Comments
Description
Transcript
Triple integrals
MULTIPLE INTEGRALS y 1 dy x+y =1 R 0 dx 0 1 x Figure 6.2 The triangular region whose sides are the axes x = 0, y = 0 and the line x + y = 1. and that the order of integration is from right to left. So, in this example, the integrand f(x, y) is first to be integrated with respect to y and then with respect to x. With the double integral expressed in this way, we will no longer write the independent variables explicitly in the limits of integration, since the differential of the variable with respect to which we are integrating is always adjacent to the relevant integral sign. Using the order of integration in (6.3), we could also write the double integral as d x2 (y) dy dx f(x, y). I= c x1 (y) Occasionally, however, interchange of the order of integration in a double integral is not permissible, as it yields a different result. For example, difficulties might arise if the region R were unbounded with some of the limits infinite, though in many cases involving infinite limits the same result is obtained whichever order of integration is used. Difficulties can also occur if the integrand f(x, y) has any discontinuities in the region R or on its boundary C. 6.2 Triple integrals The above discussion for double integrals can easily be extended to triple integrals. Consider the function f(x, y, z) defined in a closed three-dimensional region R. Proceeding as we did for double integrals, let us divide the region R into N subregions ∆Rp of volume ∆Vp , p = 1, 2, . . . , N, and let (xp , yp , zp ) be any point in the subregion ∆Rp . Now we form the sum S= N f(xp , yp , zp )∆Vp , p=1 190