Comments
Description
Transcript
Types of integral equation
INTEGRAL EQUATIONS We shall illustrate the principles involved by considering the differential equation y (x) = f(x, y), (23.1) where f(x, y) can be any function of x and y but not of y (x). Equation (23.1) thus represents a large class of linear and non-linear second-order differential equations. We can convert (23.1) into the corresponding integral equation by first integrating with respect to x to obtain x f(z, y(z)) dz + c1 . y (x) = 0 Integrating once more, we find x du y(x) = 0 u f(z, y(z)) dz + c1 x + c2 . 0 Provided we do not change the region in the uz-plane over which the double integral is taken, we can reverse the order of the two integrations. Changing the integration limits appropriately, we find x x y(x) = f(z, y(z)) dz du + c1 x + c2 (23.2) z 0 x (x − z)f(z, y(z)) dz + c1 x + c2 ; (23.3) = 0 this is a non-linear (for general f(x, y)) Volterra integral equation. It is straightforward to incorporate any boundary conditions on the solution y(x) by fixing the constants c1 and c2 in (23.3). For example, we might have the one-point boundary condition y(0) = a and y (0) = b, for which it is clear that we must set c1 = b and c2 = a. 23.2 Types of integral equation From (23.3), we can see that even a relatively simple differential equation such as (23.1) can lead to a corresponding integral equation that is non-linear. In this chapter, however, we will restrict our attention to linear integral equations, which have the general form b K(x, z)y(z) dz. (23.4) g(x)y(x) = f(x) + λ a In (23.4), y(x) is the unknown function, while the functions f(x), g(x) and K(x, z) are assumed known. K(x, z) is called the kernel of the integral equation. The integration limits a and b are also assumed known, and may be constants or functions of x, and λ is a known constant or parameter. 804