∞ 13.13 Find the Fourier transform specified in part (a) and then use it to answer part (b). 462 13.4 EXERCISES (a) Find the Fourier transform of # f(γ, p, t) = e−γt sin pt t > 0, 0 t < 0, where γ (> 0) and p are constant parameters. (b) The current I(t) flowing through a certain system is related to the applied voltage V (t) by the equation ∞ K(t − u)V (u) du, I(t) = −∞ where K(τ) = a1 f(γ1 , p1 , τ) + a2 f(γ2 , p2 , τ). The function f(γ, p, t) is as given in (a) and all the ai , γi (> 0) and pi are fixed parameters. By considering the Fourier transform of I(t), find the relationship that must hold between a1 and a2 if the total net charge Q passed through the system (over a very long time) is to be zero for an arbitrary applied voltage. 13.14 Prove the equality ∞ e−2at sin2 at dt = 0 13.15 13.16 1 π ∞ 0 a2 dω. 4a4 + ω 4 A linear amplifier produces an output that is the convolution of its input and its response function. The Fourier transform of the response function for a particular amplifier is iω K̃(ω) = √ . 2π(α + iω)2 Determine the time variation of its output g(t) when its input is the Heaviside step function. (Consider the Fourier transform of a decaying exponential function and the result of exercise 13.2(b).) In quantum mechanics, two equal-mass particles having momenta pj = kj and energies Ej = ωj and represented by plane wavefunctions φj = exp[i(kj ·rj −ωj t)], j = 1, 2, interact through a potential V = V (|r1 − r2 |). In first-order perturbation theory the probability of scattering to a state with momenta and energies pj , Ej is determined by the modulus squared of the quantity M= ψf∗ V ψi dr1 dr2 dt. The initial state, ψi , is φ1 φ2 and the final state, ψf , is φ1 φ2 . (a) By writing r1 + r2 = 2R and r1 − r2 = r and assuming that dr1 dr2 = dR dr, show that M can be written as the product of three one-dimensional integrals. (b) From two of the integrals deduce energy and momentum conservation in the form of δ-functions. 3 (k) (c) Show that M is proportional to the Fourier transform of V , i.e. to V where 2k = (p2 − p1 ) − (p2 − p1 ) or, alternatively, k = p1 − p1 . 13.17 For some ion–atom scattering processes, the potential V of the previous exercise may be approximated by V = |r1 − r2 |−1 exp(−µ|r1 − r2 |). Show, using the result of the worked example in subsection 13.1.10, that the probability that the ion will scatter from, say, p1 to p1 is proportional to (µ2 + k 2 )−2 , where k = |k| and k is as given in part (c) of that exercise. 463 INTEGRAL TRANSFORMS 13.18 The equivalent duration and bandwidth, Te and Be , of a signal x(t) are defined in terms of the latter and its Fourier transform x̃(ω) by ∞ 1 x(t) dt, Te = x(0) −∞ ∞ 1 Be = x̃(ω) dω, x̃(0) −∞ where neither x(0) nor x̃(0) is zero. Show that the product Te Be = 2π (this is a form of uncertainty principle), and find the equivalent bandwidth of the signal x(t) = exp(−|t|/T ). For this signal, determine the fraction of the total energy that lies in the frequency range |ω| < Be /4. You will need the indefinite integral with respect to x of (a2 + x2 )−2 , which is x x 1 + tan−1 . 2a2 (a2 + x2 ) 2a3 a 13.19 Calculate directly the auto-correlation function a(z) for the product f(t) of the exponential decay distribution and the Heaviside step function, 1 −λt e H(t). λ Use the Fourier transform and energy spectrum of f(t) to deduce that ∞ eiωz π dω = e−λ|z| . 2 2 λ −∞ λ + ω f(t) = 13.20 Prove that the cross-correlation C(z) of the Gaussian and Lorentzian distributions a 1 t2 1 g(t) = , f(t) = √ exp − 2 , 2τ π t2 + a2 τ 2π has as its Fourier transform the function 2 2 τω 1 √ exp − exp(−a|ω|). 2 2π Hence show that 2 az 1 a − z2 C(z) = √ exp cos 2 . 2τ2 τ τ 2π 13.21 Prove the expressions given in table 13.1 for the Laplace transforms of t−1/2 and t1/2 , by setting x2 = ts in the result ∞ √ exp(−x2 ) dx = 12 π. 13.22 Find the functions y(t) whose Laplace transforms are the following: 0 (a) 1/(s2 − s − 2); (b) 2s/[(s + 1)(s2 + 4)]; (c) e−(γ+s)t0 /[(s + γ)2 + b2 ]. 13.23 Use the properties of Laplace transforms to prove the following without evaluating any Laplace integrals explicitly: √ −7/2 (a) L t5/2 = 15 πs ; 8 (b) L (sinh at)/t = 12 ln (s + a)/(s − a) , s > |a|; 464 13.4 EXERCISES (c) L [sinh at cos bt] = a(s2 − a2 + b2 )[(s − a)2 + b2 ]−1 [(s + a)2 + b2 ]−1 . 13.24 Find the solution (the so-called impulse response or Green’s function) of the equation dx + x = δ(t) T dt by proceeding as follows. (a) Show by substitution that x(t) = A(1 − e−t/T )H(t) is a solution, for which x(0) = 0, of T dx + x = AH(t), dt (∗) where H(t) is the Heaviside step function. (b) Construct the solution when the RHS of (∗) is replaced by AH(t − τ), with dx/dt = x = 0 for t < τ, and hence find the solution when the RHS is a rectangular pulse of duration τ. (c) By setting A = 1/τ and taking the limit as τ → 0, show that the impulse response is x(t) = T −1 e−t/T . (d) Obtain the same result much more directly by taking the Laplace transform of each term in the original equation, solving the resulting algebraic equation and then using the entries in table 13.1. 13.25 This exercise is concerned with the limiting behaviour of Laplace transforms. (a) If f(t) = A + g(t), where A is a constant and the indefinite integral of g(t) is bounded as its upper limit tends to ∞, show that lim sf̄(s) = A. s→0 (b) For t > 0, the function y(t) obeys the differential equation d2 y dy +a + by = c cos2 ωt, dt2 dt where a, b and c are positive constants. Find ȳ(s) and show that sȳ(s) → c/2b as s → 0. Interpret the result in the t-domain. 13.26 By writing f(x) as an integral involving the δ-function δ(ξ − x) and taking the Laplace transforms of both sides, show that the transform of the solution of the equation d4 y − y = f(x) dx4 for which y and its first three derivatives vanish at x = 0 can be written as ∞ e−sξ f(ξ) 4 ȳ(s) = dξ. s −1 0 Use the properties of Laplace transforms and the entries in table 13.1 to show that 1 x f(ξ) [sinh(x − ξ) − sin(x − ξ)] dξ. y(x) = 2 0 465