Comments
Description
Transcript
Differentiation of integrals
PARTIAL DIFFERENTIATION Although the Helmholtz potential has other uses, in this context it has simply provided a means for a quick derivation of the Maxwell relation. The other Maxwell relations can be derived similarly by using two other potentials, the enthalpy, H = U + P V , and the Gibbs free energy, G = U + P V − ST (see exercise 5.25). 5.12 Differentiation of integrals We conclude this chapter with a discussion of the differentiation of integrals. Let us consider the indefinite integral (cf. equation (2.30)) F(x, t) = f(x, t) dt, from which it follows immediately that ∂F(x, t) = f(x, t). ∂t Assuming that the second partial derivatives of F(x, t) are continuous, we have ∂2 F(x, t) ∂ 2 F(x, t) = , ∂t∂x ∂x∂t and so we can write ∂ ∂F(x, t) ∂ ∂F(x, t) ∂f(x, t) . = = ∂t ∂x ∂x ∂t ∂x Integrating this equation with respect to t then gives ∂f(x, t) ∂F(x, t) = dt. ∂x ∂x Now consider the definite integral I(x) = (5.46) t=v f(x, t) dt t=u = F(x, v) − F(x, u), where u and v are constants. Differentiating this integral with respect to x, and using (5.46), we see that ∂F(x, v) ∂F(x, u) dI(x) = − dx ∂x v∂x u ∂f(x, t) ∂f(x, t) dt − dt = ∂x ∂x v ∂f(x, t) = dt. ∂x u This is Leibnitz’ rule for differentiating integrals, and basically it states that for 178