...

理工学研究所紀要73号(2014年度)

by user

on
Category: Documents
24

views

Report

Comments

Transcript

理工学研究所紀要73号(2014年度)
ISSN 0370-4254
CODEN:RDRKAJ
立 命 館 大 学
理 工 学 研 究 所 紀 要
第73号
MEMOIRS
OF THE
INSTITUTE
OF
SCIENCE & ENGINEERING
RITSUMEIKAN UNIVERSITY
KUSATSU, SHIGA, JAPAN
NO. 73
2014
理工学研究所紀要 第73号 2014 目次
<一般論文>
1. 代数体上の平方剰余の相互法則
……………………………………………………………………………………………………… 石井 秀則 ……
1
2. エポキシ樹脂研磨パッドの粘弾性と研磨特性
……………………………………………………………………… 谷 泰弘・張 宇・村田 順二 ……
5
3. 電着工具用の部分Ni被覆ダイヤモンド砥粒の開発
……………………………………………………………………… 張 宇・谷 泰弘・村田 順二 …… 15
4. ワイヤ擦過援用ウェットエッチングによるシリコンインゴットの切断の基礎的検討
……………………………………………………………………… 谷 泰弘・張 宇・村田 順二 …… 27
5. 言語コミュニケーション論における「希望学」─「分かり合う」ことは可能か:
W.V.O. Quine, D. Davidson, R. Rortyの議論を出発点に
……………………………………………………………………………………………………… 山中 司 …… 37
6. Formation of Forsterite Grains and Direct Observation of The Sublimation of Crystal Formation Grain
……………………………………………………………………………………………………… 墻内 千尋 …… 45
7. 敷葉(しきば)工法とその起源
……………………………………… 奥田 昌男・中根 洋治・可児 幸彦・西村 勝広・早川 清 …… 53
8. 遺跡から知る切盛土工 …………… 西村 勝広・可児 幸彦・奥田 昌男・中根 洋治・早川 清 …… 63
9. オペレーションズリサーチ エクセルソルバーで解く線形計画法1 ……………………… 林 芳樹 …… 71
大型研究装置成果報告書 ……………………………………………………………………………………………… 79
理工学研究所記事 ……………………………………………………………………………………………………… 125
立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年
Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014
୅਺ମ্ͷฏํ৒༨ͷ૬‫ޓ‬๏ଇ
ੴҪलଇ
=======================================================================
Quadratic reciprocity law over number ¿elds
Hidenori Ishii
Quadratic reciprocity law, which was ¿rst proved by C.F. Gauss [1], can be viewed as a relation of two
quadratic Dirichelet characters. The author has given a proof by virtue of the functional equation of
Dedekind zeta function of biquadratic number ¿elds. [3], In this paper, similar argument as in [3] will
be applied to relative biquadratic extensions of number ¿elds. Then we will show a generalization of
quadratic reciprocity law over number ¿elds.
Keywors ; Qadratic reciprocity, quadratic extension of number ¿elds, functioal equation of Dedekind
zeta function, Hecke characters of the ideal class group
E-mail: [email protected]
==========================================================================
໋ཱ‫ؗ‬େֶཧ޻ֶ෦਺ཧՊֶՊ
Department of Mathematical Sciences, Ritsumeikan University,
Kusatsu, Shiga, 525-8577, Japan
1
−1−
石井 秀則
1
ংจ
࣍ͷฏํ৒༨ͷ૬‫ޓ‬๏ଇ͸ 1801 ೥ʹ Gauss[1] ͕࠷ॳͷূ໌Λ༩͔͑ͯΒɺΨ΢εࣗ਎΋‫ؚ‬Ίɺ
ଟ͘ͷ਺ֶऀʹΑΓɺ໿ 240 ͷผূ໌͕༩͑ΒΕ͖ͯͨɻcf.Lemmermeyer[4]
ఆཧʢฏํ৒༨ͷ૬‫ޓ‬๏ଇʣɹ
p ͱ q ͸૬ҟͳΔ‫ح‬ૉ਺ͱ͢Δɻ͜ͷͱ͖
p−1 q−1
p q
= (−1) 2 2
q p
͕੒Γཱͭɻ
√
√
ஶऀ͸ [3] ʹ͓͍ͯɺL = Q( p∗ , q∗ ) ͱ͠ɺL ͷσσΩϯτɾθʔλؔ਺ ζL (s) Λྨମ࿦Λ༻͍ͯ෼
ղ͠ɺؔ਺౳ࣜΛద༻͢Δ͜ͱʹΑͬͯɺฏํ৒༨ͷ૬‫ޓ‬๏ଇΛূ໌ͨ͠ɻ͜͜Ͱɺɹ p∗ = (−1)
p−1
2
p,
q−1
q∗ = (−1) 2 q Ͱ͋Δɻ͜ͷํ๏͸ɺ༗ཧ਺ମͷಛघੑΛ࢖Θͳ͍ͷͰҰൠͷ୅਺ମ্ͷ৔߹ʹ֦ு
͕ՄೳͰ͋ͬͨɻຊ࿦จʹ͓͍ͯ͸ɺF Λ୅਺ମͱ͠ɺF ͷ 2 ͱૉͳ૬ҟͳΔૉΠσΞϧ p,q ʹର
͠ɺχp , χq ΛͦΕͧΕɺಋख p,q ͷΠσΞϧྨࢦඪͰɺҐ਺͕̎ͷ΋ͷͱ͢Δɻ͜ͷͱ͖ɺ͕࣍੒
Γཱͭɻ
ఆཧ 1.
χp (q) = χq (p)
2
ؔ਺౳ࣜʹ͍ͭͯ
K ͸୅਺ମͱ͠ɺ࣮ૉ఺ͷ‫਺ݸ‬ɺ‫ڏ‬ૉ఺ͷ‫਺ݸ‬ΛͦΕͧΕɺr1 ,r2 ͱ͢Δɻ·ͨɺm ͸ K ͷ੔Π
σΞϧͱ͢Δɻm Λ๏ͱ͢Δ‫࢝ݪ‬తྨࢦඪ χ ͕ ∀α ≡ 1 mod m ʹରͯ͠ɺ
αν uν
χ((α)) =
|αν |
ν
͜͜Ͱɺੵ͸࣮ૉ఺Λ૸Δɻαν ͸࣮ૉ఺ ν ʹରԠ͢Δ α ͷ‫ڞ‬໾Ͱ͋Δɻuν = 0, 1
͜ͷͱ͖ɺ
s
ΛK (s, χ) = (|dK |N(m)) 2
π−
s+uν
2
Γ(
ν
s + uν ) (2(2π)−s Γ(s))r2 L(s, χ)
2
ͱ͓͘ɻ͜͜Ͱɺੵ͸࣮ૉ఺Λ૸ΔɻdK ͸ K ͷ൑ผࣜͰ͋ΔɻL(s, χ) ͸ Hecke ͷ̡ؔ਺Ͱɺ
L(s, χ) =
χ(n)N(n)−s
n
ͱ͘ʹɺχ = 1 ͷͱ͖͸ L(s, 1) = ζK (s) ͸ K ͷσσΩϯτθʔλͰ͋Δ͜ͱʹ஫ҙ͢ΔɻΛK (s) =
Λ(s, 1) ͱॻ͘ɻ࣍ʹɺΨ΢ε࿨ W(χ) ʹ͍ͭͯઆ໌͢Δɻ
αν uν
χ∞ (α) =
|αν |
ν
2
−2−
代数体上の平方剰余の相互法則
ͱ͓͘ɻ͜͜Ͱɺੵ͸࣮ૉ఺Λ૸Δɻ
χ f (α) = χ((α))χ∞ (α)−1
ͱ͢ΔɻK ͷ‫ڞ‬໾ࠩੵ d ʹରͯ͠ɺdmc = (b) ͱͳΔΑ͏ʹɹ੔ΠσΞϧ c, (c, m) = 1 ΛͱΓɺ
χ∞ (b) χ f (α)e2πitr(α/b)
χ(c) α
W(χ) =
ʹΑͬͯɺΨ΢ε࿨ W(χ) Λఆٛ͢Δɻ(cf. Miyake.[5])
Hecke[2] ͸࣍ͷؔ਺౳ࣜΛূ໌ͨ͠ɻ
ఆཧʢHecke)
Λ(1 − s, χ) = T (χ)Λ(s, χ)
T (χ) = i−u W(χ)/N(m)1/2
u=
uν
ν
3
ఆཧ̍ͷূ໌
F ͸ n ࣍୅਺ମͱ͠ɺF ͷҟͳΔ‫ح‬ૉΠσΞϧ p,q ʹର͠ɺχ1 = χp , χ2 = χq ΛͦΕͧΕɺಋख
p,q ͷྨࢦඪͰɺҐ਺͕̎ͷ΋ͷͱ͢Δɻχ1 , χ2 ʹରԠ͢Δ F ͷ 2 ֦࣍େମΛͦΕͧΕɺK1 ,K2 ͱ
͠ɺͦͷ߹੒ମΛ L ͱ͢ΔɻL ͸ F ্ͷ (2,2) ‫ܕ‬Ξʔϕϧ֦େମͰ͋Γɺ͋ͱ̍ͭͷ 2 ࣍தؒମΛ
K3 ͱ͠ɺK3 ʹରԠ͢ΔྨࢦඪΛɹ χ3 ͱ͢Δͱɺχ3 = χ1 χ2 Ͱ͋Δɻྨମ࿦ʹΑΓɺζL ͸࣍ͷΑ͏
ʹ෼ղ͢Δɻ
3
ζL (s) = ζF (s)
͜ΕΑΓɺχ3 = χ1 χ2 ͳΒͼʹɺ |dL | = |dF |4
L(s, χi ).
i=1
3
N(mi ) ʢmi ͸ χi ͷಋखʣʹ஫ҙͯ͠ɺ
i=1
ΛL (s) = ΛF (s)
3
Λ(s, χi ).
i=1
͕ಘΒΕΔɻχi ͸Ґ਺͕̎ͳͷͰɺχi = χi Ͱ͋Δɻͦ͜ͰɺΛL (1 − s) = ΛL (s) ͷ྆ลʹ୅ೖͯ͠ɺ
3
i=1
W(χi ) =
3
N(mi )1/2
i=1
͕Θ͔Δɻm1 = p, m2 = q ͸‫ʹ͍ޓ‬ૉͳͷͰɺm3 = pqɺ·ͨɺ
W(χ1 χ2 ) = χ1 (q)χ2 (p)W(χ1 )W(χ2 )
W(χi )2 = |W(χi )|2 = N(mi ) (i = 1, 2)
χ1 (q)χ2 (p) = 1
͜ΕͰɺఆཧ͕̍ূ໌͞Εͨɻ
3
−3−
石井 秀則
ࢀߟจ‫ݙ‬
[1] Gauss, C. F. Disquisiones arithmeticae, Lipsiae (Leipzig): Gerhard Fleischer (1801)
[2] Hecke, E. Über eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der
Primzahlen. Math.Z.,1(1918), 357-376;4(1920),11-21.
[3] Ishii, H. Functional equations and the law of quadratic reciprocity, Mem. Inst. Sci. Eng. Ritsumeikan
Univ.No.57(1998)1-3.
[4] Lemmermeyer,H. Reciprocity Laws From Euler to Eisenstein, , Springer-Verlag(2000)..
[5] Miyake, T. Modular forms, Springer-Verlag(1989).
4
−4−
立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年
Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014
࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ⢓ᙎᛶ࡜◊☻≉ᛶ
㇂ Ὀᘯ 1)㸪ᙇ Ᏹ 1)㸪ᮧ⏣㡰஧ 2)
᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹
Relationship between polishing performance and viscoelasticity of epoxy
resin polishing pads
Yasuhiro TANI1), Yu ZHANG1) and Junji MURATA 2)
Polishing performances of glass using epoxy resin polishing pads from the aspect of their mechanical properties
are described. Material removal rates are independent to the hardness of the epoxy resin pads. The different types of
epoxy resin pads are produced by varying the composition of the resin and the curing agent. Dynamic mechanical
analysis (DMA) of the epoxy and conventional urethane resin polishing pads was conducted to investigate the
relationship between the material removal rates and the mechanical properties of the epoxy resin polishing pads. DMA
measurement indicates that the epoxy resin polishing pads showed a significant difference in the storage and loss
modulus compared to the conventional urethane pads. Moreover, the epoxy resin pads showed a higher loss tangent (tan
į) than the urethane resin polishing pad. From the investigation of the relationship between the material removal rates
and tan į of the polishing pads, the strong positive correlation between the material rate and tan į is observed. Finally,
the dependence of polishing conditions on the material removal rate by the epoxy and urethane resin pads is evaluated.
It is found that the difference in the material removal rate between the epoxy and urethane resin pads becomes larger
under a condition of a low abrasive concentration and a high rotation rate.
Key Words : Polishing, Abrasive Grain, Polishing Pad, Epoxy Resin, Cerium Oxide, Glass, Viscoelasticity
E-mail㸸[email protected] (Y. Zhang)
᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹
❧࿨㤋኱Ꮫ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉
㏆␥኱Ꮫ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉
1)
Department of Mechanical Engineering, Ritsumeikan University,
Kusatsu, Shiga, 525-8577, Japan
2)
Department of Mechanical Engineering, Kinki University,
Higashiosaka, Osaka, 577-8502, Japan
1)
2)
−5−
谷 泰弘・張 宇・村田 順二
⥴ ゝ
࢞ࣛࢫࡢ㙾㠃◊☻࡟ከ⏝ࡉࢀ࡚࠸ࡿ◊☻ᮦ㸪㓟໬ࢭ࣒ࣜ࢘ࡣ᫖௒ࡢࣞ࢔࢔࣮ࢫ౪⤥୙㊊ࡢᙳ㡪ࢆཷࡅ㸪ᅜෆ࡟
࠾ࡅࡿ౯᱁ࡀ㧗㦐ࡋ࡚࠸ࡿ㸬ࡇࡢࡼ࠺࡞≧ἣࡢ࡞࠿㸪࢞ࣛࢫ◊☻࡟࠾ࡅࡿ㓟໬ࢭ࣒ࣜ࢘◒⢏ࡢ౑⏝㔞ࢆపῶࡍࡿ
ࡇ࡜ࡸ௚ࡢ◒⢏࡟௦᭰ࡍࡿྲྀࡾ⤌ࡳࡀ⏘Ꮫᐁ࡟࠾࠸࡚㐍ࡵࡽࢀ࡚࠸ࡿ㸦㡲⏣㸪2012㸧㸦ᒣᓮ௚㸪2011㸧㸦ụ⏣௚㸪
2011㸧㸬➹⪅ࡽࡣ㸪ࡑࡢྲྀࡾ⤌ࡳ࡜ࡋ࡚᪂つ㧗ᶵ⬟◊☻ᮦࡸ◊☻ᕤලࡢ㛤Ⓨࢆ⾜ࡗ࡚࠸ࡿ㸬㸦୍ᘕ✑௚㸪2009 ࡞
࡝㸧ࡑࡢ୍ࡘ࡟ᚑ᮶ࡢ࢘ࣞࢱࣥᶞ⬡࡟௦ࢃࡾ࢚࣏࢟ࢩᶞ⬡ࢆ᥇⏝ࡋࡓከᏍ㉁࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡀ࠶ࡿ㸬ከ
Ꮝ㉁࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡣࢫ࣮ࣛࣜ࡟ᑐࡍࡿぶ࿴ᛶࡀ㧗ࡃ㸪స⏝◒⢏ᩘࡀྥୖࡍࡿࡇ࡜࠿ࡽ㸪ᚑ᮶ࡢከᏍ㉁
࢘ࣞࢱࣥࣃࢵࢻ࡜ẚ㍑ࡋ࡚ 2 ಸ⛬ᗘࡢ◊☻⬟⋡ࡀᚓࡽࢀࡿࡇ࡜ࡀࢃ࠿ࡗ࡚࠸ࡿ㸬ࡲࡓ㸪⾲㠃⢒ࡉࡸ࠺ࡡࡾ࡞࡝ࡢ
௙ୖࡆ㠃ရ㉁ࡢྥୖࡀ☜ㄆࡉࢀ࡚࠸ࡿ㸬ࡉࡽ࡟㸪ࢪࣝࢥࢽ࢔◒⢏࡜࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࢆే⏝ࡍࡿࡇ࡜࡟ࡼ
ࡾ㸪㓟໬ࢭ࣒ࣜ࢘◒⢏ࡢ᏶඲࡞௦᭰ࢆᐇ⌧ࡋ࡚࠸ࡿ㸦ᮧ⏣௚㸪2011㸧㸬◊☻ࣃࢵࢻࡀ◊☻≉ᛶ࡟୚࠼ࡿせᅉ࡟ࡣ㸪
ࢫ࣮ࣛࣜ࡟ᑐࡍࡿぶ࿴ᛶ௨እ࡟ࣃࢵࢻࡢᶵᲔⓗ≀ᛶࡀᣲࡆࡽࢀࡿ㸬ࡋ࠿ࡋ㸪࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢᶵᲔⓗ≉
ᛶ࡜◊☻≉ᛶࡢ㛵ಀ࡟ࡘ࠸࡚ࡣ᫂ࡽ࠿࡟࡞ࡗ࡚࠸࡞࠸㸬ࡑࡇ࡛㸪ᮏሗ࡛ࡣ㸪࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢᶵᲔⓗ࡞
≀ᛶࡀ◊☻≉ᛶ࡟୚࠼ࡿᙳ㡪ࢆㄪᰝࡋࡓ㸬
ࡲࡎ㸪
࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࢆ⏝࠸࡚࢞ࣛࢫࡢ◊☻≉ᛶホ౯ࢆ⾜࠸㸪
◊☻ࣃࢵࢻࡢ◳ᗘࡀ◊☻≉ᛶ࡟ཬࡰࡍᙳ㡪࡟ࡘ࠸࡚ホ౯ࢆ⾜ࡗࡓ㸬ḟ࡟㸪࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ⢓ᙎᛶࢆື
ⓗᶵᲔศᯒ㸦Dynamic Mechanical Analysis, DMA㸧࡟ࡼࡾホ౯ࡋ㸪◊☻ࣃࢵࢻࡢ⢓ᙎᛶ࡜◊☻≉ᛶ࡜ࡢ㛵ಀࢆㄪ࡭
ࡓ㸬᭱ᚋ࡟㸪࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ◊☻≉ᛶࡢຍᕤ᮲௳౫Ꮡᛶࢆホ౯ࡋ㸪ᚑ᮶ࡢ࢘ࣞࢱࣥᶞ⬡◊☻ࣃࢵࢻ࡜
ࡢẚ㍑ࢆ⾜࠺ࡇ࡜࡛㸪࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻ࡟㐺ࡋࡓ౑⏝᪉ἲࡢ᳨ウࢆ⾜ࡗࡓ㸬
࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ◳ᗘ࡜◊☻≉ᛶࡢ㛵ಀ
ࡲࡎ㸪࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻ㸦௨ୗ㸪࢚࣏࢟ࢩࣃࢵࢻ࡜ࡍࡿ㸧ࡢ◳ᗘࡀ◊☻≉ᛶ࡟୚࠼ࡿᙳ㡪࡟ࡘ࠸࡚ホ౯
Fig. 1 Schematic view of polishing experiment
Table 1 Experimental condition
Workpiece
Material
Soda-lime glass
Dimension
20 mm×t10 mm
0.4 ȝmRa
Surface roughness
Abrasives
Material
CeO2
Average diameter (D50)
1.2 ȝm
Product name
SHOROX A-10
Polishing condition
Polishing machine
200 mm single-sided
Slurry
Base fluid
Deionized water
Polishing pressure, P
20 kPa
Abrasive concentration, C
3.0 wt%
Rotation rate, R
90 rpm
Supply rate, S
25 mL/min
Polishing time
30 min
−6−
エポキシ樹脂研磨パッドの粘弾性と研磨特性
ࢆ⾜ࡗࡓ㸬ホ౯ࡋࡓ◊☻ࣃࢵࢻࡣ◳ᗘ㸦A ࢹ࣓࣮ࣗࣟࢱ◳ᗘ㸧ࡀ␗࡞ࡿ࢚࣏࢟ࢩࣃࢵࢻ㸪࡞ࡽࡧ࡟ẚ㍑ᑐ㇟࡜ࡋ
࡚ᕷ㈍ࡢከᏍ㉁࢘ࣞࢱࣥᶞ⬡◊☻ࣃࢵࢻ㸦஑㔜㟁Ẽ㸪KSP-66A㸪௨ୗ㸪࢘ࣞࢱࣥࣃࢵࢻ࡜ࡍࡿ㸧࡛࠶ࡿ㸬࢚࣏࢟
ࢩࣃࢵࢻࡢ◳ᗘࡢ㐪࠸ࡣ㸪◊☻ࣃࢵࢻෆ࡟ྵࡲࢀࡿẼᏍ⋡࠾ࡼࡧᶞ⬡⤌ᡂࡢᕪ࡟ࡼࡿࡶࡢ࡛࠶ࡿ㸬ᅗ 1 ࠾ࡼࡧ⾲
1 ࡟◊☻ᐇ㦂⿦⨨࠾ࡼࡧ◊☻᮲௳ࢆ♧ࡍ㸬◊☻ᶵ࡟ࡣ㸪ᐃ┙ᚄ 200 mm ࡢ∦㠃⢭ᐦࣛࢵࣆࣥࢢ⿦⨨㸦ࢼࣀࣇ࢓ࢡ
ࢱ㸪NF-300㸧ࢆ⏝࠸ࡓ㸬ᕤస≀ࡣࢯ࣮ࢲ࢞ࣛࢫ࡛࠶ࡾ㸪 3 Ⅼࡢᕤస≀ࢆ┤ᚄ 90 mm ࡢ࣮࣡ࢡ࣍ࣝࢲ࡟ᑐࡋ㸪୰
ᚰ࠿ࡽ༙ᚄ 35 mm ࡢ఩⨨࡟➼㛫㝸࡛㈞௜ࡅࡓ㸬ᕤస≀⾲㠃ࡣ㸪๓ฎ⌮࡜ࡋ࡚⢏ᗘ#2000 ࡢ⥳ⰍⅣ໬⌛⣲㸦GC㸧◒
⢏ࢆ⏝࠸ࡓࣛࢵࣆࣥࢢ࡟ࡼࡾ⾲㠃⢒ࡉࢆ⣙ 0.4 —mRa ࡟ຍᕤࡋࡓ㸬◊☻ࣃࢵࢻࡢ⾲㠃ࡣ㸪ࣀ࣮ࢬ༙ᚄ 0.5 mm ࡢࢲ
࢖ࣖࣔࣥࢻࣂ࢖ࢺࢆ⏝࠸࡚㸪ษ㎸ࡳ㔞 150 —m㸪ࣂ࢖ࢺ㏦ࡾ㏿ᗘ 0.5 mm/s㸪ࣃࢵࢻᅇ㌿㏿ᗘ 100 rpm ࡢ᮲௳࡛ษ๐
㸦ࣇ࢙࢖ࢩࣥࢢ㸧ࢆ⾜ࡗࡓ㸬ࡑࡢᚋ㸪⢏ᗘ#100 ࡢࢲ࢖ࣖࣔࣥࢻ㟁╔◒▼ࢆ⏝࠸࡚㸪ࢻࣞࢵࢧ/ࣃࢵࢻᅇ㌿㏿ᗘ 90 rpm
ࡢ᮲௳࡛ࢻࣞࢵࢩࣥࢢࢆ 10 ศ㛫⾜ࡗࡓ㸬◊☻⬟⋡ࡣຍᕤ๓ᚋࡢᕤస≀ࡢ㉁㔞ᕪ࡟ࡼࡗ࡚⟬ฟࡋࡓ㸬◊☻ᚋᕤస≀
ࡢ⾲㠃⢒ࡉࡣ㸪఩┦ࢩࣇࢺᖸ΅㢧ᚤ㙾㸦Zygo, NewView 7300㸧࡟ࡼࡾ 0.70 × 0.52 mm ࡢ㡿ᇦࢆ ᐃࡋ㸪࢝ࢵࢺ࢜
ࣇ್ 0.08 mm ࡢ㧗ᇦࣇ࢕ࣝࢱࢆ㐺⏝ࡋ࡚㸪⟬⾡ᖹᆒ⢒ࡉ Ra ࢆ⟬ฟࡋࡓ㸬
ᅗ 2 ࡟◊☻ࣃࢵࢻࡢ◳ᗘ࡜◊☻≉ᛶࡢ㛵ಀࢆ♧ࡍ㸬࢚࣏࢟ࢩࣃࢵࢻ࡟ࡼࡿ◊☻⬟⋡ࡣ㸪ࣃࢵࢻ◳ᗘ࡟㛵ࢃࡽࡎ
࡯ࡰ୍ᐃࡢ್ࢆ♧ࡋ㸪࠸ࡎࢀࡶᚑ᮶ࡢ࢘ࣞࢱࣥࣃࢵࢻ࡜ẚ㍑ࡋ࡚ 70 %⛬ᗘ㧗࠸್ࢆ♧ࡍࡇ࡜ࡀศ࠿ࡗࡓ㸬୍᪉㸪
௙ୖࡆ㠃⢒ࡉࡣ࢚࣏࢟ࢩࣃࢵࢻࡢ◳ᗘ࡟౫Ꮡࡋ࡚࠾ࡾ㸪◳ᗘࡀᑠࡉࡃ࡞ࡿ࡟ࡘࢀ࡚ࡼࡾඃࢀࡓ௙ୖࡆ㠃⢒ࡉࡀᚓ
ࡽࢀࡓ㸬ࡇࢀࡣ㌾㉁࡞◊☻ࣃࢵࢻ࡛ࡣ◒⢏ࡀࣃࢵࢻ࡟ỿࡳ㎸ࡴࡓࡵ㸪◊☻ࣃࢵࢻࡢ◒⢏ಖᣢᛶࡀྥୖࡋ㸪స⏝◒
⢏ᩘࡀቑຍࡋࡓࡇ࡜࡟ࡼࡿ࡜⪃࠼ࡽࢀࡿ㸬ࡲࡓ㸪ࣃࢵࢻ◳ᗘࡀపࡃ࡞ࡿ࡜◒⢏ษࡾ㎸ࡳ῝ࡉࡣᑠࡉࡃ࡞ࡿࡓࡵ㸪
ࡇࢀ࡟ࡼࡗ࡚ࡶ⾲㠃⢒ࡉࡣᨵၿࡉࢀࡿ㸬୍᪉㸪◊☻⬟⋡ࡣస⏝◒⢏ᩘࡢቑຍ࡜ษࡾ㎸ࡳ῝ࡉࡢపୗࡀ┦ẅࡉࢀࡿ
ࡇ࡜࡟ࡼࡾ㸪ࣃࢵࢻ◳ᗘ࡟ࡼࡽࡎ࡯ࡰ୍ᐃ࡜࡞ࡗࡓ࡜⪃࠼ࡽࢀࡿ㸬
௨ୖࡼࡾ㸪࢚࣏࢟ࢩࣃࢵࢻࡢ◳ᗘࡣ◊☻⬟⋡࡟ᙳ㡪ࢆ୚࠼࡞࠸ࡇ࡜ࢃ࠿ࡗࡓ㸬ࡋ࠿ࡋ㸪ᮏᐇ㦂࡛౑⏝ࡋࡓ◊☻
ࣃࢵࢻࡣ㸪ᶞ⬡ཎᩱ࠾ࡼࡧࡑࡢ㓄ྜẚ㸪ẼᏍ⋡࡞࡝㸪」ᩘࡢࣃ࣓࣮ࣛࢱࡀ␗࡞ࡗ࡚࠸ࡿࡓࡵ㸪᭱ࡶ◊☻≉ᛶ࡟ᐤ
୚ࡍࡿせ⣲ࢆᢳฟࡍࡿࡇ࡜ࡣᅔ㞴࡛࠶ࡿ㸬ࡑࡇ࡛㸪ᶞ⬡ࡢ㓄ྜẚࡢࡳࢆኚ໬ࡉࡏࡓ࢚࣏࢟ࢩࣃࢵࢻࢆస〇ࡋ㸪ࡑ
Fig. 2 Material removal rate and surface roughness by the urethane and epoxy resin pads as a function of pad hardness
Table 2 Composition and hardness of epoxy resin polishing pads
Pad resin type
Epoxy
Urethane
Product code
A
B
C
D
E
KSP66A
Prepolymer (wt%)
Curing agent-X (wt%)
Curing agent-Y (wt%)
Hardness (type D durometer)
60.4
12.6
27.0
77.5
57.0
11.2
31.8
72.0
54.8
10.2
35.0
64.5
52.1
9.1
38.8
57.5
50.5
8.4
41.1
48.5
30.0
−7−
谷 泰弘・張 宇・村田 順二
ࡢᶵᲔⓗ≉ᛶࢆ DMA ࢆ⏝࠸࡚ホ౯ࡋ㸪◊☻≉ᛶ࡜ࡢ㛵ಀࢆホ౯ࡍࡿࡇ࡜࡜ࡋࡓ㸬
࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ⢓ᙎᛶࡢホ౯
࢚࣏࢟ࢩᶞ⬡ࡣ୺๣࡜◳໬๣ࡢ✀㢮ࡸ㓄ྜẚࢆኚ໬ࡉࡏࡿࡇ࡜࡛㸪✀ࠎࡢᶵᲔⓗ≉ᛶࢆ᭷ࡍࡿ◳໬≀ࢆస〇ࡍ
ࡿࡇ࡜ࡀ࡛ࡁࡿ㸬ࡑࡇ࡛㸪୺๣࠾ࡼࡧ◳໬๣ࡢ✀㢮ࡣྠ୍࡜ࡋ㸪㓄ྜẚࢆኚ໬ࡉࡏࡓ࢚࣏࢟ࢩࣃࢵࢻࢆస〇ࡋ㸪
DMA ࠾ࡼࡧ◊☻≉ᛶࡢホ౯ࢆᐇ᪋ࡋࡓ㸬స〇ࡋࡓ࢚࣏࢟ࢩࣃࢵࢻࡢ୺๣࡜◳໬๣ࡢ㓄ྜẚ㸪࡞ࡽࡧ࡟◳ᗘࢆ⾲ 2
࡟♧ࡍ㸬౑⏝ࡋࡓ࢚࣏࢟ࢩᶞ⬡୺๣ࡣࣅࢫࣇ࢙ࣀ࣮ࣝ A ᆺࡢᾮ≧ᶞ⬡㸦୕⳻໬Ꮫ㸦ᰴ㸧
㸪jer834㸧࡛࠶ࡾ㸪࢚࣏࢟
ࢩᙜ㔞ࡣ 230 g/eq ࡛࠶ࡿ㸬◳໬๣ࡣ࢔࣑ࣥ⣔࡛࠶ࡾ㸪άᛶỈ⣲ᙜ㔞ࡀ 60 g/eq㸦X ࡜ࡍࡿ㸬JEFFAMINE D-230㸪
Huntsman corp.㸧࠾ࡼࡧ 514 g/eq㸦Y ࡜ࡍࡿ㸬JEFFAMINE D-2000㸧ࡢ஧✀㢮࡛࠶ࡿ㸬࢚࣏࢟ࢩᶞ⬡୺๣㸪◳໬๣
ࢆΰྜ㸦࠸ࡎࢀࡶᙜ㔞㓄ྜ㸧ࡋ㸪150 °C ࡛ 3 ᫬㛫ຍ⇕ࢆ⾜࠺ࡇ࡜࡛㸪┤ᚄ 200 mm㸪ཌࡉ⣙ 5mm ࡢ෇┙≧◳໬≀
ࢆᚓࡓ㸬ᮏ◊✲࡛ࡣ㸪࢚࣏࢟ࢩࣃࢵࢻࡢᶞ⬡⤌ᡂ࡟ࡼࡿᙳ㡪ࡢࡳࢆホ౯ᑐ㇟࡜ࡍࡿࡓࡵ㸪ẼᏍ๣ࡣῧຍࡏࡎ↓Ẽ
Ꮝࡢࣃࢵࢻࢆస〇ࡋࡓ㸬㛤Ⓨࡋࡓ࢚࣏࢟ࢩࣃࢵࢻࡣ◳໬๣ Y ࡢቑຍ࡟క࠸㸪◳ᗘࡀపୗࡍࡿࡇ࡜ࡀศ࠿ࡿ㸬
ḟ࡟㸪㛤Ⓨࡋࡓ࢚࣏࢟ࢩࣃࢵࢻࡢ DMA ホ౯ࢆ࣓࣮ࣞ࢜ࢱ 㸦HR-2㸪TA Instruments - Waters LLC㸧ࢆ⏝࠸࡚⾜ࡗ
ࡓ㸬 ᐃ᮲௳ࡣ㸪ᘬᙇࡾ࣮ࣔࢻ࡛᪼ ㏿ᗘࡣ 5 °C /min ࡜ࡋ㸪࿘Ἴᩘ 1 Hz㸪ධຊṍ 0.05 %࡜ࡋࡓ㸬ࡲࡓ㸪ヨ㦂∦
࡜ࡋ࡚ 10 × 50 mm㸪ཌࡉ 1.5 mm ࡟ษࡾฟࡋࡓ࢚࣏࢟ࢩࣃࢵࢻࢆ⏝࠸ࡓ㸬ᐇ㦂⿦⨨㸪 ᐃཎ⌮ࢆᅗ 3 ࡟♧ࡍ㸬
࢚࣏࢟ࢩᶞ⬡ࡸ࢘ࣞࢱࣥᶞ⬡⤌ᡂ≀ࡢࡼ࠺࡞㧗ศᏊయࡣ㸪⢓ᙎᛶ࡜࠸ࢃࢀࡿᙎᛶᅛయ࡜⢓ᛶᾮయࡢ୧᪉ࡢᛶ㉁
ࢆ♧ࡍ㸬ࡑࡇ࡛ᘬᙇࡾไᚚࡉࢀ࡚࠸ࡿヨ㦂∦࡟ࢧ࢖ࣥἼࡢࡡࡌࡾṍࡳࢆධຊࡋ㸪 ᐃࡉࢀࡿᛂຊ࡜ධຊṍࡳࡢ఩
┦ᕪ į ࢆ⏝࠸࡚⢓ᙎᛶࢆホ౯ࡍࡿ㸬᏶඲ᙎᛶయࡢ఩┦ᕪ į ࡣ 0 °࡜࡞ࡾ㸪᏶඲⢓ᛶయࡢ఩┦ᕪ į ࡣ 90 °࡜࡞ࡿ㸬㧗
ศᏊࡢࡼ࠺࡞⢓ᙎᛶయࡢ఩┦ᕪ į ࡣ 0 ࠿ࡽ 90 °ࡢ㛫࡜࡞ࡿ㸬ࡲࡎ㸪᫬㛫ⓗ࡞㐜ࢀࢆᣢࡗࡓṍࡳ࡜ᛂຊࡣᘧ㸦1㸧࡟
♧ࡉࢀࡿࡼ࠺࡟」⣲ᙎᛶ⋡ G*࡛⾲ࡉࢀࡿ㸬
G* = ı0 / İ0
(1)
ḟ࡟㸪⢓ᙎᛶయ࡟ධຊࡉࢀࡓṍࡳ࡜ྠ఩┦ࡢᛂຊᡂศ࡛࠶ࡿ㈓ⶶᙎᛶ⋡ G’࠾ࡼࡧ㸪ṍࡳࡼࡾ ʌ/2 ࡔࡅ఩┦ࡀ㐍ࢇ
ࡔᛂຊᡂศ࡛࠶ࡿᦆኻᙎᛶ⋡ G”ࡣࡑࢀࡒࢀᘧ㸦2㸧
㸪
㸦3㸧ࡢࡼ࠺࡟♧ࡉࢀࡿ㸬
(a) Appearance of DMA apparatus
(b) Measurement principle of DMA
Fig. 3 Experimental setup of dynamic mechanical analysis (DMA)
−8−
エポキシ樹脂研磨パッドの粘弾性と研磨特性
G’ = G* cos į
(2)
G’’ = G* sin į
(3)
ࡲࡓ㸪ᦆኻṇ᥋ tan į ࡣᦆኻᙎᛶ⋡࡜㈓ⶶᙎᛶ⋡ࡢẚ࡛࠶ࡾ㸪ᘧ㸦4㸧࡟♧ࡉࢀࡿ㸬
tan į = G’’ / G’
(4)
ᦆኻṇ᥋ tan į ࡢ್ࡀ኱ࡁ࠸≀㉁ࡣṍࡳ࡜ᛂຊࡢ఩┦ᕪࡀ኱ࡁ࠸ࡓࡵ࡟㸪ᛂ⟅ࡀ㐜ࢀࡿࡇ࡜࡜࡞ࡿ㸬୍᪉㸪tan į
ࡢ್ࡀప࠸≀㉁ࡣ఩┦ᕪࡀᑠࡉ࠸ࡓࡵ࡟ᛂ⟅ࡀ᪩࠸ࡇ࡜ࢆព࿡ࡋ࡚࠸ࡿ㸬ࡲࡓ㸪tan į ࡀ᭱኱࡜࡞ࡿ ᗘࡣ࢞ࣛࢫ
㸬
㌿⛣ ᗘ Tg ࡜ᐃ⩏ࡉࢀࡿ㸦Charns, et al., 2005㸧
స〇ࡋࡓ࢚࣏࢟ࢩࣃࢵࢻࡢ DMA ホ౯⤖ᯝࢆᅗ 4 ࡟♧ࡍ㸬࢚࣏࢟ࢩࣃࢵࢻࡣ࢘ࣞࢱࣥࣃࢵࢻ࡜ẚ㍑ࡋ࡚ DMA
≉ᛶࡀ኱ࡁࡃ␗࡞ࡿࡇ࡜ࡀศ࠿ࡿ㸬ලయⓗ࡟ࡣ㸪࢚࣏࢟ࢩࣃࢵࢻࡣᚑ᮶ࡢ࢘ࣞࢱࣥࣃࢵࢻ࡜ẚ㍑ࡋ࡚㞺ᅖẼ ᗘ
㸦TDMA㸧ࡢୖ᪼࡟క࠸㸪㈓ⶶᙎᛶ⋡࡜ᦆኻᙎᛶ⋡ࡀ኱ࡁࡃపୗࡍࡿ㸦ᅗ 4㸦a㸧
㸪
㸦b㸧
㸧
㸬ࡲࡓ㸪ᅗ 4㸦c㸧࡟♧ࡍࡼ
࠺࡟㸪࢚࣏࢟ࢩࣃࢵࢻࡢ tan į ࡣᖖ ௜㏆࡛࢘ࣞࢱࣥࣃࢵࢻࡼࡾࡶ኱ࡁ࡞್ࢆ♧ࡍࡇ࡜ࡶศ࠿ࡿ㸬ྛ࢚࣏࢟ࢩࣃࢵ
ࢻ࡟╔┠ࡍࡿ࡜㸪࢚࣏࢟ࢩᶞ⬡ࡢ◳໬๣ Y ࡢቑຍ㸦AЍCЍE ࡢ㡰㸧࡜ඹ࡟ Tg ࡀప ഃ࡟⛣ືࡋ࡚࠸ࡿ㸬ࡇࢀࡣ㸪
άᛶỈ⣲ᙜ㔞ࡢ኱ࡁ࠸◳໬๣ Y ࡢቑຍ࡟ࡼࡾ㸪ᶞ⬡◳໬≀ෆࡢᯫᶫᐦᗘࡀపୗࡋ㸪ศᏊ㙐ࡢὶືᛶࡀ኱ࡁࡃ࡞ࡗ
ࡓࡓࡵ࡛࠶ࡿ㸬
୍᪉㸪
࢘ࣞࢱࣥࣃࢵࢻࡣ ᗘ࡟ࡼࡗ࡚㈓ⶶᙎᛶ⋡ࡸᦆኻᙎᛶ⋡ࡀ࡯ࡰኚ໬ࡋ࡞࠸ࡇ࡜ࡀศ࠿ࡗࡓ㸬
4. ࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ⢓ᙎᛶ࡜◊☻⬟⋡
๓❶࡛㏙࡭ࡓࡼ࠺࡟㸪࢚࣏࢟ࢩࣃࢵࢻࡣᚑ᮶ࡢ࢘ࣞࢱࣥࣃࢵࢻ࡜ẚ㍑ࡋ࡚⢓ᙎᛶࡀ኱ࡁࡃ␗࡞ࡿࡇ࡜ࡀศ࠿ࡗ
ࡓ㸬ࡑࡇ࡛㸪࢚࣏࢟ࢩࣃࢵࢻࡢ⢓ᙎᛶ࡜◊☻≉ᛶࡢ㛵ಀࢆㄪᰝࡍࡿ࡭ࡃ㸪࢚࣏࢟ࢩࣃࢵࢻࡢ◊☻⬟⋡ࡢホ౯ࢆ⾜
ࡗࡓ㸬ᐇ㦂᮲௳ࡣ⾲ 1 ࡜ྠᵝ࡛࠶ࡿ㸬౑⏝ࡋࡓ◊☻ࣃࢵࢻࡣ⾲ 2 ࡟♧ࡋࡓ࢚࣏࢟ࢩࣃࢵࢻ C ࠾ࡼࡧ E ࡛࠶ࡿ㸬࢚
࣏࢟ࢩࣃࢵࢻࡢ⢓ᙎᛶࡣ ᗘ࡟ࡼࡗ࡚኱ࡁࡃኚ໬ࡋࡓࡀ㸪ࡑࡢ◊☻≉ᛶ࡬ࡢᙳ㡪ࢆㄪ࡭ࡿࡓࡵ㸪◊☻ ᗘࢆ 11㸪
22㸪33 °C ࡜ࡋ࡚◊☻≉ᛶࢆホ౯ࡋࡓ㸬ᅗ 5 ࡟♧ࡍࡼ࠺࡟㸪ᐃ┙࡜ࢫ࣮ࣛࣜࢆᜏ Ỉ࡛෭༷㸪ࡲࡓࡣࣄ࣮ࢱ࡟ࡼ
ࡗ࡚ຍ⇕ࢆ⾜࠸࡞ࡀࡽ◊☻ࢆ⾜ࡗࡓ㸬ࡲࡓ㸪◊☻ࣃࢵࢻࡢ⾲㠃 ᗘ Tps㸦°C㸧ࢆ㉥እ⥺ᨺᑕ ᗘィ㸦
㸦ᰴ㸧ᇼሙ〇
సᡤ㸪IT-540E㸧࡟ࡼࡾ ᐃࡋࡓ㸬ࣃࢵࢻ⾲㠃࡜ᕤస≀ࡀ᥋ゐࡋ࡚࠸ࡿⅬ࡟࠾࠸࡚ࡣ㸪ᦶ᧿⇕ࡀⓎ⏕ࡋࣃࢵࢻ⾲㠃
ࡢ ᗘࡀቑ኱ࡋ࡚࠸ࡿ࡜⪃࠼ࡽࢀࡿ㸦ᮡᮏ௚㸪1994㸧
㸬ࣃࢵࢻ⾲㠃ࡢ ᐃⅬ࡟࠾ࡅࡿ ᗘ Tps ࡟ᑐࡋ㸪◊☻Ⅼ࡛ࡢ
ᗘୖ᪼ࢆ Į㸦°C㸧࡜ᐃ⩏ࡋࡓ㸬
ᅗ 6 ࡟ྛ◊☻ ᗘ࡟ࡼࡿ◊☻≉ᛶࡢホ౯⤖ᯝࢆ♧ࡍ㸬࢘ࣞࢱࣥࣃࢵࢻࡣ◊☻ ᗘ Tps ࡟ᑐࡋ࡚㸪◊☻⬟⋡ࡢኚ
(a) Storage modulus (b) Loss modulus (c) tan į
Fig. 4 Dynamic viscoelastic properties of the urethane and epoxy resin pads as a function of temperature
−9−
谷 泰弘・張 宇・村田 順二
໬ࡣᑡ࡞ࡃ࡯ࡰ୍ᐃ࡛࠶ࡗࡓ㸬ࡇࢀࡣ㸪๓❶࡛♧ࡋࡓࡼ࠺࡟㸪࢘ࣞࢱࣥࣃࢵࢻࡢ⢓ᙎᛶࡀ ᗘ࡟ࡼࡗ࡚࡯࡜ࢇ࡝
ኚ໬ࡋ࡞࠸ࡓࡵ࡛࠶ࢁ࠺㸬ࡲࡓ㸪࢞ࣛࢫࡢ◊☻≉ᛶ࡟ᙳ㡪ࢆ୚࠼ࡿせᅉ࡜ࡋ࡚ࢫ࣮ࣛࣜࡢ ᗘࡶᣲࡆࡽࢀࡿ㸦Kim,
et al., 2005㸧ࡀ㸪ᮏᐇ㦂࡛ࡢ ᗘࡢ⠊ᅖ࡛ࡣ㸪ࡑࡢᙳ㡪ࡣࢃࡎ࠿࡛࠶ࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬ࡑࢀ࡟ᑐࡋ㸪࢚࣏࢟ࢩࣃ
ࢵࢻࡣ㸪◊☻⬟⋡ࡀ◊☻ ᗘ Tps ࡟ࡼࡗ࡚኱ࡁࡃኚ໬ࡋࡓ㸬ࡲࡓ㸪࠸ࡎࢀࡢ◊☻ ᗘ࡟࠾࠸࡚ࡶ㸪࢚࣏࢟ࢩࣃࢵ
ࢻࡣ࢘ࣞࢱࣥࣃࢵࢻ࡜ẚ㍑ࡋ࡚㧗࠸◊☻⬟⋡㸪ඃࢀࡓ௙ୖࡆ㠃⢒ࡉࡀᚓࡽࢀࡿࡇ࡜ࡀศ࠿ࡿ㸬࢚࣏࢟ࢩࣃࢵࢻ C
ࡣ 22 °C㸪࢚࣏࢟ࢩࣃࢵࢻ E ࡣ 11 °C ࡟࠾࠸࡚᭱኱ࡢ◊☻⬟⋡ࢆ♧ࡋࡓ㸬ࡇࡢࡼ࠺࡟㸪ᶞ⬡ࡢ⤌ᡂ࡟ࡼࡗ࡚࢚࣏࢟
ࢩࣃࢵࢻࡢ◊☻⬟⋡࡟኱ࡁ࡞ᕪࡀ⌧ࢀࡿࡇ࡜ࡀศ࠿ࡗࡓ㸬
ࡑࡇ࡛㸪DMA ࡟ࡼࡾᚓࡽࢀࡿࣃ࣓࣮ࣛࢱࡢ 1 ࡘ࡛࠶ࡿ tan į ࡟╔┠ࡋ◊☻⬟⋡࡜ࡢ㛵ಀࢆホ౯ࡋࡓ⤖ᯝ㸪ᅗ 7
㸦a㸧࡟♧ࡍࡼ࠺࡟㸪◊☻⬟⋡࡜ tan į ࡟ྜ⮴ࡣࡳࡽࢀ࡞࠿ࡗࡓ㸬ࡋ࠿ࡋ㸪㉥እ⥺ᨺᑕ ᗘィ࡛ ᐃࡉࢀࡓ ᗘ࡜
ຍᕤⅬ࡛ࡢ ᗘࡣ␗࡞ࡿࡓࡵ㸪ࡑࡢᙳ㡪ࢆ⪃៖ࡍࡿᚲせࡀ࠶ࡿ㸬ࡑࡇ࡛㸪◊☻⬟⋡࡜ tan į ࡀྜ⮴ࡍࡿ࡜௬ᐃࡋ㸪
୧⪅ࡢṧᕪᖹ᪉࿴ࢆィ⟬ࡋࡓ⤖ᯝ㸪Į ࡀ 20 °C ࡢ᫬࡟᭱ᑠ࡜࡞ࡗࡓ㸦ᅗ 7㸦b㸧
㸧
㸬ࡼࡗ࡚㸪 ᐃ ᗘ࡟ᑐࡋ࡚ຍᕤ
Ⅼࡣ 20 °C ୖ᪼ࡋ࡚࠸ࡿ࡜᥎ᐃࡋࡓ㸬᥎ᐃࡉࢀࡓ ᗘࢆ⏝࠸࡚㸪෌ᗘ㸪◊☻⬟⋡࡜ tan į ࡢ㛵ಀࢆᥥ⏬ࡋ࡚ࡳࡿ࡜㸪
ᅗ 7㸦a㸧࡟♧ࡍࡼ࠺࡟㸪Į ࡀ 0 ࡲࡓࡣ 40 °C ࡢ㝿࡟ẚ࡭࡚୧⪅࡟ྜ⮴ࡀࡳࡽࢀࡿࡇ࡜ࡀࢃ࠿ࡿ㸬
ḟ࡟㸪◊☻ ᗘࢆ 22 °C ࡜୍ᐃ࡜ࡋ㸪స〇ࡋࡓ✀ࠎࡢ࢚࣏࢟ࢩࣃࢵࢻࡢ◊☻≉ᛶ࡜ tan į ࡢ㛵ಀࢆホ౯ࡋࡓ㸬ᅗ
8 ࡟♧ࡉࢀࡿࡼ࠺࡟㸪࢚࣏࢟ࢩࣃࢵࢻࡣ඲࡚ᚑ᮶ࡢ࢘ࣞࢱࣥࣃࢵࢻ࡜ẚ㍑ࡋ࡚㧗࠸◊☻⬟⋡ࢆ♧ࡋࡓࡀ㸪୺๣࡜
◳໬๣ࡢ㓄ྜẚ࡟ࡼࡗ࡚㸪◊☻≉ᛶࡀ኱ࡁࡃ␗࡞ࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬ࡑࡇ࡛㸪ྛ࢚࣏࢟ࢩࣃࢵࢻࡢ◊☻⬟⋡࡜ tan
Fig. 5 Schematic view of the polishing experiment
Fig. 6 Comparison of the material removal rate and surface roughness by the urethane and epoxy pads under the different
temperature conditions
−10−
エポキシ樹脂研磨パッドの粘弾性と研磨特性
į ࢆࣉࣟࢵࢺࡋࡓࡶࡢࡀᅗ 9 ࡛࠶ࡿ㸬ࡇࡢ᫬㸪Į ࡣ 20 °C ࡜ࡋ࡚࠸ࡿ㸬ᅗ࡟♧ࡉࢀࡿࡼ࠺࡟㸪✀㢮ࡢ␗࡞ࡿ◊☻ࣃ
ࢵࢻࢆ౑⏝ࡋ࡚ࡶ◊☻⬟⋡࡜ tan į ࡟ࡣࡸࡣࡾᙉ࠸ṇࡢ┦㛵ࢆ♧ࡍࡇ࡜ࡀࢃ࠿ࡗࡓ㸬ᅗ 7 ࡛ࡣ㸪◊☻⬟⋡ࡀ tan į
࡟౫Ꮡࡍࡿ࡜ࡢ௬ᐃࡢࡶ࡜㸪◊☻Ⅼ࡛ࡢୖ᪼ ᗘ Į ࢆぢ✚ࡶࡗࡓࡀ㸪ᅗ 9 ࡢ⤖ᯝ࠿ࡽ㸪◊☻ ᗘࢆ୍ᐃ࡜ࡋ㸪␗
࡞ࡿ✀㢮ࡢ࢚࣏࢟ࢩࣃࢵࢻ࡛ホ౯ࡋࡓሙྜ࡟ࡶྠᵝࡢ⤖ᯝࡀᚓࡽࢀࡓࡓࡵ㸪ࡇࡢ௬ᐃࡣጇᙜ࡛࠶ࡗࡓ࡜⤖ㄽ௜ࡅ
ࡽࢀࡿ㸬
ୖグࡢࡼ࠺࡞㸪◊☻ࣃࢵࢻࡢ⢓ᙎᛶ࡜◊☻≉ᛶࡢ㛵ಀ࡟ࡘ࠸࡚⪃ᐹࢆ⾜ࡗࡓ㸬ᅗ 10㸦a㸧࡟♧ࡉࢀࡿࡼ࠺࡟㐟
㞳◒⢏◊☻࡛ࡣ㸪ࣃࢵࢻୖ࡟ಖᣢࡉࢀࡓ◒⢏ࡀ㸪ᕤస≀⾲㠃ࢆᘬࡗ࠿ࡁ㸪ࡑࡢᚤᑠ࡞ษ๐స⏝࡛ᕤస≀⾲㠃ࡢ㝖
ཤࡀ㐍⾜ࡍࡿ㸬ຍᕤᇦ࡟౵ධࡋࣃࢵࢻୖ࡟ಖᣢࡉࢀࡓ◒⢏ࡣ㸪ᕤస≀࠿ࡽࡢᅽຊ࡟ࡼࡗ࡚◊☻ࣃࢵࢻ࡟ỿࡳ㎸ࡳ
࡞ࡀࡽᕤస≀ࢆ㝖ཤࡍࡿ㸬ࡲࡓࡇࡢ᫬㸪◊☻ࣃࢵࢻࡣᕤస≀ࡸ◒⢏࠿ࡽ㈇Ⲵࢆཷࡅᅽ⦰ࡉࢀࡿ㸬ᅗ 10㸦b㸧࡟♧
ࡍࡼ࠺࡟㸪ᕤస≀ࡀ⛣ືࡋࡓᚋ࡟㸪◊☻ࣃࢵࢻࡣᕤస≀࠿ࡽཷࡅ࡚࠸ࡓⲴ㔜࠿ࡽゎᨺࡉࢀࡿࡓࡵ㸪◊☻ࣃࢵࢻࡢ
ኚ఩ࡀᅇ᚟ࡍࡿ㸬ࡇࡢ᫬ tan į ࡢ್ࡀᑠࡉ࠸◊☻ࣃࢵࢻࡣ㸪◊☻ࣃࢵࢻࡢኚ఩ࡢᅇ᚟ࡀ᪩ࡃ◒⢏ࡀࣃࢵࢻ⾲㠃ୖ࠿
ࡽ㞳ࢀࢫ࣮ࣛࣜ୰࡟ᾋ㐟ࡍࡿ㸬୍᪉㸪tan į ࡢ್ࡀ኱ࡁ࠸◊☻ࣃࢵࢻࡣࣃࢵࢻࡢኚ఩ࡢᅇ᚟ࡀ㐜࠸ࡓࡵ࡟㸪ከࡃࡢ
◒⢏ࡀಖᣢࡉࢀࡓ≧ែ࡛ࣃࢵࢻ⾲㠃ୖ࡟ṧ␃ࡍࡿ࡜⪃࠼ࡽࢀࡿ㸬ࡇ࠺ࡋ࡚ಖᣢࡉࢀࡓ◒⢏ࡣ㸪ḟ࡟ᕤస≀࡜◊☻
ࣃࢵࢻࡀ᥋ゐࡍࡿ㝿࡟ࡶࣃࢵࢻୖ࡟ಖᣢࡉࢀࡓࡲࡲ࡛࠶ࡾ㸪ࡇࡢ◒⢏ࡀᕤస≀⾲㠃ࢆ㝖ཤࡍࡿࡇ࡜࡜࡞ࡿ㸬ᅗ 10
࡛ࡣ㸪ᕤస≀⾲㠃ࡢพฝࡀ◒⢏ࡼࡾࡶᑠࡉࡃᥥ࠸࡚࠸ࡿࡀ㸪ᐇ㝿ࡢᕤస≀⾲㠃ࡣ◒⢏ࡼࡾࡶ኱ࡁ࡞พฝࡀ࠶ࡾ㸪
Fig. 7 (a) Temperature dependence of the material removal rate and tan į of the epoxy resin pad (C). (b) Residual sum of
squares (RSS) between the material removal rate and tan į of the epoxy resin pad (C) as a function of the increased
temperature Į.
Fig. 8 Comparison of the material removal rate and the surface roughness by the different type of epoxy resin pads
−11−
谷 泰弘・張 宇・村田 順二
◊☻ࣃࢵࢻࡢᅽ⦰࡜ࡑࡢ㛤ᨺࡣ 1 ࡘࡢᕤస≀ෆ࡟࠾࠸࡚㸪▷࠸࿘ᮇ࡛⧞ࡾ㏉ࡉࢀ࡚࠸ࡿ㸬tan į ࡢ್ࡀ㧗࠸◊☻ࣃ
ࢵࢻࡣ◒⢏ࡢಖᣢᛶࡀ㧗ࡃ㸪
ຍᕤᇦ࡟ከࡃࡢ◒⢏ࡀᏑᅾࡍࡿࡇ࡜࡜࡞ࡾ㸪
㧗࠸◊☻⬟⋡ࡀᚓࡽࢀࡓ࡜⪃࠼ࡽࢀࡿ㸬
5. ࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ◊☻≉ᛶࡢຍᕤ᮲௳౫Ꮡᛶ
␗࡞ࡿ⢓ᙎᛶࢆ᭷ࡍࡿ஧✀㢮ࡢ࢚࣏࢟ࢩࣃࢵࢻ㸦C㸪E㸧ࢆ⏝࠸࡚㸪◊☻≉ᛶࡢຍᕤ᮲௳౫Ꮡᛶࢆホ౯ࡋࡓ㸬ᮏ
ᐇ㦂࡛ࡣ㸪ᐃ┙ᚄ 380 mm ࡢ∦㠃◊☻⿦⨨㸦SPL-15F㸪
㸦ᰴ㸧ᒸᮏᕤసᶵᲔ〇సᡤ㸧
㸪ᐃ┙/ᕤస≀ᅇ㌿ᩘࡣ 60 rpm
࡟ኚ᭦ࡋ㸪ࡑࡢ௚ࡢᐇ㦂᮲௳ࡣ⾲ 2 ࡜ྠᵝ࡛࠶ࡿ㸬
ࡲࡎ㸪◊☻᫬㛫࡜ᕤస≀⾲㠃⢒ࡉࡢ㛵ಀࢆホ౯ࡋࡓࡶࡢࡀᅗ 11 ࡛࠶ࡿ㸬࢘ࣞࢱࣥࣃࢵࢻࡣ 15 ศ⛬ᗘ࡛⾲㠃⢒
ࡉࡀ㣬࿴ࡋࡓࡢ࡟ᑐࡋ㸪࢚࣏࢟ࢩࣃࢵࢻ C㸪E ࡣ 5 ศ⛬ᗘ࡜ࡼࡾ▷࠸◊☻᫬㛫࡛฿㐩⢒ࡉ࡟㐩ࡋࡓ㸬ࡲࡓ㸪◊☻
᫬㛫 5 ศᚋ࡟ὀ┠ࡍࡿ࡜࢚࣏࢟ࢩࣃࢵࢻ C ࡣ࡝ࡢ◊☻ࣃࢵࢻࡼࡾࡶඃࢀࡓ௙ୖࡆ㠃⢒ࡉࡀᚓࡽࢀࡿࡇ࡜ࡀศ࠿ࡿ㸬
ࡇࡢࡼ࠺࡟㸪tan į ࡢ್ࡀ㧗࠸◊☻ࣃࢵࢻࡣ◒⢏ࡢಖᣢᛶ࡟ඃࢀ࡚࠸ࡿࡓࡵ࡟㸪ከࡃࡢస⏝◒⢏ᩘࡀᚓࡽࢀ◊☻᫬
㛫ࡢ▷⦰ࡸ▷᫬㛫࡛ඃࢀࡓ௙ୖࡆ㠃⢒ࡉࡀᚓࡽࢀࡿ㸬⤖ᯝ࡜ࡋ࡚㸪࢘ࣞࢱࣥࣃࢵࢻࡢ 15 ศ◊☻ᚋ࡜㸪࢚࣏࢟ࢩࣃ
ࢵࢻ C ࡢ 5 ศ◊☻ᚋࡢ࢞ࣛࢫ⾲㠃ࡢ௙ୖࡆ㠃⢒ࡉࡀ࡯ࡰྠ➼࡞ࡇ࡜࠿ࡽ㸪࢚࣏࢟ࢩࣃࢵࢻ C ࢆ౑⏝ࡍࡿࡇ࡜࡛◊
☻᫬㛫ࢆ⣙ 3 ศࡢ 1 ࡟ࡍࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿࡇ࡜ࡀ☜ㄆࡉࢀࡓ㸬
ḟ࡟㸪
◒⢏⃰ᗘ࠾ࡼࡧᅇ㌿㏿ᗘࡀ࢚࣏࢟ࢩࣃࢵࢻࡢ◊☻≉ᛶ࡟୚࠼ࡿᙳ㡪࡟ࡘ࠸࡚ホ౯ࡋࡓ㸬
ᐇ㦂᮲௳࡜ࡋ࡚㸪
ᐃ┙ᅇ㌿ᩘ 60 rpm㸪◒⢏⃰ᗘ 3 wt%ࢆᇶᮏ᮲௳࡜ࡋ㸪ࡑࢀࡒࢀࢆ⊂❧࡟ኚ໬ࡉࡏ◊☻≉ᛶࢆホ౯ࡋࡓ㸬ᅗ 12㸦a㸧
࡟ࢫ࣮ࣛࣜ୰ࡢ㓟໬ࢭ࣒ࣜ࢘◒⢏⃰ᗘ࡜◊☻⬟⋡ࡢ㛵ಀࢆ♧ࡍ㸬㛤Ⓨࡋࡓ࢚࣏࢟ࢩࣃࢵࢻࡣ࢘ࣞࢱࣥࣃࢵࢻ࡜ẚ
㍑ࡋ࡚඲࡚ࡢ◒⢏⃰ᗘ࡟࠾࠸࡚㧗࠸◊☻⬟⋡ࡀᚓࡽࢀࡿࡇ࡜ࡀศ࠿ࡗࡓ㸬࢚࣏࢟ࢩࣃࢵࢻࡣࡸࡣࡾ tan į ࡀ኱ࡁ࠸
Fig. 9 Relationship between the material removal rate and tan į of the polishing pads
Fig. 10 Schematic drawing of the loose abrasive polishing
−12−
エポキシ樹脂研磨パッドの粘弾性と研磨特性
ࡓࡵ◒⢏ࡢಖᣢᛶࡀ㧗ࡃ㸪ప◒⢏⃰ᗘࡢࢫ࣮ࣛࣜ࡟࠾࠸࡚ࡶከࡃࡢస⏝◒⢏ᩘࡀᚓࡽࢀࡿࡓࡵ࡛࠶ࡿ࡜⪃࠼ࡽࢀ
ࡿ㸬࢚࣏࢟ࢩࣃࢵࢻ C ࡣ E ࡜ẚ㍑ࡋ࡚㧗࠸◊☻⬟⋡ࡀᚓࡽࢀࡓࡀ㸪9 wt%ࡢ㧗◒⢏⃰ᗘ࡛ࡣ࡯ࡰྠ➼ࡢ◊☻⬟⋡
࡛࠶ࡗࡓ㸬◒⢏⃰ᗘࡀቑຍࡍࡿ࡜ࢫ࣮ࣛࣜ୰ࡢ◒⢏㛫㝸ࡀᑠࡉࡃ࡞ࡾ㸪◒⢏ྠኈࡀ஫࠸ࡢືࡁࢆጉࡆࡿࡓࡵ㸪ࣃ
ࢵࢻࡢ tan į ࡟ࡼࡽࡎ◒⢏ࡢ␃ᛶࡀ㧗ࡃ࡞ࡿࡇ࡜ࡀせᅉ࡛࠶ࡿ㸬࢘ࣞࢱࣥࣃࢵࢻࡣ㸪ࢫ࣮ࣛࣜぶ࿴ᛶ࡟ஈࡋ࠸ࡇ
࡜࠿ࡽ㸪㧗࠸◒⢏⃰ᗘ࡛ࡶຍᕤᇦ࡟༑ศ࡞ࢫ࣮ࣛࣜࡀ౪⤥ࡉࢀ࡞࠸ࡓࡵ㸪࢚࣏࢟ࢩࣃࢵࢻ࡟ẚ࡭࡚ప࠸◊☻⬟⋡
ࢆ♧ࡋࡓ࡜⪃࠼ࡽࢀࡿ㸬⤖ᯝ࡜ࡋ࡚࢚࣏࢟ࢩࣃࢵࢻ C ࡢ◒⢏⃰ᗘ 0.5 wt%ࡢ◊☻⬟⋡࡜࢘ࣞࢱࣥࣃࢵࢻࡢ◒⢏⃰
ᗘ 9 wt%ࡢ◊☻⬟⋡ࡀ࡯ࡰྠ➼ࡢࡇ࡜࠿ࡽ㸪࢚࣏࢟ࢩࣃࢵࢻ C ࢆ౑⏝ࡍࡿࡇ࡜࡛౑⏝◒⢏ࢆ⣙ 94%పῶ࡛ࡁࡿࡇ
࡜ࡀྍ⬟࡛࠶ࡿࡇ࡜ࡀศ࠿ࡗࡓ㸬
ᅇ㌿㏿ᗘࡀ◊☻⬟⋡࡟୚࠼ࡿᙳ㡪ࢆ♧ࡋࡓࡶࡢࡀᅗ 12㸦b㸧࡛࠶ࡿ㸬ప࠸ᐃ┙ᅇ㌿㏿ᗘ࡛ࡣ◒⢏ࡲࡓࡣࢫࣛࣜ
࣮࡟స⏝ࡍࡿ㐲ᚰຊࡀᑠࡉࡃ㸪◊☻ࣃࢵࢻࡢ✀㢮࡟ࡼࡽࡎ༑ศ࡞స⏝◒⢏ᩘࡀᚓࡽࢀࡿࡓࡵ㸪࢘ࣞࢱࣥࣃࢵࢻ࡜
࢚࣏࢟ࢩࣃࢵࢻ࡛ࡣ◊☻≉ᛶ࡟኱ࡁ࡞ᕪ␗ࡀ⌧ࢀ࡞࠸㸬ᐃ┙ᅇ㌿㏿ᗘࢆ㧗ࡃࡍࡿ࡜㸪◒⢏࡜ᕤస≀ࡢ┦ᑐ㏿ᗘࡀ
ୖࡀࡾ◊☻⬟⋡ࡣྥୖࡍࡿ㸬୍᪉㸪ᐃ┙ᅇ㌿㏿ᗘࡢቑຍ࡟క࠸◒⢏࡟స⏝ࡍࡿ㐲ᚰຊࡀ኱ࡁࡃ࡞ࡿࡓࡵ㸪◒⢏ࡢ
␃ᛶࡀపୗࡍࡿ㸬◒⢏ࡢಖᣢᛶࡢᝏ࠸࢘ࣞࢱࣥࣃࢵࢻࡣ 30 rpm ௨ୖࡢᅇ㌿㏿ᗘ࡛ࡣ㸪◊☻⬟⋡ࡀ࡯ࡰ㣬࿴ࡋ࡚
࠸ࡿࡇ࡜ࡀࢃ࠿ࡿ㸬୍᪉㸪࢚࣏࢟ࢩࣃࢵࢻ C ࡣ◒⢏ࡢಖᣢᛶࡀ㧗࠸ࡓࡵ࡟㸪㧗ᅇ㌿㏿ᗘ᮲௳࡟࠾࠸࡚ࡶ༑ศ࡞స
⏝◒⢏ᩘࡀᚓࡽࢀ㸪
㏻ᖖࡢ࢘ࣞࢱࣥࣃࢵࢻࡸ࢚࣏࢟ࢩࣃࢵࢻ E ࡜ẚ㍑ࡋ࡚㧗࠸◊☻⬟⋡ࡀᚓࡽࢀࡓ࡜⪃࠼ࡽࢀࡿ㸬
Fig. 11 The surface roughness of workpieces as a function of polishing time
(a) Effect of abrasive concentration (b) Effect of Rotation rate
Fig. 12 Relationship between the material removal rate and polishing conditions
−13−
谷 泰弘・張 宇・村田 順二
6.
⤖ ㄒ
ᮏ◊✲࡛ࡣ㸪࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢᶵᲔⓗ≀ᛶ್࡛࠶ࡿ⢓ᙎᛶ࡟╔┠ࡋ◊☻≉ᛶ࡜ࡢ㛵ಀࢆㄪᰝࡋࡓ㸬ࡲ
ࡓ㸪◊☻≉ᛶࡢຍᕤ᮲௳౫Ꮡᛶࢆホ౯ࡋࡓ㸬௨ୗ࡟㸪ᮏ◊✲࡛ᚓࡽࢀࡓ⤖ᯝ࡟ࡘ࠸࡚ࡲ࡜ࡵࡿ㸬
㸦1㸧ᶞ⬡ࡢཎᩱ㓄ྜẚࢆኚ໬ࡉࡏࡓ࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࢆస〇ࡋ㸪ືⓗ⢓ᙎᛶホ౯ࢆ⾜ࡗࡓ⤖ᯝ㸪ᚑ᮶ࡢ࢘
ࣞࢱࣥࣃࢵࢻ࡜ẚ㍑ࡋ࡚㸪኱ࡁ࡞ tan į ࢆ♧ࡍࡇ࡜ࡀࢃ࠿ࡗࡓ㸬
㸦2㸧࢚࣏࢟ࢩࣃࢵࢻࡢ◊☻⬟⋡࡜ tan ࡀྜ⮴ࡍࡿ࡜ࡢ௬ᐃࡋ㸪ຍᕤⅬ࡟࠾ࡅࡿ◊☻ࣃࢵࢻࡢ ᗘࢆぢ✚ࡶࡗࡓ⤖
ᯝ㸪 ᐃ ᗘ࡟ᑐࡍࡿຍᕤⅬ࡛ࡢ ᗘୖ᪼ࡣ 20 ºC ࡜᥎ᐃࡉࢀࡓ㸬
㸦3㸧␗࡞ࡿᶞ⬡⤌ᡂࡢ࢚࣏࢟ࢩࣃࢵࢻࡢ◊☻≉ᛶࢆホ౯ࡋ㸪᥎ᐃࡉࢀࡓୖ᪼ ᗘ࡟࠾࠸࡚◊☻⬟⋡࡜ tan į ࡢ㛵
ಀࢆㄪ࡭ࡓ⤖ᯝ㸪୧⪅ࡢ㛫࡟ṇࡢ┦㛵㛵ಀࡀㄆࡵࡽࢀࡓ㸬
㸦4㸧࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡣ࢘ࣞࢱࣥᶞ⬡◊☻ࣃࢵࢻ࡜ẚ㍑ࡋ࡚▷࠸◊☻᫬㛫࡛฿㐩⢒ࡉ࡟㐩ࡋ㸪࠿ࡘඃࢀࡓ
௙ୖࡆ㠃⢒ࡉࡀᚓࡽࢀࡿࡇ࡜ࡀศ࠿ࡗࡓ㸬
㸦5㸧࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡣప◒⢏⃰ᗘ㸪㧗ᅇ㌿㏿ᗘࡢ᮲௳࡟࠾࠸࡚ࡶඃࢀࡓ◊☻⬟⋡ࡀᚓࡽࢀࡿࡇ࡜ࡀศ࠿
ࡗࡓ㸬ࡲࡓ㸪ᚑ᮶ࡢ࢘ࣞࢱࣥࣃࢵࢻ࡜ẚ㍑ࡋ࡚◒⢏౑⏝㔞ࢆ⣙ 94 %పῶ࡛ࡁࡿࡇ࡜ࡀศ࠿ࡗࡓ㸬
ᩥ ⊩
Charns, L., Sugiyama, M. and Philipossian, A., Mechanical properties of chemical mechanical polishing pads containing
water-soluble particles, thin solid film, Vol. 485 (2005) , pp. 188-193.
୍ᘕ✑ ┤⪽㸪ᒣཱྀ㞝ஓ㸪Ḉ஭೺⾜㸪㇂ Ὀᘯ㸪㔠 Ὀඖ㸪Ὑίᛶࢆ⪃៖ࡋࡓ」ྜ◒⢏ࡢ㛤Ⓨ࡜ࡑࡢ◊☻≉ᛶ㸪
᪥ᮏᶵᲔᏛ఍ㄽᩥ㞟 C ⦅㸪Vol. 75㸪No. 757 (2009)㸪pp. 2429-2434㸬
ụ⏣ ὒ㸪㉥ୖ㝧୍㸪␇⏣㐨㞝㸪኱す ಟ㸪㯮Ἑ࿘ᖹ㸪ᅵ⫧ಇ㑻㸪㟁⏺◒⢏ไᚚᢏ⾡ࢆ㐺⏝ࡋࡓ࢞ࣛࢫᇶᯈࡢ㧗
ຠ⋡◊☻ᢏ⾡ࡢ㛤Ⓨ̾㟁⏺ࡀࢫ࣮ࣛࣜᣲື࡜࢞ࣛࢫࡢ◊☻≉ᛶ࡟ཬࡰࡍᙳ㡪̾㸪⢭ᐦᕤᏛ఍ㄅ㸪Vol. 77, No. 10
(2011)㸪pp. 960-965.
Kim, N-H., Seo, Y-J. and Lee, W-S., Effects of Silica Slurry Temperature on Chemical Mechanical Polishing for Tetraethyl
Orthosilicate Film, Japanese Journal of Applied Physics, Vol. 44, No. 40 (2005) , pp. L1256-L1258.
ᮧ⏣㡰஧㸪㇂ Ὀᘯ㸪ᗈᕝⰋ୍㸪㔝ᮧಙᖾ㸪ᙇ Ᏹ㸪Ᏹ㔝⣧ᇶ㸪࢞ࣛࢫ◊☻⏝ከᏍ㉁࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ
㛤Ⓨ㸪᪥ᮏᶵᲔᏛ఍ㄽᩥ㞟 C ⦅㸪Vol. 77, No. 777 (2011)㸪pp. 2153-2161.
㡲⏣⪷୍㸪ࢼࣀศᩓ໬࡟ࡼࡿ࢞ࣛࢫ◊☻ᮦࡢ㛤Ⓨ㸪࣐ࢸࣜ࢔ࣝ࢖ࣥࢸࢢ࣮ࣞࢩࣙࣥ㸪Vol. 25, No. 6㸦2012㸧, pp. 45-50.
ᮡᮏᩥ฼㸪㖝 ᏹ┿㸪᭷ᮏྜྷᘯ㸪ఀ⸨㝯ྖ㸪㓟໬⭷ CMP ࡟࠾ࡅࡿ࢚࢘ࣁ ᗘࡢ in situ ࣔࢽࢱࣜࣥࢢ㸪㟁Ꮚ᝟ሗ
㏻ಙᏛ఍ᢏ⾡◊✲ሗ࿌㸪Vol. 94, No.194 (1994)㸪pp.1-6
ᒣᓮ ດ㸪ᅵ⫧ಇ㑻㸪㯮Ἑ࿘ᖹ㸪኱す ಟ㸪␇⏣㐨㞝㸪ᱵᓮὒ஧㸪ᒣཱྀ㟹ⱥ㸪ᓊ஭㈆ᾈ㸪㓟໬ࢭ࣒ࣜ࢘࡜ࡑࡢ௦
᭰ࢆ┠ᣦࡍ㓟໬࣐ࣥ࢞ࣥ⣔ࢫ࣮ࣛࣜ࡟ࡼࡿ࢞ࣛࢫᇶᯈࡢ◊☻≉ᛶ࡜ࡑࡢຍᕤ࣓࢝ࢽࢬ࣒㸪⢭ᐦᕤᏛ఍ㄅ㸪Vol.
77, No. 12 (2011)㸪pp. 1146-1150.
−14−
立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年
Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014
㟁╔ᕤල⏝ࡢ㒊ศ 1L ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏ࡢ㛤Ⓨ
ᙇ Ᏹ 1)㸪㇂ Ὀᘯ 1)㸪 ᮧ⏣㡰஧ 2)
᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹
Development of partially Ni-coated diamond abrasives for electroplated
tools
Yu ZHANG 1), Yasuhiro TANI1) and Junji MURATA 2)
Electroplated diamond tools are developed for grinding hard and brittle materials because of its low wear
resistance. To improve the grinding performance of diamond tools, a single layer of diamond abrasives is electroplated
on the tool body. The electroplating process delivers a homogeneous layer with diamonds embedded in nickel alloy at
high speed. In order to facilitate the adhesion of diamond abrasives, the diamond abrasives are coated by nickel
membrane. Therefore, the cutting edges of diamond abrasives are hidden and the grinding performance of diamond
tools decreases. Moreover, a phenomenon of abrasive aggregation generates and leads to bad abrasive distribution. In
this paper, in order to solve those problems, authors developed partially Ni-coated diamond abrasives, which were
produced from the commercially available full Ni-coated diamond abrasives. The adhesion characteristics of partially
Ni-coated diamond abrasives were discussed, too. The grind-abilities of diamond tools, which are fabricated with using
non-coated diamond abrasives, Ni-coated diamond abrasives and partially Ni-coated diamond abrasives, have been
evaluated. As the results, the problems when using non-coated diamond abrasives or Ni-coated diamond abrasives could
be solved and the grind-abilities of electroplated tools were improved with using partially Ni-coated diamond abrasives.
Key Words : Diamond tool, Abrasive grain, Electroplating, Grinding force, Abrasive distribution, Tool life
E-mail㸸[email protected] (Y. Zhang)
᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹
❧࿨㤋኱Ꮫ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉
㏆␥኱Ꮫ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉
1)
Department of Mechanical Engineering, Ritsumeikan University,
Kusatsu, Shiga, 525-8577, Japan
2)
Department of Mechanical Engineering, Kinki University,
Higashiosaka, Osaka, 577-8502, Japan
1)
2)
−15−
張 宇・谷 泰弘・村田 順二
⥴ ゝ
ୡ⏺ࡢ࢚ࢿࣝࢠ࣮ᨻ⟇࡟࠾ࡅࡿኴ㝧ගⓎ㟁ࡢ㔜せᛶࡣ㏆ᖺࡲࡍࡲࡍ㧗ࡲࡗ࡚࠸ࡿ㸬⤖ᬗ⣔ࢩࣜࢥࣥኴ㝧㟁ụ࡟
౑ࢃࢀࡿࢩࣜࢥ࢙࣮ࣥ࢘ࣁࡣ࣐ࣝࢳ࣡࢖ࣖࢯ࣮࡛ࢩࣜࢥࣥ࢖ࣥࢦࢵࢺࢆࢫࣛ࢖ࢩࣥࢢຍᕤࡍࡿࡇ࡜࡟ࡼࡾ〇㐀ࡉ
ࢀࡿ㸬ࢫࣛ࢖ࢩࣥࢢຍᕤᕤ⛬࡟࠾࠸࡚ࡣ㸪ࣆ࢔ࣀ⥺ࢆ㧗㏿㉮⾜ࡉࡏ࡞ࡀࡽຍᕤᾮ࡟ GC ◒⢏ࢆᠱ⃮ࡉࡏࡓࢫࣛࣜ
࣮ࢆ࠿ࡅࡿ◊☻ษ᩿ἲ࡜ࢲ࢖ࣖࣔࣥࢻ◒⢏ࢆࣆ࢔ࣀ⥺࡟㟁╔ࡋࡓࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖᕤලࢆ㉮⾜ࡉࡏ࡚Ỉ⁐ᛶ◊
๐ᾮࡢࡳࢆ࠿ࡅࡿ◊๐ษ᩿ἲࡀ࠶ࡿ㸦Webster and Tricard, 2004㸧
㸬◊๐ษ᩿᪉ᘧࡣ◊☻ษ᩿᪉ᘧ࡟ẚ࡭࡚ 2㹼3 ಸ
⛬ᗘࡢษ᩿⬟ຊࢆ᭷ࡍࡿࡓࡵ㸪⌧ᅾࢩࣜࢥࣥ㸪ࢧࣇ࢓࢖࢔㸪SiC ࡞࡝ࡢ◳⬤ᮦᩱࡢษ᩿࡟◊๐ษ᩿᪉ᘧࡢᬑཬࡀ
㐍ࢇ࡛࠸ࡿ㸬㟁╔ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖᕤලࡢ〇㐀ᕤ⛬࡛ࡣ㸪◒⢏ࡢᯒฟ㏿ᗘ࡜◒⢏ࡢಖᣢຊࢆྥୖࡍࡿࡓࡵ࡟୍
⯡ⓗ࡟ࢽࢵࢣࣝ࡞࡝ࡢ㔠ᒓ⓶⭷ࡀ⿕そࡉࢀࡓᑟ㟁ᛶࢆ᭷ࡍࡿࢲ࢖ࣖࣔࣥࢻ◒⢏ࡀ౑⏝ࡉࢀ࡚࠸ࡿ
㸦༓ⴥ௚㸪
2003㸧
㸬
୍᪉㸪࢞ࣛࢫ㸪ࢭ࣑ࣛࢵࢡࢫ➼ࡢ◳⬤ᮦᩱࡢ◊๐࡟ࡣᙧ≧⢭ᗘ㸪⪏ᦶ⪖ᛶ࡟ඃࢀࡓ㟁╔ࢲ࢖ࣖࣔࣥࢻ࣍࢖࣮ࣝࡀ
ࡼࡃ฼⏝ࡉࢀ࡚࠸ࡿ㸦๓⏣㸪2013㸧
㸬㟁╔ࢲ࢖ࣖࣔࣥࢻ࣍࢖࣮ࣝ࡟ࡘ࠸࡚ࡣ୍⯡ⓗ࡟◒⢏ࢆࡵࡗࡁᾮ୰࡟ᠱ⃮ࡋඹ
ᯒࡉࡏࡿࡵࡗࡁἲࡸ◒⢏ࢆỿ㝆ࡉࡏ࡚ᯒฟ㔠ᒓ࡟ࡼࡾ⢏Ꮚࢆᇙࡵ㎸ࢇ࡛࠸ࡃỿ㝆ඹᯒἲ࡞࡝ࡢ᪉ἲ
㸦ᴮᮏ௚㸪
1989㸧
࡛〇㐀ࡉࢀ㸪◒▼ࡢษࢀ࿡ࢆ㧗ࡵࡿࡓࡵ㔠ᒓ⿕そࡢ࡞࠸ࢲ࢖ࣖࣔࣥࢻ◒⢏ࡀ౑⏝ࡉࢀ࡚࠸ࡿ㸬୍⯡࡟㟁╔ᕤලࡢ
┠❧࡚ࢆ⾜࠺ࢻࣞࢵࢩࣥࢢసᴗ࡟࠾࠸࡚ࡣ㸪◳࠸㔠ᒓ⤖ྜ๣ࡀ౑⏝ࡉࢀ࡚࠸ࡿࡓࡵࢻࣞࢵࢩࣥࢢసᴗࡀᅔ㞴࡛࠶
ࡿ㸬㟁╔ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖᕤලࡢࢻࣞࢵࢩࣥࢢࡣ⣽࠸࣡࢖ࣖࡢ෇࿘࡟࠾ࡅࡿ඲࡚ࡢ⟠ᡤࢆࢻࣞࢵࢩࣥࢢࡍࡿᚲ
せࡀ࠶ࡾ㸪ࡼࡾ୍ᒙ㞴ࡋࡃ࡞ࡿ㸬ࡑࡢࡓࡵ㸪ࢻࣞࢵࢩࣥࢢࢆᚲせ࡜ࡋ࡞࠸㟁╔ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖᕤලࡢ㛤Ⓨࡀ
ᮇᚅࡉࢀ࡚࠸ࡿ㸬
ࡑࢀࢆᐇ⌧ࡍࡿࡓࡵ࡟ⴭ⪅ࡽࡣࢲ࢖ࣖࣔࣥࢻ◒⢏ࡢ⾲㠃≧ែ࡜◒⢏ࡢᕤලྎ㔠࡬ࡢᯒฟ≧ែ࡜ࡢ㛵㐃ᛶ࡟ὀ┠
ࡋ࡚࠸ࡿ㸬ᮏ◊✲࡛ࡣࢲ࢖ࣖࣔࣥࢻ◒⢏ࡢ୍㒊ศࡢࡳࡀ Ni ⓶⭷࡛そࢃࢀࡓ㒊ศ Ni ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏ࢆᥦ᱌
ࡍࡿ㸬ࡇࡢ◒⢏ࢆ௒ᚋ㒊ศ Ni ⿕そ◒⢏࡜⛠ࡍࡿ㸬ࡇࢀ࡟ᑐࡋ࡚㏻ᖖࡢ඲㠃ࡀ Ni ࡛⿕そࡉࢀࡓ◒⢏ࢆ඲㠃 Ni ⿕そ
◒⢏࡜⛠ࡍࡿ㸬ࡑࡢ㒊ศ Ni ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏ࡢ㟁╔ᕤලẕᮦ࡬ࡢᯒฟ≧ែ࡟ࡘ࠸᳨࡚ウࡋࡓ㸬ࡑࡋ࡚㸪඲㠃
Ni ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏࠾ࡼࡧ㠀㔠ᒓ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏࡜ẚ㍑ࡋ࡞ࡀࡽ㸪ヨసࡋࡓ㒊ศ Ni ⿕そࢲ࢖ࣖࣔࣥ
ࢻ◒⢏ࢆ⏝࠸ࡓ㝿ࡢ㟁╔ᕤලࡢ〇㐀᮲௳ࢆ᳨ウࡋࡓ㸬⿕そ≧ែࢆኚ࠼ࡓྛ✀◒⢏ࢆ⏝࠸࡚స〇ࡋࡓ㟁╔ᕤලࢆ౑
⏝ࡋ㸪◳⬤ᮦᩱࢆ௦⾲ࡍࡿࢩࣜࢥࣥ࡜࢞ࣛࢫࡢ◊๐ᐇ㦂ࢆ⾜࠸㸪◊๐᢬ᢠ࡟ࡼࡾ㟁╔ᕤලࡢษࢀ࿡ࢆホ౯ࡋࡓ㸬
ࡑࡢ⤖ᯝ㸪㛤Ⓨࡋࡓ㒊ศ Ni ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏ࢆ౑⏝ࡋࡓሙྜ㸪㠀㔠ᒓ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏ࡼࡾ㟁╔ᕤලୖ
ࡢ◒⢏ಖᣢຊࡀ㧗ࡃ㸪඲㠃 Ni ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏ࡼࡾษࢀ࿡ࡀඃࢀࡿࡇ࡜ࡀ☜ㄆ࡛ࡁࡓࡢ࡛ሗ࿌ࡍࡿ㸬
㒊ศ㔠ᒓ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏ࡢᥦ᱌
⌧ᅾ㸪㟁╔ࢲ࢖ࣖࣔࣥࢻᕤලࡢ〇㐀࡟࠾࠸࡚ࡣࡵࡗࡁᾮ࡟ࢲ࢖ࣖࣔࣥࢻ◒⢏ࢆᠱ⃮ࡉࡏࡓ㟁Ẽࢽࢵࢣࣝ」ྜࡵ
ࡗࡁἲࡀ⏕⏘⌧ሙ࡛ࡼࡃ฼⏝ࡉࢀ࡚࠸ࡿ㸬㟁╔ᕤලࢆ〇㐀ࡍࡿሙྜ࡟ࡣ㸪◒⢏ࡢษࢀ࿡ࢆ⪃៖ࡋ࡚㠀㔠ᒓ⿕そࡢ
ࢲ࢖ࣖࣔࣥࢻ◒⢏ࡀከ⏝ࡉࢀ࡚࠸ࡿ㸬ࡵࡗࡁᒙࡢ↝ࡅࢆ⏕ࡌࡉࡏ࡞࠸ࡓࡵ࡟ࡇࡢ」ྜࡵࡗࡁᕤ⛬࡛ࡣ㟁ὶᐦᗘࢆ
1 kA/m2 ௨ୗ࡜పࡃタᐃࡉࢀ࡚࠾ࡾ㸪㟁╔㏿ᗘࡀ㐜࠸㸬ࡉࡽ࡟㸪ᑟ㟁ᛶࡢ࡞࠸ࢲ࢖ࣖࣔࣥࢻ◒⢏ࡀ౑⏝ࡉࢀ࡚࠸
ࡿࡓࡵ㸪◒⢏࡜ࡵࡗࡁᒙࡢᐦ╔ᛶࡀపࡃ࡞ࡿ㸬ࡑࡇ࡛㸪㟁╔ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖᕤල࡛ࡣ㸪◒⢏࡜ࡵࡗࡁᒙ࡜ࡢ
ᐦ╔ᛶࡸඹᯒ⋡ࢆྥୖࡍࡿࡓࡵ㸪㔠ᒓ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏ࡀ⏝࠸ࡽࢀ࡚࠸ࡿ㸬㔠ᒓ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏ࢆ౑
⏝ࡍࡿࡇ࡜࡟ࡼࡾ㸪ࢲ࢖ࣖࣔࣥࢻ◒⢏ࢆᕤලྎ㔠࡟ᯒฟࡍࡿ」ྜࡵࡗࡁᕤ⛬ࡢ᫬㛫ࡀ▷⦰࡛ࡁ㸪㟁╔ᕤලࡢ〇㐀
㏿ᗘࢆⴭࡋࡃྥୖࡉࡏࡿࡇ࡜ࡀ࡛ࡁࡿ㸬ࡋ࠿ࡋ㸪㔠ᒓ⿕そ◒⢏ࢆ౑⏝ࡍࡿ࡜✺ฟࡋࡓ◒⢏ඛ➃࡟ࡵࡗࡁࡀከࡃᯒ
ฟࡍࡿࡓࡵ㟁╔ᕤලࡢษࢀ࿡ࡀపୗࡋ࡚ࡋࡲ࠺㸬ࡲࡓ㸪」ྜࡵࡗࡁࢆ⾜࠺㝿࡟◒⢏ࡢจ㞟ඹᯒࡀ㢧ⴭ࡜࡞ࡿ㸬ࡑ
ࡇ࡛㸪ⴭ⪅ࡽࡣ㔠ᒓ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏࡜㠀㔠ᒓ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏ࡢ࣓ࣜࢵࢺࢆά࠿ࡍࡇ࡜ࡀ࡛ࡁ㸪」ྜ
ࡵࡗࡁᾮ୰࡛ప࠸◒⢏⃰ᗘ࡛ࡶ◒⢏ࡢᯒฟࡀ㏿ࡃ㸪ษࢀ࿡ࡀඃࢀࡿᕤලࡢᐇ⌧ࡢࡓࡵ㸪ࢲ࢖ࣖࣔࣥࢻ◒⢏ࡢ୍㒊
ศࡢࡳࡀ㔠ᒓ࡛そࢃࢀࡿ㒊ศ㔠ᒓ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏ࢆᥦ᱌ࡍࡿ㸬
◒⢏ࡢᑟ㟁ᛶ࡟㛵ࡋ࡚◒⢏㏆ഐࡢࡵࡗࡁᒙࡢᡂ㛗࡟ࡘ࠸࡚ヲࡋࡃㄽ㏙ࡉࢀ࡚࠸ࡿ㸦బ⸨㸪㕥ᮌ㸪1982㸪1987㸧
㸬
」ྜ㟁Ẽࡵࡗࡁࢆ⾜࠺㝿࡟ᑟ㟁ᛶࡢ࠶ࡿ◒⢏ࢆ౑⏝ࡋࡓሙྜ࡟ࡣ㸪ᅗ 1(a)࡟♧ࡍࡼ࠺࡟◒⢏ࡢ඲㠃ࡀᑟ㟁ᛶ⓶⭷
࡟そࢃࢀࡿࡓࡵྎ㔠࡟ᯒฟࡋࡓ◒⢏ࡀ㝜ᴟࡢ୍㒊ศ࡜࡞ࡾ㸪
✺ฟࡋࡓ◒⢏ࡢୖ࡟㔠ᒓ⓶⭷ࡸ◒⢏ࡀከࡃᯒฟࡍࡿ㸬
−16−
電着工具用の部分Ni 被覆ダイヤモンド砥粒の開発
ࡑࡢ⤖ᯝ㸪
◒⢏ࡢᯒฟࡀ㏿ࡃ◒⢏ࡢಖᣢຊࡀ㧗ࡃ࡞ࡿࡀ㸪
◒⢏ࡢจ㞟ࡀ㉳ࡁ࡚ᕤලୖࡢ◒⢏ศᕸࡀ୙ᆒ୍࡟࡞ࡿ㸬
ࡑࢀ࡟ᑐࡋ࡚㸪ᑟ㟁ᛶࡢ࡞࠸◒⢏ࢆ౑⏝ࡋࡓሙྜ࡟ࡣᅗ 1(b)࡟♧ࡍࡼ࠺࡟㟁╔ᕤලୖࡢ◒⢏࡜ྎ㔠ࡢ᥋ゐ㠃✚ࡀ
ᑡ࡞࠸ࡓࡵ㸪◒⢏ࡢಖᣢຊࡀపࡃ࡞ࡿ㸬ࡲࡓ㸪◒⢏ࡢ⾲㠃࡟ࡣᑟ㟁ᛶࡀ࡞࠸ࡓࡵ㸪ᯒฟࡋࡓ◒⢏ࡢ⾲㠃ࡢୖ࡟ࡉ
ࡽ࡟◒⢏ࡸ㔠ᒓ⓶⭷ࡢᯒฟࡀ⏕ࡌࡎ◒⢏ࡢจ㞟ࡀ࡯࡜ࢇ࡝⏕ࡌ࡞࠸ࡓࡵษࢀ࿡ࡀⰋ࠸ࡀ㸪ᯒฟ㏿ᗘࡀ㐜ࡃ࡞ࡿ㸬
ࡇࢀࡽࡢၥ㢟ࢆゎỴࡍࡿࡓࡵ࡟ᅗ 1(c)࡟♧ࡍࡼ࠺࡟ษࢀลࡢ୍㒊ศ࡟㔠ᒓ⓶⭷ࡀ࡞࠸◒⢏ࢆసࢀࡤᕤල࡟ᯒฟࡋ
ࡓ◒⢏ࡢศᩓᛶࡀⰋࡃಖᣢຊࡢ㧗࠸㟁╔ᕤලࡢస〇ࡀྍ⬟࡜࡞ࡿࡶࡢ࡜ᛮࢃࢀࡿ㸬ࡑࡇ࡛㸪ⴭ⪅ࡽࡣ㸪๓㏙ࡋࡓ
ࡼ࠺࡟㟁╔ᕤලࡢၥ㢟Ⅼࢆඞ᭹ࡍࡿࡓࡵ◒⢏⾲㠃ࡢ୍㒊ศࡔࡅ࡟ᑟ㟁ᛶࢆᣢࡘ Ni ⓶⭷࡛⿕そࡉࢀࡓ㒊ศ Ni ⿕そ
ࢲ࢖ࣖࣔࣥࢻ◒⢏ࢆ㛤Ⓨࡋࡓ㸬㒊ศ Ni ⿕そ◒⢏ࡢୖ㒊࡟ࡣ㔠ᒓ⓶⭷ࡀ࡞࠸ࡓࡵ㸪ᚲࡎ◒⢏ࡢᑟ㟁ᛶࡢ࠶ࡿ㒊ศࡀ
ୗ࡟࡞ࡗ࡚ྎ㔠࡟ᯒฟࡋࡵࡗࡁᒙࡀᡂ㛗ࡍࡿ㸬◒⢏ࡢ඲㠃ࡀࡵࡗࡁᒙ࡟そࢃࢀ࡞࠸ࡓࡵ㸪ಖᣢຊࡀ㧗ࡃษࢀ࿡ࡢ
Ⰻ࠸㟁╔ᕤලࡢస〇ࡀྍ⬟࡜࡞ࡿ㸬
㒊ศ Ni ⿕そ◒⢏ࡢస〇᪉ἲ࡟㛵ࡋ࡚ࡣ㸪
㠀⿕そ◒⢏⾲㠃ࡢ୍㒊ศ࡟↓㟁ゎ Ni ࡵࡗࡁ࡟ࡼࡾ Ni ⓶⭷ࢆᙧᡂࡉࡏ
ࡿ㒊ศࡵࡗࡁἲ࡜඲㠃 Ni ⿕そࡉࢀࡓ◒⢏⾲㠃ࡢ୍㒊ศࡢ Ni ⓶⭷ࢆ๤㞳ࡉࡏࡿ㒊ศ๤㞳ἲࡀ࠶ࡿ㸬㒊ศࡵࡗࡁἲ
Fig. 1 Effect of nickel membrane coated on abrasives on growth of electrodeposited layer along the surface of abrasives
Fig. 2 Production method of partially Ni-coated abrasives
−17−
張 宇・谷 泰弘・村田 順二
࡟౑⏝ࡉࢀࡿࢲ࢖ࣖࣔࣥࢻ◒⢏ࡢ๓ฎ⌮࡟ࡼࡾ◒⢏࡜ Ni ⓶⭷ࡢᐦ╔ᛶࡀ኱ࡁࡃ␗࡞ࡿࡓࡵ㸪
ᮏ◊✲࡛ࡣ㒊ศ๤㞳
ἲ࡟ࡼࡾ㒊ศ Ni ⿕そ◒⢏ࢆస〇ࡋࡓ㸬࡞࠾㸪㒊ศ๤㞳ἲ࡛సᡂࡋ࡚ࡶ㸪㒊ศࡵࡗࡁἲ࡛సᡂࡋ࡚ࡶ㸪㟁╔ᕤලࡢ
◊๐ᛶ⬟ࡣ࡯࡜ࢇ࡝ኚ໬ࡀ࡞࠸ࡇ࡜ࡀ☜ㄆࡉࢀ࡚࠸ࡿ㸦୰ᕝ௚㸪2008㸧
㸬ᅗ 2(a)࡟ࡣ㸪㒊ศ๤㞳ἲ࡟ࡼࡿ㒊ศ Ni
⿕そ◒⢏ࡢస〇ࣉࣟࢭࢫࢆ♧ࡍ㸬
ࡲࡎ㸪
ཌࡳ 2 mm ࡢ⪏⸆ရᛶࡀඃࢀࡿࢫࢸࣥࣞࢫ㗰ᯈ
㸦SUS430㸪
‫ڧ‬150™150 mm㸧
ୖ࡟࣍ࢵࢺࣉ࣮ࣞࢺ࡟ࡼࡾ 120 Υ࡟ຍ⇕ࡍࡿࡇ࡜࡛࣡ࢵࢡࢫ㸦KPW-A㸪஑㔜㟁Ẽ㸦ᰴ㸧♫〇㸧ࢆ 20 ȝm ⛬ᗘሬ
ᕸࡋࡓ㸬ᕷ㈍ࡢ඲㠃 Ni ⿕そࢲ࢖ࣖࣔࣥࢻ◒⢏㸦⢏ᚄ㸸30~40 ȝm㸪55 wt%Ni㸧ࢆ࣡ࢵࢡࢫୖ࡟ᆒ୍࡟ᩓᕸࡋ㸪ୖ
㒊ࡼࡾࢫ࣏ࣥࢪࢆᢲࡋᙜ࡚ຍ⇕࡟ࡼࡾ㌾໬ࡉࡏࡓ࣡ࢵࢡࢫෆ࡟◒⢏ࢆᢲࡋ㎸ࢇࡔ㸬ࡇࡢ≧ែ࡛ࡣ㸪ᅗ 2(b)࡟♧ࡉ
ࢀࡿࡼ࠺࡟◒⢏ࡀ࣡ࢵࢡࢫࡢ⾲㠃࠿ࡽ༙ศ⛬ᗘ㟢ฟࡋ࡚࠸ࡿ㸬ࡇࡢ◒⢏ࢆᩓᕸࡋࡓ㗰ᯈࢆ⾲ 1 ࡟♧ࡋࡓࢽࢵࢣࣝ
๤㞳ᾎ࡟ᾐₕࡋ㸪࣡ࢵࢡࢫ࡟そࢃࢀ࡚࠸࡞࠸㒊ศࡢ Ni ⓶⭷ࢆ๤㞳ࡉࡏࡓ㸬ࡑࡢ⤖ᯝ㸪ᅗ 2(c)࡟♧ࡉࢀࡿࡼ࠺࡟๤
㞳⤊஢ᚋ࡟ඖ⣲ศᯒࢆ⾜ࡗࡓ⤖ᯝ㸪◒⢏⾲㠃࡟ࢽࢵࢣࣝࡀ᳨ฟࡉࢀࡎ㸪◒⢏⾲㠃࡟ࡣⅣ⣲㸦ࢲ࢖ࣖࣔࣥࢻ㸧ࡀ㟢
ฟࡍࡿࡇ࡜ࡀ☜ㄆ࡛ࡁࡓ㸬ࡑࡢᚋ㸪ࢫࢸࣥࣞࢫ㗰ᯈࢆࢺ࢚ࣝࣥࡢ୰࡟ᾐࡋ㸪࣡ࢵࢡࢫࢆ᏶඲࡟⁐࠿ࡋ㸪⬺ⴠࡋࡓ
◒⢏ࢆྵࢇࡔ⁐ᾮࢆ⣬ࣇ࢕ࣝࢱ࡛ࢁ㐣ࡍࡿࡇ࡜࡟ࡼࡾ㒊ศ Ni ⿕そ◒⢏ࢆྲྀࡾฟࡋࡓ㸬
ᅗ 3 ࡟ࡣ࢚ࢿࣝࢠ࣮ศᩓᆺ X ⥺ศගჾ㸦EDX㸪INCA x-act㸪Oxford Instruments ♫〇㸧ࢆ⏝࠸࡚㸪స〇ࡋࡓ㒊ศ
Ni ⿕そ◒⢏ࡢ⾲㠃ඖ⣲ศᯒࢆ⾜ࡗࡓ⤖ᯝࢆ♧ࡍ㸬◒⢏⾲㠃ࡢ୍㒊ศࡢ Ni ⓶⭷ࡀ࡞ࡃ࡞ࡾࢲ࢖ࣖࣔࣥࢻ㸦Ⅳ⣲㸧
Fig. 3 Elemental analysis of partially Ni-coated abrasives
Table 1 Conditions of stripping nickel membrane
Fig. 4 Ratio of carbon and nickel atoms on the surface of partially Ni-coated abrasives
−18−
電着工具用の部分Ni 被覆ダイヤモンド砥粒の開発
ࡀ㟢ฟࡋ࡚࠸ࡿࡇ࡜ࡀ☜ㄆ࡛ࡁࡿ㸬๤㞳ᾮ࡬ࡢᾐₕ᫬㛫ࢆ 30 min㸪40 min㸪50 min ࡜ኚ໬ࡉࡏ࡚ᚓࡽࢀࡓ◒⢏ࢆ
୍᪉ྥ࠿ࡽ EDX ศᯒࡍࡿࡇ࡜࡟ࡼࡾ C ࡜ Ni ࡜ࡢཎᏊᩘࡢ๭ྜࢆồࡵࡓ㸬ࡑࡢ⤖ᯝ㸪ᅗ 4 ࡟♧ࡍࡼ࠺࡟๤㞳᫬㛫
ࡀ㛗ࡃ࡞ࡿ࡟ࡘࢀ࡚Ⅳ⣲ࡢ๭ྜࡀቑ࠼ࡿࡇ࡜ࡀศ࠿ࡗࡓ㸬๤㞳᫬㛫ࡀ 50 min ࡢሙྜ࡟ࡣ◒⢏࡜࣡ࢵࢡࢫࡢ㝽㛫࡟
๤㞳ᾮࡀ౵ධࡋ㸪◒⢏඲㠃ࡢ Ni ⓶⭷ࡀ࡯࡜ࢇ࡝๤㞳ࡉࢀࡓࡶࡢ࡜⪃࠼ࡽࢀࡿ㸬ᅗ 5 ࡣస〇ࡋࡓ㒊ศ Ni ⿕そ◒⢏
ࡢ SEM ෗┿ࢆ♧ࡍ㸬30 min ࡢሙྜ࡛ࡣ࣡ࢵࢡࢫࡢ⾲㠃࡟㟢ฟࡋࡓ Ni ⓶⭷ࡀ᏶඲࡟๤㞳ࡉࢀ࡚࠸࡞࠸ࡀ㸪40 min
ࡢሙྜ࡟ࡣ◒⢏ࡢ⣙༙ศࡢ㒊ศࡀ๤㞳ࡉࢀ࡚࠸ࡿࡇ࡜ࡀ☜ㄆ࡛ࡁࡿ㸬50 min ࡢሙྜ࡛ࡣ㸪◒⢏ࡢ⾲㠃࡟ࢃࡎ࠿࡞
Ni ⓶⭷ࡋ࠿ṧࡗ࡚࠸࡞࠸㸬ᮏ◊✲࡛ࡣ๤㞳᫬㛫ࡀ 30 min㸪40 min㸪50 min ࡢ㒊ศ Ni ⿕そ◒⢏㸦ࡑࢀࡒࢀࡀ௒ᚋ
㒊ศ Ni ⿕そ◒⢏ 30 min㸪40 min㸪50 min ࡜⛠ࡍࡿ㸧ࢆ⏝࠸࡚㟁╔ᕤලࢆస〇ࡋ㸪ࡑࢀࡽࡢຍᕤ≉ᛶࢆホ౯ࡋࡓ㸬
㟁╔ᕤලࡢస〇
㟁╔ᕤලࡢ〇㐀⿦⨨࠾ࡼࡧ〇㐀᮲௳
࣭
⣽⥺࡛࠶ࡿ࣡࢖࡛ࣖࡣ◒⢏ࡢจ㞟≧ែほᐹࡀᅔ㞴࡛࠶ࡿࡓࡵ㸪
ᮏ◊✲࡛ࡣ〇సࡋࡓ㒊ศ Ni ⿕そ◒⢏࡜ᕷ㈍ࡢ඲
㠃 Ni ⿕そ◒⢏࠾ࡼࡧ㠀⿕そ◒⢏ࢆ」ྜ㟁Ẽࡵࡗࡁἲ࡟ࡼࡾ㸪࠶ࡽ࠿ࡌࡵ࢔ࣝ࢝ࣜ⬺⬡ฎ⌮࠾ࡼࡧ㓟Ὑฎ⌮㸦㰻⸨
௚㸪2011㸧ࢆ᪋ࡋࡓ┤ᚄ 10 mm ࡢ୸Წ㸦S45C㸧࡟㟁╔ࡋࡓ㸬ᅗ 6 ࡟ࡣ㟁Ẽࢽࢵࢣࣝࡵࡗࡁᐇ㦂⿦⨨ࡢ࢖࣓࣮ࢪ
ᅗࢆ♧ࡍ㸬㝧ᴟ࡜ࡋࡓ⣧ࢽࢵࢣࣝ୸Წࢆࣅ࣮࢝ࡢෆቨ࡟ᅛᐃࡋࡓ㸬ᕤලẕᮦ࡜࡞ࡿ S45C ୸Წࢆᅇ㌿⿦⨨ࡢ㍈ࡢ
ୗ㒊࡟ྲྀࡾ௜ࡅ㸪୸Წࡢ࿘ᅖ࡟ᆒ୍࡞ࡵࡗࡁࡀ࡛ࡁࡿࡼ࠺࡟୸Წࢆࡺࡗࡃࡾ࡜ᅇ㌿ࡉࡏ࡞ࡀࡽࡵࡗࡁࢆ⾜ࡗࡓ㸬
㟁╔ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖᕤලࡢ〇㐀㏿ᗘࡣ 10 m/min ௨ୖࢆ┠ᶆ࡜ࡋ࡚࠸ࡿࡓࡵ㸪୸Წࡢᅇ㌿㏿ᗘࡀ㟁╔ࢲ࢖ࣖࣔ
ࣥࢻ࣡࢖ࣖᕤලࡢ〇㐀㏿ᗘ࡜ྠࡌ⛬ᗘ࡟࡞ࡿࡼ࠺࡟ 300 rpm ࡟ᅛᐃࡋࡓ㸬ᅇ㌿⿦⨨ࡢ㍈ࡢ㔠ᒓⰺࡢୖ➃࡜┤ὶ㟁
※ࡢ㝜ᴟࢆ᥋⥆ࡋ㔠ᒓⰺࢆ㏻ࡋ࡚୸Წ࡟㏻㟁ࡋࡓ㸬ࣅ࣮࢝ࡣຍ⇕࡜ᨩᢾࡢᶵ⬟ࢆࡶࡘ࣐ࢢࢿࢸ࢕ࢵࢡࢫࢱ࣮ࣛࡢ
ୖ࡟㍕ࡏ㸪ࡵࡗࡁᾎࢆຍ⇕ࡋ࡞ࡀࡽࡵࡗࡁᾎࢆᨩᢾࡋࡓ㸬๓㏙ࡋࡓࢲ࢖ࣖࣔࣥࢻ◒⢏㸦⢏ᚄ㸸30~40 ȝm㸧ࢆࡵࡗ
ࡁᾎ࡟ศᩓࡉࡏࡿࡓࡵ㸪ࢫࢱ࣮ࣛࡢᅇ㌿ᩘࡣ 1000 rpm ࡟ᅛᐃࡋࡓ㸬㟁╔ࢲ࢖ࣖࣔࣥࢻᕤලࡢస〇࡟࠾ࡅࡿࡵࡗࡁ
ᕤ⛬ࡣ୍⯡ⓗ࡟ࢫࢺࣛ࢖ࢡࡵࡗࡁ㸪」ྜࡵࡗࡁ㸪ᚋࡵࡗࡁࡢ 3 ࢫࢸࢵࣉ࡛⾜ࢃࢀࡿ㸬࢘ࢵࢻᾎࡣ㸪ᙉ㓟ᾎ࡛㝜ᴟ
௜㏆࡟኱㔞ࡢỈ⣲࢞ࢫࢆⓎ⏕ࡋ㸪㝜ᴟ௜㏆࡟࠾࠸࡚㑏ඖ㞺ᅖẼ࡛ᕤලẕᮦࡢ⾲㠃㓟໬≀ࢆ㑏ඖࡋ࡞ࡀࡽࡵࡗࡁࡍ
Fig. 5 Surface state of partially Ni-coated abrasives stripped in 30 min, 40 min and 50 min
Fig. 6 Schematic diagram of plating setup for manufacturing diamond tools
−19−
張 宇・谷 泰弘・村田 順二
ࡿࡇ࡜ࡀྍ⬟࡛ẕᮦ࡜ࡵࡗࡁᒙ࡜ࡢᐦ╔ᛶࡀⰋࡃ࡞ࡿ㸬ࡑࡢࡓࡵ㸪ࢫࢺࣛ࢖ࢡࡵࡗࡁ࡟ࡣ࢘ࢵࢻᾎࢆ㑅ᢥࡋࡓ㸬
◒⢏ࢆᯒฟࡍࡿ」ྜࡵࡗࡁᾎ࡜◒⢏ࡢಖᣢຊࢆ㧗ࡵࡿᚋࡵࡗࡁᾎ࡟ࡣ㸪㟁╔ᛂຊࡀᑠࡉࡃᡂ⭷㏿ᗘࡀ㏿࠸ࢫࣝࣇ
࢓࣑ࣥ㓟ࢽࢵࢣࣝᾎࢆ㑅ᢥࡋࡓ㸬ලయⓗ࡞ࡵࡗࡁᾎࡢ⤌ᡂ࠾ࡼࡧࡵࡗࡁ᮲௳ࢆ⾲ 2 ࡟ࡲ࡜ࡵࡓ㸬ࢫࢺࣛ࢖ࢡࡵࡗ
ࡁࡢ⭷ཌࡣ 0.5 ȝm ࡟࡞ࡿࡼ࠺࡟ࢫࢺࣛ࢖ࢡࡵࡗࡁࡢ᫬㛫ࢆ 150 s ࡜ࡋࡓ㸬ᚋࡵࡗࡁࡢ᮲௳࡛ࡣ㸪ࡵࡗࡁࡢᡂ⭷㏿
ᗘࡀ 3 ȝm/min ࡛࠶ࡿࡓࡵ㸪◒⢏ᚄࡢ 1/3 ⛬ᗘ㸦10 ȝm㸧ࡀᇙࡵ㎸ࡲࢀࡿࡼ࠺࡟ᚋࡵࡗࡁࡢ᫬㛫ࢆ 200 s ࡜ࡋࡓ㸬」
ྜࡵࡗࡁࡢ᫬㛫ࡣ◒⢏ࡢᯒฟ㔞࡟ᙳ㡪ࢆ୚࠼ࡿࡓࡵ㸪
◒⢏ࡢᯒฟ㔞ࢆ⪃៖ࡋ࡞ࡀࡽ」ྜࡵࡗࡁࡢ᫬㛫ࢆㄪᩚࡋࡓ㸬
ࡲࡓ㸪㧗ᡂ⭷㏿ᗘࡢ⥔ᣢࡢࡓࡵሷᇶᛶⅣ㓟ࢽࢵࢣࣝ࡜࢔࣑ࢻ◲㓟ࢆ⏝࠸࡚」ྜࡵࡗࡁᾎ࡜ᚋࡵࡗࡁᾎࡀ pH4 ࡟࡞
ࡿࡼ࠺࡟⟶⌮ࡋࡓ㸬
࣭ 」ྜࡵࡗࡁ᮲௳࡟ࡼࡿ㟁╔ᕤල⾲㠃ࡢ◒⢏ࡢᯒฟ㔞࡜ศᕸ
๓❶࡟㏙࡭ࡓࡼ࠺࡟◒⢏⾲㠃ࡢ㔠ᒓ⿕そ⋡ࡣᕤල࡟ᯒฟࡋࡓ◒⢏㔞࡟ᙳ㡪ࢆ୚࠼㸪
㒊ศ Ni ⿕そ◒⢏ࡢᯒฟ㔞ࡀ
඲㠃 Ni ⿕そ◒⢏࡜㠀⿕そ◒⢏ࡢ୰㛫࡟࡞ࡿ࡜⪃࠼ࡽࢀࡿ㸬స〇ࡋࡓ㒊ศ Ni ⿕そ◒⢏࡜ᕷ㈍ࡢ㠀⿕そ◒⢏࠾ࡼࡧ
඲㠃 Ni ⿕そ◒⢏ࢆ⏝࠸࡚ྠ୍᮲௳࡛㟁╔ࡋࡓᕤලࡢ⾲㠃࡟ᯒฟࡋࡓ◒⢏ࡢศᕸ≧ែࡣᅗ 7 ࡟♧ࡉࢀࡿ㸬
㠀⿕そ◒
⢏ࡢሙྜ࡟ࡣ◒⢏ࡀ࡯࡜ࢇ࡝ᯒฟࡋ࡚࠸࡞࠸㸬
඲㠃 Ni ⿕そ◒⢏ࢆ౑⏝ࡋࡓሙྜ࡟ࡣᕤල࡟ᯒฟࡋࡓ◒⢏ࡀ᭱ࡶከ
࠸ࡀ㸪◒⢏ྠኈࡀจ㞟ࡋ࡚ᯒฟࡍࡿഴྥࡀぢࡽࢀࡿ㸬ࡑࢀ࡟ᑐࡋ࡚㸪㒊ศ Ni ⿕そ◒⢏ࢆ౑⏝ࡋࡓሙྜ࡟ࡣ඲㠃
Ni ⿕そ◒⢏࡜ẚ࡭࡚ᯒฟ◒⢏ᩘࡣࡸࡸᑡ࡞࠸ࡀ㸪◒⢏ࡢศᩓᛶࡀࡼࡃ࡞ࡗ࡚࠸ࡿ㸬ࡲࡓ㸪◒⢏ࡢ Ni ⓶⭷๤㞳᫬
㛫ࡀ㛗࠸࡯࡝ᯒฟࡋࡓ◒⢏ࡢ㔞ࡀᑡ࡞࠸ࡇ࡜ࡀ☜ㄆ࡛ࡁࡿ㸬༓ⴥࡽࡣ㸪㔠ᒓᮦ㉁ࡀ␗࡞ࡿ⿕そ◒⢏ࢆ⏝࠸㸪◒⢏
ࡢᯒฟ㔞ࡀ◒⢏ᑟ㟁ᛶ࡟ᐦ᥋࡟㛵ಀࡋ㸪ᑟ㟁ᛶࡀ㧗࠸࡯࡝◒⢏ࡀᯒฟࡋࡸࡍ࠸࡜ㄽࡌࡓ㸦༓ⴥ௚㸪2003㸧
㸬ࡑࡢ⤖
ᯝ㏻ࡾ㸪ᮏ◊✲࡟౑⏝ࡉࢀࡓ◒⢏ࡣ඲㠃 Ni ⿕そ◒⢏㸪㒊ศ Ni ⿕そ◒⢏ 30 min㸪40 min㸪50 min㸪㠀⿕そ◒⢏ࡢ
㡰࡟◒⢏⾲㠃ࡢ㔠ᒓ⓶⭷ࡀᑡ࡞ࡃᑟ㟁ᛶࡀᝏࡃ࡞ࡗࡓࡓࡵ㸪◒⢏ࡢᯒฟ㔞ࡀపࡃ࡞ࡗࡓ࡜⪃࠼ࡽࢀࡿ㸬
Table 2 Compositions of plating baths and plating conditions
Fig. 7 Distribution states of various abrasives deposited on tools
−20−
電着工具用の部分Ni 被覆ダイヤモンド砥粒の開発
୍⯡ⓗ࡞㟁╔ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖᕤලࡣ◒⢏ᐦᗘࡀ 150 mm-2 ⛬ᗘ࡛࠶ࡿࡓࡵ㸪඲㠃 Ni ⿕そ◒⢏㸪㒊ศ Ni ⿕そ
◒⢏࠾ࡼࡧ㠀⿕そ◒⢏ࢆ⏝࠸࡚」ྜࡵࡗࡁࡢ᮲௳ࢆኚ໬ࡉࡏ㸪ᯒฟࡋࡓ◒⢏ࡢ㔞ࢆㄪ࡭ࡓ㸬ᅗ 8 ࡟ࡣ」ྜࡵࡗࡁ
ᾎ୰ࡢ◒⢏⃰ᗘ㸪」ྜࡵࡗࡁ᫬㛫➼ࢆኚ໬ࡉࡏࡓ㝿㸪ᕤල⾲㠃ࡢ༢఩㠃✚࠶ࡓࡾ࡟ᯒฟࡋࡓ◒⢏ಶᩘ㸦◒⢏ᐦᗘ㸧
ࢆ♧ࡍ㸬࠸ࡎࢀࡢ◒⢏࡟࠾࠸࡚ࡶ」ྜࡵࡗࡁᾎ୰ࡢ◒⢏⃰ᗘࡸ」ྜࡵࡗࡁ᫬㛫ࡀቑ࠼ࡿ࡯࡝ᯒฟࡋࡓ◒⢏ࡢ㔞ࡀ
ቑຍࡍࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬㠀⿕そ◒⢏ࡢሙྜ࡟ࡣ㸪ᯒฟࡋࡓ◒⢏ᐦᗘࡀ 150 mm-2 ࡟㐩ࡍࡿࡓࡵ࡟ࡣᾎ୰ࡢ◒⢏⃰
ᗘࢆ 40 g/L㸪」ྜࡵࡗࡁ᫬㛫ࢆ 60 s ࡟ࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸㸬඲㠃 Ni ⿕そ◒⢏ࢆ౑⏝ࡍࡿሙྜ࡟ࡣ㸪0.5 g/L ࡢప
◒⢏⃰ᗘ㸪」ྜࡵࡗࡁࡢ᫬㛫ࢆ 5 s ࡟ࡋ࡚┠ᶆࡢᯒฟ㔞ࡀᚓࡽࢀࡿ㸬ࡑࢀ࡟ᑐࡋ࡚ࡣ㸪㒊ศ Ni ⿕そ◒⢏ 30 min
ࡢሙྜ࡟ࡣ㸪ᾎ୰ࡢ◒⢏⃰ᗘࢆ 1 g/L㸪」ྜࡵࡗࡁ᫬㛫ࢆ 5 s ࡟ࡍࢀࡤ 150 mm-2 ࡢ◒⢏ᐦᗘࡀᚓࡽࢀ㸪඲㠃 Ni ⿕
そ◒⢏ࡼࡾ◒⢏ࡢᯒฟࡀࡸࡸ㐜ࢀࡿࡀ㠀⿕そ◒⢏࡟ẚ࡭࡚ⴭࡋࡃ㏿࠸ࡇ࡜ࡀศ࠿ࡗࡓ㸬๤㞳᫬㛫ࡀ㛗࠸㒊ศ Ni
⿕そ◒⢏ 50 min ࡛ࡣ㸪◒⢏⃰ᗘࢆ 10 g/L㸪」ྜࡵࡗࡁ᫬㛫ࢆ 60 s ࡟ࡍࡿᚲせࡀ࠶ࡿ㸬㒊ศ Ni ⿕そ◒⢏ࢆ౑⏝ࡍ
ࡿࡇ࡜࡟ࡼࡾ㸪」ྜࡵࡗࡁ᫬㛫ࡸ」ྜࡵࡗࡁᾎ୰ࡢ◒⢏⃰ᗘࡀ඲㠃 Ni ⿕そ◒⢏ࡼࡾࡸࡸ㧗࠸ࡀ㸪㠀⿕そ◒⢏ࡼࡾ
࠿࡞ࡾప࠸ࡇ࡜ࡀ☜࠿ࡵࡽࢀࡓ㸬
Fig. 8 Effect of complex plating conditions on density of abrasives on tool surface
Fig. 9 Relationship between grain distribution on tools and kinds of abrasives
−21−
張 宇・谷 泰弘・村田 順二
㟁╔ᕤල⾲㠃ࡢ◒⢏ᐦᗘ࡜◒⢏ศᕸ≧ែࡣᕤලࡢ◊๐≉ᛶ࡟኱ࡁࡃᙳ㡪ࢆ୚࠼ࡿ࡜⪃࠼ࡽࢀࡿ㸬ࡑࡢࡓࡵ㸪㟁
╔ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖᕤල࡜ྠࡌࡃ㸪◒⢏ᐦᗘࡀ 150 mm-2 ⛬ᗘࡢ㟁╔ᕤලࢆసᡂࡋ㸪ᕤල⾲㠃ࡢ◒⢏ศᕸ≧ែࢆ
ㄪ࡭ࡓ㸬◒⢏ࡢศᕸ≧ែࢆᩘ್ⓗ࡟ホ౯ࡍࡿࡓࡵ㸪୍㎶ 150 ȝm ᅄ᪉ᙧࡢ㡿ᇦ࡟ᯒฟࡋࡓ◒⢏ࡢಶᩘࢆ 200 ⟠ᡤ
ᩘ࠼㸪◒⢏ࡢಶᩘࢆ⤫ィⓗ࡟ศ㢮ࡋࡓ㸬◒⢏ࡢจ㞟࡟㛵ࡋ࡚ࡣ㸪◒⢏㛫ࡢ୰ᚰ㊥㞳ࡀ 40 ȝm ௨ෆࡢ◒⢏ಶᩘࢆᩘ
࠼㸪඲యࡢ◒⢏ᩘ࡜ࡢ๭ྜ࡛◒⢏จ㞟⋡ࢆᐃ⩏ࡋࡓ㸬ᅗ 9 ࡟ࡣᕤල⾲㠃࡟ᯒฟࡋࡓྛ✀◒⢏ࡢจ㞟⋡࡜ಶᩘศᕸ
㢖ᗘࢆ♧ࡍ㸬඲㠃 Ni ⿕そ◒⢏ࢆ౑⏝ࡋࡓᕤල࡟ࡣ㸪จ㞟ࡋࡓ◒⢏ࡀ࠿࡞ࡾከࡃ⣙ 70 %࡟㐩ࡋ㸪◒⢏ࡀᏑᅾࡋ࡞
࠸㡿ᇦ࡜ 7 ಶ௨ୖࡢ㡿ᇦࡀ 30 %⛬ᗘ༨ࡵࡿ㸬㠀⿕そ◒⢏ࡢሙྜ࡟ࡣ㸪ᯒฟࡋࡓ◒⢏ࡢ୰࡟จ㞟⋡ࡀ᭱ࡶపࡃ 40 %
௨ୗ࡟࡞ࡗ࡚࠸ࡿ㸬ࡑࢀࡽࡢ◒⢏࡟ᑐࡋ࡚ࡣ㸪㛤Ⓨࡋࡓ㒊ศ Ni ⿕そ◒⢏ࡣ㸪㠀⿕そ◒⢏ࡼࡾ◒⢏ࡢจ㞟⋡ࡀࡸࡸ
㧗࠸ࡀ㸪඲㠃 Ni ⿕そ◒⢏ࡼࡾ኱ࡁࡃపῶࡍࡿࡇ࡜ࡀ࡛ࡁࡓ㸬㒊ศ Ni ⿕そ◒⢏ 30 min ࡜ 40 min ࡢሙྜ࡟ࡣศᕸ
≧ែࡢᕪ␗ࡀ࡯࡜ࢇ࡝ぢࡽࢀࡎ඲㠃 Ni ⿕そ◒⢏࡜ẚ࡭࡚จ㞟ࡋࡓ◒⢏ࡢ㔞ࡀ 15 %⛬ᗘᑡ࡞ࡃ࡞ࡿࡇ࡜ࡀ☜ㄆࡉ
ࢀࡓ㸬◒⢏ࡀᏑᅾࡋ࡞࠸㡿ᇦ࡜ 7 ಶ௨ୖࡢ㡿ᇦ࡟࠾࠸࡚ࡶ㸪㒊ศ Ni ⿕そ◒⢏ࡀ඲㠃 Ni ⿕そ◒⢏࡟ẚ࡭࡚༙ศ⛬
ᗘపῶࡍࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬㒊ศ Ni ⿕そ◒⢏ 50 min ࡣ㠀⿕そ◒⢏࡜ኚࢃࡽ࡞࠸࡯࡝◒⢏ศᕸ≧ែࡀࡼ࠸ࡇ࡜ࡀ
☜ㄆ࡛ࡁࡿ㸬⾲㠃࡟ᑟ㟁ᛶࡀ࠶ࡿ◒⢏ࡢ௜㏆࡟ࡣ㟁఩ࡀ㧗ࡃ◒⢏ࡀᯒฟࡋࡸࡍ࠸ࡓࡵࡔ࡜⪃࠼ࡽࢀࡿ㸬㒊ศ Ni
⿕そ◒⢏ࢆ౑⏝ࡍࡿ࡜඲㠃 Ni ⿕そ◒⢏ࡢሙྜ࡟ࡼࡾ◒⢏ࡢจ㞟ඹᯒࡀᢚไ࡛ࡁ㸪
㟁╔ᕤලୖࡢ◒⢏ࡢศᩓᛶࢆᨵ
ၿࡍࡿຠᯝࡀ࠶ࡿࡇ࡜ࡀ☜࠿ࡵࡽࢀࡓ㸬
㒊ศ Ni ⿕そ◒⢏࡟࠾࠸࡚ࡣ Ni ⓶⭷ࡢ࡞࠸㒊ศࡀ◊๐ᕤලୖ࡛ྎ㔠࡟ᑐࡋ࡚እྥࡁ࡟࡞ࡽ࡞ࡅࢀࡤ㟁╔ᕤලࡢ
ษࢀ࿡ࡢྥୖࢆᐇ⌧ࡍࡿࡇ࡜ࡀ࡛ࡁ࡞࠸ࡓࡵ㸪ᕤල࡟ᯒฟࡋࡓ㒊ศ Ni ⿕そ◒⢏ࡢྥࡁࢆほᐹࡋࡓ㸬ᅗ 10 ࡣᕤල
⾲㠃࡟㟁╔ࡉࢀࡓ㒊ศ Ni ⿕そ◒⢏ 50 min ࡢ SEM ⏬ീ࡜Ⅳ⣲ศᕸᅗ㸦EDX㸧ࢆ♧ࡍ㸬◒⢏ࡢ࠶ࡿ࡜ࡇࢁ࡟ࡣⅣ⣲
ࡀ࡯࡜ࢇ࡝ほᐹࡉࢀࡿࡓࡵ Ni ⓶⭷ࡢ࡞࠸㒊ศࡀእྥࡁ࡟࡞ࡗ࡚࠸ࡿࡇ࡜ࡀ☜ㄆ࡛ࡁࡿ㸬
ᑟ㟁ᛶࡢ࡞࠸㠀⿕そ◒⢏
ࡀ኱ኚᯒฟࡋ࡟ࡃ࠸ࡇ࡜࡜㸪ᑟ㟁ᛶࡢ࠶ࡿ඲㠃 Ni ⿕そ◒⢏ࡀᯒฟࡋࡸࡍ࠸ࡇ࡜ࢆ๓㏙ࡉࢀࡓ㸬◒⢏ࡀᾮ୰࡟ࣛࣥ
ࢲ࣒࡟㐠ືࡋ㒊ศ Ni ⿕そ◒⢏ࡢࡍ࡭࡚ࡢ㠃ࡀྎ㔠࡟᥋ゐࡍࡿ㢖ᗘࡀྠࡌ࡜⪃࠼ࡽࢀࡿࡀ㸪
◒⢏ࡢࢲ࢖ࣖࣔࣥࢻ㒊
ศ࡟ࡣᑟ㟁ᛶࡀ࡞ࡃྎ㔠࡟᥋ゐࡋ࡚ࡶᅛ╔ࡉࢀ࡞࠸ࡲࡓࡣᅛ╔ࡉࢀ࡟ࡃ࠸࡜᥎ ࡛ࡁࡿ㸬ࡑࢀ࡟ᑐࡋ㸪Ni ⓶⭷ࡢ
㒊ศࡀྎ㔠࡟᥋ゐࡍࡿ࡜᥋ゐ㒊ศ࡟㟁Ẽࡀὶࢀࡵࡗࡁᒙࡀ㧗㏿࡟ᡂ㛗ࡋ◒⢏ࡀᅛ╔ࡉࢀࡸࡍ࠸࡜⪃࠼ࡽࢀࡿ㸬࡞
࠾㸪㒊ศ Ni ⿕そ◒⢏⾲㠃 Ni ⭷ࡢ࡝ࡢ㒊ศࡀྎ㔠࡟ᅛ╔ࡉࢀࡿࡢࡀุ᩿ࡍࡿࡇ࡜ࡀ࡛ࡁ࡞࠿ࡗࡓ㸬ࡋࡓࡀࡗ࡚㸪
ᯒฟࡋࡓ㒊ศ Ni ⿕そ◒⢏ࡀⰍࠎ࡞᪉ྥ࡟ྥ࠿ࡎࢲ࢖ࣖࣔࣥࢻࡀ㟢ฟࡋࡓ㒊ศࡀྎ㔠࡟ᑐࡋ࡚እྥࡁ࡟࡞ࡾࡸࡍ
࠸࡜ᐃᛶⓗ࡟⪃ᐹࡋࡓ㸬ࡲࡓ㸪ᅗ 5 ࡟♧ࡉࢀࡓࡼ࠺࡟㒊ศ Ni ⿕そ◒⢏ࡢ Ni ⓶⭷࡜◒⢏ࡢ㛫࡟๤㞳ᾮࡀከᑡ౵ධ
ࡋ㝽㛫ࡀ⏕ࡌ◒⢏ࡢಖᣢຊࡀపୗࡍࡿࡇ࡜ࡀᠱᛕࡉࢀࡓࡀ㸪ᅗ 1(c)࡜ᅗ 10(a)࡟♧ࡉࢀࡿࡼ࠺࡟◒⢏࡜ Ni ⓶⭷ࡢ
⏺㠃࡟ࡣࡑࡢ㝽㛫ࡀ☜ㄆࡉࢀ࡚࠾ࡽࡎ㸪㟁╔୰࡟ࡵࡗࡁᾮࡀ౵ධࡋᯒฟࡋࡓࢽࢵࢣࣝࡼࡾᇙࡵࡽࢀࡓ࡜᥎ᐹࡉࢀ
ࡿ㸬௨ୖࡢ⌮⏤࡟ࡼࡾ㸪㒊ศ Ni ⿕そ◒⢏ࢆ⏝࠸࡚స〇ࡋࡓ◊๐ᕤලࡣ඲㠃 Ni ⿕そ◒⢏࡜㠀⿕そ◒⢏ࡢ㛗ᡤࢆ᭷
ࡋ㸪◒⢏ࡢಖᣢຊࡀ㧗࠸ࡲࡲษࢀ࿡ࡀࡼ࠸ࡶࡢ࡜⪃࠼ࡽࢀࡿ㸬
ᅗ 12 ࡣస〇ࡋࡓ㟁╔ᕤලࢆ⏝࠸࡚࢞ࣛࢫ࡜ࢩࣜࢥࣥࢆ◊๐ࡋࡓ㝿ࡢ༢఩ᖜᙜࡾࡢ◊๐᢬ᢠ࠾ࡼࡧᕤస≀ࡢ
⾲㠃⢒ࡉࢆ♧ࡍ㸬ࡇࡢ⤖ᯝ࠿ࡽ◒⢏⾲㠃ࡢ Ni ⓶⭷ࡢ⿕そ⋡࡟ࡼࡾ㟁╔ᕤලࡢ◊๐≉ᛶࡀ␗࡞ࡿࡇ࡜ࡀศ࠿ࡿ㸬㒊
Fig. 10 Orientation of partially Ni-coated abrasives (50 min) and EDX analysis of carbon on tool
−22−
電着工具用の部分Ni 被覆ダイヤモンド砥粒の開発
ศ Ni ⿕そ◒⢏ࢆ⏝࠸ࡓᕤලࡢሙྜ࡟ࡣ㸪඲㠃 Ni ⿕そ◒⢏ࡢᕤල࡟ẚ࡭◊๐᢬ᢠࡀపࡃ࡞ࡗ࡚࠸ࡿ㸬㠀⿕そ◒⢏
ࢆ౑⏝ࡋࡓሙྜ࡟㸪◊๐᢬ᢠࡀ᭱ࡶᑠࡉࡃ࡞ࡗࡓ㸬ࡇࢀࡣ㸪ᅗ 1 ࡟♧ࡉࢀࡿࡼ࠺࡟㟁╔ᕤලࡢ⾲㠃࡟ᯒฟࡋࡓ㠀
⿕そ◒⢏ࡲࡓࡣ㒊ศ Ni ⿕そ◒⢏ࡢ⾲㠃࡟ࡣ Ni ⓶⭷ࡀ࡞ࡃ㸪ᮏ᮶ࡢࢲ࢖ࣖࣔࣥࢻ◒⢏ࡢ㗦࠸ษࢀลࢆᣢࡘࡓࡵ㸪
◊๐᢬ᢠࡀᑠࡉࡃ࡞ࡗࡓ࡜⪃࠼ࡽࢀࡿ㸬
㒊ศ Ni ⿕そ◒⢏ࢆస〇ࡍࡿ㝿ࡢ๤㞳᫬㛫ࡀ㛗ࡃ࡞ࡿ࡟ࡘࢀ࡚◊๐᢬ᢠࡀ
ᑠࡉࡃ࡞ࡗ࡚࠸ࡿ㸬ᅗ 4 ࡟♧ࡉࢀࡿࡼ࠺࡟๤㞳᫬㛫ࡀ㛗࠸࡯࡝◒⢏⾲㠃ࡢ Ni ⓶⭷ࡀᑡ࡞ࡃ㸪ࢲ࢖ࣖࣔࣥࢻ◒⢏ࡢ
㟢ฟ㒊ศࡀቑ࠼ࡓࡓࡵ࡜⪃࠼ࡽࢀࡿ㸬ࡲࡓ㸪ᕤస≀ࡢᮦ㉁࡟ࡼࡗ࡚◊๐ືຊࡀ␗࡞ࡾ㸪࢞ࣛࢫࡢሙྜ࡟ࡣࢩࣜࢥ
ࣥࡼࡾ◊๐᢬ᢠࡀಸ⛬ᗘ㧗ࡃ࡞ࡗ࡚࠸ࡿ㸬࢞ࣛࢫࡣ㠀ᬗ㉁࡛⢓ࡾᙉ࠸㞴◊๐ᮦᩱ࡜▱ࡽࢀ࡚࠾ࡾ㸪ࢩࣜࢥࣥ࡜ẚ
࡭࡚◳ࡃ࡚ᕤලࡀ⁥ࡾࡸࡍ࠸ࡓࡵ◊๐᢬ᢠࡀቑ኱ࡋࡓ࡜⪃࠼ࡽࢀࡿ㸬
ᕤస≀◊๐㠃ࡢ⾲㠃⢒ࡉ࡟ࡘ࠸࡚ࡣ㸪ᅗ 12 ࡟♧ࡉࢀࡿࡼ࠺࡟㒊ศ Ni ⿕そ◒⢏ࢆ౑⏝ࡋࡓᕤලࡢሙྜࡣ඲㠃 Ni
⿕そ◒⢏ࡢᕤලࡢሙྜࡼࡾ⾲㠃⢒ࡉࡀࡸࡸపࡃ࡞ࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬
඲㠃 Ni ⿕そ◒⢏ࡢᕤලࡢሙྜ࡟ࡣจ㞟ࡋࡓ
◒⢏ࡢ㔞ࡀከࡃ◒⢏ࡢศᩓᛶࡀᝏ࠸ࡓࡵ◒⢏㛫㝸ࡢࡤࡽࡘࡁࡀ኱ࡁ࠸㸬ࡉࡽ࡟㸪ᅗ 1 ࡟♧ࡉࢀࡿࡼ࠺࡟඲㠃 Ni
⿕そ◒⢏ࡀྎ㔠ࡢ༙ᚄ᪉ྥ࡟ࡶจ㞟ࡋ㸪ษࢀลࡢ㧗ࡉࡀ䬘ࡗ࡚࠸࡞࠸ࡓࡵ㸪⾲㠃⢒ࡉࡢ್ࡀ኱ࡁࡃ࡞ࡗࡓ࡛ࡣ࡞
࠸࠿࡜⪃ᐹࡋࡓ㸬ࡇࢀ࡟ᑐࡋ㸪㒊ศ Ni ⿕そ◒⢏ࡲࡓࡣ㠀⿕そ◒⢏ࡢᕤලࡢሙྜ࡟ࡣ㸪ᯒฟࡋࡓ◒⢏ࡢศᩓᛶࡀࡼ
࠸ࡔࡅ࡛ࡣ࡞ࡃ㸪◒⢏ࡢඛ➃࡟ᑟ㟁ࡋ࡞࠸ࢲ࢖ࣖࣔࣥࢻ࡜࡞ࡗ࡚࠾ࡾ◒⢏ࡀ⦪࡟จ㞟ࡍࡿࡇ࡜ࡀᑡ࡞ࡃ࡚◒⢏ࡢ
ඛ➃㧗ࡉࡀ䬘ࡗ࡚࠸ࡓࡓࡵ㸪◊๐㠃ࡢ⾲㠃⢒ࡉࡀࡼࡃ࡞ࡗࡓ࡜⪃࠼ࡽࢀࡿ㸬ࡇࢀࡽࡢ⤖ᯝࢆᅗ 9 ࡢ⤖ᯝ࡜ྜࢃࡏ
࡚⪃៖ࡍࢀࡤ㸪㟁╔ᕤල࡟ᯒฟࡋࡓ◒⢏ࡢศᕸ≧ែࡀࡼ࠸࡯࡝◊๐㠃ࡢᛶ≧ࡀⰋࡃ࡞ࡿࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡿ㸬
Fig. 11 Schematic diagram of grinding tests
Fig. 12 Influence of kinds of abrasives on grinding force and surface roughness
−23−
張 宇・谷 泰弘・村田 順二
㟁╔ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖᕤලࡣ◒⢏ᒙࡀ༢ᒙ࡛࠶ࡾ㸪◒⢏ࡢಖᣢຊࡣᕤලᑑ࿨࡟኱ࡁࡃᙳ㡪ࡍࡿ㸬ྛ✀ࡢ◒⢏
ࡢಖᣢຊࢆホ౯ࡍࡿࡓࡵ㸪◊๐᮲௳ࡢษ㎸ࡳ㔞ࢆ 150 ȝm ࡟ቑຍࡋ࢞ࣛࢫࡢ㔜◊๐ࢆ⾜ࡗࡓ㸬ᅗ 13 ࡟ࡣ㸪ྛ✀ࡢ
◒⢏ࢆ౑⏝ࡋࡓ㟁╔ᕤලࢆ⏝࠸࡚◊๐ᅇᩘࢆቑຍࡋ࡞ࡀࡽ◊๐ຍᕤࢆ⾜ࡗࡓ㝿ࡢ◊๐᢬ᢠࡢኚ໬ࢆ♧ࡍ㸬㒊ศ Ni
⿕そ◒⢏ࢆ⏝࠸ࡓᕤලࡣ㸪
඲㠃 Ni ⿕そ◒⢏ࡢᕤල࡟ࡼࡾᕤල◚ቯ࡟⮳ࡿࡲ࡛ࡢ◊๐᢬ᢠࡀᏳᐃࡍࡿࡇ࡜ࡀ☜ㄆࡉ
ࢀࡿ㸬඲㠃 Ni ⿕そ◒⢏ࡢሙྜ㸪◊๐ึᮇ࡛ࡣ◒⢏ඛ➃࡟そࢃࢀࡓ Ni ⓶⭷ࡀᦶ⪖ࡉࢀࢲ࢖ࣖࣔࣥࢻࡀ㟢ฟࡋ◊๐
᢬ᢠࡀῶᑡࡍࡿഴྥࡀࡳࡽࢀࡿ㸬㒊ศ Ni ⿕そ◒⢏ࡢሙྜ࡛ࡣ㸪◒⢏ࡢඛ➃࡟ Ni ⓶⭷ࡀᑡ࡞࠸ࡓࡵ㸪◊๐᢬ᢠࡀ
Ᏻᐃࡋ࡚ప࠸್ࢆ♧ࡋࡓ࡜⪃ᐹࡋࡓ㸬ᕤලᑑ࿨㸦◊๐ᅇᩘ㸧ࡣ◒⢏࿘ᅖࡢ Ni ⓶⭷ศᕸ≧ែ࠾ࡼࡧ◒⢏ศᕸࡢᆒ୍
ᛶ࡟኱ࡁࡃᙳ㡪ࡉࢀࡿ㸬
ᙉᅛ࡞ Ni ⭷࡛ᅖࡲࢀࡿ◒⢏ࡀᆒ୍࡟ᕤලୖ࡟ศᕸࡋࡓ◊๐ᕤලࡣᕤලᑑ࿨ࡀ㛗࠸࡜⪃࠼
ࡽࢀࡿ㸬㠀⿕そ◒⢏ࢆ౑⏝ࡋࡓሙྜ࡟ࡣ㸪ࢃࡎ࠿ 7 ᅇ┠ࡢ◊๐࡛ᕤලࡀ◚ቯࡋࡓ㸬ᅗ 1 ࡟♧ࡉࢀࡿࡼ࠺࡟㸪㠀⿕
そ◒⢏ࡀẕᮦ࡜ࡢ᥋ゐࡍࡿ㒊ศ࡛ࡵࡗࡁ⭷ࡀพࢇ࡛࠸ࡓࡓࡵ㸪◒⢏ࡢಖᣢຊࡀᙅࡃ࡞ࡾ㸪ᕤලᑑ࿨ࡀ᭱ࡶ▷࠿ࡗ
ࡓ࡜⪃࠼ࡽࢀࡿ㸬ࡇࢀ࡟ᑐࡋ࡚㸪඲㠃 Ni ⿕そ◒⢏ࢆ౑⏝ࡋࡓᕤලࡢሙྜ࡟ࡣ㸪㠀⿕そ◒⢏ࢆ౑⏝ࡍࡿሙྜࡼࡾࡶ
ᕤලᑑ࿨ࡣఙࡧ࡚࠸ࡿࡀ㸪12 ᅇ◊๐௨ᚋ࡟ࡣ◊๐᢬ᢠࡀᛴ⃭࡟ቑ኱ࡋᕤලࡢࡵࡗࡁᒙࡀ๤ࡀࡉࢀᕤල◚ᦆ࡟⮳ࡗ
ࡓ㸬ࡑࢀࡣ㸪୍㒊ࡢಖᣢຊࡀᙅ࠸◒⢏ࡀඛ࡟ᕤල࠿ࡽ⬺ⴠࡋ㸪ṧࡗࡓ◒⢏࡟ࡣ኱ࡁ࡞◊๐ຊࡀཷࡅࡽࢀ኱つᶍࡢ
◒⢏⬺ⴠࡀ⏕ࡌ㸪◊๐⬟ຊࡢ࡞࠸ࡵࡗࡁᒙࡀᕤస≀࡟┤᥋࡟ᙜࡓࡗ࡚๤ࡀࡉࢀࡿࡇ࡜࡟ࡼࡾᕤලࡢ◚ቯ࡟⮳ࡗࡓ
࡜᥎ᐹࡋࡓ㸬
㒊ศ Ni ⿕そ◒⢏ 30 min ࡜ 40 min ࢆ⏝࠸ࡓᕤලࡢሙྜ㸪
13 ᅇ◊๐ࡲ࡛ᕤලࡀ◚ᦆࡏࡎ࡟◊๐࡛ࡁࡓ㸬
㒊ศ Ni ⿕そ◒⢏ 30 min ࡜ 40 min ࡢᕤලࡣ඲㠃 Ni ⿕そ◒⢏ࡢᕤලࡼࡾᕤලᑑ࿨ࡀࡸࡸ㛗࠸ࡇ࡜ࡀศ࠿ࡗࡓ㸬◒
⢏⾲㠃ࡢ Ni ⓶⭷ࡢ๤㞳᫬㛫ࢆ㐺ษ࡟ㄪᩚࡋࡓ㒊ศ Ni ⿕そ◒⢏ࢆ⏝࠸ࡿࡇ࡜࡟ࡼࡾ㸪
඲㠃 Ni ⿕そ◒⢏ࡼࡾ㧗࠸ᑑ
࿨ࢆ᭷ࡍࡿ㟁╔ᕤලࡀస〇࡛ࡁࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬㒊ศ Ni ⿕そ◒⢏ 30 min ࡜ 40 min ࢆ⏝࠸ࡓ㟁╔ᕤලࡢᕤලᑑ
࿨ࡀ㛗ࡃ࡞ࡿཎᅉ࡜ࡋ࡚ࡣ㸪
◒⢏ࡀᕤල࡟ᯒฟࡋࡓ≧ែࡀ␗࡞ࡿࡓࡵ࡜⪃࠼ࡽࢀࡿ㸬
඲㠃 Ni ⿕そ◒⢏ࡢሙྜ࡟ࡣ㸪
ᅗ 1 ࡟♧ࡉࢀࡿࡼ࠺࡟㒊ศ Ni ⿕そ◒⢏࡜ẚ࡭◒⢏࡟ᑟ㟁ᛶࡢ Ni ⓶⭷ࡀ࠶ࡿࡓࡵࡵࡗࡁᒙࡢᡂ㛗ᙧែࡣఝ࡚࠾ࡾ
◒⢏ࡢಖᣢຊࡀ㧗࠸࡜⪃࠼ࡽࢀࡿࡀ㸪จ㞟ࡋࡓ◒⢏ࡢሢ࡟࠿࠿ࡿ◊๐ຊࡀ኱ࡁࡃࡑࡢ◒⢏ࡀᕤල࠿ࡽ๤㞳ࡋࡸࡍ
࠸ࡓࡵ㸪㒊ศ Ni ⿕そ◒⢏ 30 min ࡜ 40 min ࡢᕤලࡼࡾᑑ࿨ࡀ▷ࡃ࡞ࡗࡓ࡛ࡣ࡞࠸࠿࡜⪃ᐹࡋࡓ㸬࡞࠾㸪㒊ศ Ni
⿕そ◒⢏ 50 min ࡢᕤලࡣ 10 ᅇ┠ࡢ◊๐ࢆ⾜ࡗࡓ㝿࡟ᕤලࡀቯࢀ㸪௚ࡢ㒊ศ Ni ⿕そ◒⢏ࡢᕤලࡼࡾᕤලᑑ࿨ࡀ▷
࠿ࡗࡓ㸬๤㞳᫬㛫ࡀ 50 min ࡟࡞ࡿ࡜◒⢏ࡢ⾲㠃ࡢ Ni ⓶⭷ࡀ࡯࡜ࢇ࡝࡞࠸ࡓࡵ㸪◒⢏ࡢಖᣢຊࡀᙅࡃ㠀⿕そ◒⢏
ࡼࡾࢃࡎ࠿࡟㧗࠸⛬ᗘ࡟࡞ࡗࡓ࡜⪃࠼ࡽࢀࡿ㸬ࡋࡓࡀࡗ࡚㸪㒊ศ Ni ⿕そ◒⢏⾲㠃ࡢ Ni ⓶⭷ࡢ㔞ࡣᕤලࡢ◊๐≉
ᛶ࡟኱ࡁࡃᙳ㡪ࡋ㸪㐺ษ࡞ Ni ⓶⭷ࢆ᭷ࡍࡿ㒊ศ Ni ⿕そ◒⢏ࢆ౑⏝ࡍࡿࡇ࡜࡟ࡼࡾ㸪◒⢏ࡢಖᣢຊࡀ㧗ࡃ࡚ษࢀ
࿡ࡢඃࢀࡿ㟁╔ᕤලࡀస〇࡛ࡁࡿࡇ࡜ࡀศ࠿ࡗࡓ㸬
Fig. 13 Variations of grinding force using various tools according to the number of grinding pass
−24−
電着工具用の部分Ni 被覆ダイヤモンド砥粒の開発
5. ⤖ ㄒ
ᮏ◊✲࡛ࡣ㸪㟁╔ᕤලࡢษࢀ࿡࡜◒⢏ಖᣢຊࡢࢺ࣮ࣞࢻ࢜ࣇࢆゎỴࡋ㧗ᛶ⬟㟁╔ᕤලࢆ㛤Ⓨࡍࡿࡓࡵ࡟㸪㒊ศ
Ni ⿕そ◒⢏ࢆᥦ᱌ࡋࡓ㸬඲㠃 Ni ⿕そ◒⢏⾲㠃ࡢ୍㒊ศࡢ Ni ⓶⭷ࢆ๤㞳ࡍࡿࡇ࡜࡟ࡼࡾ㒊ศ Ni ⿕そ◒⢏ࡢస〇
ࢆヨࡳࡓ㸬㛤Ⓨࡋࡓ㒊ศ Ni ⿕そ◒⢏ࢆᕷ㈍ࡢ඲㠃 Ni ⿕そ◒⢏࠾ࡼࡧ㠀⿕そ◒⢏࡜ẚ㍑ࡋ࡞ࡀࡽ㸪㟁╔᮲௳࡟ࡼ
ࡿ◒⢏ࡢ㟁╔ᕤල࡬ࡢᯒฟ≉ᛶࡸศᕸ≧ែࡢ┦㐪ࢆ᳨ウࡋࡓ㸬㒊ศ Ni ⿕そ◒⢏࡜඲㠃 Ni ⿕そ◒⢏㸪㠀⿕そ◒⢏
ࢆ⏝࠸࡚ྠࡌ◒⢏ᐦᗘࡢ㟁╔ᕤලࢆస〇ࡋ㸪ࢩࣜࢥࣥ࡜࢞ࣛࢫࡢ◊๐ᐇ㦂ࢆ⾜࠸㸪◊๐᢬ᢠࡸ◊๐㠃ࡢ≧ែࢆホ
౯ࡋࡓ㸬ᚓࡽࢀࡓ⤖ᯝࡣ㸪௨ୗࡢ㏻ࡾ࡛࠶ࡿ㸬
(1) ඲㠃 Ni ⿕そ◒⢏⾲㠃ࡢ Ni ⓶⭷ࢆ๤㞳ࡍࡿࡇ࡜࡟ࡼࡾ Ni ⓶⭷ࡢ㔞ࡀ␗࡞ࡿ㒊ศ Ni ⿕そ◒⢏ࡢస〇ࡀ࡛ࡁࡓ㸬
(2) 」ྜ㟁Ẽࡵࡗࡁἲ࡟ࡼࡿ㟁╔ࢲ࢖ࣖࣔࣥࢻᕤලࡢస〇࡟࠾࠸࡚ࡣ㸪㒊ศ Ni ⿕そ◒⢏ࡀ඲㠃 Ni ⿕そ◒⢏࡟ẚ
࡭࡚ᯒฟ㔞ࡀࡸࡸຎࡿࡀ◒⢏ࡢจ㞟㔞ࡀᑡ࡞ࡃ㸪ศᩓᛶࡀࡼࡃ࡞ࡿ㸬㠀⿕そ◒⢏ࡼࡾ㒊ศ Ni ⿕そ◒⢏ࡢจ
㞟⋡ࡣࡸࡸ㧗࠸ࡀ㸪◒⢏ࡢᯒฟ㔞ࡀከࡃ࡞ࡿࡇ࡜ࡀศ࠿ࡗࡓ㸬
(3) 㒊ศ Ni ⿕そ◒⢏ࢆ౑⏝ࡍࡿࡇ࡜࡟ࡼࡾࢲ࢖ࣖࣔࣥࢻ◒⢏ࡢ㗦࠸ษࢀลࡀእྥࡁ࡟࡞ࡾ㸪◊๐᢬ᢠࡀపࡃ࡞
ࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬◒⢏ࡢಖᣢຊࡀຎࡿࡇ࡜࡞ࡃඃࢀࡓ◊๐≉ᛶࡀ⥔ᣢ࡛ࡁࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬
(4) 㒊ศ Ni ⿕そ◒⢏ࢆ⏝࠸ࡓ㟁╔ᕤලࡣ඲㠃 Ni ⿕そ◒⢏࡟ẚ࡭࡚◒⢏ࡢจ㞟ࡀᑡ࡞ࡃ࡚ศᩓᛶࡀࡼ࠸ࡓࡵ㸪◊
๐㠃⢒ࡉࡀⰋዲ࡛࠶ࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬Ni ⓶⭷ࡢ๤㞳᫬㛫ࢆ 40 min ࡟ࡋࡓ◒⢏ࢆ౑⏝ࡋࡓᕤලࡢ◊๐≉ᛶ
ࡀ᭱ࡶඃࢀࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬
᭱ᚋ࡟㸪ᮏ◊✲ࢆ⾜࠺࡟ᙜࡓࡗ࡚ᐇ㦂࡟༠ຊࡉࢀࡓ❧࿨㤋኱ᏛඖᏛ⏕࣭ᐆ⏣┿࿃Ặ㸪୰ᕝ᫭ᏹẶ㸪ᶫ∎㞝኱
Ặ㸪㔠೧Ặ࡟ᚰࡼࡾឤㅰ࠸ࡓࡋࡲࡍ㸬
ᩥ ⊩
༓ⴥᗣ㞞, ㇂Ὀᘯ, ᴮᮏಇஅ, 㟁╔ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖᕤලࡢ㧗㏿〇㐀ἲࡢ㛤Ⓨ, ᪥ᮏᶵᲔᏛ఍ㄽᩥ㞟 C ⦅,
Vol.69, No.680 (2003), pp.303-309.
ᴮᮏⱥᙪ, ྂᕝ┤἞, ᯇᮧ᐀㡰, 」ྜ ࡵࡗ ࡁ, ᪥หᕤᴗ᪂⪺♫ (1989), p.4.
๓⏣▱ὒ, ◊๐⏝㟁╔࣍࢖࣮ࣝࡢ⤂௓, ◒⢏ຍᕤᏛ఍ㄅ, Vol.57, No.8 (2013), pp.502-505.
୰ᕝ᫭ᏹ, ᐆ⏣┿࿃, ㇂Ὀᘯ, 㟁╔ᕤල⏝㒊ศࢥ࣮ࢸ࢕ࣥࢢࢲ࢖ࣖࣔࣥࢻ◒⢏ࡢ㛤Ⓨ, 2008 ᖺᗘ⢭ᐦᕤᏛ఍⛅Ꮨ኱
఍Ꮫ⾡ㅮ₇఍ㅮ₇ㄽᩥ㞟 (2008), pp.467-468.
ᩪ⸨ᅖ, ᮏ㛫ⱥኵ, ᒣୗႹே, ᪂ࡵࡗࡁᢏ⾡ (2011), p.75
బ⸨㔠ྖ, 㕥ᮌᩘኵ, 㟁╔ࢲ࢖ࣖࣔࣥࢻ◒▼ࡢసᡂ࡜ࡑࡢ◊๐ᣲື, 㔠ᒓ⾲㠃ᢏ⾡, Vol.33, No.6 (1982), pp.285-290.
బ⸨㔠ྖ, 㕥ᮌᩘኵ, 㟁╔ࢲ࢖ࣖࣔࣥࢻ◒▼ࡢᛶ⬟࡟ᑐࡍࡿ◒⢏≀ᛶࡢຠᯝ, 㔠ᒓ⾲㠃ᢏ⾡, Vol.38, No.3 (1987),
pp.92-96.
Webster, J. and Tricard, M., Innovations in abrasive products for precision grinding, CIRP Annals - Manufacturing
Technology, Vol.53, No.2 (2004), pp.597-617.
−25−
立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年
Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014
࣡࢖ࣖ᧿㐣᥼⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡟ࡼࡿࢩࣜࢥࣥ࢖ࣥࢦࢵࢺࡢ
ษ᩿ࡢᇶ♏ⓗ᳨ウ
㇂ Ὀᘯ 1)㸪ᙇ Ᏹ 1)㸪ᮧ⏣㡰஧ 2)
᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹
A feasibility study for the application for slicing Si ingots using a wet etching
assisted by wire-friction
Yasuhiro TANI1), Yu ZHANG1) and Junji MURATA 2)
Silicon (Si) wafers for electronic or photovoltaic devices are fabricated by slicing a Si ingot using mechanical
slicing with a diamond wire. Recently, the slicing method without generating damage on Si surface has been strongly
required because of the increasing demand of ultra-thin Si wafers. In this study, we have developed a novel machining
method for Si grooving based on a wet chemical etching. In this method, Si was processed by the chemical etching in
HNO3 and HF mixture combined with an abrasion effect of metallic wires that contains no abrasives. The extremely
low kerf loss with approx. 100 ȝm was achieved by optimizing the composition of etchant. SEM observation showed
that Si surfaces processed by the proposed method had no crack and tool mark contrary to the mechanical slicing.
Furthermore, Raman microscopy exhibited that the proposed method generated no disordered layer on Si surfaces,
whereas the mechanical slicing caused amorphous layers. Surface roughness was improved by adding CH3COOH to the
etchant.
Key Words : Silicon, Etching, Slicing, Mixed acid, Kerf loss
E-mail㸸[email protected] (Y. Zhang)
᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹
❧࿨㤋኱Ꮫ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉
㏆␥኱Ꮫ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉
1)
Department of Mechanical Engineering, Ritsumeikan University,
Kusatsu, Shiga, 525-8577, Japan
2)
Department of Mechanical Engineering, Kinki University,
Higashiosaka, Osaka, 577-8502, Japan
1)
2)
−27−
谷 泰弘・張 宇・村田 順二
⥴ ゝ
࢚ࢿࣝࢠ࣮ࡸᆅ⌫⎔ቃ࡟ᑐࡍࡿ㛵ᚰࡀ㧗ࡲࡿ࡞࠿㸪ኴ㝧㟁ụࡣ෌⏕ྍ⬟࡞ࢡ࣮࢚ࣜࣥࢿࣝࢠ࣮ࡢ୍ࡘ࡜ࡋ࡚㟂
せࡀቑຍࡋ࡚࠸ࡿ㸬ኴ㝧㟁ụࡢࡉࡽ࡞ࡿᬑཬ⋡ࡢቑຍ࡟ࡣ㸪ኴ㝧㟁ụࣃࢿࣝࡢࢥࢫࢺࡢపῶࡀ㔜せ࡜࡞ࡿ㸬ኴ㝧
㟁ụࣃࢿࣝࡣࢩࣜࢥࣥ㸦Si㸧࢙࣮࢘ࣁࢆ⏝࠸࡚〇㐀ࡉࢀࡿ㸬ኴ㝧㟁ụࣃࢿࣝ඲యࡢࢥࢫࢺࡢ࠺ࡕ㸪Si ࢙࣮࢘ࣁࡢ
ᮦᩱࢥࢫࢺࡸ〇㐀ࢥࢫࢺࡀ༨ࡵࡿ๭ྜࡣᑡ࡞ࡃ࡞࠸㸬Si ࢙࣮࢘ࣁࡣ࢖ࣥࢦࢵࢺ㸦⤖ᬗሢ㸧࠿ࡽⷧࡃษฟࡋ࡚〇㐀
ࡉࢀࡿࡓࡵ㸪࢖ࣥࢦࢵࢺ࠿ࡽᮦᩱࡢ↓㥏ࢆᑡ࡞ࡃ㸪ࡼࡾከࡃࡢᇶᯈࢆษࡾฟࡍࡇ࡜ࡀపࢥࢫࢺ໬ࡢ㘽࡜࡞ࡿ㸬Si
࢖ࣥࢦࢵࢺࡢษ᩿࡟ࡣ㸪࣡࢖ࣖᕤලࢆ⏝࠸ࡓ࣐ࣝࢳ࣡࢖ࣖ࡟ࡼࡿຍᕤࡀ⏝࠸ࡽࢀ࡚࠸ࡿ㸬ᚑ᮶࡛ࡣ㸪◒⢏ࢆᠱ⃮
ࡋࡓࢫ࣮ࣛࣜࢆࣆ࢔ࣀ⥺ᕤල࡟౪⤥ࡋษ᩿ࢆ⾜࠺㐟㞳◒⢏ษ᩿᪉ᘧ (ㄶゼ㒊௚㸪2008) ࡀ⏝࠸ࡽࢀ࡚࠸ࡓࡀ㸪ษ
᩿⬟⋡ࡢྥୖࡸసᴗ⎔ቃࡢᨵၿ➼ࡢࡓࡵ㸪ࢲ࢖ࣖࣔࣥࢻ◒⢏ࢆ࣡࢖ࣖ࡟௜╔ࡉࡏࡓࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖ࡟ࡼࡿᅛ
ᐃ◒⢏ษ᩿ (༓ⴥ௚㸪2003) ࡀᛴ㏿࡟ᬑཬࢆఙࡤࡋ࡚࠸ࡿ㸬ࡋ࠿ࡋ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖ࡟ࡼࡿษ᩿࡛ࡣ㸪ษฟ
ࡋࡓ Si ࢙࣮࢘ࣁ⾲㠃࡟ࢲ࣓࣮ࢪࡀⓎ⏕ࡍࡿࡇ࡜ࡸ㸪ษ᩿⁁ᖜ㸦࣮࢝ࣇࣟࢫ㸧ࡢపῶ࡟㝈⏺ࡀ࠶ࡿ࡞࡝ࡢၥ㢟ࡀ࠶
ࡿ㸬
ࡇࡢࡼ࠺࡞⫼ᬒࡢࡶ࡜㸪ᶵᲔຍᕤ࡟ࡼࡽ࡞࠸᪂ࡋ࠸ Si ࡢษ᩿ᢏ⾡࡜ࡋ࡚㸪ᨺ㟁ຍᕤ (Ᏹ㔝௚㸪2009) ࡸ㟁ゎຍ
ᕤ (Lee, et al., 2011) 㸪ࣉࣛࢬ࣐࢚ࢵࢳࣥࢢ (᳃௚㸪2001) ࡞࡝ࡢຍᕤᢏ⾡ࡢ㐺⏝ࡀ᳨ウࡉࢀ࡚࠸ࡿ㸬ࡇࢀࡽࡢ᪉
ἲ࡛ࡣ㸪Si ࢙࣮࢘ࣁ࡟ᶵᲔⓗࢲ࣓࣮ࢪࢆⓎ⏕ࡉࡏࡎ࡟ษ᩿ࡀྍ⬟࡛࠶ࡿࡀ㸪ຍᕤ㏿ᗘࡸ࣮࢝ࣇࣟࢫ㸪ຍᕤࢥࢫࢺ
➼࡟ၥ㢟ࡀ࠶ࡾ㸪ᚑ᮶ࡢ◒⢏ຍᕤ࡟ࡼࡿษ᩿ࢆ௦᭰ࡍࡿ࡟ࡣ⮳ࡗ࡚࠸࡞࠸㸬ࡑࡇ࡛㸪➹⪅ࡽࡣ㸪࢙࢘ࢵࢺ࢚ࢵࢳ
ࣥࢢࢆ฼⏝ࡋࡓ᪂ࡋ࠸ษ᩿ᢏ⾡࡛࠶ࡿࠕ࣡࢖ࣖ᧿㐣᥼⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࠖࡢ㛤Ⓨࢆ⾜ࡗ࡚࠸ࡿ㸬ࡇࡢຍᕤᢏ
⾡ࡣ㸪࢚ࢵࢳࣥࢢᾮ㸦࢚ࢵࢳࣕࣥࢺ㸧୰࡛㉮⾜ࡍࡿ㔠ᒓ࣡࢖ࣖ࡟ࡼࡾ㸪Si ࢆ᧿㐣ࡍࡿࡇ࡜࡛໬Ꮫⓗ࡞స⏝ࢆ୺య
࡜ࡋ࡚ຍᕤࢆ⾜࠺ࡇ࡜ࢆ≉ᚩ࡜ࡍࡿ㸬ᮏሗ࡛ࡣ㸪㛤Ⓨࡋࡓຍᕤᢏ⾡࡟ࡼࡾ Si ࡟ᑐࡋ࡚῝⁁ຍᕤࢆ᪋ࡋ㸪ຍᕤᶵᵓ
ࡸ࢚ࢵࢳࣕࣥࢺ⤌ᡂ㸪ຍᕤ᮲௳ࡀຍᕤ≉ᛶ࡟୚࠼ࡿᙳ㡪ࡸษ᩿㠃ရ㉁࡟ࡘ࠸࡚ㄪᰝࢆ⾜࠸㸪Si ࢖ࣥࢦࢵࢺษ᩿࡬
ࡢ㐺⏝ྍ⬟ᛶ࡟ࡘ࠸᳨࡚ウࢆ⾜ࡗࡓ㸬
᪂つຍᕤᢏ⾡ࡢᴫせ࡜ຍᕤせ⣲ࡢ㑅ᐃ
࣭ ࣡࢖ࣖ᧿㐣᥼⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࡢᴫせ
࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࡣ㏻ᖖ➼᪉ᛶ࢚ࢵࢳࣥࢢ࡜࡞ࡿࡓࡵ㸪Si ⾲㠃࡟࣐ࢫࢡࢆ᪋ࡋ࡚ࡶࢧ࢖ࢻ࢚ࢵࢳࡀ⏕ࡌࡿ㸬
ࡑࡢࡓࡵ㸪Si ࢙࣮࢘ࣁࡢษฟࡋ࡛ᚲせ࡜࡞ࡿ࢔ࢫ࣌ࢡࢺẚࡢ㧗࠸ᚤ⣽⁁ࢆຍᕤࡍࡿࡇ࡜ࡣ㏻ᖖ࡛ࡣᅔ㞴࡛࠶ࡿ㸬
Fig. 1 Schematic diagram of the slicing method
Fig. 2 Schematic diagram of experimental apparatus
−28−
ワイヤ擦過援用ウェットエッチングによるシリコンインゴットの切断の基礎的検討
ⴭ⪅ࡽࡣ㸪⁁ࡢᖜ᪉ྥࡢ࢚ࢵࢳࣥࢢ㏿ᗘࢆᢚไࡋ㸪῝ࡉ᪉ྥࡢ࢚ࢵࢳࣥࢢࢆಁ㐍ࡍࡿࡇ࡜ࡀ࡛ࡁࢀࡤ␗᪉ᛶࡢຍ
ᕤࡀᐇ⌧࡛ࡁࡿ࡜⪃࠼ࡓ㸬ࡑࡇ࡛㸪ᅗ 1 ࡟♧ࡍࡼ࠺࡟㸪Si ࢖ࣥࢦࢵࢺ࡟࢚ࢵࢳࣕࣥࢺࢆ౪⤥ࡋ㸪㉮⾜ࡍࡿ㔠ᒓ࣡
࢖ࣖ࡟ࡼࡾ࢖ࣥࢦࢵࢺࢆ᧿㐣ࡍࡿຍᕤ᪉ἲࢆ╔᝿ࡋࡓ㸬Si ࢖ࣥࢦࢵࢺ࡜㔠ᒓ࣡࢖ࣖࡢ᧿㐣Ⅼ࡟࠾࠸࡚㸪ᦶ᧿⇕ࡢ
Ⓨ⏕ࡸ᪂㩭࡞࢚ࢵࢳࣕࣥࢺࡢᘬࡁ㎸ࡳ࡞࡝࡟ࡼࡗ࡚῝ࡉ᪉ྥ࡬ࡢ࢚ࢵࢳࣥࢢ㏿ᗘࡢྥୖࢆᅗࡗࡓ㸬୍᪉㸪࢚ࢵࢳ
ࣕࣥࢺ⤌ᡂࡢ᭱㐺໬࡟ࡼࡾ㸪⁁ᖜ᪉ྥࡢ࢚ࢵࢳࣥࢢࡢᢚไࢆ᳨ウࡋࡓ㸬ࡇࡢࡼ࠺࡞ຍᕤ᪉ἲࡀᐇ⌧࡛ࡁࢀࡤ㸪໬
Ꮫⓗస⏝࡟ᇶ࡙ࡃᮦᩱ㝖ཤ࡛࠶ࡿࡓࡵ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖษ᩿࡛ၥ㢟࡜࡞ࡿษ᩿㠃࡬ࡢᶵᲔⓗࢲ࣓࣮ࢪࢆⓎ⏕
ࡉࡏࡎ࡟ຍᕤࡀ࡛ࡁࡿ㸬ᶵᲔⓗࢲ࣓࣮ࢪࡣ࢙࣮࢘ࣁࡢᢠᢡᙉᗘࡢపୗ࡟⧅ࡀࡿࡓࡵ㸪ⷧ⫗࢙࣮࢘ࣁࡢษฟࡋ࡟࠾
࠸࡚Ṍ␃ࡲࡾࡀᝏ໬ࡍࡿ㸬୍᪉㸪࣡࢖ࣖ᧿㐣᥼⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡛ࡣ࢙࣮࢘ࣁ࡬ࡢࢲ࣓࣮ࢪࡢⓎ⏕ࡀ࡞ࡃᴟ
࢙࣮ⷧ࢘ࣁࡢษฟࡋࡶぢ㎸ࡵࡿ㸬ࡉࡽ࡟㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖษ᩿࡜ẚ㍑ࡋ࡚㸪ᕤල࣡࢖ࣖ࡬ࡢ㈇Ⲵࢆపῶ࡛ࡁ
ࡿࡓࡵ㸪⣽⥺࣡࢖ࣖࡢ౑⏝࡟ࡼࡿ࣮࢝ࣇࣟࢫࡢపῶࡀྍ⬟࡜࡞ࡿ࡞࡝ࡢ฼Ⅼࡀᣲࡆࡽࢀࡿ㸬
࣭ ࢚ࢵࢳࣕࣥࢺ࣭ຍᕤ⿦⨨࣭ᕤල࣡࢖ࣖࡢ㑅ᐃ
Si ࡢ࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡛ࡣ㸪KOH ࡸ TMAH ࡞࡝ࡢ࢔ࣝ࢝ࣜ⁐ᾮ (Sato, et al., 2000) ࡸ㸪◪㓟࡜ࣇࢵ໬Ỉ⣲㓟
㸦ࣇࢵ㓟㸧ࡢΰ㓟࡛࠶ࡿࣇࢵ◪㓟 (Steinner, et al., 2005) ࡀከ⏝ࡉࢀ࡚࠸ࡿ㸬࢔ࣝ࢝ࣜ⁐ᾮ࡟ࡼࡿ࢚ࢵࢳࣥࢢ࡛ࡣ㸪
࢚ࢵࢳࣥࢢ㏿ᗘࡢ⤖ᬗ᪉఩౫Ꮡᛶࡀ㧗ࡃ㸪࢚ࢵࢳࣥࢢ㏿ᗘࡶప࠸㸬ࡑࢀ࡟ᑐࡋ㸪ࣇࢵ◪㓟ࡣ⤖ᬗ᪉఩౫Ꮡᛶࡀᑠ
ࡉࡃ㸪ᐇ⏝ⓗ࡞࢚ࢵࢳࣥࢢ㏿ᗘ㸦᭱኱ 800 —m/min (Yoshikawa, et al., 2010) 㸧ࡀᚓࡽࢀࡿ㸬ࡲࡓ㸪ኴ㝧㟁ụ〇㐀ᕤ
⛬࡟࠾ࡅࡿࢲ࣓࣮ࢪ㝖ཤࡢ࢚ࢵࢳࣕࣥࢺ࡜ࡋ࡚ᐇ⦼ࡀ࠶ࡿࡇ࡜࡞࡝࠿ࡽ㸪ᮏຍᕤᢏ⾡࡟࠾ࡅࡿ࢚ࢵࢳࣕࣥࢺ࡜ࡋ
࡚㑅ᢥࡋࡓ㸬ୖグࡢ᪂ࡋ࠸ຍᕤᢏ⾡࡟ࡼࡿ Si ࡢษ᩿ຍᕤࡢྍ⬟ᛶࢆ᳨ドࡍࡿࡓࡵ㸪ᅗ 2 ࡟♧ࡍࢩࣥࢢࣝ࣡࢖ࣖຍ
ᕤ⿦⨨ࢆ㛤Ⓨࡋࡓ㸬ᕤල࣡࢖ࣖࢆᕳࡁࡘࡅࡓ࣎ࣅࣥࢆ࣮ࣔࢱ࡟ࡼࡾᅇ㌿ࡍࡿࡇ࡜࡛࣡࢖ࣖࢆ㉮⾜ࡉࡏ㸪ࣉ࣮࣮ࣜ
ࢆ௓ࡋ࡚ᕤస≀⾲㠃ࢆ࣡࢖ࣖࡀ᧿㐣ࡍࡿᶵᵓ࡛࠶ࡿ㸬ࣇࢵ◪㓟࡬ࡢ⪏⸆ရᛶࢆ⪃៖ࡋ࡚㸪᥋ᾮ㒊ࡣᇶᮏⓗ࡟ PVC
㸦Polyvinyl chloride㸧ࡲࡓࡣ PEEK㸦poly ether ether ketone㸧࡛ᵓᡂࡉࢀ࡚࠸ࡿ㸬࢚ࢵࢳࣕࣥࢺࡣᕤస≀ୖ᪉࠿ࡽ⁲
ୗࡍࡿࡇ࡜࡛౪⤥ࡋ࡚࠸ࡿ㸬ᕤල࣡࢖ࣖࡣ㸪⭉㣗ᛶࡢᴟࡵ࡚㧗࠸ࣇࢵ◪㓟࡟⪏㣗ᛶࢆ᭷ࡍࡿࡇ࡜ࡀせồࡉࢀࡿ㸬
ࡲࡓ㸪㧗㏿࡛㉮⾜ࡋ࡞ࡀࡽ Si ࢖ࣥࢦࢵࢺࢆ᧿㐣ࡍࡿࡇ࡜࠿ࡽ㸪㧗࠸ᘬᙇᙉᗘࡀᚲせ࡜࡞ࡿ㸬ᵝࠎ࡞㸪ྜ㔠࣡࢖ࣖ
࠿ࡽ⪏㣗ᛶࡢ㧗࠸ᮦᩱࢆ㑅ᢥࡋ㸪
ࣇࢵ◪㓟࡟ᑐࡍࡿ⭉㣗㔞ࢆホ౯ࡋࡓ㸬
⾲ 1 ࡟♧ࡍࡼ࠺࡟㸪
ࣇࢵ◪㓟
㸦◪㓟 40wt%㸪
ࣇࢵ㓟 4wt%㸧ᾐₕᚋࡢ࣡࢖ࣖࡢ┤ᚄῶᑡ㔞ࢆィ ࡋࡓ⤖ᯝ㸪ࢽࢡ࣒ࣟ㸦NCHW1㸧୪ࡧ࡟ࢫࢸࣥࣞࢫ㸦SUS316L㸧
࣡࢖ࣖࡀ㧗࠸⪏㣗ᛶࢆ♧ࡋࡓࡇ࡜࠿ࡽ㸪ࡇࢀࡽࢆ࣡࢖ࣖᕤල࡜ࡋ࡚㑅ᢥࡋࡓ㸬
Table 1 Corrosive and mechanical properties of wire
Material
Reduction of diameter (mm)ͤ
Tensile strength ×102 (N/mm2)
80Ni-20Cr
0
0.7
Inconel
0.04
0.6
HASTELLOY®
0.04
0.9
Austenitic stainless steel
0
2.7
®
ͤ
after 2h immersion of HNO3 (40 wt%) and HF(4wt%) solution
Table 2 Experimental conditions
Workpiece
Mono- and Poly-Si ingot (10 × 10 × 10 mm3)
Wire
Ni-Cr (ࢥ160 —m), Stainless steel (ࢥ100 —m)
Wire running speed, V
Max. 200 m/min
Wire tension, T
5N
Etchant
HNO3/HF mixed solution, room temperature
−29−
谷 泰弘・張 宇・村田 順二
ຍᕤ㏿ᗘ࠾ࡼࡧ࣮࢝ࣇࣟࢫࡢホ౯
࣭ ຍᕤ᮲௳ࡀຍᕤ≉ᛶ࡟୚࠼ࡿᙳ㡪
⾲ 2 ࡟♧ࡍຍᕤ᮲௳ࢆᇶᮏ࡜ࡋ㸪ຍᕤ᮲௳ࡀຍᕤ≉ᛶ࡟୚࠼ࡿᙳ㡪ࢆホ౯ࡋࡓ㸬࡞࠾㸪ຍᕤᐇ㦂ࡣ඲࡚ᐊ ୗ࡛
⾜ࡗࡓ㸬ࡲࡎ㸪࢚ࢵࢳࣕࣥࢺ⤌ᡂࡀຍᕤ≉ᛶ࡟୚࠼ࡿᙳ㡪ࢆㄪ࡭ࡓࡶࡢࡀᅗ 3 ࡛࠶ࡿ㸬ᅗ 3(a)ࡣࣇࢵ㓟⃰ᗘࢆᅛ
ᐃࡋ㸪◪㓟⃰ᗘࡢࡳࢆኚ໬ࡉࡏࡓ㝿ࡢຍᕤ≉ᛶ࡛࠶ࡾ㸪ᅗ 3(b)ࡣ◪㓟⃰ᗘࢆᅛᐃࡋ㸪ࣇࢵ㓟⃰ᗘࡢࡳࢆኚ໬ࡉࡏ
ࡓ㝿ࡢຍᕤ≉ᛶࢆ♧ࡋ࡚࠸ࡿ㸬ᅗ 3(a)࡟♧ࡍࡼ࠺࡟㸪◪㓟⃰ᗘࢆቑຍࡉࡏࡿ࡜ຍᕤ㏿ᗘࡀྥୖࡋࡓࡀ㸪࣮࢝ࣇ
ࣟࢫࡣ◪㓟⃰ᗘ࡟ᑐࡋ࡚ኚ໬ࡏࡎ࡯ࡰ୍ᐃࡢ⣙ 170 —m ࡛࠶ࡗࡓ㸬୍᪉㸪ᅗ 3(b)࡟♧ࡍࡼ࠺࡟㸪ࣇࢵ㓟⃰ᗘࢆቑ
ຍࡉࡏࡿ࡜㸪ຍᕤ㏿ᗘࡔࡅ࡛࡞ࡃ࣮࢝ࣇࣟࢫࡶቑຍࡍࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬
ḟ࡟㸪࣡࢖ࣖࡢ㉮⾜㏿ᗘࡀຍᕤ㏿ᗘ࡟୚࠼ࡿᙳ㡪ࢆㄪ࡭ࡓࡶࡢࡀᅗ 4 ࡛࠶ࡿ㸬࣡࢖ࣖ㉮⾜㏿ᗘࡢቑຍ࡜ඹ࡟㸪
ຍᕤ㏿ᗘࡶ࡯ࡰẚ౛ⓗ࡟ቑຍࡍࡿࡇ࡜ࡀࢃ࠿ࡿ㸬࣡࢖ࣖࡢ㉮⾜㏿ᗘࢆቑຍࡉࡏࡿ࡜㸪Si ࡢ᧿㐣Ⅼ࡟࠾ࡅࡿᦶ᧿⇕
ࡀቑຍࡍࡿ࡜⪃࠼ࡽࢀࡿ㸬ᅗ 5 ࡟♧ࡍࡼ࠺࡟㸪Si ࢙࣮࢘ࣁࢆࣇࢵ◪㓟࡟ᾐₕࡉࡏࡓ㝿ࡢ࢚ࢵࢳࣥࢢ㏿ᗘࡣ࢚ࢵࢳ
ࣕࣥࢺࡢຍ⇕࡟ࡼࡗ࡚ಁ㐍ࡉࢀࡿ㸬ᚑࡗ࡚㸪࣡࢖ࣖ㉮⾜㏿ᗘࡢቑຍ࡟క࠺ᦶ᧿⇕ࡢቑຍࡀ㸪ຍᕤ㏿ᗘྥୖࡢ୍ࡘ
ࡢせᅉ࡛࠶ࢁ࠺㸬ࡲࡓ㸪࣡࢖ࣖ㉮⾜㏿ᗘࡢቑຍࡀ᧿㐣Ⅼ࡟࠾ࡅࡿ཯ᛂ⏕ᡂ≀ࡸ Si ⾲㠃ࡢ୙ാែ⭷ࡢ㝖ཤࢆಁ㐍ࡉ
ࡏࡓࡇ࡜࡞࡝ࡶせᅉ࡜ࡋ࡚⪃࠼ࡽࢀࡿ㸬
Fig. 3 Material removal rate and kerf loss of Si as a function of (a) HNO3 and (b) HF concentration
Fig. 4 Material removal rate and kerf loss of Si Fig. 5 Dependence of etchant temperature on etching
as a function of wire running speed rate of Si (100) wafer surface
−30−
ワイヤ擦過援用ウェットエッチングによるシリコンインゴットの切断の基礎的検討
࣭ ␗᪉ᛶ࢚ࢵࢳࣥࢢࡢ࣓࢝ࢽࢬ࣒࡟㛵ࡍࡿ⪃ᐹ
ୖグࡢ⤖ᯝ࠿ࡽ㸪࢚ࢵࢳࣕࣥࢺ⤌ᡂࢆ◪㓟⃰ᗘ 40 wt%㸪ࣇࢵ㓟⃰ᗘ 4 wt%࡜Ỵᐃࡋ㸪⁁ຍᕤࢆ᪋ࡋࡓ Si ࡢຍᕤ
ගᏛ㢧ᚤ㙾ീࢆᅗ 6 ࡟♧ࡍ㸬ᅗ 6(a)ࡣ┤ᚄ 160 —m ࡢࢽࢡ࣒ࣟ࣡࢖ࣖࢆ⏝࠸ࡓຍᕤ⁁࡛࠶ࡾ㸪࣮࢝ࣇࣟࢫࡣ⣙ 175
—m ࡛࠶ࡗࡓ㸬࣮࢝ࣇࣟࢫࡣຍᕤ⁁඲య࡟ࢃࡓࡗ࡚࡯ࡰ୍ᐃ࡛࠶ࡾ㸪⁁ࡢධཱྀ㒊࡟࠾࠸࡚ࡶᗈࡀࡿࡇ࡜࡞ࡃ㸪㧗
࠸࢔ࢫ࣌ࢡࢺẚࢆ᭷ࡍࡿࡇ࡜ࡀࢃ࠿ࡿ㸬┤ᚄ 100 —m ࡢࢽࢡ࣒ࣟ⥺ࢆ⏝࠸ࡓሙྜ㸪ຍᕤ୰࡟᩿⥺ࡀ⏕ࡌࡓࡓࡵ㸪
ࡼࡾᘬᙇᙉᗘࡢ㧗࠸ࢫࢸࣥࣞࢫ࣡࢖ࣖࢆ⏝࠸࡚ຍᕤࢆ⾜ࡗࡓ㸬ᅗ 6(b)࡟♧ࡍࡼ࠺࡟㸪ࡇࡕࡽࡢሙྜࡶ࣮࢝ࣇࣟࢫ
ࡣ 109 —m ࡜࡞ࡾ㸪࣡࢖ࣖ┤ᚄࡼࡾ 10 —m ⛬ᗘ኱ࡁ࠸࣮࢝ࣇࣟࢫࡢຍᕤ⁁ࡀᚓࡽࢀࡓ㸬ୖグࡢࡼ࠺࡟㸪୍⯡ⓗ࡟
ࡣ➼᪉ᛶ࢚ࢵࢳࣥࢢ࡜࡞ࡿࣇࢵ◪㓟ࢆ⏝࠸ࡓ࡟ࡶ㛵ࢃࡽࡎ㸪㛤Ⓨࡋࡓຍᕤᢏ⾡࡟࠾࠸࡚ࡣ␗᪉ᛶ࢚ࢵࢳࣥࢢ࡜࡞
ࡾ㸪㧗࠸࢔ࢫ࣌ࢡࢺẚࡢຍᕤࡀᐇ⌧ࡋࡓ㸬ࡇࡢせᅉ࡟ࡘ࠸࡚௨ୗ࡟⪃ᐹࡍࡿ㸬ࣇࢵ◪㓟࡟ࡼࡿ Si ࡢ࢚ࢵࢳࣥࢢࡣ㸪
ୗᘧ࡟♧ࡍࡼ࠺࡟㸪◪㓟࡟ࡼࡿ Si ⾲㠃ࡢ㓟໬࡜㸦ᘧ(1)㸧࡜ࣇࢵ㓟࡟ࡼࡿ㓟໬⭷ࡢ⁐ゎ㸦ᘧ(2)㸧࡟ࡼࡾ཯ᛂࡀ㐍
⾜ࡍࡿ (Steinnert, et al., 2005) 㸬
Si + 4HNO3 Ѝ 3SiO2 + 4NO + 2H2O
(1)
SiO2 + 6HF Ѝ H2SiF6 + 2H2O (2)
◪㓟⃰ᗘࡀ㧗ࡃ㸪ࣇࢵ㓟⃰ᗘࡀప࠸࢚ࢵࢳࣕࣥࢺ㸦ᅗ 3(a)㸧࡛ࡣ㸪Si ࡢ㓟໬㏿ᗘࡣ༑ศ኱ࡁ࠸ࡀ㸪ࣇࢵ㓟࡟ࡼ
ࡿ㓟໬⭷ࡢ⁐ゎ㏿ᗘࡀᑠࡉࡃ㸪ࡇࢀࡀᚊ㏿㐣⛬࡜࡞ࡿ㸬ࡑࡢࡓࡵ㸪࣡࢖ࣖ᧿㐣㒊௨እࡢ࢚ࢵࢳࣥࢢ㏿ᗘ㸦ࡘࡲࡾ
⁁ᖜ᪉ྥࡢ࢚ࢵࢳࣥࢢ㏿ᗘ㸧ࡣᑠࡉࡃ࡞ࡿ㸬୍᪉㸪࣡࢖ࣖ࡜ Si ࡢ᧿㐣Ⅼ࡟࠾࠸࡚ࡣ㸪Si ⾲㠃࡟⏕ᡂࡋࡓ㓟໬⭷ࡀ
࣡࢖ࣖࡢ᧿㐣స⏝࡟ࡼࡾ㝖ཤࡉࢀࡿࡇ࡜ࡀண᝿ࡉࢀࡿ㸬ࡲࡓ㸪๓㏙ࡋࡓࡼ࠺࡟࣡࢖ࣖࡢ᧿㐣Ⅼ࡛ࡣᦶ᧿⇕ࡀⓎ⏕
ࡋ㸪㓟໬⭷ࡢ⁐ゎ㏿ᗘࡀቑຍࡍࡿ࡜⪃࠼ࡽࢀࡿ㸬ࡉࡽ࡟㸪ຍᕤⅬ࡛ࡣ࢚ࢵࢳࣕࣥࢺࡢᘬࡁ㎸ࡳࡀಁࡉࢀࡿ㸬ᅗ 5
࡛ࡣᾮ ࢆᆒ୍࡟ࡍࡿࡓࡵ࢚ࢵࢳࣕࣥࢺࢆ᧠ᢾࡋ㸪࢚ࢵࢳࣥࢢ࣮ࣞࢺࡢホ౯ࢆ⾜ࡗࡓࡀ㸪ྠࡌ⸆ᾮ⤌ᡂ࡛ᐊ ࠿
ࡘ᧠ᢾࢆ⾜ࢃ࡞࠸᮲௳࡛ࡣ㸪ࢩࣜࢥࣥ⾲㠃ࡢ࢚ࢵࢳࣥࢢࡀ☜ㄆࡉࢀ࡞࠿ࡗࡓ㸬ࡇࢀࡣ㸪ࢩࣜࢥࣥ⾲㠃࡛⏕ᡂࡍࡿ
NO ࢞ࢫࡸ H2SiF6 ࡞࡝ࡢ཯ᛂ⏕ᡂ≀ࡀ࢚ࢵࢳࣥࢢࢆጉࡆࡿࡓࡵ࡛࠶ࡿ (኱ぢ௚㸪2012) 㸬࣡࢖ࣖࡢ㏆ഐ࡛ࡣ㸪࣡
࢖ࣖࡢ㐠ື࡟ࡼࡾ࢚ࢵࢳࣕࣥࢺࡀ᧠ᢾࡉࢀࡿࡢ࡟ᑐࡋ㸪࣡࢖ࣖ࠿ࡽ㐲ࡊ࠿ࡗࡓ㒊ศ࡛ࡣ࢚ࢵࢳࣕࣥࢺࡀ␃ࡍࡿ
ࡓࡵ㸪཯ᛂ⏕ᡂ≀ࡀ㝖ཤࡉࢀࡎ࢚ࢵࢳࣥࢢ㏿ᗘࡀⴭࡋࡃపୗࡋ࡚࠸ࡿࡶࡢ࡜⪃࠼ࡽࢀࡿ㸬ࡇࡢࡓࡵ㸪ᮏᢏ⾡࡟࠾
࠸࡚ࡣ㸪ຍᕤ⁁ࡢᖜ᪉ྥ࡟ᑐࡍࡿ࢚ࢵࢳࣥࢢ㏿ᗘࡣ↓ど࡛ࡁࡿ࡯࡝ᑠࡉࡃ㸪ࡑࢀ࡟ᑐࡋ࡚῝ࡉ᪉ྥ࢚ࢵࢳࣥࢢ㏿
ᗘࡀ༑ศ࡟኱ࡁ࠸ࡓࡵ㸪␗᪉ⓗ࡞࢚ࢵࢳࣥࢢࡀᐇ⌧ࡋࡓ࡜ᛮࢃࢀࡿ㸬ࢩࣜࢥࣥ࢖ࣥࢦࢵࢺࡢࢧ࢖ࢬࡀ኱ࡁࡃ࡞ࡗ
ࡓሙྜ㸪ຍᕤ᫬㛫ࡶ㛗᫬㛫࡜࡞ࡿࡀ㸪ୖグࡢ⌮⏤࠿ࡽຍᕤ᫬㛫ࡢቑຍ࡟క࠺⁁ᖜࡢቑ኱ࡣᴟࡵ࡚ᑠࡉ࠸࡜⪃࠼ࡽ
ࢀࡿ㸬୍᪉㸪ࣇࢵ㓟⃰ᗘࢆ㧗ࡵࡿ࡜㸪㓟໬⭷ࡢ㝖ཤ㏿ᗘࡀ㧗ࡲࡾ㸪࣡࢖ࣖ᧿㐣Ⅼ௨እࡢ࢚ࢵࢳࣥࢢ㏿ᗘࡶ኱ࡁࡃ
࡞ࡗࡓ⤖ᯝ㸪࣮࢝ࣇࣟࢫࡢቑ኱࡟⧅ࡀࡗࡓ࡜⪃࠼ࡽࢀࡿ㸦ᅗ 3(b)㸧
㸬
Fig. 6 Optical microscope images of Si kerf processed by proposed method
−31−
谷 泰弘・張 宇・村田 順二
࣭ ከ⤖ᬗ 6L ࡢຍᕤ≉ᛶ
ኴ㝧㟁ụࣃࢿࣝ࡟ࡣ㸪༢⤖ᬗ Si ࡼࡾࡶᏳ౯࡛࠶ࡿࡇ࡜࠿ࡽ㸪ከ⤖ᬗ Si ࢙࣮࢘ࣁࡶ౑⏝ࡉࢀ࡚࠸ࡿ㸬༢⤖ᬗ Si
࡜ࡣ␗࡞ࡾ㸪ከ⤖ᬗ Si ࡣ࢖ࣥࢦࢵࢺ୰࡟␗࡞ࡿ⤖ᬗ᪉఩ࢆᣢࡘ⤖ᬗ⢏ࡀᏑᅾࡍࡿࡇ࡜࠿ࡽ㸪໬Ꮫⓗ࡞ຍᕤ࡛ࡣ⤖
ᬗ⢏ẖ࡟ຍᕤ≉ᛶࡀ␗࡞ࡿྍ⬟ᛶࡀ࠶ࡿ㸬ࡑࡇ࡛㸪ᮏຍᕤᢏ⾡࡟࠾࠸࡚ከ⤖ᬗ Si ࡢຍᕤ≉ᛶࢆㄪ࡭ࡓ㸬ᅗ 7 ࡟♧
ࡍࡼ࠺࡟㸪༢⤖ᬗ࡜ከ⤖ᬗ Si ࢆྠ᮲௳࡛ຍᕤࡋࡓ⤖ᯝ㸪࡯ࡰྠ➼ࡢຍᕤ㏿ᗘ࡜࣮࢝ࣇࣟࢫࡀᚓࡽࢀࡓ㸬࢚ࢵࢳࣥ
ࢢ㏿ᗘࡢ⤖ᬗ᪉఩౫Ꮡᛶࢆㄪ࡭ࡿࡓࡵ㸪(111)㠃࡜(100)㠃ࡢ Si ࢙࣮࢘ࣁࢆᾐₕࡉࡏࡓ㝿ࡢ࢚ࢵࢳࣥࢢ㏿ᗘࢆ ᐃ
ࡋࡓ㸬ᅗ 8 ࡟♧ࡍࡼ࠺࡟㸪Ỉ㓟໬࣒࢝ࣜ࢘Ỉ⁐ᾮ࡟ࡼࡿ࢚ࢵࢳࣥࢢ࡛ࡣ(111)㠃࡜ẚ㍑ࡋ㸪(100)㠃࡟࠾࠸࡚㠀ᖖ࡟
኱ࡁ࡞࢚ࢵࢳࣥࢢ㏿ᗘ࡛࠶ࡗࡓ㸬ࡑࢀ࡟ᑐࡋࣇࢵ◪㓟࡛ࡣ(111)㠃࡜(100)㠃࡟࠾࠸࡚࡯ࡰྠ➼ࡢ࢚ࢵࢳࣥࢢ㏿ᗘ࡛
࠶ࡗࡓ㸬ࡑࡢࡓࡵ㸪ᮏຍᕤᢏ⾡࡛ࡣከ⤖ᬗ Si ࡢຍᕤ࡟࠾࠸࡚ࡶ㸪༢⤖ᬗ Si ࡜ྠ➼ࡢຍᕤ≉ᛶࡀᚓࡿࡇ࡜ࡀ࡛ࡁ
ࡓ࡜⪃࠼ࡽࢀࡿ㸬
ຍᕤ㠃ရ㉁ࡢホ౯
࣭ ຍᕤࢲ࣓࣮ࢪ
࣡࢖ࣖ᧿㐣᥼⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡟ࡼࡾຍᕤࡋࡓ Si ࡢࢲ࣓࣮ࢪࢆホ౯ࡋ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ࡜ࡢẚ㍑
ࢆ⾜ࡗࡓ㸬ᅗ 9 ࡣࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖ࡞ࡽࡧ࡟ᮏຍᕤᢏ⾡࡟ࡼࡿ Si ࢖ࣥࢦࢵࢺࡢຍᕤ㠃ࢆほᐹࡋࡓ SEM ീ࡛࠶
ࡿ㸬ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖ࡟ࡼࡿຍᕤ㠃࡟ࡣከᩘࡢࢡࣛࢵࢡࡀⓎ⏕ࡋ࡚࠸ࡿ௚㸪࣡࢖ࣖ㉮⾜᪉ྥ࡜ᖹ⾜࡟ࢯ࣮࣐࣮
ࢡ㸦◊๐⑞㸧ࡀぢࡽࢀࡿ㸬ࡑࢀ࡟ᑐࡋ㸪ᮏᢏ⾡࡟ࡼࡿຍᕤ㠃ࡣࢡࣛࢵࢡࡸࢯ࣮࣐࣮ࢡࡀᏑᅾࡋ࡞࠸➼᪉ⓗ࡞⾲㠃
࡛࠶ࡿࡇ࡜ࡀࢃ࠿ࡿ㸬ࡼࡾヲ⣽࡟ຍᕤ㠃ࡢࢲ࣓࣮ࢪࢆㄪᰝࡍࡿࡓࡵ㸪㉮ᰝᆺ࣐࢖ࢡ࣐ࣟࣛࣥ㢧ᚤ㙾㸦RENISHAW㸪
Raman microscope Invia Reflex 532㸧࡟ࡼࡿຍᕤ㠃ホ౯ࢆ⾜ࡗࡓ㸬Si ࡢ࣐ࣛࣥศග࡟࠾࠸࡚ࡣ㸪Ἴᩘ 520 cm-1 ௜㏆
Fig. 7 Comparison of slicing characteristics
between mono-Si and poly-Si
Fig. 8 Comparison of the etching rate of Si (111) and
(100) wafer surface immersed in HF-HNO3
mixture and KOH solution
Fig. 9 SEM micrograph of Si surfaces processed by (a) diamond wire slicing and (b) proposed method
−32−
ワイヤ擦過援用ウェットエッチングによるシリコンインゴットの切断の基礎的検討
࡟⤖ᬗᛶ Si㸦c-Si㸧ࡢࢩ࣮ࣕࣉ࡞ࣆ࣮ࢡࡀ⌧ࢀ㸪㠀ᬗ㉁㸦࢔ࣔࣝࣇ࢓ࢫ㸧Si㸦a-Si㸧ࡣἼᩘ 400-500 cm-1 ࡟ࣈ࣮ࣟ
ࢻ࡞ࣆ࣮ࢡ࡜ࡋ࡚⌧ࢀࡿ (Zwick and Carles, 1993) 㸬ᅗ 10 ࡣຍᕤᚋࡢ Si ⾲㠃ࢆ࣐ࣛࣥ㢧ᚤ㙾࡟ࡼࡾほᐹࡋ㸪⤖ᬗ
ᛶ Si ࡢࣆ࣮ࢡ㸦Ἴᩘ 520 cm-1㸧ᙉᗘࢆ࣐ࢵࣆࣥࢢࡋࡓࡶࡢ࡛࠶ࡿ㸬ධᑕගࡣἼ㛗 532 nm ࡢ࣮ࣞࢨࢆᑐ≀ࣞࣥࢬ
࡟ࡼࡾ┤ᚄ⣙ 1 —m ࡟㞟ගࡋࡓࡶࡢ࡛࠶ࡾ㸪ࢧࣥࣉࣝࢫࢸ࣮ࢪࢆ 1 —m ࣆࢵࢳ࡛㉮ᰝࡉࡏ㸪ࡑࢀࡒࢀࡢ఩⨨࡛ࡢࣛ
࣐ࣥࢫ࣌ࢡࢺࣝࢆྲྀᚓࡋࡓ㸬࡞࠾㸪ᅗ୰ࡢᤄධᅗࡣຍᕤ㠃ࡢྠ୍⟠ᡤࢆྍどග࡛ほᐹࡋࡓගᏛ㢧ᚤ㙾ീ࡛࠶ࡿ㸬
ᅗ 10(a)࡟♧ࡍࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ㠃࡛ࡣ㸪ᙉᗘࡢࡤࡽࡘࡁࡀ኱ࡁࡃ㸪⤖ᬗᛶ Si ࡢࣆ࣮ࢡᙉᗘࡀప࠸㒊ศࡀ
Ꮡᅾࡍࡿ㸬ྍどග㢧ᚤ㙾ീ࡜ẚ㍑ࡍࡿ࡜㸪ࢯ࣮࣐࣮ࢡ㒊ࡢᙉᗘࡀపࡃ㸪ࢡࣛࢵࢡ㒊ࡢᙉᗘࡀ኱ࡁ࠸ࡇ࡜ࡀࢃ࠿ࡿ㸬
୍᪉㸪ᮏຍᕤᢏ⾡࡟ࡼࡾຍᕤࡋࡓ⾲㠃㸦ᅗ 10(b)㸧ࡣ㸪⾲㠃ࡢพฝ࡟ᑐᛂࡋ࡚ⱝᖸࡢᙉᗘࡤࡽࡘࡁࡀぢࡽࢀࡿࡶࡢ
ࡢ㸪඲య࡟㧗࠸⤖ᬗᛶ Si ࡢࣆ࣮ࢡᙉᗘࢆ♧ࡋࡓ㸬ᅗ 10 ࡢ࣐ࣛࣥ㢧ᚤ㙾ീ࡟♧ࡋࡓ A Ⅼ㸪B Ⅼ㸦ࢲ࢖ࣖࣔࣥࢻ࣡
࢖ࣖຍᕤ㠃㸧
㸪C Ⅼ㸦ᮏᢏ⾡࡟ࡼࡿຍᕤ㠃㸧࡟࠾ࡅࡿ࣐ࣛࣥࢫ࣌ࢡࢺࣝࢆ♧ࡋࡓࡶࡢࡀᅗ 11 ࡛࠶ࡿ㸬ࢲ࢖ࣖࣔࣥ
ࢻ࣡࢖ࣖ࡟ࡼࡿຍᕤ㠃ࡢࢡࣛࢵࢡ㒊㸦A Ⅼ㸧ࡣ㸪⤖ᬗᛶ Si ࡢࣆ࣮ࢡࡢࡳࡀ☜ㄆࡉࢀࡓࡀ㸪ࢯ࣮࣐࣮ࢡ㒊㸦B Ⅼ㸧
࡛ࡣ⤖ᬗᛶ Si ࡟ຍ࠼㸪࢔ࣔࣝࣇ࢓ࢫ Si ࡢࣈ࣮ࣟࢻ࡞ࣆ࣮ࢡ࡛ᵓᡂࡉࢀ࡚࠸ࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬ࢯ࣮࣐࣮ࢡࡢᏑ
ᅾࡍࡿ Si ⾲㠃ࡢ┤ୗ࡛ࡣ㸪ࢲ࢖ࣖࣔࣥࢻ◒⢏ࡢษ๐స⏝࡟ࡼࡾ㸪⤖ᬗᵓ㐀ࡀ◚ቯࡉࢀ㸪࢔ࣔࣝࣇ࢓ࢫᒙࡀᙧᡂࡉ
ࢀࡓ࡜⪃࠼ࡽࢀࡿ㸬ࢡࣛࢵࢡ㒊࡟࠾࠸࡚ࡣ㸪࢔ࣔࣝࣇ࢓ࢫᒙࡀ๤ࡂྲྀࡽࢀࡓࡓࡵ㸪⣲ᆅࡢ⤖ᬗᛶ Si ࡀ㟢ฟࡋࡓࡶ
ࡢ࡜ᛮࢃࢀࡿ㸬ࡇࡢࡼ࠺࡞ഴྥࡣࢲ࢖ࣖࣔࣥࢻษ๐ࡋࡓ Si ⾲㠃ࡢ࣐ࣛࣥศᯒ࡟࠾࠸࡚ࡶሗ࿌ࡉࢀ࡚࠸ࡿ (Yan,
2004) 㸬ࡑࢀ࡟ᑐࡋ㸪ᮏᢏ⾡࡟ࡼࡿຍᕤ㠃㸦C Ⅼ㸧ࡢ࣐ࣛࣥࢫ࣌ࢡࢺࣝࡣ⤖ᬗᛶ Si ࡢࣆ࣮ࢡࡢࡳࡀほᐹࡉࢀ࡚࠾
ࡾ㸪࠿ࡘࡑࡢࣆ࣮ࢡ್༙ᖜࡶࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖ࡟ࡼࡿຍᕤ㸦B Ⅼ㸧࡜ẚ㍑ࡋ࡚ᑠࡉ࠸ࡇ࡜ࡀࢃ࠿ࡗࡓ㸬ୖグࡢ
࣐ࣛࣥศග࡟ࡼࡿホ౯ࡢ⤖ᯝ㸪ᮏຍᕤᢏ⾡࡟ࡼࡿຍᕤ㠃࡟ࡣ࢔ࣔࣝࣇ࢓ࢫᒙࡀᙧᡂࡉࢀ࡚࠾ࡽࡎ㧗࠸⤖ᬗᛶࢆ᭷
ࡍࡿࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓ㸬ษ᩿ᚋࡢ࢙࣮࢘ࣁ࡟Ⓨ⏕ࡋࡓຍᕤࢲ࣓࣮ࢪࡣ㸪ࣃࢿࣝࡢⓎ㟁ᛶ⬟࡟ᝏᙳ㡪ࢆཬࡰࡍ
ࡇ࡜࠿ࡽ㸪ᚋᕤ⛬ࡢ➼᪉ᛶ࢚ࢵࢳࣥࢢ࡟࠾࠸࡚㝖ཤࡍࡿᚲせࡀ࠶ࡿ㸬ࡋ࠿ࡋ㸪ࢲ࣓࣮ࢪᒙࡢ㝖ཤࡣ Si ཎᩱࡢࣟࢫ
Fig. 10 Micro-Raman mapping of Si surfaces processed by (a) diamond wire slicing and (b) proposed method
Fig. 11 Raman spectra of Si surface at positions A, B and C in the Fig.10.
−33−
谷 泰弘・張 宇・村田 順二
࡜࡞ࡿ௚㸪ᕤ⛬ᩘࡢቑຍ࡟క࠺㧗ࢥࢫࢺ໬ࡢせᅉ࡜࡞ࡿ㸬ᮏຍᕤᢏ⾡࡟ࡼࡾࢲ࣓࣮ࢪࡢ࡞࠸ Si ⾲㠃ࡀᚓࡽࢀࡓࡇ
࡜ࡣ㸪
ኴ㝧㟁ụࣃࢿࣝ〇㐀ࢥࢫࢺపῶࡢほⅬ࠿ࡽࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖษ᩿࡟ᑐࡋ࡚኱ࡁ࡞ඃ఩ᛶࡀ࠶ࡿ࡜ゝ࠼ࡿ㸬
࣭ ຍᕤᚋ⾲㠃⢒ࡉ
ኴ㝧㟁ụ⏝ Si ࢙࣮࢘ࣁࡣ㸪⾲㠃ࡢ཯ᑕ⋡ࢆపῶࡍࡿࡓࡵ㸪␗᪉ᛶ࢚ࢵࢳࣥࢢ࡟ࡼࡾ࿘ᮇᵓ㐀ࢆᙧᡂࡍࡿࢸࢡࢫ
ࢳࣕࣜࣥࢢฎ⌮ࡀ᪋ࡉࢀࡿ㸬ษ᩿ᚋࡢ࢙࣮࢘ࣁ⾲㠃ࡢ⢒ࡉࡣ㸪ࢸࢡࢫࢳࣕࣜࣥࢢᕤ⛬࡟ᙳ㡪ࢆ୚࠼ࡿྍ⬟ᛶࡀ࠶
ࡾ㸪࣡࢖ࣖ᧿㐣᥼⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡟ࡼࡾຍᕤࡋࡓ Si ࡢࢲ࣓࣮ࢪࢆホ౯ࡋ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ࡜ࡢẚ
㍑ࢆ⾜ࡗࡓ㸬ᅗ 9 ࡣࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖ࡟࠾࠸࡚ࡶ㸪᪤Ꮡᢏ⾡࡛࠶ࡿࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖษ᩿㠃࡜ྠ➼ࡢ⾲㠃⢒
ࡉࡀせồࡉࢀࡿ㸬ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖ࡜ᮏᢏ⾡࡟ࡼࡿຍᕤᚋ⾲㠃ࢆ఩┦ࢩࣇࢺᖸ΅㢧ᚤ㙾㸦Zygo, Newview5032㸧
࡟ࡼࡾホ౯ࡋࡓࡶࡢࡀᅗ 12 ࡛࠶ࡿ㸬ᮏᢏ⾡࡟ࡼࡿຍᕤ㠃ࡣ⾲㠃ࡢพฝࡀ኱ࡁࡃ㸪ࡲࡓ⾲㠃⢒ࡉࡶ 1.33 —mRa ࡛࠶
ࡾ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ㠃㸦0.34 —mRa㸧ࡼࡾࡶ኱ࡁ࡞⾲㠃⢒ࡉ࡛࠶ࡗࡓ㸬ࡑࡇ࡛㸪ᮏᢏ⾡࡟࠾࠸࡚⾲㠃⢒ࡉ
ࢆᨵၿࡍࡿࡓࡵ㸪࢚ࢵࢳࣕࣥࢺ⤌ᡂࡢ᳨ウࢆ⾜ࡗࡓ㸬Si ࡢࣇࢵ◪㓟࢚ࢵࢳࣥࢢ࡛ࡣ㸪ᕼ㔘๣㸦ࣇࢵ㓟࡜◪㓟௨እ
ࡢᡂศ㸧࡟㓑㓟ࢆῧຍࡍࡿࡇ࡜࡛⾲㠃⢒ࡉࢆᨵၿ࡛ࡁࡿࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿ (℈ཱྀ㸪1985) 㸬ᅗ 13 ࡣᮏᢏ⾡࡟
࠾ࡅࡿ㸪࢚ࢵࢳࣕࣥࢺ୰ࡢ㓑㓟⃰ᗘ࡜ຍᕤ㠃⢒ࡉࡢ㛵ಀࢆ♧ࡋ࡚࠸ࡿ㸬࡞࠾㸪ࣇࢵ㓟࡞ࡽࡧ࡟◪㓟⃰ᗘࡣࡑࢀࡒ
ࢀ 4 wt%㸪40 wt%࡛ᅛᐃࡋ࡚࠸ࡿ㸬࢚ࢵࢳࣕࣥࢺ୰ࡢ㓑㓟⃰ᗘࡀቑຍࡍࡿ࡟క࠸㸪ຍᕤ㠃ࡢ⾲㠃⢒ࡉࡀᨵၿࡉࢀ
࡚࠸ࡿࡇ࡜ࡀࢃ࠿ࡿ㸬ࡑࢀࡒࢀࡢຍᕤ㠃ࢆගᏛ㢧ᚤ㙾࡟ࡼࡾほᐹࡍࡿ࡜㸪㓑㓟ࢆῧຍࡋ࡞࠸ሙྜ࡟ࡣ኱ࡁࡉᩘ༑
—m ࡢᴃ෇ᙧᵓ㐀ࡀほᐹࡉࢀࡓ㸬ࡇࢀࡣࣇࢵ◪㓟࡟ࡼࡿ Si ࢚ࢵࢳࣥࢢࢆ⾜ࡗࡓ㝿࡟ぢࡽࢀࡿ඾ᆺⓗ࡞ᵓ㐀࡛࠶ࡾ㸪
࢚ࢵࢳࣕࣥࢺ୰ࡢάᛶ཯ᛂ✀㸦ࢽࢺࣟࢯࢽ࣒࢘࢖࢜ࣥ㸪NO+㸧ࡀ Si ⾲㠃࡟೫ᅾࡍࡿࡇ࡜࡟㉳ᅉࡍࡿ࡜ሗ࿌ࡉࢀ࡚
࠸ࡿ (Patzig-Klein, et al., 2010) 㸬㓑㓟⃰ᗘࡢቑຍ࡟ᚑ࠸ࡇࡢᴃ෇ᙧᵓ㐀ࡢ኱ࡁࡉࡀᑠࡉࡃ࡞ࡾ㸪᭱ࡶ㧗࠸㓑㓟⃰
Fig. 12 3D images of silicon surface processed by (a) diamond wire slicing and (b) proposed method
Fig. 13 Surface roughness of processed Si surfaces as a
function of CH3COOH concentration in etchant
Fig. 14 Material removal rate and kerf loss of Si as a
function of CH3COOH concentration in etchant
−34−
ワイヤ擦過援用ウェットエッチングによるシリコンインゴットの切断の基礎的検討
ᗘࡢ࢚ࢵࢳࣕࣥࢺ࡛ࡣ࡯࡜ࢇ࡝ほᐹࡉࢀ࡞ࡃ࡞ࡗࡓ㸬ࡇࢀࡣ㓑㓟ࡢῧຍ࡟ࡼࡾ࢚ࢵࢳࣕࣥࢺ୰ࡢ཯ᛂ✀ࡢ೫ᅾࡀ
ᢚไࡉࢀࡓࡓࡵ࡛࠶ࡿ࡜ᛮࢃࢀࡿ㸬ࡲࡓ㸪࢚ࢵࢳࣕࣥࢺ࡬ࡢ㓑㓟ῧຍࡀຍᕤ≉ᛶ࡟୚࠼ࡿᙳ㡪ࢆホ౯ࡋࡓ㸬ᅗ 14
࡟♧ࡍࡼ࠺࡟㸪ຍᕤ㏿ᗘ࡞ࡽࡧ࡟࣮࢝ࣇࣟࢫࢆ㓑㓟⃰ᗘ࡟ࡼࡽࡎ࡯ࡰ୍ᐃࡢ್ࢆ♧ࡋ࡚࠾ࡾ㸪㓑㓟ࡢῧຍࡀຍᕤ
≉ᛶ࡟ᝏᙳ㡪ࢆ୚࠼࡞࠸ࡇ࡜ࡀ☜ㄆࡉࢀࡓ㸬ୖグࡢࡼ࠺࡟㸪࢚ࢵࢳࣕࣥࢺࡢᕼ㔘ᾮ࡟㓑㓟ࢆ⏝࠸ࡿࡇ࡜࡛㸪ຍᕤ
≉ᛶࢆᝏ໬ࡉࡏࡎ㸪ຍᕤ㠃⢒ࡉࢆᨵၿࡍࡿࡇ࡜ࡀ࡛ࡁ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ㠃࡜࡯ࡰྠ➼ࡢ⾲㠃⢒ࡉࡀᚓࡽ
ࢀࡓ㸬
⤖ ゝ
ᮏㄽᩥ࡛ࡣ㸪࣡࢖ࣖ᧿㐣࡟ࡼࡾಁ㐍ࡉࢀࡓ࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࢆ⏝࠸ࡓ᪂つຍᕤᢏ⾡ࡢ㛤Ⓨࢆ⾜࠸㸪ࢩࣜࢥࣥ
࢖ࣥࢦࢵࢺࡢࢫࣛ࢖ࢩࣥࢢ࡟ྥࡅࡓᇶᮏⓗ࡞ຍᕤ≉ᛶ࡜ࡋ࡚㸪ຍᕤ㏿ᗘ㸪࣮࢝ࣇࣟࢫ㸪ຍᕤ㠃ရ㉁࡟ࡘ࠸࡚ホ౯
ࢆ⾜ࡗࡓ㸬௨ୗ࡟㸪ᮏㄽᩥ࡛ᚓࡽࢀࡓ⤖ᯝࢆࡲ࡜ࡵࡿ㸬
㸦㸯㸧◪㓟࡞ࡽࡧ࡟ࣇࢵ㓟⃰ᗘࢆቑຍࡉࡏࡿ࡜ຍᕤ㏿ᗘࡀྥୖࡋࡓࡀ㸪ࣇࢵ㓟⃰ᗘࡢቑຍࡣ࣮࢝ࣇࣟࢫࡢቑ኱࡟
⧅ࡀࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬◪㓟⃰ᗘ࡟ᑐࡋ࡚࣮࢝ࣇࣟࢫࡣኚ໬ࡏࡎ୍ᐃ࡜࡞ࡗࡓ㸬ࡲࡓ㸪࣡࢖ࣖ㉮⾜㏿ᗘࡢ
ቑຍ࡟࡜ࡶ࡞࠸ຍᕤ㏿ᗘࡀྥୖࡋࡓ㸬
㸦㸰㸧࣡࢖ࣖ᧿㐣᥼⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡟ࡼࡾ㸪࣡࢖ࣖ┤ᚄࡼࡾ 10 —m ⛬ᗘ኱ࡁ࠸࣮࢝ࣇࣟࢫࡀᚓࡽࢀࡓ㸬◪
㓟⃰ᗘࡢ㧗࠸࢚ࢵࢳࣕࣥࢺࡢ౑⏝࡟ࡼࡾ㸪⁁ᖜ᪉ྥࡢ࢚ࢵࢳࣥࢢ㏿ᗘࢆపῶࡋ㸪῝ࡉ᪉ྥࡢ࢚ࢵࢳࣥࢢࢆ
ಁ㐍ࡉࡏࡿࡇ࡜࡛㸪␗᪉ᛶࡢ㧗࠸ຍᕤࡀᐇ⌧࡛ࡁࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬ࡲࡓ㸪ከ⤖ᬗ Si ࡢຍᕤ≉ᛶࡣ༢⤖
ᬗ Si ࡜ྠ➼࡛࠶ࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬
㸦㸱㸧ຍᕤᚋ⾲㠃ࢆගᏛ㢧ᚤ㙾࡟ࡼࡾほᐹࡋࡓ⤖ᯝ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ㠃ࡣࢡࣛࢵࢡࡸࢯ࣮࣐࣮ࢡࡀⓎ⏕
ࡋ࡚࠾ࡾ㸪ຍᕤࢲ࣓࣮ࢪࡀほᐹࡉࢀࡓࡢ࡟ᑐࡋ㸪㛤Ⓨᢏ⾡࡟ࡼࡿຍᕤ㠃ࡣࡇࢀࡽࡢḞ㝗ࡢ࡞࠸⾲㠃࡛࠶ࡿ
ࡇ࡜ࡀࢃ࠿ࡗࡓ㸬
㸦㸲㸧࣐ࣛࣥศග࡟ࡼࡿຍᕤ㠃ホ౯ࡢ⤖ᯝ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ㠃࡟ࡣ࢔ࣔࣝࣇ࢓ࢫᒙࡢࣆ࣮ࢡࡀᏑᅾࡋࡓ
ࡀ㸪㛤Ⓨᢏ⾡࡟ࡼࡿຍᕤ㠃ࡣ⤖ᬗᛶ Si ࡢࣆ࣮ࢡࡢࡳࡀほᐹࡉࢀࡓ㸬
㸦㸳㸧࢚ࢵࢳࣕࣥࢺࡢᕼ㔘ᾮ࡟ᑐࡋ㸪㓑㓟ࢆῧຍࡍࡿࡇ࡜࡛ຍᕤ㏿ᗘࡸ࣮࢝ࣇࣟࢫ࡟ᙳ㡪ࢆ୚࠼ࡿࡇ࡜࡞ࡃษຍ
ᕤᚋ⾲㠃⢒ࡉࢆᨵၿ࡛ࡁࡿࡇ࡜ࡀ࡛ࡁ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ㠃࡜ྠ➼ࡢ⾲㠃⢒ࡉࡀᚓࡽࢀࡓ㸬
ୖグࡢ⤖ᯝ࠿ࡽ㸪ᮏຍᕤᢏ⾡ࡣప࣮࢝ࣇࣟࢫ㸪ⷧ⫗࢙࣮࢘ࣁࡀせồࡉࢀࡿኴ㝧㟁ụ⏝ࢩࣜࢥࣥ࢖ࣥࢦࢵࢺࡢษ
᩿ἲ࡜ࡋ࡚㸪ᚑ᮶ࡢᶵᲔຍᕤἲࢆ௦᭰ࡋ࠺ࡿ࡜ᮇᚅࡉࢀࡿ㸬ࡋ࠿ࡋ㸪ᮏᢏ⾡ࡀᐇ⏝໬࡟⮳ࡿ࡟ࡣ㸪⌧≧࡛ࡣຍᕤ
㏿ᗘࡸ࢖ࣥࢦࢵࢺࡢ኱ᆺ໬࡟ㄢ㢟ࡀ࠶ࡾ㸪௒ᚋຍᕤ᮲௳ࡸ࢚ࢵࢳࣕࣥࢺ⤌ᡂ➼ࢆぢ┤ࡍࡇ࡜࡟ࡼࡿຍᕤࡢ㧗ᗘ໬
ࡀᚲせ࡛࠶ࡿ࡜⪃࠼ࡽࢀࡿ㸬
ㅰ ㎡
ᮏ◊✲ࡢ୍㒊ࡣ㸪NEDO ᪂࢚ࢿࣝࢠ࣮࣋ࣥࢳ࣮ࣕᢏ⾡㠉᪂஦ᴗ㸪୕㇏⛉Ꮫᢏ⾡᣺⯆༠఍㸪ඛ➃ຍᕤᶵᲔᢏ⾡᣺
⯆༠఍ࡢ᥼ຓࢆཷࡅ࡚⾜ࢃࢀࡲࡋࡓ㸬ࡇࡇ࡟῝ࡃㅰពࢆ⾲ࡋࡲࡍ㸬
ᩥ ⊩
༓ⴥᗣ㞞, ㇂Ὀᘯ, ᴮᮏಇஅ, 㟁╔ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖᕤලࡢ㧗㏿〇㐀ἲࡢ㛤Ⓨ, ᪥ᮏᶵᲔᏛ఍ㄽᩥ㞟 C ⦅, Vol.
69, No. 680 (2003), pp. 1139-1144.
℈ཱྀᜏ㞝, ࢩࣜࢥ࢙ࣥ࢘ࣁࡢ໬Ꮫ࢚ࢵࢳࣥࢢ, ⢭ᐦᶵᲔ, Vol. 51, No. 5 (1985), pp. 1013-1018.
Lee, C. L., Kanda, Y., Ikeda, S. and Matsumura, M., Electrochemical method for slicing Si blocks into wafers using platinum
wire electrodes, Solar Energy Materials and Solar Cells, Vol. 95, No. 2(2011), pp. 716-720.
᳃ຬ⸝, ᒣෆ࿴ே, ᒣᮧ࿴ஓ, బ㔝Ὀஂ, ࣉࣛࢬ࣐ CVM ࡟ࡼࡿᶵ⬟ᮦᩱࡢษ᩿ຍᕤ㸫ෆ࿘ลᆺษ᩿ຍᕤ⿦⨨ࡢヨ
స࡜ࡑࡢษ᩿ຍᕤ≉ᛶ㸫, ⢭ᐦᕤᏛ఍ㄅ, Vol. 67, No. 2 (2001), pp. 295-299.
−35−
谷 泰弘・張 宇・村田 順二
኱ぢᛅᘯ, 㛗㇂㒊㢮, ྜྷ⏣㐩㑻, ෆᮧᚭᖹ, ῧ⏣୍႐, ᖹሯு㍜, ྜྷᕝ฼༤, 㡲ᕝᡂ฼, ᮧᕝ㡰அ, ࢩࣜࢥࣥ⾲㠃ࡢ
ᐊ ୕ᕤ⛬Ὑίᢏ⾡࡜㉸㧗㏿࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡟ࡼࡿ࢙࣮࢘ࣁⷧ໬ᢏ⾡, ⾲㠃ᢏ⾡◊✲఍2012 ㅮ₇ண✏㞟
(2012), pp.1-27.
Patzig-Klein, S., Roewer, G. and Kroke, E., New insights into acidic wet chemical silicon etching by HF/H2ONOHSO4-H2SO4 solutions, Materials Science in Semiconductor Processing, Vol. 13, No. 2 (2010), pp. 71-79.
Sato, K., Shikida, M., Yamashiro, T., Tsunekawa, M. and Ito, S., Differences in anisotropic etching properties of KOH and
TMAH solutions, Sensors and Actuator A, Vol. 80, No. 2 (2000), pp. 179-188.
Steinert, M., Acker, J., Henȕge, A. and Wetzig, K., Experimental studies on the mechanism of wet chemical etching of silicon
in HF/HNO3 mixtures, Journal of The Electrochemical Society, Vol. 152, No. 12 (2005), C843-C850.
ㄶゼ㒊ோ, 㜿㒊⩏⣖, 㡞ἑ㈼ኴᮁ, ▼ᕝ᠇୍, ࣐ࣝࢳ࣡࢖ࣖࢯ࣮࡟࠾ࡅࡿࢫ࣮ࣛࣜ౪⤥᪉ἲ࡜ࢫ࣮ࣛࣜᣲືࡢ㛵
ಀ, ◒⢏ຍᕤᏛ఍ㄅ, Vol. 52, No. 8 (2008) , pp. 472-477.
Ᏹ㔝⩏ᖾ, ᒸᮏᗣᐶ, ᒸ⏣᫭, ࢩࣜࢥࣥ࢖ࣥࢦࢵࢺࡢ࣐ࣝࢳ࣡࢖ࣖᨺ㟁ࢫࣛ࢖ࢩࣥࢢᢏ⾡, ◒⢏ຍᕤᏛ఍ㄅ, Vol.
53, No. 11 (2009), pp. 663-666.
Yan, J., Laser-mirco-Raman spectroscopy of single-point diamond machined silicon substrates, Journal of Applied Physics,
Vol. 95, No. 4 (2004), pp. 2094-2101.
Yoshikawa, K., Yoshida, T., Soeda, K., Uchimura, T., Nemoto T. and Ohmi, T., High speed and precision silicon wafer
thinning technology for three-dimensional integrated circuit by wet etching, Proceedings of 22nd International
Microelectronics conference, (2010), pp. 14-19.
Zwick, A. and Carles, R., Multiple-order Raman scattering in crystalline and amorphous silicon, PHYSICAL REVIEW B,
Vol. 48, No. 9 (1993), pp. 6024-6032.
−36−
⌮ᕤᏛ◊✲ᡤ⣖せ
立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年
Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014
ゝㄒࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥㄽ࡟࠾ࡅࡿࠕᕼᮃᏛࠖ—ࠕศ࠿ࡾྜ࠺ࠖ
ࡇ࡜ࡣྍ⬟࠿: W.V.O. Quine, D. Davidson, R. Rortyࡢ㆟ㄽࢆฟⓎⅬ࡟
ᒣ ୰ ྖ
=======================================================================
Social Sciences of Hope in the Theory of Langauge Communication and
Language Philosophy - Is it possible for us to fully understand each other? :
From discussions of W.V.O. Quine, D. Davidson & R. Rorty
Tsukasa Yamanaka
Are people able to “understand each other fully” in the ultimate manner? Differences of languages and cultures
make them differentiate their final epistemology and philosophy? Since individual distinction could be decisive, is
it impossible for people to “understand each other fully?” We should appreciate the profoundness of philosophical
significance in that the Sapir-Whorf hypothesis was ever proposed, suggesting a renewed focus on two extreme
frame of mind; “relativism” and “universalism”, both of which might surely have a valid point. This paper
reconsiders the discussion between “relativism” and “universalism” based on reviewing theories of W.V.O. Quine,
D. Davidson and R. Rorty who made a commitment to pragmatism. The paper sides with universalism conclusively.
Suggesting remediation of Rorty’s argument by converging “social sciences of hope” with pragmatism, it deals with
theoretical new horizons of communication focused on “hope”.
Keywords; Pragmatism, Quine, Davidson, Rorty, Social sciences of hope
E-mail: [email protected] (T. Yamanaka)
=================================================================================
❧࿨㤋኱Ꮫ⏕࿨⛉Ꮫ㒊
College of Life Sciences, Ritsumeikan University,
Kusatsu, Shiga 525-8577, Japan
−37−
1
山中 司
⌮ᕤᏛ◊✲ᡤ⣖せ
㸯 ࡣࡌࡵ࡟: ࠕゝㄒ┦ᑐㄽࠖࡢၥ㢟ᥦ㉳
ゝㄒ࡜ࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ࡜ࡢ㛵ಀࢆㄽ⪃ࡍࡿ࡟࠶ࡓࡾࠊ࠿ࡘ࡚኱⫹࡞୍⌮ㄽ࡜ࡋ࡚ࠕࢧࣆ࢔㸻࢛࢘
࣮ࣇࡢ௬ㄝࠖࡀ࠶ࡗࡓࠋࡇࡢ⌮ㄽࡣ≉࡟ᚋ༙ࠊ࢛࣮࢘ࣇ࡟ࡼࡾࠕゝㄒࡀ␗࡞ࡿࡇ࡜࡛ࠊே㛫ࡢㄆ㆑ࡲ࡛
ࡶ␗࡞ࡿࠖ࡜ᣑᙇࡉࢀࡿࡢ࡛࠶ࡿࡀࠊ⌧ᅾ࡛ࡣ┦ᑐ୺⩏ࡢᴟㄽⓗ࡞⪃࠼࡜ぢ೴ࡉࢀࠊᵝࠎ࡞ほⅬ࠿ࡽᐇ
ドᛶࢆྵࡵᡭཝࡋࡃᢈุࡉࢀ࡚࠸ࡿ(Deutscher 2010࡯࠿)ࠋ௨㝆࡛ࡣࠕࢧࣆ࢔࣭࢛࣮࢘ࣇࡢ௬ㄝࠖࡑࡢࡶ
ࡢ࡟ࡣ῝ධࡾࡏࡎࠊࡇࡢ௬ㄝࡢၥ㢟ᥦ㉳࡜ࡋ࡚ࡢព⩏ࢆ㏣ồࡋ࡚ࡳࡓ࠸ࠋ
ࠕゝㄒࡀ㐪࠼ࡤㄆ㆑ࡀ␗࡞ࡿࠖࠊࡉࡽ࡟ゝ࠼ࡤࠕゝㄒࡀ㐪࠼ࡤศ࠿ࡾྜ࠼࡞࠸ࠖ࡜ࡣࠊࡇࡢࠕゝㄒࠖ
ࢆ࡝࠺ᤊ࠼ࡿ࠿࡟ࡼࡗ࡚᰿ᮏⓗ࡞ဴᏛၥ㢟࡜࡞ࡿࠋࡍ࡞ࢃࡕࠊࣃ࣮ࣟࣝ࡜ࡋ࡚ࡢಶࠎேࡢゝㄒࡀ⛬ᗘࡢ
ၥ㢟࡛␗࡞ࡗ࡚࠸ࡿ࡜ࡍࡿ࡞ࡽࡤࠊᡃࠎே㢮ࡣྠࡌࠕ᪥ᮏㄒ࡛ࠖ࠶ࡗ࡚ࡶ✲ᴟⓗ࡟ศ࠿ࡾྜ࠺ࡇ࡜ࡀ࡛
ࡁࡿࡢ࠿࡜࠸࠺ၥ㢟࡟ࡍࡾ᭰ࢃࡿࡢ࡛࠶ࡿࠋ௬࡟ྠࡌゝㄒෆ࡛ࡍࡽ┦ᑐ୺⩏ࡀ㐺⏝ࡉࢀࡿࡢ࡛࠶ࢀࡤࠊ
␗࡞ࡗࡓゝㄒ㛫࡛࠶ࢀࡤᑦ᭦࡛࠶ࡿࠋᡃࠎࡣ஫࠸࡟ࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࢆࡋࠊ᫬࡟」ᩘࡢゝㄒࢆ᧯ࡾ⩻
ヂࡋ࡞ࡀࡽࠕࡸࡾྲྀࡾ࡛ࡁ࡚࠸ࡿࠖ࡜ᛮࡗ࡚࠸ࡿࡇ࡜ࡣᗁ᝿࡞ࡢࡔࢁ࠺࠿ࠋ
┦ᑐ୺⩏࡜⤯ᑐ(ᬑ㐢)୺⩏ࡢ୧ᴟ➃ࡢ㍈ࢆ௬ᐃࡋࠊᡃࠎࡢㄆ㆑ࡸ⌮ゎࡀࡑࡢ࡝ࡕࡽ࡟䬦ࡳࡋ࡚࠸ࡿࡢ
࠿ࢆ㆟ㄽࡍࡿࡇ࡜࡟ࡣព⩏ࡀ࠶ࡿࠋࡶࡕࢁࢇ⌧ᐇࡢ᪥ᖖ♫఍࡟࠾࠸࡚ࡣࠊ୧➃ࢆ⤖ࡪࢢࣛࢹ࣮ࢩࣙࣥࡢ
୰ࡢࠕ㐺ษ࡞ΰྜලྜࠖ࡟఩⨨ࡋ࡚࠸ࡿࡇ࡜ࡣ༑ศ࡟ண᝿࡛ࡁࡿࡇ࡜࡛࠶ࡾࠊࡑࡢ࡝ࡕࡽ࡟೫ࡗ࡚࠸ࡓ
࡜ࡋ࡚ࡶ⏕ά࡟㔜኱࡞ᨭ㞀ࢆཬࡰࡍࡶࡢ࡛ࡣ࡞࠸ࠋྠ᫬࡟ࠊࡇࡢၥ㢟ࡣᐜ᫆ࡃᅇ⟅࡛ࡁࡿ㢮ࡢࡶࡢ࡛ࡣ
࡞ࡃࠊࡲࡉ࡟࣮࢜ࣉ࣭࢚ࣥࣥࢻ࣭ࢡ࢚ࢫࢳ࡛ࣙࣥ࠶ࡿ࡜࠸࠼ࡿࠋࡋ࠿ࡋ࡞ࡀࡽࠊࡓ࡜࠼ࠕ⛬ᗘࡢၥ㢟ࠖ
࡛࠶ࡗࡓ࡜ࡋ࡚ࡶࠊᡃࠎࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡀࠕ┦ᑐ୺⩏࡛ࠖ࠶ࡿ࡞ࡽࡤࠊேࠎࡣ✲ᴟⓗ࣭᰿ᮏⓗ࡟
ࠕศ࠿ࡾྜ࠺ࠖࡇ࡜ࡣ୙ྍ⬟࡛࠶ࡾࠊࡑ࠺࡛࠶ࡿ࡞ࡽࡤࠊ౛࠼ࡤࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥᩍ⫱ࡸⱥㄒᩍ⫱ࢆ
ࡣࡌࡵ࡜ࡍࡿእᅜㄒᩍ⫱ࡣࡸࡵ࡚ࡋࡲࡗࡓ᪉ࡀⰋ࠸ࠋእᅜㄒᩍ⫱ࢆᩍ⫱ᶵ㛵࡛ᩍ࠼ࡿṇᙜᛶࡣ࡞ࡃࠊ⏕
ᚐࡸᏛ⏕ࡀࡑࡢฟ᮶ࢆホ౯ࡉࢀࡿ࠶ࡾ᪉࡟ࡣㄽ⌮ⓗ࡞▩┪ࡀ⏕ࡌࡿ࠿ࡽ࡛࠶ࡿࠋእᅜㄒᩍ⫱ࡣࠊᇶᮏⓗ
࡟Aゝㄒ࡜Bゝㄒࡀ⩻ヂ(⨨ࡁ᥮࠼)ྍ⬟࡛࠶ࡿ࡜ࡢㄆ㆑࡟❧ࡘࡶࡢ࡛࠶ࡾࠊ┦ᑐ୺⩏ࡣࡑࡢ᰿ᮏⓗ࡞㊊ሙ
ࢆྰᐃࡍࡿࠋ౛࠼ࡤQuine(1960)ࡣࠕ⩻ヂࡢ୙☜ᐃᛶࠖࢆᥦ㆟ࡋ࡚࠾ࡾࠊ␗࡞ࡗࡓゝㄒ࡟࠾ࡅࡿゎ㔘࡟ࡣ
ᚲ↛ⓗ࡟୙☜ᐃᛶࡀṧࡿࡇ࡜ࢆㄽࡌ࡚࠸ࡿࠋ
㏫࡟ᡃࠎࡢㄆ㆑ࡸ⌮ゎ࡟ᬑ㐢ᛶࡀㄆࡵࡽࢀࡿ࡞ࡽࡤࠊேࠎࡣ᰿ᮏⓗ࡟ࠕศ࠿ࡾྜ࠼ࡿࠖࡣࡎ࡛࠶ࡾࠊ
ࡋࡓࡀࡗ࡚ே㢮ࡣ௒ࡲ࡛௨ୖ࡟✚ᴟⓗ࡟ࠕඹ㏻ࡢㄒᙡࠖࠕඹ㏻ࡢㄆ㆑ࠖࠕඹ㏻ࡢ౯್ほࠖࢆồࡵ࡚஫࠸
࡟ᡭࢆᦠ࠼ࠊ㐃ᖏࡍ࡭ࡁ࡛࠶ࡿࠋࢢ࣮ࣟࣂࣝ᫬௦࡜࠸ࢃࢀࡿ᫖௒ࠊᮍࡔୡ⏺୰࡟த࠸ࡀ⤯࠼ࡎࠊ⓶⫗࡟
ࡶ┦ᑐ୺⩏࡟ᢿ㌴ࡀ࠿࠿ࡗ࡚࠸ࡿ࡜ࡉ࠼ᛮ࠼ࡿ஦㇟ࡶᑡ࡞ࡃ࡞࠸ࠋேࠎࡀᣐࡗ࡚❧ࡘࡇ࡜ࡀ࡛ࡁࡿ☜࠿
࡞ᇶ┙ࡀ࠶ࡾᚓࡿ࡞ࡽࡤࠊᡃࠎࡣࡑࢀࡽࢆồࡵࡿ࡭ࡁ࡛࠶ࡾࠊ᫂ࡽ࠿࡟ࡍࡿ࡭ࡁ࡛ࡣ࡞࠸ࡔࢁ࠺࠿ࠋ
㸰 ࠕ┦ᑐ୺⩏ࠖࡢྍ⬟ᛶ
ேࠎࡣ✲ᴟⓗ࡟ࠕศ࠿ࡾྜ࠼ࡿࠖࡢ࠿ࠊࠕศ࠿ࡾྜ࠼࡞࠸ࠖࡢ࠿ࠋゝㄒࡸᩥ໬ࡢ㐪࠸ࡣࠊㄆ㆑ࡸ౯್
ほࡲ࡛ࢆࡶ㐪࠼ࡿࡢ࠿ࠋಶࠎேࡢᕪ␗ࡣỴᐃⓗ࡛࠶ࡾࠊேࠎࡀࠕศ࠿ࡾྜ࠺ࠖࡇ࡜ࡣ୙ྍ⬟࡞ࡢ࠿ࠋ⧞
ࡾ㏉ࡋ࡟࡞ࡿࡀࠊࠕࢧࣆ࢔㸻࢛࣮࢘ࣇࡢ௬ㄝࠖࡀࡇ࠺ࡋࡓ㆟ㄽ࡟ᑐࡍࡿၥ㢟ᥦ㉳ࢆᨵࡵ࡚⾜ࡗࡓ࡜⪃࠼
ࢀࡤࠊࡑࡢព⩏ࡣ኱ࡁ࠸ࠋ࠸ࢃࡺࡿࠕ┦ᑐ୺⩏ࠖ࡜ࠕᬑ㐢୺⩏ࠖ࡜࠸࠺ࠊ┦ᐜࢀ࡞࠸2ᴟࡢ⪃࠼᪉ࢆ㝿❧
ࡓࡏࡓࢃࡅ࡛࠶ࡿࡀࠊぢ᪉࡟ࡼࡗ࡚ࠊࡑࡢ࡝ࡕࡽ࡟ࡶ୍⌮࠶ࡿࡇ࡜ࡣ࠾ࡑࡽࡃ☜࠿࡛࠶ࡿࠋ௨㝆ࡢ㆟ㄽ
࡛ࡣࠊࡲࡎࠕ┦ᑐ୺⩏ࠖࡢ❧ሙ࡟䬦ࡳࡍࡿࡇ࡜࡛ࠊࡇ࠺ࡋࡓㄽⅬࢆ᥀ࡾୗࡆ࡚ࡳࡓ࠸ࠋࡇࡇ࡛ࡣゝㄒဴ
Ꮫࡢ୰࡛ࡶࠊࣉࣛࢢ࣐ࢸ࢕ࢬ࣒࡟ഴಽࡋ࡚࠸ࡃ3ேࡢဴᏛ⪅ࠊQuineࠊDavidsonࠊRortyࡢゝཬࢆཧ↷ࡋ࡞
ࡀࡽࠊࠕேࠎࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡀ᰿ᮏⓗ࡟㏻ࡌᚓ࡞࠸ࡇ࡜(㸻┦ᑐ୺⩏)ࠖ࡟ࡘ࠸࡚㆟ㄽࡍࡿࠋ࡞࠾ࠊ
ࡇࢀࡽ3ேࡀ┦ᑐ୺⩏ࢆᚲࡎࡋࡶ⫯ᐃࡋ࡚࠸࡞࠸ࡇ࡜࡟ࡣὀពࡋ࡞ࡅࢀࡤ࠸ࡅ࡞࠸ࠋᮏㄽ⪃ࡣࠊ࠶ࡃࡲ࡛
−38−
2
言語コミュニケーション論における「希望学」̶「分かり合う」ことは可能か ⌮ᕤᏛ◊✲ᡤ⣖せ
㆟ㄽࡢ㐨➽ࢆᥦ♧ࡍࡿㄽⅬ࡜ࡋ࡚⏝࠸ࡿࠋ
ࡲࡎࡣ┦ᑐ୺⩏ࡢ㛵㐃ࢆㄽࡌࡿ࡟࠶ࡓࡾࠊQuineࡀ⧞ࡾ㏉ࡋᘬ⏝ࡋ⏝࠸ࡓࠕࣀ࢖࣮ࣛࢺࡢ⯪ࠖ(1960)ࢆ
ྲྀࡾୖࡆࡓ࠸ࠋࡇࡢ࣓ࢱࣇ࢓࣮ࡀ♧ࡍ࡜ࡇࢁࡣࠊᡃࠎࡢ୍ษࡢㄆ㆑ࡸ▱㆑ࡀࠊ࠸ࢃࡤࠕ᰿↓ࡋⲡࠖࡢࡼ
࠺࡟ୡ⏺ࢆ⁻ὶࡋ࡚࠸ࡿࡇ࡜ࢆྵពࡋࠊᡃࠎࢆࣉࣛࢢ࣐ࢸ࢕ࢬ࣒࡬࡜ᑟࡃᙉຊ࡞⌮ㄽ⿦⨨࡛࠶ࡿࠋࠕ2ࡘ
ࡢࢻࢢ࣐ࠖ(1951)ࡢ㆟ㄽ࡟ࡶ⧅ࡀࡿᙼࡢ❧ሙࡣࠊ⤯ᑐⓗ࣭ᬑ㐢ⓗ┿⌮ࢆ㗦ࡃྰᐃࡍࡿࡶࡢ࡛࠶ࡾࠊ࠸࠿࡞
ࡿ⪃࠼ࡸㄽ⌮࡛࠶ࡗ࡚ࡶࠊࡑࡢᨵゞࢆචࢀࡿࡇ࡜ࡣỴࡋ࡚࡛ࡁ࡞࠸ࡇ࡜ࢆ୺ᙇࡍࡿࡶࡢ࡛࠶ࡿࠋ኱ᾏཎ
ࢆ⁻ὶࡋ࡚࠸ࡿᡃࠎே㢮ࡣࠊࡑࡢ㒔ᗘࡢ⌧ᐇⓗᑐฎࢆࡶࡗ࡚ࠊᡃࠎࡢୡ⏺ほࢆ᭦᪂ࡋ࡚࠸࠿ࡊࡿࢆᚓ࡞
࠸ࠋࡑࡢ᭦᪂ࡢ࣓ࢫࡣࠊᏳᐃࡋࡓࣃࣛࢲ࢖࣒ࢆ⠏࠸࡚ࡁࡓ࡜ᛮࢃࢀࡿ⛉Ꮫほ࡟ᑐࡋ࡚ࡶᐜ㉧࡞࠸ࠋQuine
ࡣ┤᥋ゝཬࡋ࡚࠸࡞࠸ࡀࠊࡑࡢ࣓ࢫࡣࠕ⮬⏤ࠖ࡜࠸࠺౯್ほࡸࠕẸ୺୺⩏ࠖ࡜࠸ࡗࡓ౯್ほ࡟ᑐࡋ࡚ࡶ
ྠᵝ࡟ྥࡅࡽࢀࡿ࡛࠶ࢁ࠺ࠋKuhn(1962)ࡢṔྐⓗ᳨ドࡀ♧ࡍࡢࡣࠊᡃࠎே㢮ࡀࠊࡲࡉ࡟ࡇࡢࡼ࠺࡟ࡋ࡚
ᡃࠎࡢୡ⏺ほࡸ▱㆑ࡢయ⣔ࢆ᭦᪂ࡋ࡚ࡁࡓ஦ᐇ࡛࠶ࡾࠊRorty(1979)ࡢᣦ᦬ࡍࡿ㏻ࡾࠊᡃࠎࡢㄆ㆑ࠊ౯್ࠊ
ࣃࣛࢲ࢖࣒࡟ࡣṔྐᛶࡀᚲ↛ⓗ࡟క࠺ࡇ࡜ࡣᐇ࡟☜࠿ࡽࡋ࠸ࡢ࡛࠶ࡿࠋ
ḟ࡟ぢࡿࡢࡣࠊDavidson(1986)ࡀㄽᩥ"A Nice Derangement of Epitaphs"࡟࡚ᥦ㉳ࡋࡓゝㄒࢥ࣑ࣗࢽࢣ࣮ࢩ
ࣙࣥ࡟࠾ࡅࡿ᰿ᮏၥ㢟࡛࠶ࡿࠋࡇࢀࡣㅝࢃࡤࠕゝㄒࡢṚஸᐉ࿌ࠖ(ᡞ⏣ᒣ 2002)࡜ࡋ࡚ࠕ≀㆟ࢆ㔊ࡋࡓࠖ
㆟ㄽ࡛࠶ࡿࡀࠊᙼࡣဴᏛ⪅ࡸゝㄒᏛ⪅ࡀ᝿ᐃࡍࡿつ⣙(convention)࡟ᇶ࡙࠸ࡓゝㄒほࢆ኱⫹࡟ྰᐃࡋࠊゝ
ㄒࡢ㠀Ꮡᅾㄝࢆㄽドࡍࡿࠋ௨ୗDavidson(1986)ࡢ୍㒊ࢆᢤ⢋ࡍࡿࠋ
... Ther is no more chance of regularizing, or teaching, this process than there is of regularizing or teaching the process
of creating new theories to cope with new data in any field... (p.265, ll10.12)
... I conclude that there is no such thing as a language, nor if a lanugage is anything like what many philosophers and
linguists have supposed. ... (p. 265, ll.22-24)
ᮏㄽ⪃ࡣDavidson(1986)ࡑࡢࡶࡢࢆㄽホࡍࡿࡶࡢ࡛ࡣ࡞࠸ࡓࡵࠊᙜヱㄽᩥ࡛⏝࠸ࡽࢀࡓ⌮ㄽ⿦⨨ࡢ඲
࡚ࢆ᳨ドࡍࡿࢃࡅ࡟ࡣ࠸࠿࡞࠸ࠋࡋ࠿ࡋ࡞ࡀࡽࠊDavidsonࡀㄽࡌࡿࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡢᐇែࡣࠊ᪥ᖖ
ࡢᡃࠎࡢゝㄒࢆ౑ࡗࡓࡸࡾྲྀࡾࢆゝ࠸ᚓ࡚࠸ࡿࡇ࡜ࡶࡲࡓ☜࠿࡛࠶ࡾࠊ✀ࠎࡢㄽᣐ࡟ࡣ୍ᐃࡢㄝᚓຊࡀ
࠶ࡿࠋDavidson(1986)ࡀㄝࡃࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ⌮ㄽ(ᚋ࡟ྲྀࡾୖࡆࡿࠕᙜᗙ⌮ㄽࠖ)࡟ࡣࠊඹ᭷ࡉࢀࡓᩥ
ἲࡶ↓ࡅࢀࡤつ๎ࡶ↓ࡃࠊᏛ⩦ྍ⬟࡞ඹ㏻ࡢ᰾࡜࠸ࡗࡓࡶࡢࡶ↓࠸ࠋ௵ពࡢⓎヰࡣࡑࡢ᫬ࠎ࡛ព࿡ࢆኚ
࠼ࠊࡑࡢព࿡࡛ࡲࡉ࡟ࠕ௵ពࠖ࡞ࡢ࡛࠶ࡿ(ᒣ୰ 2015)ࠋࡇࢀࡣඛࡢࠕࣀ࢖࣮ࣛࢺࡢ⯪ࠖࡢዴࡃࠊᡃࠎࢆ
ᣐࡗ࡚❧ࡘ࡜ࡇࢁࡢ࡞࠸ࠊ୙Ᏻᐃ࡛ᚰチ࡞࠸ࠕ⌮ㄽࠖ࡟㏣࠸㐵ࡿࡶࡢ࡛࠶ࡿࠋᩜ⾝ࡋᴟㄽࡍࢀࡤࠊDavidson
ࡢၥ㢟ᥦ㉳ࡣࠊᶆ‽໬ࡸ୍⯡໬ࠊయ⣔໬࡜࠸ࡗࡓࠊᡃࠎࡀ↓ព㆑࡟๓ᥦࡋࠊᮇᚅࡍࡿ᝿ᐃࢆ኱࠸࡟ᡴࡕ
○ࡃࡶࡢ࡛࠶ࡾࠊᡃࠎࡣៅ㔜࡟ࡇࡢᛮ᝿ⓗྵព࡜࢖ࣥࣃࢡࢺࡢ኱ࡁࡉࢆྫྷ࿡ࡍ࡭ࡁ࡛࠶ࡿࠋ
᭱ᚋ࡟Rorty(1989)ࡢࠕഅ↛ᛶ(contingency)ࠖࡢㄽⅬࢆྲྀࡾୖࡆࡿࠋRortyࡣࡑࡢከࡃࡀQuine, Davidsonࡢ
ᛮ⣴ࢆ㋃くࡋࠊࡑࢀ࡟ᇶ࡙࠸ࡓㄽ⪃ࢆᒎ㛤ࡋ࡚࠸ࡿࠋ≉࡟ඛ㏙ࡋࡓDavidsonࡢ࣓ࢱࣇ࢓࣮ㄽࢆࡣࡌࡵ࡜
ࡍࡿㄽ⪃➼࡟኱࠸࡟ゐⓎࡉࢀࡿࡇ࡜࡛ࠕゝㄒࡢഅ↛ᛶࠖࢆㄽࡌࠊࡑࡢ㐺⏝⠊ᅖࢆࠕ⮬ᕫࡢഅ↛ᛶࠖࠊࠕࣜ
࣋ࣛࣝ࡞ඹྠయࡢഅ↛ᛶࠖ࡟ࡲ࡛኱ࡁࡃᩜ⾝ࡋࡓ(⡿Ọ 2002)ࠋᮏㄽ⪃ࡢほⅬ࠿ࡽࡍࢀࡤࠊ┦ᑐ୺⩏ࡢࢫ
ࢱࣥࢫ࡟ㅝࢃࡤ㏣࠸ᡴࡕࢆ࠿ࡅࡓㄽ⪃࡛࠶ࡿࡀࠊRortyࡢࢿ࣭࢜ࣉࣛࢢ࣐ࢸ࢕ࢬ࣒ࡢ❧ሙࡣᚭᗏࡋ࡚࠸ࡿࠋ
ࠕᇶ♏࡙ࡅ୺⩏ࠖࢆྰᐃࡋࠊ┿⌮ࡸࡑࡢᑻᗘ࡜࠸ࡗࡓᴫᛕࢆᜳࡃྰᐃࡍࡿRortyࡢㄽ⪃ࡣࠊୡ⏺ࡑࡢࡶ
ࡢࡀṔྐᛶࢆᖏࡧࡓഅ↛ࡢᡤ⏘࡛࠶ࡾࠊ᪂ࡓ࡞ㄒࡾ᪉(࣓ࢱࣇ࢓࣮)࡟ࡼࡗู࡚ࡢᆅᖹࡀᣅ࠿ࢀࡿྍ⬟ᛶ
ࡀᖖ࡟࠶ࡿ࡜ࡍࡿࠋRortyࡀ⌮᝿࡜ࡍࡿ(࣭ࣜ࣋ࣛࣝ)࢔࢖ࣟࢽࢫࢺࡣࠊ⮬ᕫࡢࠕ᰿ࡢ↓࠸ࡇ࡜(rootlessness)ࠖ
ࢆ⮬ぬࡋ࡚࠾ࡾࠊ⮬ࡽࡢࠕ⤊ᒁࡢㄒᙡ(final vocaburary)ࠖࡢഅ↛ᛶ࡜ẋࢀࡸࡍࡉࢆ⮬ぬࡋ࡚࠸ࡿ࡜࠸࠺ࠋ
⤊ᒁࡢㄒᙡࡢ኱༙ࡣ࣮ࣟ࢝ࣛ࢖ࢬࡉࢀ࡚࠾ࡾࠊᰂ㌾ᛶ࡟Ḟࡅࡿࡶࡢ࡛࠶ࡿ࠿ࡽࠊᖖ࡟ࡑࢀࡽࢆ␲࠸ࠊ᪂
−39−
3
山中 司
⌮ᕤᏛ◊✲ᡤ⣖せ
ᪧࡢㄒᙡࢆ➇ࢃࡏࡿࡇ࡜ࡀ㔜せ࡛࠶ࡿࠋ
ඛ࡟ྠࡌࡃࠊRortyࡢㄽⅬࡢ඲࡚ࢆᮏㄽ⪃ࡀᢅ࠺࡟ࡣ࠶ࡲࡾ࡟ࡶᡭ࡟వࡾࠊ㒊ศⓗ࡞ᘬ⏝࡟␃ࡵࡊࡿࢆ
ᚓ࡞࠸ࠋࡋ࠿ࡋࠕไᗘ࡜័⩦ࡣṔྐࢆ㏻ࡌ࡚⯆㝯ࡋࠊᬑ㐢ⓗ࡞ጇᙜᛶࡇࡑཷࡅධࢀ㞴࠸ࠖ࡜ࡍࡿRortyࡢ
୍㈏ࡋࡓ❧ሙࡣࠊ⤯ᑐⓗ࡞┿⌮࡜࠸࠺ࠕ⹫ᵓࠖࢆᥐᐃࡍࡿࡇ࡜࡛ࡑࢀ௨ୖㄒࡿࡇ࡜ࢆṆࡵࠊ᪥ࠎኚ໬ࡍ
ࡿ౯್ࡸつ⠊ࡢࢲ࢖ࢼ࣑ࢬ࣒ࢆᤊ࠼ᦆࡡࡿᡃࠎࡢែᗘ࡟㆙㚝ࢆ㬆ࡽࡋ࡚࠸ࡿࡼ࠺࡟ࡶᛮࢃࢀࡿࠋᏳ᫆࡞
ࠕ┦ᑐ୺⩏ࠖࡶ༴㝤࡛࠶ࡿࡀࠊᏳ᫆࡞ࠕᬑ㐢୺⩏ࠖࡶࡑࢀ࡜ྠᵝࠊࡶࡋࡃࡣࡑࢀ௨ୖ࡟༴㝤࡛࠶ࡿࡇ࡜
ࢆᡃࠎࡣ⮬ぬࡍࡿ࡭ࡁ࡞ࡢ࡛࠶ࡿࠋ
㸱 ࠕᬑ㐢୺⩏ࠖࡢྍ⬟ᛶ
ḟ࡟ᮏ❶࡛ࡣࠊࠕேࠎࡣศ࠿ࡾྜ࠺ࡇ࡜ࡀ࡛ࡁࠊࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡣ᰿ᮏⓗ࡟ᡂ❧ࡋᚓࡿࠖ࡜⪃࠼
ࡿඛ㏙࡜ࡣ඲ࡃ㏫ࡢぢᆅ࠿ࡽ㆟ㄽࡋ࡚ࡳࡓ࠸ࠋࠕ᰿ᮏⓗ࡞࡛ࣞ࣋ࣝศ࠿ࡾྜ࠼ࡿࠖ࡜ࡣࠊᡃࠎࡀゝㄒࡸ
౯್ほࡢ┦㐪ࢆ஌ࡾ㉺࠼ࡓࠊ࠶ࡿඹ㏻ࡢᯟ⤌ࡳ࡞ࡾᛮ⪃ᵝᘧࢆᣢࡗ࡚࠸ࡿࡇ࡜ࢆ♧၀ࡍࡿࡶࡢ࡛࠶ࡾ(=
ᬑ㐢୺⩏)ࠊࡇ࠺ࡋࡓⅬࡣ௒ᚋࡼࡾ✚ᴟⓗ࡟㏣ཬࡉࢀࡿ࡭ࡁ࡛࠶ࡿࠋ᰿ᗏࡢ࡛ࣞ࣋ࣝᡃࠎࡀศ࠿ࡾྜ࠼ࡿ
ᇶ┙ࢆ᭷ࡋ࡚࠸ࡿ࡞ࡽࡤࠊࡑ࠺ࡋࡓඹ㏻ࡢᯟ⤌ࡳࢆ᫂ࡽ࠿࡟ࡋࠊࡑࡇࢆ㉳Ⅼ࡟࠶ࡽࡺࡿேࠎ࡜㐃ᖏࢆᣑ
ࡆ࡚࠸ࡃࡇ࡜ࡀ࡛ࡁࡿࡣࡎ࡛࠶ࡿࠋࡑࡇ࡟ࡣඹ㏻ࡢ౯್ࡢࡶ࡜஫࠸ࡀṌࡳᐤࡿྍ⬟ᛶࡀ☜ಖࡉࢀࠊࢥ࣑
ࣗࢽࢣ࣮ࢩࣙࣥࢆ⾜࠺ព⩏ࢆぢฟࡏࡿࠋࡲࡎࡣDavidson(1986)ࡢ࣐ࣛࣉࣟࣆࢬ࣒ㄽ࠿ࡽぢ࡚ࡳࡼ࠺ࠋ
Davidson(1986)ࡣࠊ⌧ᐇୡ⏺ࡢゝㄒࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡀࠕᙜᗙ⌮ㄽ(passing theory)ࠖ࡟ࡼࡗ࡚㐙⾜ࡉ
ࢀࠊ࠶ࡿⓎヰ࡟ᑐࡋ࡚ࠊゎ㔘⪅ࡣࡑࡢ㒔ᗘᬻᐃⓗ࡟ព࿡ࢆゎ㔘ࡉࡏࡿࡇ࡜࡛ᡂ❧ࡍࡿࡇ࡜ࢆㄽࡌࡿࠋ
Davidsonࡣࠊࠕゝ࠸㛫㐪࠸(malapropism)ࠖࢆྵࡴ࡟ࡶ㛵ࢃࡽࡎ᪥ᖖࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡀᡂ❧ࡍࡿࡇ࡜
࡟ᣊࡾࠊࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥᡂ❧ࡢᒁᡤᛶ࡟╔┠ࡍࡿࠋⓎヰࡢཷࡅᡭࡣࠊ᫬࡜ࡋ࡚Ⓨヰ⪅ࡢᏐ⩏ⓗព࿡
࡜ࠊⓎヰ⪅ࡢࠕ┿ࡢព࿡(Davidsonࡣࡇࢀࢆࠕ➨୍ࡢព࿡(first meaning)ࠖ࡜࿧ࡪ)ࠖࡀ୍⮴ࡋ࡞࠸ሙྜࠊᚲ
せ࡜࠶ࡽࡤⓎヰࡢཷࡅᡭࡣࠊᙜึࡢᏐ⩏ⓗព࿡ࢆᨵ❠ࡋ࡚ࡲ࡛ࡶ➨୍ࡢព࿡ࢆࠕṇࡋࡃࠖゎ㔘ࡋࡼ࠺࡜
ࡍࡿࠋࡋ࠿ࡶゝ࠸㛫㐪࠸ࡣ༢⣧࡟ࣃࢱ࣮ࣥ໬࡛ࡁࡎࠊ෌ᖐⓗ࡞▱㆑࡜ࡋ࡚ᐃ╔ࡉࡏࡿࡇ࡜ࡣ࡛ࡁ࡞࠸ࠋ
ࡶࡕࢁࢇQuineࡀᣦ᦬ࡍࡿࡼ࠺࡟ࠊ୍ᐃࡢⓎヰࡢಖᏲഴྥࡣぢࡽࢀࡿ࠿ࡶࡋࢀ࡞࠸ࡀࠊࢥ࣑ࣗࢽࢣ࣮ࢩࣙ
ࣥࢆྲྀࡾᕳࡃ≧ἣࡣࠊⓎヰ⪅ಶேෆ࡟࠾࠸࡚࡛ࡉ࠼ࠊᖖ࡟ືⓗ࡟సࡾኚ࠼ࡽࢀࡿࡢ࡛࠶ࡾࠊព࿡࡜ࡣࡑ
ࡢሙࡑࡢ᫬࡟࠾࠸࡚ࠕᙜᗙ(ᬻᐃ)ⓗࠖ࡟ᡂ❧ࡍࡿࡢࡳࡔ࡜୺ᙇࡍࡿࠋ
ࡉࡽ࡟Davidson(1986: 261)ࡣࠊࠕゝㄒࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࢆᡂຌࡉࡏࡿࡓࡵ࡟ඹ᭷ࡉࢀࡿ࡭ࡁࡣᙜᗙ⌮
ㄽ࡛࠶ࡿࠖࡇ࡜ࢆṦ᭦ᙉㄪࡋ࡚࠾ࡾࠊࡇࢀࢆࠕ⌮ㄽࠖ࡜ゝ࠼ࡿ࠿࡝࠺࠿࡟ࡘ࠸࡚ࡣ㆟ㄽࡀ࠶ࡿࡶࡢࡢࠊ
➨஧ゝㄒࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡢᐇែࡶྵࡵࠊ᪥ᖖࡢࠕ㏻ࡌྜ࠼ࡿࠖ⌧㇟ࢆᙜᗙ⌮ㄽࡣ㗦ࡃㄝ᫂ࡋ࡚࠸ࡿࠋ
Haberࡢࡼ࠺࡟ࡑࢀࢆࠕᡓ␎(strategy)ࠖ࡜࿧ࡪ࠿࡝࠺࠿ࡣู࡜ࡋ࡚ࠊ஫࠸ࡀᣢࡘᙜᗙ⌮ㄽࢆ᭱኱㝈཰ᩡࡉ
ࡏࠊࡑࡢ㒔ᗘࡢゝㄒⓗ㐵ࡾྲྀࡾࢆ(࡝࠺࡟࠿ࡋ࡚)ᡂ❧ࡉࡏࡿ⬟ຊࡇࡑࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡢᮏ㉁ࡔ࡜ࡍ
ࡿࠋࡑࡋ࡚ᮏㄽ⪃࡟࡜ࡗ࡚㔜せ࡞ࡇ࡜ࡣࠊᙜᗙ⌮ㄽࡣேࠎ࡟ࡍ࡛࡟ඹ᭷ࡉࢀ࡚(shared)࠸ࡿ࡜
Davidson(1986: 264)ࡀ㏙࡭࡚࠸ࡿࡇ࡜࡛࠶ࡿࠋ
ࡲࡓDavidsonࡣࠊ᪥ᖖࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ࡟࠾࠸࡚ࠊᡃࠎࡀࠕᐶᐜࡢཎ๎(principle of charity)ࠖࢆ⏝
࠸ࡿࡇ࡜࡛ࠊ✀ࠎᵝࠎ࡞▱㆑ࡸᢏ⾡ࢆ᭱኱㝈ືဨ࣭㥑౑ࡋࠊ⌧࡟┦ᡭࡢࠕ➨୍ࡢព࿡ࠖࢆ䬦ࡳྲྀࡗ࡚࠸
ࡿࡇ࡜ࢆᣦ᦬ࡋ࡚࠸ࡿࠋᐶᐜࡢཎ๎࡟ᨭ࠼ࡽࢀࡓDavidsonࡢᙜᗙ⌮ㄽࡣࠊ⚾ࡓࡕࡀࠕ(ゝㄒⓗ㸭Ꮠ⩏ⓗ࡞
ࡸࡾྲྀࡾ࡜࠸࠺ព࿡࡛ࡣ୙༑ศ࡟ࡶ㛵ࢃࡽࡎࠊ≉࡟ၥ㢟࡞ࡃ)ศ࠿ࡾྜ࠼ࡿࠖࡇ࡜ࢆㄝ᫂ࡍࡿㄽᣐ࡜ࡋ࡚ࠊ
᝿ീ௨ୖ࡟ᙉຊ࡞࢚ࣥࢪ࡛ࣥ࠶ࡿࡇ࡜ࡀ❚࠸▱ࢀࡿࡢ࡛࠶ࡿ1ࠋ
ゝㄒ࡟ࡣ᜛ពᛶࡀ࠶ࡾࠊㄒ⏝ㄽⓗ࡞ほⅬ࠿ࡽࡶࡑࢀࡒࢀࡢㄒࡸᩥࡢព࿡ࡣ୍⩏ⓗ࡟ࡣᐃࡲࡽ࡞࠸ࠋ༶ࡕࠊⓎヰ⪅ࡣཎ๎ࠕ⮬⏤࡟ࠖ⮬ࡽࡀ
⏘ࡍࡿゝㄒ࡟ព࿡ࢆ௜୚ࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋࡇࢀࡣ⌮ㄽୖㄡࡶࡀࠊDavidson(1986)ࡶᣦ᦬ࡍࡿࣁࣥࣉࢸ࢕࣮࣭ࢲࣥࣉࢸ࢕࣮࡛࠶ࡿࡇ࡜ࢆᣦ
ࡋ♧ࡋ࡚࠸ࡿࠋDavidsonࡣ࣓ࢱࣇ࢓࣮࡟ࡘ࠸࡚ࡶูㄽᩥ(“What Metaphors Mean” 1978)࡛㆟ㄽࡋ࡚࠾ࡾࠊRortyࡶᣦ᦬ࡍࡿࡼ࠺࡟ࠊリࡸᩥᏛ࡟
1
−40−
4
言語コミュニケーション論における「希望学」̶「分かり合う」ことは可能か ⌮ᕤᏛ◊✲ᡤ⣖せ
ࡲࡓRortyࡣJ.Shklarࡢⴭసࢆᘬ⏝ࡋࠊ⮬ࡽࡢࣜ࣋ࣛࣜࢬ࣒ࡢฟⓎⅬࢆࠕṧ㓞ࡉ(cruelty)ࡇࡑ⚾ࡓࡕࡀ࡞
ࡋ࠺ࡿ᭱ᝏࡢࡇ࡜ࡔࠖ࡜⪃࠼ࡿࡇ࡜ࠊࡑࡋ࡚ࠕṧ㓞ࡉࠖ࡜ࠕⱞ③(paiin)ࠖࢆῶᑡࡉࡏࡿࡇ࡜࡜ࡋ࡚࠸ࡿ(኱
㈡ 2006)ࠋࡇࢀࡣே㢮ࡢඹ㏻ࡢ౯್ࡢᅵྎ࡜ࡋ࡚ᥦ♧ࡉࢀࡓㄽⅬ࡛࠶ࡾࠊᙼࡢ㆟ㄽࡢ㊊ሙ࡜࡞ࡗ࡚࠸ࡿࠋ
Rortyࡀㄒࡿࠕࣜ࣋ࣛࣝ࡞㐃ᖏࠖ࡜ࡣࠊᮏ㉁୺⩏ࡸᇶ♏࡙ࡅ୺⩏ࡢྰᐃࢆ๓ᥦ࡜ࡋ࡞ࡀࡽࡶࠊⱞ③ࡸⱞᝎ
ࢆឤࡌࡿ⬟ຊࡔࡅࡣ↓๓ᥦ࠿ࡘᬑ㐢ⓗ࡟ඹ᭷ࡋᚓࡿ࡜⪃࠼ࠊேࠎࡢ࡞ࡋᚓࡿ᭱ၿࡢࡇ࡜࡜ࡣ௚⪅࡜ࡢ๰
㐀ⓗ࡞ྠ୍໬࡛࠶ࡿ࡜࠸࠺୺ᙇ࡛࠶ࡿࠋࡲࡓࠊᐶᐜ࡞⢭⚄ࡢ୰࡛ࠊ┦஫ࡢከᵝᛶࡸᕪ␗ᛶࢆㄆࡵྜ࠸ࠊ
ḟ➨࡟ࠕ⚾ࡓࡕࠖࡢ⠊ᅖࢆᣑ኱ࡍࡿ୰࡛ࣜ࣋ࣛࣝ࡞♫఍ⓗ㐃ᖏࡀᐇ⌧ࡍࡿ࡜⪃࠼ࡿࡢ࡛࠶ࡿ(ᰗ἟ 2002)ࠋ
ࡇࡇ࡛Rortyࡢ⣽࠿࡞㆟ㄽ࡟❧ࡕධࡿవ⿱ࡣ࡞࠸ࠋࡋ࠿ࡋ࡞ࡀࡽࠊဴᏛ࡟࠾ࡅࡿࠕཎ⌮ࠖࡸほᛕㄽࢆ୍㈏
ࡋ࡚ᚭᗏⓗ࡟ྰᐃࡍࡿRorty࡛࠶ࡿࡀࠊ⓶⫗࡟ࡶࠊᙼࡢ㆟ㄽ࡟ࡶࠕᣐࡗ࡚❧ࡘࠖ࡜ࡇࢁࡀ࠶ࡿࠊ༶ࡕࠕṧ
㓞ࡉ࡜ⱞ③ࡢῶᑡࠖ࡟ࡘ࠸࡚ࡢᬑ㐢ᛶࢆ୺ᙇࡋࠊDavidson࡜ྠࡌࡃᐶᐜ࡞⢭⚄ࡢ㔜せᛶࢆ㏙࡭࡚࠸ࡿࡇ
࡜࡟ࡘ࠸࡚ࡣ╔┠ࡋ࡚࠾ࡃព⩏ࡀ࠶ࢁ࠺ࠋ
㸲 ᬑ㐢୺⩏ⓗ౯್ほ࡬ࡢッ࠼
ᮏㄽᩥࡣࡇࡇࡲ࡛ࠊேࠎࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ࡟࠾ࡅࡿࠕ┦ᑐ୺⩏ࠖ࡜ࠕᬑ㐢୺⩏ࠖࡢㄽⅬࢆᣲࡆࠊ
㆟ㄽࡢ⣲ᆅࢆ‽ഛࡋࡓࠋࡓࡔࡋゝ࠺ࡲ࡛ࡶ࡞ࡃࠊQuine, Davidson, Rortyࡑࢀࡒࢀࡢᛮ᝿ࡣ㞴ゎ࠿ࡘ῝኱࡛
࠶ࡾࠊ➹⪅ࡢࡼ࠺࡞⪅ࡀࡑࢀࡽࢆ₃ࢀ࡞ࡃ䬦ࡳྲྀࢀ࡚࠸ࡿࢃࡅ࡛ࡣ࡞࠸ࠋ୙༑ศ࡞ᩚ⌮࡛࠶ࡿࡇ࡜ࡣ๓
ᥦ࡜ࡋࡓୖ࡛ㄽࡌࡿࡀࠊ┦ᑐ୺⩏ࠊᬑ㐢୺⩏ࡑࢀࡒࢀ࡟ጇᙜ࡞ㄽᣐࡀ࠶ࡾࠊ༢⣧࡟⏥எࡘࡅࡽࢀࡿࡶࡢ
࡛ࡣ࡞࠸ࠋࡋ࠿ࡋ࡞ࡀࡽᮏㄽᩥࡣࠊ⤖ㄽࢆඛ࡟㏙࡭ࡿ࡞ࡽࡤࠊᚋ⪅ࠊ༶ࡕゝㄒㄽⓗࠕᬑ㐢୺⩏ࠖࡢ❧ሙ
࡟䬦ࡳࡋࡓ࠸ࠋࡘࡲࡾࠊேࠎࡣࡸࡣࡾ✲ᴟⓗ࡟ࡣࠕศ࠿ࡾྜ࠼ࡿࠖ࡜⪃࠼ࡓࡃࠊࡑࡢྍ⬟ᛶࢆ᭱ᚋࡲ࡛
㏣ồࡍ࡭ࡁ࡛࠶ࡿ࡜⪃࠼ࡓ࠸ࡢ࡛࠶ࡿࠋ
ඛ㏙ࡋࡓ㏻ࡾࠊQuine, Davidson, Rortyࡑࢀࡒࢀࡀ⮬㌟ࢆࠕ┦ᑐ୺⩏ࠖㄽ⪅ࠊࠕᬑ㐢୺⩏ࠖㄽ⪅ࡢ࡝ࡕࡽ
࡛࠶ࡿ࠿ࢆ᫂ゝࡋ࡚࠸ࡿࢃࡅ࡛ࡣ࡞ࡃࠊࡲࡓ⌧ᅾࡇࡢ3ྡࡣࡍ࡛࡟௚⏺ࡋ࡚࠾ࡾࠊࡇࢀࡽࡢูࡣㄞ⪅ࡀㄞ
ࡳྲྀࡿࡋ࠿࡞࠸ࠋ↓⌮ࢆᢎ▱࡛➹⪅ࡀ᥎ ࡍࡿ࡞ࡽࡤࠊQuine, Davidsonࡣ࠶ࡃࡲ࡛ᬑ㐢୺⩏ࢆ㏣ồࡋ⥆
ࡅࡓࡶࡢ࡜⪃࠼ࡓ࠸ࠋQuineࡀㄽࡌࡓࠕ่⃭ᩥࠖࡸࠊᮏㄽᩥ࡛ࡶྲྀࡾୖࡆࡓDavidsonࡢ࣐ࣛࣉࣟࣆࢬ࣒ㄽ
ࡣࠊDavidsonࡀᣦ᦬ࡍࡿࡼ࠺࡟ubiquitous࡟Ꮡᅾࡍࡿࡶࡢࢆᥐᐃࡋ࡚ㄽࢆᒎ㛤ࡋ࡚࠾ࡾࠊ࣮ࣟ࢝ࣝ࡟ᡂ❧
ࡍࡿᴫᛕࢆᥦ♧ࡋࡼ࠺࡜ࡋ࡚࠸࡞࠿ࡗࡓ࡜ぢ೴ࡏࡿࠋࡑࡋ࡚ࡇࢀࡣဴᏛ⪅࡜ࡋ࡚ࠊ࠸ࢃࡤ⮳ᴟᙜ↛ࡢ᣺
ࡿ⯙࠸࡛࠶ࡿ࡜ࡶゝ࠼ࡿࡔࢁ࠺ࠋࡋ࠿ࡋRortyࡢ❧ሙࢆ᥎ࡋ㔞ࡿࡢࡣ㞴ࡋ࠸ࠋRorty(1979)ࡣࠕᚑ᮶ⓗ࡞ព
࿡࡛ࡢࠖဴᏛ࡟⤊ࢃࡾࢆ࿌ࡆ࡚࠾ࡾࠊ⛉ᏛࡸဴᏛ࡜ࠊᩥᏛ࡜ࡢቃ⏺ࢆᾘࡋཤࡿ࠿࡞ࡾࣛࢹ࢕࢝ࣝ࡞㆟ㄽ
ࢆᒎ㛤ࡋࡓࠋ୍᪉࡛ඛ㏙ࡢࠕṧ㓞ࡉ࡜ⱞ③ࡢῶᑡࠖ࡜࠸ࡗࡓ୓ே࡟ඹ㏻ࡍࡿ౯್ឤ࡬ッ࠼ࠊࡲࡓ௚᪉࡛
ᇽࠎ࡜Rortyࡢព࿡ࡍࡿࠕ⮬ᩥ໬୰ᚰ୺⩏ࠖ(1991)ࢆㄽࡌ࡚࠾ࡾࠊ୍ᴫ࡟┦ᑐㄽ⪅࡜ࡶᬑ㐢୺⩏⪅ࡔ࡜ࡶ
┳೴ࡋ㞴࠸ࠋࡓࡔࡋᮏㄽᩥࡢ❧ሙ࠿ࡽࡍࡿ࡞ࡽࡤࠊࡸࡣࡾRortyࡶྠࡌࡃࠊே㢮ࡢᩥ໬ࡸ౯್ࢆ㏙࡭ࡿୖ
࡛ࠊ᰿※ⓗ࡟ᣐࡗ࡚❧ࡘࡇ࡜ࡀ࡛ࡁࡿ࡜ࡇࢁࢆ㏣ồࡋࡓ࡜ࡋ࡚ࠊᬑ㐢୺⩏⪅࡛࠶ࡿ࡜⪃࠼ࡓ࠸ࠋ↓ㄽࡇ
ࡲ࡛⠊ᅖࢆᣑࡆࡿ࡞ࡽࡤࠊゝㄒࡢ᜛ពᛶ࡟ࡣ㝿㝈ࡀ࡞࠸ࠋࡋ࠿ࡋᡃࠎࡣࠊ᪥ᖖࡢゝㄒࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ࡟࠾࠸࡚ࠊࣁࣥࣉࢸ࢕࣮࣭ࢲࣥࣉ
ࢸ࢕࣮ࡢࡼ࠺࡟ゝㄒࡢ⊂ᡃㄽࡢࡳࢆ୺ᙇࡋࠊ࢔ࣜࢫ࡜ࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡀᡂࡾ❧ࡓ࡞࠸ࡼ࠺࡞ࢣ࣮ࢫ࡟㐼㐝ࡍࡿࡇ࡜ࡣࡲࡎ࠶ࡾᚓ࡞
࠸ࠋゝ࠸㛫㐪࠸ࡸᩥἲୖࡢ୙ഛࠊࡑࡢ௚ࡢ㜼ᐖせᅉࢆከศ࡟ྵࡴ࡟ࡶ㛵ࢃࡽࡎࠊヰࡋᡭࡀ᝿ᐃࡍࡿࠕ➨୍ࡢព࿡ࠖࡣཷࡅᡭ࡟୍⯡ⓗ࡟ࡣఏ
ࢃࡗ࡚࠸ࡿࡢ࡛࠶ࡿࠋࡑࡢ⌮⏤ࡣDavidson࡟ࡼࡿ࡞ࡽヰࡋᡭ࡜ཷࡅᡭࡢᙜᗙ⌮ㄽࡢ཰ᩡ࡟ᡂຌࡋ࡚࠸ࡿ࠿ࡽ࡛࠶ࡾࠊᐶᐜࡢཎ๎ࡀാࡃࡇ࡜
࡛Ꮠ⩏ⓗ࡞ព࿡࡟࠾ࡅࡿࠕ୙ഛࠖࡣゎᾘࡉࢀ࡚࠸ࡿ࠿ࡽ࡛࠶ࡿࠋ࡞࠾ᐶᐜࡢཎ๎࡟ࡘ࠸࡚ࡣࠊࡑࢀ⮬యࡀ⣬㠃ࢆᨵࡵ࡚ㄽࡎࡿ࡭ࡁෆᐜ࡛࠶
ࡾࠊࡇࡇ࡛ࡣᣦ᦬ࡢࡳ࡟␃ࡵࡊࡿࢆᚓ࡞࠸ࡀࠊ୍ぢࡍࡿ࡜ࠊ⪺ࡁᡭࡢࠕၿពࠖࡸࠕ࣎ࣛࣥࢱ࣮ࣜ⢭⚄ࠖ࡟ጤࡡࡿࡔࡅࡢࡼ࠺࡞ࠊ⬤ᙅ࡞ࡶࡢ
࡟ぢ࠼ࡿ࠿ࡶࡋࢀ࡞࠸ࠋࡋ࠿ࡋ࡞ࡀࡽࠊࡇࢀࡇࡑࡀ᪥ᖖࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡢᐇែ࡛࠶ࡾࠊ࡜ࡾࢃࡅᏐ⩏ୖࡢ୙ഛࡀΰධࡋ᫆࠸➨஧ゝㄒ
ࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ࡟࠾࠸࡚ࡣࠊᐶᐜࡢཎ๎࡟኱ࡁࡃ౫Ꮡࡍࡿࡇ࡜ࡣࡴࡋࢁᡓ␎ⓗ࡟ṇࡋ࠸ࠋࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ࡟࠾ࡅࡿࡸࡾྲྀࡾ࡟࠾࠸
࡚ࠊࡑࡇ࡟ఱࡢពᅗࡶ࡞࠸࡜᝿ᐃࡍࡿࡢࡣࡲࡎ⪃࠼ࡽࢀ࡞࠸ࡇ࡜࡛࠶ࡾࠊヰࡋᡭࡣࠕఱ࠿ࠖࢆఏ࠼ࡓ࠸ࡢࡔࢁ࠺࡜⪺ࡁᡭࡀ᝿ᐃࡍࡿࡇ࡜ࡣ
ᐇ࡟⮬↛࡞ࡇ࡜࡛࠶ࡾࠊࡑࡢពᅗࢆࠕఱ࡜࠿ࡋ࡚ࠖ䬦ࡳྲྀࡗ࡚࠶ࡆࡓ࠸࡜⪃࠼ࡿࡇ࡜ࡶࡲࡓ⮬↛࡞ឤ᝟࡛ࡣ࡞࠿ࢁ࠺࠿ࠋࡇࢀࡣྛಶேࡢᛶ
᱁ୖࡢၥ㢟࡛ࡣ࡞ࡃࠊࡼࡾᇶᗏ㒊࡟࠾ࡅࡿࠊ඲࡚ࡢື≀࡟ᇶᮏⓗ࡟ഛࢃࡿࠕ⩦ᛶࠖ࡜ࡋ࡚᝿ᐃࡋ࡚ࡼ࠸ྍ⬟ᛶࡀ࠶ࡿࠋ
−41−
5
山中 司
⌮ᕤᏛ◊✲ᡤ⣖せ
ࢀࡣࠊᇶ♏࡙ࡅ୺⩏ࢆᚭᗏⓗ࡟᎘࠺Rortyࡀ㐍ࢇ࡛ཷࡅᐜࢀࡿࡶࡢ࡛ࡣ࡞࠸࠿ࡶࡋࢀ࡞࠸ࡀ2ࠊᮏㄽᩥࡣࠊ
⌮ㄽⓗ࡞ᇶ♏࡙ࡅ࡜ࡋ࡚ᬑ㐢୺⩏ࢆᥐᐃࡋࡓ࠸ࡢ࡛ࡣ࡞ࡃࠊࡉࡽ࡟ࡑࡢ๓ẁ㝵࡜ࡋ࡚ࡢࠊࡍ࡞ࢃࡕࠕ఍
ヰࠖࢆ⥅⥆ࡉࡏࡿࡓࡵࡢᅵተ࡜ࡋ࡚ࡢࠕඹ㏻⌮ゎࠖ࡜࠸࠺ព࿡࡛ࡢᬑ㐢୺⩏ࢆ᝿ᐃࡋ࡚࠸ࡿࠋ
ࡋ࠿ࡋఱࡼࡾࡶࠊᮏㄽᩥࡀᬑ㐢୺⩏ࡢഃ࡟䬦ࡳࡋࡓ࠸᭱኱ࡢ⌮⏤ࡣࠊㄗゎࢆᢎ▱࡛㏙࡭ࡿ࡞ࡽࡤࠊࡑ
ࡢ᪉ࡀ⌮ㄽୖࠕ㒔ྜࡀⰋ࠸࠿ࡽࠖ࡟௚࡞ࡽ࡞࠸ࠋ࡞࠾ࡇࢀࡣࠊᚋ࡟㆟ㄽࡍࡿࠊࣉࣛࢢ࣐ࢸ࢕ࢬ࣒ࡢ⪃࠼
࡟ἢࡗࡓゝ࠸᪉ࢆ࠶࠼࡚ࡋ࡚࠸ࡿࡢ࡛࠶ࡾࠊࡇࡢ⾲⌧࡟ࡣពᅗࡀ࠶ࡿࠋ┦ᑐ୺⩏࠿ࠊࡶࡋࡃࡣᬑ㐢୺⩏
࠿࡜࠸࠺ࡢࡣࠊ࠶ࡃࡲ࡛ᴫᛕ㛫ࡢၥ㢟࡛࠶ࡾࠊ⌮ㄽⓗ࡞Ỵ╔ࡀ┤ࡕ࡟ఱ࠿㔜኱࡞ኚ໬ࢆ⌧ᐇୡ⏺࡟ᘬࡁ
㉳ࡇࡍࢃࡅ࡛ࡣ࡞࠸ࠋࡑ࠺࡛࠶ࡿ࡞ࡽࡤࠊ⚾ࡓࡕࡢ⏕ά࡟࡜ࡗ࡚ࠊࡼࡾⰋ࠸⤖ᯝࢆᑟࡃࡼ࠺࡞⪃࠼ࡸゎ
㔘࡟䬦ࡳࡋࠊࡑࢀ࡟ࡼࡿࠕዲࡲࡋ࠸ࠖᙳ㡪ࢆாཷࡋࡓ᪉ࡀࠊ⏕άᡓ␎ୖᚓ⟇࡛ࡣ࡞࠸ࡢ࠿ࠋࣉࣛࢢ࣐ࢸ
࢕ࢬ࣒ࡢ฼Ⅼࡣࠊࡑࢀࡀᢳ㇟ⓗ࡞ᴫᛕࢆ᧯సࡍࡿࡇ࡜࡟⤊ጞࡋࡓࡾࠊ⌧≧ࢆჃ࠸ࡓࡾ႐ࢇࡔࡾࡍࡿࡔࡅ
࡟Ṇࡲࡽ࡞࠸Ⅼ࡟࠶ࡿࠋ⌧ᐇ࡟ࡑࡢࠕ⪃࠼ࠖࡀᙺ࡟❧ࡘ࠿࡝࠺࠿ࠊࡑࡢ᭷⏝ᛶࡢዴఱ࡛ホ౯ࡋࠊ㏫࡟ゝ
࠼ࡤࡑࡢⅬࡢࡳ࡟౯್ࢆ⨨ࡃࡢࡀࣉࣛࢢ࣐ࢸ࢕ࢬ࣒࡞ࡢ࡛࠶ࡿࠋᮏㄽᩥࡢ⌮ㄽⓗᨭᰕࡣࡇࡢࣉࣛࢢ࣐ࢸ
࢕ࢬ࣒࡟࠶ࡾࠊࡑࡢⅬ࡟❧⬮ࡋࡓୖ࡛ࠕᬑ㐢୺⩏ࠖࢆ୺ᙇࡋࡓ࠸3ࠋᬑ㐢୺⩏ࡢ᪉ࡀࠊᡃࠎࡢ⏕άࡸ᪥ᖖ
ࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࠊࡑࡋ࡚➹⪅ࡢᑓ㛛㡿ᇦ࡛࠶ࡿእᅜㄒᩍ⫱࡟࡜ࡗ࡚ࠕ(ࡼࡾ)ዲࡲࡋ࠸ࠖᙳ㡪ࢆࡶࡓ
ࡽࡍࡇ࡜ࡀᮇᚅ࡛ࡁࡿ࠿ࡽࠊࡇࢀࡀ᭱኱ࡢ⌮⏤࡛࠶ࡿࠋ⌮ㄽⓗ࡟ࠊ┦ᑐ୺⩏ࡢ⪃࠼ࡼࡾࡶᬑ㐢୺⩏ࡢ⪃
࠼᪉ࡀඃࢀ࡚࠸ࡿ࡜ุ᩿࡛ࡁࡓ࠿ࡽ࡛ࡣ࡞࠸ࠋ
4.1 ࠕṧ㓞ࡉ࡜ⱞ③ࡢῶᑡࠖ࠿ࡽࠕᕼᮃࠖ࡬
ゝㄒㄽⓗࠕᬑ㐢୺⩏ࠖࡢྍ⬟ᛶࠊ༶ࡕேࠎࡀศ࠿ࡾྜ࠺࡜ࡍࡿࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡢྍ⬟ᛶࢆ㏣ồࡍ
ࡿ࡟࠶ࡓࡾࠊࡇࡢ㆟ㄽ࡟ᴟࡵ࡚㛵㐃ᛶࢆᣢࡘ࡛࠶ࢁ࠺࡜ᛮࢃࢀࡿㄽⅬࡀRortyࡢࠕṧ㓞ࡉ࡜ⱞ③ࡢῶᑡࠖ
࡛࠶ࡾࠊDavidsonࡢࠕᐶᐜࡢཎ๎࡛ࠖ࠶ࡿࠋࠕᐶᐜࡢཎ๎ࠖ࡟ࡘ࠸࡚ࡣᣦ᦬ࡢࡳ࡟࡜࡝ࡵࠊ⣬㠃ࢆᨵࡵ࡚
ㄽࡌࡿࡇ࡜࡜ࡋࠊ௨㝆࡛ࡣࠕṧ㓞ࡉ࡜ⱞ③ࡢῶᑡࠖ࡟ࡘ࠸࡚ྲྀࡾୖࡆㄽࡌࡿࡇ࡜࡜ࡋࡓ࠸ࠋ
Rortyࡣ⮬㌟ࡀ⌮᝿࡜ࡍࡿࠕ࣭࣮ࣜ࣋ࣛࣝࣘࢺࣆ࢔ࠖ࡟࠾࠸࡚ࠊṧ㓞ࡉ࡜ⱞ③ࡀ᭱ᑠ໬ࡉࢀࡿࡇ࡜ࢆᮃ
ࢇ࡛࠸ࡿࠋࡇࢀࡣRortyࡀㄽࡎࡿࠕබࠖ࡜ࠕ⚾ࠖࡢ༊ู࡟࠾ࡅࡿࠕබࠖࡢ⠊␪࡛ࡢ㆟ㄽ࡛࠶ࡾࠊேࠎࡀඹ
㏻ࡋ࡚┠ᣦࡍࡶࡢ࡜ࡋ࡚ᥖࡆࡓ┠ᶆ࡛࠶ࡿࠋ኱㈡(2006)ࡀ⧳ࡵࡿࡼ࠺࡟ࠊࠕ≀ㄒࠖࡢࢪࣕࣥࣝ࡟ࡼࡿ⾲⌧
ᡭẁࡀᥥࡁฟࡋࠊ࿌Ⓨࡍࡿࡢࡣࡲࡉ࡟௚ேࡀࠕṧ㓞ࡉࠖ࡜ࠕⱞ③ࠖࢆཷࡅ࡚࠸ࡿᵝᏊ࡛࠶ࡾࠊࡇࢀࡽ࡬
ࡢឤཷᛶࡇࡑࡀࠕ㐃ᖏࠖࡢ⠊ᅖࢆᣑࡆࡿࡓࡵࡢ㘽࡜࡞ࡿ࡜Rortyࡣ⪃࠼ࡿࡢ࡛࠶ࡿࠋ
↓ㄽࡇࡢᣦ᦬ࡣጇᙜ࡛࠶ࡾࠊ཯ㄽࡍ࡭ࡁෆᐜ࡛ࡶ࡞࠸ࠋࡋ࠿ࡋ࡞ࡀࡽࠊ➹⪅ࢆྵࡴ᪥ᮏே࡛࠶ࡿᡃࠎ
2
Rorty⮬㌟ࠊ┦ᑐ୺⩏ࡸ㠀ྜ⌮୺⩏࡟ࡘ࠸࡚᎘␲ࡋ࡚࠾ࡾࠊࠕࡑࢀ⮬యࡢ༊ูࡀ᫬௦㐜ࢀ࡛Ẽࡢ฼࠿࡞࠸㐨ල❧࡚ࠖ࡜㏙࡭࡚࠸ࡿࠋᮏㄽᩥ
ࡣࡇ࠺ࡋࡓᢈุࡶᢎ▱ࡋࡘࡘࡶࠊ࠶ࡃࡲ࡛ࠕᬑ㐢୺⩏ࠖ࡜ࠕ┦ᑐ୺⩏ࠖࢆᑐ❧ⓗ࡟ㄽࡌࡿࡇ࡜࡛ࠊࡑࡇ࠿ࡽぢ࠼ࡿࡶࡢࢆㄽࡌ࡚ࡳࡓ࠸࡜⪃
࠼ࡿࠋ
3
ࠕࣉࣛࢢ࣐ࢸ࢕ࢬ࣒࡜ࡣࠊ࠿ࡘ࡚Peirce([1878] 1992: 132)࡟ࡼࡗ࡚ࡑࡢཎᆺࡀ♧ࡉࢀࡓࡶࡢ࡛࠶ࡾࠊࡲࡓJames(1907)࡟ࡼࡗ୍࡚ࡘࡢ᪉ἲㄽ
࡜ࡋ࡚ᐃ⩏ࡉࢀࡓࡶࡢ࡛࠶ࡿࠋ20ୡ⣖ࡢ࢔࣓ࣜ࢝ဴᏛࡢ᰿ᖿࢆ࡞ࡍࡼ࠺࡟࡞ࡗࡓࣉࣛࢢ࣐ࢸ࢕ࢬ࣒ࡣࠊᚋ࡟Rorty࡟ࡼࡗ࡚ࣛࢹ࢕࢝ࣝ࡞㐍
໬ᙧࠊࠕࢿ࣭࢜ࣉࣛࢢ࣐ࢸ࢕ࢬ࣒ࠖ࡜ࡋ࡚Ⓨᒎࡍࡿࡇ࡜࡟࡞ࡿࡀࠊࡇࡇ࡟ࡣᚑ᮶ࡢ⛉Ꮫ᪉ἲㄽ࡟ᑐࡍࡿᚭᗏࡋࡓỴูࡢែᗘࡀぢ࡚ྲྀࢀࡿࠋ
ࣉࣛࢢ࣐ࢸ࢕ࢬ࣒࡜ࡣࠊ࢔࣓ࣜ࢝ࡢṔྐ࣭ᩥ໬ࢆ㈏ࡃ୍ࡘࡢᛮ᝿య⣔࡛࠶ࡾࠊဴᏛ࡛࠶ࡿࠋࡇࢀࡣ↓ㄽ⡆༢࡟ㄽࡌࡽࢀࡿ㢮ࡢࡶࡢ࡛ࡣ࡞
࠸ࠋPierceࡢᐃ⩏࡟ጞࡲࡾࠊJamesࡢၥ㢟ゎỴ࡬ࡢ╔┠ࠊࡑࡋ࡚Deweyࡢලయⓗ࡞ᩍ⫱࡬ࡢᛂ⏝࡟⮳ࡿࡲ࡛ࠊࡇࢀࡽ࡟୍㈏ࡍࡿࡢࡣࠊࣉࣛࢢ
࣐ࢸ࢕ࢬ࣒ࡢᚭᗏࡋࡓ⌧ᐇࡸᐇ㊶࡬ࡢ╔┠࡛࠶ࡿࠋDeweyࡸࠊᚋ࡟Rortyࡶᣦ᦬ࡍࡿࡼ࠺࡟ࠊすὒဴᏛࡀ⌧ᐇࡸᐇ㊶ࢆ㍍どࡍࡿࡢࡣࠊఱࡶᐈ
ほ⛉Ꮫࡀ㝯┒ࢆ㄂ࡗࡓ㏆௦௨㝆ࡢヰ࡛ࡣ࡞࠸ࠋྂ௦ࢠࣜࢩ࢔ဴᏛ௨᮶ࠊ஧ඖㄽⓗ࡞ୡ⏺ほࡣࠊ⫗య࡟ᑐࡍࡿ⢭⚄ࡢඃ㉺ࠊ࠶ࡿ࠸ࡣࡑࡢ≉ᶒ
ᛶࢆᬯ㯲ࡢ࠺ࡕ࡟᫝࡜ࡋ࡚ࡁࡓṔྐࢆᙧᡂࡋࡓࠋࡇ࠺ࡋࡓ౯್ほ࡟␗㆟⏦ࡋ❧࡚ࢆ⾜࠺ࡢࡀᛮ᝿࡜ࡋ࡚ࡢࣉࣛࢢ࣐ࢸ࢕ࢬ࣒࡛࠶ࡾࠊᐇ㊶ᐙ
࡜ࡋ࡚ࡢࣉࣛࢢ࣐ࢸ࢕ࢫࢺ㐩࡛࠶ࡿࠋ࡞ࡐࣉࣛࢢ࣐ࢸ࢕ࢬ࣒ࡀ⌧ᐇୡ⏺ࡸᐇ㊶࡟ࡑࡢព⩏ࢆㄆࡵࡼ࠺࡜ࡍࡿ࠿ࠊࡑࡢ⌮⏤ࡣ⌧ᐇ♫఍࡟ࠕᙺ
࡟❧ࡘࠖࡓࡵ࡟ࡣࠊᐇ㊶࡟ά࠿ࡉࢀࡿࡇ࡜ࡇࡑ᭱ࡶព࿡ࡀ࠶ࡿ࡜⪃࠼ࡿ࠿ࡽ࡟௚࡞ࡽ࡞࠸ࠋᙼࡽࡢၥ㢟ព㆑ࡢ᰿ᗏ࡟ࡣ⛉Ꮫࡀᣢࡘㄆ㆑ㄽⓗ
࡞⊃ࡉࡀ࠶ࡿࠋᡃࠎࡢ᪥ᖖୡ⏺࡛ࡣࠊ௬࡟࠶ࡿಙᛕ࡟☜ಙࡀᣢ࡚࡞ࡃ࡚ࡶࠊPeirceࡀ࠸࠺࢔ࣈࢲࢡࢩࣙࣥ࡟ࡼࡿ᥎ㄽ࡛✚ᴟⓗ࡟௬ㄝࢆᵓ⠏
ࡋࠊヨ⾜㘒ㄗࡋ࡞ࡀࡽ⮬ࡽࡢ▱ࢆᣑ኱ࡋ࡚࠸ࡿࠋ⌧ᐇୡ⏺࡟ࡼࡾࡼࡃᑐฎࡍࡿࡓࡵ࡟ࡣࠊࡇ࠺ࡋࡓᶍ⣴ⓗ࡞ᐇ㊶ࢆ⥅⥆ࡋࡼ࠺࡜ࡍࡿࡑࡢែ
ᗘࡇࡑࡀఱࡼࡾࡶ㔜せ࡛࠶ࡾࠊṇྰࡢ⿢ᐃࢆᚅࡘࡇ࡜࡛ࡣ࡞࠸ࠋ⤯ᑐⓗ࡞ࡶࡢࠊ⛉Ꮫⓗ࡞ࡶࡢ࡟ࡼࡿ୍ぢື࠿ࡋࡀࡓࡃᛮ࠼ࡿ┿⌮ࡣࡴࡋࢁ
⚾ࡓࡕࡢ⮬⏤࡞⪃࠼ࡸ⾜ືࢆጉࡆࠊ❓ᒅ࡟ࡉࡏ࡚ࡋࡲ࠺ࠋࡋ࠿ࡋ⚾ࡓࡕࡢㄆ㆑ࡸ⾜ືࡣࠊ⛉Ꮫࡢᯟࢆ㉸࠼ฟࡿࡢ࡛࠶ࡿ(James 1956:
509)ࠋࠖᒣ୰(2015)
−42−
6
言語コミュニケーション論における「希望学」̶「分かり合う」ことは可能か ⌮ᕤᏛ◊✲ᡤ⣖せ
࡟࡜ࡗ࡚ࠊ♫఍⎔ቃࡸᨻ἞≧ἣࡶ␗࡞ࡿ୰࡛ࠊࡇ࠺ࡋࡓࠕṧ㓞ࡉ࡜ⱞ③ࡢῶᑡࠖࡀඹ㏻ࡢฟⓎⅬ࡜ࡋ࡚
ㄆ㆑ࡋ᫆࠸࠿࡜࠸࠼ࡤ㞴ࡋ࠸ࡢ࡛ࡣ࡞࠸ࡔࢁ࠺࠿ࠋ
ࡇࢀࡣ᪥ᮏࡀᖹ࿴ࢆாཷࡋࠊ
῝้࡞ᑐ❧ࡸட⿣ࢆ
ࠕබࠖ
ࡢ࡛ࣞ࣋ࣝ⏕ࢇ࡛࠸࡞࠸ドᕥ࡞ࡢ࡛࠶ࢁ࠺ࡀࠊࡇ࠺ࡋࡓࢿ࢞ࢸ࢕ࣈ࡞せ⣲ࢆ᤼㝖ࡍࡿ࡜ࡇࢁ࠿ࡽ㆟ㄽࢆ
ጞࡵࡿࡇ࡜࡟ᑐࡋ࡚ࠊ㐪࿴ឤࢆឤࡌࡊࡿࢆᚓ࡞࠸ࠋࡲࡓᩥ⬦ࡣ␗࡞ࡿࡀࠊRorty(1991)ࡀ⮬㌟ࡢ❧ሙ࡜ࡋ
࡚᫂ゝࡍࡿ࡜ࡇࢁࡢࠊ”Postmodernist Bourgeois Liberalism”࡜࠸࠺ࢫࢱࣥࢫࡶࠊᑡ࡞ࡃ࡜ࡶ᪥ᮏ♫఍࡛ࡣ┤
ࡕ࡟ཷࡅᐜࢀࡽࢀࡿࡶࡢ࡛ࡣ࡞࠸ࡔࢁ࠺ࠋࡋࡓࡀࡗ࡚ᮏㄽᩥࡣࠊRortyࡀࡇ࠺ࡋࡓேࠎࡢ᰿ᗏ࡟࠶ࡿඹ᭷
࡛ࡁࡿ౯್ほ࡟ッ࠼ࠊ㐃ᖏࡢ⠊ᅖࢆᣑᙇࡋࡼ࠺࡜ࡍࡿྲྀࡾ⤌ࡳ࡟ᑐࡋ࡚♧၀ࢆཷࡅࡿࡶࡢ࡜ࡋࠊ(࠶ࡿព
࿡࡛ࠕ᥍࠼┠ࠖ࡞)ࠕṧ㓞ࡉ࡜ⱞ③ࡢῶᑡࠖ࡟ኚࢃࡿ✚ᴟⓗ࡞㘽ᴫᛕࢆᥦ♧ࡋࡓ࠸ࠋࡑࢀࡀࠕᕼᮃࠖࡢᬑ
㐢ᛶ࡛࠶ࡿ4ࠋ
4.2 ࠕᕼᮃࠖࢆᥖࡆࡿ⌮⏤
ᕼᮃࢆㄽࡌࡿඛ⾜◊✲࡜ࡋ࡚ࠊ⋞⏣࡯࠿(2009)ࡽࡀ๰ጞࡋࡓࠕᕼᮃᏛࠖࡀ࠶ࡿࠋᮏㄽᩥࡣࡇࡢᕼᮃᏛࡢ
᪂ࡓ࡞ഃ㠃࡜ࡋ࡚ࠊᕼᮃ࡜ࣉࣛࢢ࣐ࢸ࢕ࢬ࣒࡜ࡢ᥋Ⅼ࡟ࡘ࠸࡚ㄽࡌࡓ࠸ࠋ⋞⏣࡯࠿࡟ࡼࡿᕼᮃᏛ࡛ࡣࠊ
ࠕᕼᮃࠖ࡜ࠕᴦほ୺⩏ࠖࢆ୪ิ࡟ㄽࡿ➼ࡢ⌮ㄽⓗ⪃ᐹࡣヨࡳࡽࢀ࡚࠸ࡿࡼ࠺࡛࠶ࡿࡀࠊᮏどⅬ࡟ࡘ࠸࡚
ࡣྲྀࡾୖࡆࡽࢀ࡚࠸࡞࠸ࡼ࠺࡛࠶ࡾࠊࡴࡋࢁࡇࡢⅬࡀࠊᙼࡽࡀㄽࡌࡿᕼᮃᏛࡢࠕ(ᮇᚅ㸭ほᛕ࡜ࡋ࡚ࡢ)ᕼ
ᮃࠖ࡜ࠕ(ᕼᮃ࡟㏆࡙ࡃࡓࡵ㸭ᐇ⌧ࡍࡿࡓࡵࡢ)⾜ື㸭⾜Ⅽࠖࢆ⧅ࡄ᰾ᚰ࡛࠶ࡿ࡜ᮏㄽᩥࡣ⪃࠼ࡿࡢ࡛࠶
ࡿࠋ
ᕼᮃᏛࡣࠊ”Hope is a wish for something to come true by action”(2009: xvi)࡜ᐃ⩏ࡋ࡚࠸ࡿࠋࡇࢀࡣࠊᕼᮃ
ࡀ༢࡟ࠊῐ࠸ᮇᚅࡸክ࡜ࡣ␗࡞ࡾࠊᐇ♫఍࡜᥋Ⅼࢆᣢࡕࠊୡ⏺ࡢኚ㠉ࡸࡑࡢ᪉ྥᛶࢆලయⓗ࡟ᣦࡋ♧ࡍ
ࡶࡢ࡛࠶ࡾࠊࡑࡢࡓࡵ࡟ࡣࠕ⾜ືࠖࡸࠕᐇ⌧ࡉࡏࡿࡇ࡜ࠖࡀྠ᫬࡟㔜せ࡛࠶ࡿࡇ࡜ࢆព࿡ࡋ࡚࠸ࡿࠋࡓ
ࡔᮇᚅࡍࡿࡔࡅ࡛ࡣࠊࡓࡔჃࡃࡔࡅ࡟⤊Ṇࡋࡓ࡜ࡉࢀࡿ࠿ࡘ࡚ࡢࠕ࣏ࢫࢺࣔࢲࣥ(࢔ࣥࢳࣔࢲࣥ)ࠖ࡬ࡢᢈ
ุ࡜኱ࡋ࡚ኚࢃࡽ࡞࠸ࠋᕼᮃ࡜ࡣఱࡽ࠿ࡢᙧ࡛ࠕ⾜Ⅽࠖࢆక࠺ᚲせࡀ࠶ࡾࠊࡑࢀࡇࡑࡀࠊክ᝿࡜ࡢỴᐃ
ⓗ࡞ᕪ␗࡛࠶ࢁ࠺ࠋࡇࡢⅬ࠿ࡽぢࡓሙྜࠊ⌧ᐇࡢ⾜Ⅽ࡜ࡑࡢ⤖ᯝࡀᘬࡁ㉳ࡇࡍ᭷⏝ᛶ࡟᭱኱ࡢព⩏ࢆぢ
ฟࡍࠕࣉࣛࢢ࣐ࢸ࢕ࢬ࣒ࠖࡢဴᏛ࡟ᑐࡋࠊᕼᮃᏛࡣ✚ᴟⓗ࡞ඹ㬆ࢆ♧ࡋࠊ⌮ㄽⓗ࡞㔜࡞ࡾ࡟኱࠸࡟ගࢆ
ᙜ࡚ࡿ࡭ࡁ࡛ࡣ࡞࠸ࡔࢁ࠺࠿ࠋ
ࡉࡽ࡟ᕼᮃ࡜ࡣࠊேࠎࡢ⾜ື࡟ࠕ๓ྥࡁ࡞ࠖࠊ༶ࡕ⫯ᐃⓗ࡛✚ᴟⓗ࡞ព࿡ࢆ௜୚ࡍࡿࡇ࡜࡟ࡣ␲࠸ࡀ
࡞࠸ࡶࡢ࡜ᛮࢃࢀࡿࠋࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ࡟࠾࠸࡚ࡶࡋ࠿ࡾࠊேࠎࡀ᰿ᮏⓗ࡟ศ࠿ࡾྜ࠼ࡿ࡜ࡋࠊࡑࡢ
ᐇ⌧ࡢࡓࡵ࡟ࠊດຊࢆᝰࡋࡲࡎࠊ఍ヰࢆ⥅⥆ࡋࠊ㐃ᖏࡢ⠊ᅖࡢᣑᙇࡍࡿࠕᕼᮃࠖࢆᣢࡘࡇ࡜ࡇࡑࠊ✲ᴟ
ⓗ࡞ព࿡࡛ࡢᬑ㐢୺⩏ࢆ(࠸ࡘ࠿)ྍ⬟࡟ࡋࠊྠ᫬࡟ࠊᕼᮃᏛࢆᐇ㊶ࡍࡿࡇ࡜࡟ࡣ࡞ࡽ࡞࠸ࡔࢁ࠺࠿ࠋ
㸳 ࠾ࢃࡾ࡟: ࣃࣥࢻࣛࡢ⟽ࡢ୰ࡢࠕᕼᮃࠖ
ࠕᕼᮃᏛࠖࡢ㆟ㄽ࡜ࡋ࡚ྲྀࡾୖࡆࠊゎ㔘ࢆヨࡳࡿᚲせࡀ࠶ࡿ࡜ᛮࢃࢀࡿㄽⅬ࡟ࠕࣃࣥࢻࣛࡢ⟽ࠖࡢ⚄
ヰࡀ࠶ࡿࠋࣃࣥࢻࣛࡢ⟽࡟᭱ᚋࡲ࡛ṧࡉࢀࠊྲྀࡾฟࡉࢀ࡞࠿ࡗࡓ࡜ࡉࢀࡿࠕᕼᮃ࡛ࠖ࠶ࡿࡀࠊࡇࡢゎ㔘
࡟ࡘ࠸࡚ࡣ✀ࠎᵝࠎ࡞ぢゎࡀᥦ♧ࡉࢀ࡚࠸ࡿࡼ࠺࡛࠶ࡿࠋࡑࡶࡑࡶ⚄ヰࡸ᫇ヰ࡟ࡣከ⩏ᛶࡀ࠶ࡾࠊࡑࡇ
࡟ᩍカࡸ♧၀ࡀྵࡲࢀ࡚࠸ࡿࡓࡵ୍⩏ⓗ࡞ぢ᪉ࡣࡴࡋࢁ೺඲࡛ࡣ࡞࠸࡜ࡶ࠸࠼ࡿࠋࡋ࠿ࡋࠊ࠸ࡎࢀ࡟ࡏ
ࡼୡ⏺୰࡟⅏⚝ࡀ⶝ᘏࡋࡓ࡜ࡉࢀࡿ≀ㄒࡢᩥ⬦࡟࠾࠸࡚ࠊ၏୍ᡃࠎࡢഃ࡟ṧࡉࢀࡓ࡜ࡉࢀࡿࠕᕼᮃࠖ࡟ࠊ
ே㢮ࡣఱࢆぢࢀࡤⰋ࠸ࡢࡔࢁ࠺࠿ࠋ
࡞࠾ࠊ5RUW\⮬㌟ࠊ⮬ࡽࢆࠕᕼᮃࡢඪὴ࡛ࠖ࠶ࡿ࡜ᐉゝࡋ࡚࠾ࡾࠊࠕ࣮ࣘࢺࣆ࢔ࠖࡸࠕ㐃ᖏࠖ࡜࠸ࡗࡓࣉࣛࢫ㠃ࢆ┠ᣦࡋ࡚࠸ࡓ኱㈡
ࠋᮏㄽᩥࡣࠊࡴࡋࢁࡇࡢࣉࣛࢫࡢഃ㠃ࢆ඲㠃࡟ᢲࡋฟࡋࠊᬑ㐢ⓗᴫᛕ࡜ࡋ࡚ࡢࠕᕼᮃࠖࢆ㏣ồࡋࡓ࠸ࡢ࡛࠶ࡿࠋ
−43−
7
山中 司
⌮ᕤᏛ◊✲ᡤ⣖せ
ࡇࡢୡࡢ୙ᖾࠊ୙ྜ⌮ࠊ࢔ࣥࣇ࢙࢔ࢿࢫ࡟ࡘ࠸࡚ࡣࠊྂ௦࠿ࡽ⌧௦ࡲ࡛ࠊ඲࡚ࡢಶேࡀ⤒㦂ࡋࠊ㎞ⱞ
ࢆ✺ࡁ௜ࡅࡽࢀ࡚ࡁࡓ࡜࠸࠼ࡼ࠺ࠋฟ⏕ࠊᐙ᪘ࠊぶࡋ࠸⪅࡜ࡢู㞳ࡲ࡛ࠊᡃࠎࡣ㑅ࡪࡇ࡜ࡀ࡛ࡁ࡞࠸ࡋࠊ
ᖾࡏ࡜୙ᖾࡏࡢ๭ྜࡣỴࡋ࡚ᖹ➼࡛ࡣ࡞࠸ࠋࠕ࡝࠺ࡋ࡚⮬ศࡔࡅ͐ࠖ࡜ᕫࡢ㐠࿨ࢆჃࡃࡇ࡜ࡣㄡ࡟ࡶ⤒
㦂ࡀ࠶ࡿࡇ࡜࡛ࡣ࡞࠸ࡔࢁ࠺࠿ࠋࡑࡋ࡚ࡇ࠺ࡋࡓ㎞ࡃࠊᝒࡋ࠸ୡࡢ୰ࡣࠊಶࠎࡢே⏕ࡀ⥆ࡃ㝈ࡾࠊṧᛕ
࡞ࡀࡽ⥅⥆ⓗ࡟㉳ࡇࡾ⥆ࡅࡿࠋࡇࢀ࠿ࡽ㉳ࡇࡿ࡛࠶ࢁ࠺⅏⚝࡟⮬ศࡣ⪏࠼ࡽࢀࡿࡢࡔࢁ࠺࠿ࠋࡇࢇ࡞ୡ
ࡢ୰࡟⏕ࡁ࡚࠸ࡿࡃࡽ࠸࡞ࡽࠊ᪩࠸࡜ࡇࢁ࿨ࢆ⤯ࡗࡓ᪉ࡀྜ⌮ⓗ࡟ࠕṇࡋ࠸ࠖࡢ࡛ࡣ࡞࠸ࡢ࠿࡜ࡉ࠼ᛮ
࠼࡚ࡃࡿࠋࣃࣥࢻࣛࡢ⟽ࡢ≀ㄒࡀࠊ⌧௦ࡢ≀ㄒ࡛ࡶ࠶ࡿࡇ࡜ࡣ࠶ࡲࡾ࡟ࡶ᫂ࡽ࠿࡛࠶ࡿࠋ
ࡋ࠿ࡋே㢮࡟ࡣࠕᕼᮃࠖࡀ࠶ࡿࠋࡇࢀࡣዲពⓗ࡟ゎ㔘ࡍࢀࡤࠊ࡝ࢇ࡞㏫ቃ࡟ࡶࡵࡆࡎ๓ྥࡁ࡟⏕ࡁ࡚
࠸ࡃே㢮ࡢ㏾ࡋࡉ࡛࠶ࡾࠊ
⌧࡟ᕼᮃࢆᣢࡕ⥆ࡅࡿࡇ࡜࡛ࡑࢀࡀྔ࠺ࡇ࡜ࡶ⛥࡟ࡣ㉳ࡇࡿࠋ
ࡋࡓࡀࡗ࡚ᡃࠎ
ࡣᕼᮃࢆᤞ࡚ࡿ࡭ࡁ࡛ࡣ࡞࠸࡜ࡍࡿ⪃࠼᪉ࡔࠋࡋ࠿ࡋࡇࢀ࡟ࡣูࡢゎ㔘ࡶ࡛ࡁࡿࠋ୙ᖾ࡟ࡶே㢮ࡀࠕᕼ
ᮃࠖࢆᣢࡗ࡚ࡋࡲࡗࡓࡀࡓࡵ࡟ࠊูࡢゝ࠸᪉ࢆࡍࢀࡤࠕᕼᮃࠖࢆᤞ࡚ࡁࢀ࡞࠸ࡓࡵ࡟ࠊࡇࢇ࡞㎞ࡃᝒࡋ
࠸ୡࡢ୰࡛ࡉ࠼ࡶ⏕ࡁ⥆ࡅ࡚ࡋࡲࡗ࡚࠸ࡿ࡜ࡍࡿぢ᪉࡛࠶ࡿࠋࡇࡇ࡛ࡇࡢ࡝ࡕࡽࡢゎ㔘ࡀࡼࡾṇ⤫࡛࠶
ࡿࡢ࠿ࢆ㆟ㄽࡍࡿࡘࡶࡾࡣ࡞࠸ࡀࠊࣃࣥࢻࣛࡢ⟽ࡢ⚄ヰࡀඹ㏻࡟♧ࡋ࡚࠸ࡿࡇ࡜ࡣࠊே㢮ࡣ᰿※ⓗ࡟ࠕࡉ
ࡉࡸ࠿࡞ᕼᮃࠖࢆᣢࡕ⥆ࡅࡿᏑᅾ࡛࠶ࡿ࡜࠸࠺ࡇ࡜࡛࠶ࡿࠋࡇࢀࡀᖾ࠿୙ᖾ࠿ࠊྜྷ࡜ฟࡿ࠿ป࡜ฟࡿ࠿
ㄡ࡟ࡶุ᩿࡛ࡁࡿࡶࡢ࡛ࡣ࡞࠸ࡋࠊ࡝࠺ࡸࡽே㢮ࡣᖖ࡟ࡑࡢࡼ࠺࡞ຌ฼ⓗ࡞ぢᆅ࠿ࡽࡢࡳ≀ࢆ⪃࠼࡚࠸
ࡿᏑᅾ࡛ࡣ࡞ࡉࡑ࠺࡛࠶ࡿࠋ
ࠕᕼᮃࠖࢆࠕᣢࡗ࡚ࡋࡲ࠺ࠖࡇ࡜ࡀᡃࠎඹ㏻ࡢࠕ⩦ᛶ࡛ࠖ࠶ࡿ࡜ࡍࡿ࡞ࡽࡤࠊᐇࡣࠕⱞ③ࢆῶᑡࡉࡏ
ࡿࡇ࡜ࠖ࡜ྠࡌࡼ࠺࡟ࠊே㢮ࡀඹ㏻࡟ᣢࡕࠊ㐃ᖏࢆ࿧ࡧ࠿ࡅࡽࢀࡿᣐࡾᡤ࡟࡞ࡿࡢ࠿ࡶࡋࢀ࡞࠸ࠋ⣲ᮔ
࡟⪃࠼࡚ࠊே㢮ࡀᕼᮃࢆᣢࡘࡇ࡜ࡣỴࡋ࡚ᝏ࠸ࡇ࡜࡛ࡣ࡞࠸ࠋࠕᕼᮃᏛࠖ࡜ࡣỴࡋ࡚ᥗࡳᡤࡢ࡞࠸᰿↓
ࡋⲡ➼࡛ࡣ࡞ࡃࠊពእ࡟ࡶࠊ௚ࡢ࡝ࢇ࡞Ꮫၥࡼࡾࡶ᰿※ⓗ࡞ᇶ┙ࢆᣢࡗࡓࠊே㢮ࡢ᪂ࡓ࡞ࠕ❧ࡕ఩⨨ࠖ
࡞ࡢ࠿ࡶࡋࢀ࡞࠸ࠋୡ⏺୰ࡢཿᬛࢆ㞟ࡵࠊ㆟ㄽࡀ⥅⥆ࡉࢀࡿࡇ࡜ࢆ㢪ࡗ࡚ࡸࡲ࡞࠸ࠋ
ཧ⪃ᩥ⊩
Davidson, D. (1984) Inquiries into Truth and Interpretation, Oxford University Press.
Davidson, D. (2006) "A Nice Derangement of Epitaphs,” 1986, in The Essential Davidson, edited by Ernie Lepore and Kirk Ludwig, New
York: Oxford University Press, pp.251-265.
Deutscher, G. (2010) Through the Language Glass: Why the World Looks Different in Other Languages. New York: Metropolitan Books.
James, W. (1907) Pragmatism: A new name for some old ways of thinking. New York: Longman Green and Co.
Kuhn, T.S. (1962) The Structure of Scientific Revolutions, Chicago: The University of Chicago Press.
Peirce, C.S. (1992) “How to Make Our Ideas Clear,” 1878, in The Essential Peirce: Selected Philosophical Writings, Volume 1 (1867-1893).
Ed. by Nathan Houser and Christian Kloesel, Bloomington: Indiana University Press.
Quine, W.V.O. (1960) Word and Object. Cambridge, MA: MIT Press.
Quine, W.V.O. (1951) “Two Dogmas of Empiricism” in The Philosophical Review, Volume 60, No. 1. pp. 20-43.
Rorty, R. (1979) Philosophy and the Mirror of Nature, Princeton University Press.
Rorty, R. (1991) Objectivity, Relativism, and Truth: Philosophical Papers, volume 1. Cambridge: Cambridge University Press.
኱㈡♸ᶞ (2006) ࠕṧ㓞ࡉ࡜ⱞ③ࡢῶᑡࠖࠗ♫Ꮫ◊ㄽ㞟࠘Vol. 7ࠊ᪩✄⏣኱Ꮫ኱Ꮫ㝔 ♫఍⛉Ꮫ◊✲⛉
⋞⏣᭷ྐ࡯࠿⦅ (2009) ࠗᕼᮃᏛ1: ᕼᮃࢆㄒࡿ࠘ᮾி኱Ꮫฟ∧఍
ᡞ⏣ᒣ࿴ஂ (2002) ࠕ┿⌮᮲௳ⓗព࿡ㄽ࡜᳨ド᮲௳ⓗព࿡ㄽࠖࠗゝㄒဴᏛࢆᏛࡪேࡢࡓࡵ࡟࠘㔝ᮏ࿴ᖾ࡯࠿⦅ࠊୡ⏺ᛮ᝿♫
ᰗ἟Ⰻኴ (2002) ࠗࣉࣛࢢ࣐ࢸ࢕ࢬ࣒࡜ᩍ⫱: ࢹ࣮ࣗ࢖࠿ࡽ࣮ࣟࢸ࢕࡬࠘ඵ༓௦ฟ∧
ᒣ୰ྖ (2015) ࠕ኱Ꮫⱥㄒᩍ⫱࡟࠾ࡅࡿホ౯ࡢࠕ↓ຊ໬ࠖ࡜ࠕᐇ⏝໬ࠖ࡟㛵ࡍࡿ୍⪃ᐹ: ㄽᩥ͆A Nice Derangement of Epitaphs͇
ࢆၥ㢟ᥦ㉳࡜ࡋ࡚ࠖࠗ❧࿨㤋ゝㄒᩥ໬◊✲࠘26ᕳ4ྕࠊ❧࿨㤋኱Ꮫ
⡿Ọᨻᙪ (2002) ࠕഅ↛ᛶ࡟ࡘ࠸࡚ࡢࣀ࣮ࢺ(3): R.࣮ࣟࢸ࢕ࠖࠗ㮵ඣᓥ኱ᏛἲᩥᏛ㒊⣖せேᩥᏛ⛉ㄽ㞟࠘55ࠊpp.113-137
−44−
8
立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年
Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014
Formation of Forsterite Grains and Direct
Observation of The Sublimation of Crystal Formation Grain
Chihiro Kaito, Saito Yoshio, Chiyoe Koike
Department of Physics, Fuel Cell Center , Ritsumeikan University
Kusatsu,Shiga 525-8577,Japan
Forsterite crystal fine grains have been produced by flushing SiO powders into the flame
during MgO grain formation in mixture gas of Ar (80 %) and 02 (20 %) at 13 kPa.
Experimental studies on the sublimation of forsterite grains upon heating at 10-6 Pa have
been carried out using a high-resolution transmission electron microscope. The spherical
crystalline grains became polyhedral at 973 K, which corresponded to the temperature at
which the stall state appeared. Coalescence and sublimation occurred at 1093 K. The
sublimation rates of forsterite grains with a size of 40 to 100 nm with the structure of
Mg2SiO4 were estimated . The sublimation of grains near the crystallization temperature
indicates the reason that no crystal silicates appear in the interstellar medium.
1.Introduction
Submicron-sized silicate grains are present in the circumstellar outflows around oxygen-rich stars and
within the interstellar medium. These grains may play an important role in the early evolution of the solar
nebula, both as the starting material for the accumulation of planetary bodies and as the chief source of
infrared opacity in the nebula. Since the estimated pressure of the solar nebula at 2-3 AU is low [ 1 ],
experiments on grown metamorphism in vacuum are important for comparison with condensation,
evaporation, melting and crystallization process observed in the primitive solar nebula [ 2 and 3 ].
IR spectra of red super giant (RSG), asymptotic giant branch (AGB) stars, post-AGB stars and
planetary nebula (PNe) obtained by the infrared space observatory (ISO) project indicated a mixture of
amorphous and crystalline silicates [ 4 and 5 ]. Spectroscopic and imaging observations of the structural
and compositional properties of brown dwarf disks [ 6 ] showed that crystalline silicates are significantly
more abundant in the outer part than in the deeper layers of the disk. In addition to the crystallization of
amorphous grains, the reverse transformation from crystalline to amorphous species has become an
important point of consideration.
We demonstrated that the crystallization of amorphous Mg-bearing silicate grains to crystalline Mg2SiO4
crystal takes place at 1075 K in vacuum [ 7 ]. The crystallization starts from the grain surface. We also
found that prenuclation occurs in the 923-1003 K temperature range before the onset of crystallization at
1073 K. The phenomenon of a pre-nucleation state corresponds to the stall state, which was clarified by
infrared spectroscopy [ 8 ]. Specific studies on the evaporation of forsterite at 1973 K have been performed
recently. It was shown that forsterite evaporated congruently both in equilibrium in H2 gas [ 1 and 3 ] and
in vacuum [ 9 ]. The evaporation anisotropy of a synthetic single crystal of forsterite was investigated by
high-vacuum experiments [ 10 ]. The intrinsic evaporation rates for the (100), (010) and (001) surfaces are
different, and have a ratio of ~17, ~7 and 22 onȣm/hour. The evaporation rate along the c-axis is largest.
The evaporation rate along the b axis is smallest due to the cross-packed direction of the MgO tetrahedron.
In this paper, we report the direct observation of the sublimation of sub-micron scale, crystalline, Mg2SiO4
grains vacuum at a pressure of 10-6 Pa. The dynamic behavior of the submicron scale, crystalline, grains
was recorded on videotape.
−45−
Chihiro Kaito, Saito Yoshio, Chiyoe Koike
Fig.1. Schematic representation of method crystalline forsterite grain formation in magnetism
oxidation smokes region by a tantalum boat (a).Temperature distribution daring the appearance of MgO
smoke in mixtute gas of O2 and Ar(b).
Fig.2. Schematic diagram of heating stages used in the present experiment in transmission electron
microscope in vacuum 2. Experimental Procedure
The crystalline Mg2SiO4 sample were produced by an advanced gas evaporation smoke method, i.e. ,SiO powder was
flashed into a magnesium oxide flame as shown in Fig. 1(a) [ 11 ]. The sample preparation chamber was a glass cylinder
of inner diameter 17 cm and height 33 cm. MgO smoke was produced by the oxidation of evaporated magnesium from
the evaporation source of tantalum boat in mixture gas of O2 (20 Torr) and Ar (80 Torr) in gas pressure of 13 kPa. SiO
powders were sprinkled on the smoke stream rising straight up from the evaporation source. MgO fine grains were
produced by evaporating Mg powder at 1000ºC in the mixture gas. During the evaporation of Mg, the temperature in
atmosphere becomes higher than the source temperature due to the exothermic reaction of Mg vapor as shown in Fig.
1(b). SiO powder sprinkled from the top of the smoke was evaporated in MgO oxidation region in Fig. 1(b). If the
evaporation of Mg powder finished, the temperature becomes the general shape of gas flow temperature at 1000ºC as
indicated in Fig. 1(b). The evaporation of SiO powder occurred during the oxidation of Mg. Two heating stages were
used, as shown in Fig. 2. Specimen Mg2SiO4 crystal grains were placed on the tungsten heater (Fig. 2 (a)). This holder
can be used to heat the specimen to 1773 K, whereas the holder shown in Fig. 2(b) can be used for heating to
approximately 1073 K. The specimen was dispersed on the carbon holey film. The specimen holder in Fig. 2(b) can also
be used for the method of covering the specimen with a thin carbon film [12]. The sublimation process was observed by
high-resolution transmission microscopy (Hitachi H-9000 NAR) using the specimen holder in Fig.2.
−46−
Formation of Forsterite Grains and Direct Observation of The Sublimation of Crystal Formation Grain
3.Results and Discussion
3-1 Formation of forsterite grain
One of experimental methods used to produce ultrafine growth is the gas evaporation technique. If the Mg and SiO
is evaporated on the mixture gas of O2 (20 Torr) and Ar (80 Torr) from the evaporation source of tantalum boat at 1000
ºC (Mg) and 1600 ºC (SiO), the typical electron microscopic image of MgO and SiO2 were produced as shown in Fig. 3.
MgO particles were cubic shape compound of 8 {100} planes. By the evaporation of SiO powder in the mixture gas,
amorphous oxidation of SiO is preferentially produced beta-SiO2 amorphous spherical structure as indicated diffractions
pattern. The detail formation of silicon oxide will be published elsewhere.
If the SiO powder were introduced into the Mg oxidation region in smoke, the reaction between magnesium oxide
and SiO water took place as indicated previous paper [ 11 ]. The heating of Mg at 1000 ºC, the reaction of Mg with
oxygen gas becomes at 1600 ºC as indicated in Fig. 1. The produced particles were MgO and Mg2SiO4. The amorphous
Mg2SiO4 particles were hardly produced in the present method against another method [ 7 ].
Figure 4 shows a mixture of forsterite particles indicated A (Mg2SiO4, a = 0.47553, b = 1.01978, c = 059817 nm),
the same lattice constants as those in the studies on the evaporation anisotropy of single crystal forsterite (Nagahara and
Ozawa, 1999) and of periclase particles (MgO indicated B) produced by dropping SiO powder into the MgO smoke
flame [ 11 ]. Since the MgO flame due to the oxidation of Mg vapor reaches 1873 K [ 13 ], the SiO powder becomes SiO
vapor in the flame.
Figure 5 (a), (b) and (c) show the high-resolution transmission electron microscopic images of Mg2SiO4 crystal. Most of
the spherical grain had a plate shape, and the crystallographic orientation is shown in the images. The electron diffraction
pattern (ED) showed the single-crystal grain growth of forsterite.
Fig. 3. Typical produced grains of MgO and amorphous, ș̿ SiO2 by heating in the present system.
Fig. 4. Typical electron microscopic images of MgO and Mg2SiO4 crystal grains produced by the present system in Fig. 1. A and B shows
Mg2SiO4 and MgO particles.
−47−
Chihiro Kaito, Saito Yoshio, Chiyoe Koike
Fig. 5. High resolution electron microscopic image of (100), (010) and (001) direction images of Mg2SiO4 nano particles.
Fig. 6. Typical image after heating using the holed in Fig. 2 (b). Spherical grains became polyhedral upon cooling in
vacuum. A and B shows Mg2SiO4 and MgO particles.
3-2 The sublimation of crystal forsterite grains
The morphological alteration started at 973 K. The spherical crystal indicated in Fig. 4 became polyhedral shapes as
indicated in Fig. 6. This shows that the higher order crystal plane started to sublimation or be remolded. Fig. 7 shows the
direct observation on the alteration process of forsterite crystal. The shape of the particle indicated by arrows A and B
were altered at 973 K. The alteration of the spherical shape crystal B than the spherical shape crystal A was clearly seen.
The black dots and the coagulated cubic particles indicated by arrows suggest the formation of MgO crystallites, i.e., the
decomposition of Mg2SiO4 spherical particle into MgO and SiO2 took place as well as prenucleation of amorphous
forsterite grains, i. e., surface decomposition is prominent above 973 K. The b and c or a axes of the forsterite crystals are
appeared. This shows that the higher order crystal plane started to sublimation or be remolded. From the difference in
evaporation along the a. b and c axes of the forsterite crystal [10], the (001) and (100㸧planes, with higher rates of
evaporation, both evaporated.
When the temperature was increased to 1103 K, which is slightly higher than the crystallization temperature of 1073 K
[ 7 ], coalescence growth and sublimation were prominently observed. Figure 8 shows the process of alteration and
sublimation. The convevex region indicated by the arrow in Fig.8 was flattered by the sintering process (Kimura,1960).
By increasing the temperature by only about 10 K, two polyhedral grains of size 500 nm in contact were observed to
coalescence, and alter shape as shown in Fig.8. The particles indicated by the arrow A altered their shapes.
The blact dots seen in Fig.7 hardly observed. The sublimation of the Mg2SiO4 crystal took place congruentily, which
means that the residue has the same composition as the starting material [ 1 ] . The grain indicated by arrow A sublimated
−48−
Formation of Forsterite Grains and Direct Observation of The Sublimation of Crystal Formation Grain
and disappeared with 430 s as shown inFig.8. If we assumed that the particle size indicated by arrow A at 210 sec is a
sphere with a radius of 42 nm, then the mean evaporation rate of the forsterite crystal is 2.04 x 104 molecule/sec. From
the coalescence of grains at 1103 K, it was estimated that a spherical grain of 172 nm was absorbed in 810 sec by
diffusion to the substrate grain. The alteration in shape suggests that this may be the result of the differences in
evaporation rates along the different axes. The sublimation rate before the diffusion process merged the two grains was
3.6 x 104 molecule/sec.
Figure 9 shows a grain of 100 nm radius on the top of a MgO crystal sublimated in 380 sec. The mean evaporation
rate for the particle in Fig.9 i s 1.5 x 105 molecule / sec.
To observe the evaporation along the [ 010 ] direction, the surface of the particles was covered with a thin carbon
layer using the heating shape (b) in Fig.2 (b). The specimen grains were dispersed on holey carbon film. A typical grains
covered by a thin carbon layer ( 4 nm ) is shown in Fig.10. The carbon layer was also evaporated above 973 K ( Ishikawa
et al., 2003 ). The evaporation state of the forsterite along to the ( 010 ) plane was observed using a high resolution
transmission electron microscopic image of the ( 101) lattice image in the temperature range between 1033 to 1113 K as
shown in Fig.11. The lattice image of ( 101 )lattice image in the temperature range between 1033 to 1113 K as shown
in Fig.11. The lattice image of (101) is distorted upon the evaporation of the (010) surface. The thickness alteration
causes the lattice image to disappear. Therefore the focus of the grain in the TEM was altered. However all of the (101)
lattice images disappeared within 1063 sec. The disappearance of the lattice images left to right suggests that sublimation
took place by layer. At about 1113 K, the crystal structure of Mg2SiO4 was destroyed and most of the particles became
MgO crystallites. After heat treatment of the sample, the particles dispersed on the carbon holy film had changed in
Fig. 7. Morphological alteration of forsterite grains by heating to the prenucleation temperature (stall state)
Fig. 8. Coalescence and sublimation at the temperature range of crystallization
.
shape and MgO crystals were predominately observed as shown in Fig. 6. Figure 12 shows the high resolution electron
microscopic image corresponding to the grain in Fig.11, fine stable and dissolved MgO crystallites was predomimately
seen . The layer – by layer- alteration along the b-axis was mainly due to the decomposition of Mg2SiO4 and MgO and
SiO2. The metamorphism of SiO2 phase [14 ] was clearly took place at 1173 K. More detail based on an experiment using
−49−
Chihiro Kaito, Saito Yoshio, Chiyoe Koike
the same apparatus in Fig.2(a) will be published in near feature for the SiO2 plane.
Fig. 9. During the sublimation process, the shape of crystal was altered.
Fig. 10. Typical grains covered with amorphous carbon layer of 5 nm thickness. A grains covered with a carbon
layer can be easily produced using the heating stage in Fig.2 (b) by heating at 373-673K.
㸲㸬General Discussion The evaporation coefficient for forsterite in vacuum is between 0.09 – 0.16 at temperature of 1900
~2163 K [ 9, 15 ]. Extrapolation of these to the sublimation temperature at 1093 K is impossible.
Evaporation experiments on single crystals have mainly been performed at temperature of 1973 K [ 10 ].
The present result is about 0.51 times lower and suggests that the sublimation temperature of the dust is
different these that of the bulk material. The main reason for this is that the surface energy of the
grains causes a decrease in sublimation temperature. The surfaces to volume ratio of grains with size of
10,100 and 1000 nm are 2.75, 0.275 and 0.0275 % respectively. The coalescence and growth of particles
in the smoke cloud is also a low temperature phenomenon in nanoparticle physics [16, 17]). Spontaneous
alloying at room temperature [ 18 ] and the spontaneous mixing of alkali halide crystals [ 19 ] involve
atomic diffusion at low temperatures. The alteration of the surface structure and low temperature
sublimation become prominent in grains of size less than 500 nm. The present results are in good
agreement with the schematical diagram of dust metamorphism in a protostellar disk and the processes
involved therein [ 20 ] .
The authors thank T .Yamamoto and Joseph A. Nuth III of NASA/GSFC for the
reviewers for valuable comments.
−50−
Formation of Forsterite Grains and Direct Observation of The Sublimation of Crystal Formation Grain
Fig. 11. High resolution transmission electron microscopic image slowing the evaporation of (010) forsteraite.
Fig. 12. High resolution transmission electron microscopic image after heating
Referrences
[ 1 ] Nagahara,H.,Kushiro, I.,BouyMyson, B.O., ,H., Huelawo,H., C., Geochem. Cosmochen.㸳㸶㸦㸯㸷㸷
㸲㸧㸯㸷㸳㸯 [ 2] Nuth, J.A., in The Cosmic Dust Connection,ed. J. M. Greenberg ( The Netherlands: Kluwer Academic ),
(1996) 205
[ 3 ] Myzsen, B. O., Kushiro, I., Am. Mineral, 73 (1988) 1-19
[4]
Waelkens,C., Water,L. B.F.M.,de Graauw, M,S., etal. A and A 315 ( 1996) L245
[ 5 ] Walters. L. B. M. etal., Astrron. Astrophy. 315 (1996) L361
[ 6 ] Bouy, h., Huelawo,H., Pinter, C., etal., A and A 486 (2008) 877-890
[ 7 ] Kamitsuji, K, Sato, T, Suzuki, H., Kaito,C., A and A 436 (2005) 185-169
[ 8 ] Hallenbeck , S. B., Nuth, J .A, III.,Nelson,R. N., Apj 535 (2000) 247
[ 9 ] Hashimoto, A.,Nature 347 (1990 ) 53
[10] Nagahara, H., Ozawa. K ., Proc. Japan Acad.(serB) 75 (1999) 29
−51−
Chihiro Kaito, Saito Yoshio, Chiyoe Koike
[11 ]
[12]
[13]
[14]
[15]
[16 ]
[ 17 ]
[ 18 ]
[ 19 ]
[20 ]
Kaito,C., Saito,Y., Ohtsuka,K,Watanabe,T., J.Geomag. Geoelectr.. 45 (1993) 105Ishikawa, M., Kimura,YY., Suzuki,H.,Kido.O., Tanigaki, T.,Saito,Y., C. Kaito. C., J.Cryst. Growth
254 (2993) 131 Saito,Y., Otsuka,K.,,Watanabe, T., Kaito, C., J.Crystal.Growth 128 (1993) 271
Kamiotsuji,., Ueno,s., Suzuki,H., Kimura, M., Kaito, C.,2003 ( In Grain Formation Workshop 2993
vol. XXIII, ed C. Kaito and O.Hashimoto ) p 101
Wang,J.,Davis,A.M., Clayton, R. N., Hashimoto, A., Geochimica et Cosmochimica Acta 63
(1999) 953
Kaito, C.,Jpn.J.Cryst.Growth 55 ( 1981 ) 273
Kaito,C. Jpn.J. Appl. Phys. 24 (1985 ) 261
Mori,H., Komatsu,M.,Takeda,K.,Fujita,H., Philos. Mag. Lett.,63 (1991) 175
Kimura, Y., Saito,Y.,Nakada, T., Kaito, C., Physica E 13 (2002) 11
Gail,H.P.,(2003) in Astromineralogy,ed., Th.Henning ( Springer-Verlag Berlin Heidelberg 2003) P
100.
−52−
立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年
Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014
−53−
奥田 昌男・中根 洋治・可児 幸彦・西村 勝広・早川 清
−54−
敷葉(しきば)工法とその起源
−55−
奥田 昌男・中根 洋治・可児 幸彦・西村 勝広・早川 清
−56−
敷葉(しきば)工法とその起源
−57−
奥田 昌男・中根 洋治・可児 幸彦・西村 勝広・早川 清
−58−
敷葉(しきば)工法とその起源
−59−
奥田 昌男・中根 洋治・可児 幸彦・西村 勝広・早川 清
−60−
敷葉(しきば)工法とその起源
−61−
奥田 昌男・中根 洋治・可児 幸彦・西村 勝広・早川 清
−62−
立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年
Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014
㑇㊧࠿ࡽ▱ࡿษ┒ᅵᕤ
すᮧ຾ᗈ 1㸧ࠊྍඣᖾᙪ 2㸧ࠊዟ⏣ᫀ⏨ 3㸧ࠊ୰᰿ὒ἞ 4㸧ࠊ᪩ᕝΎ㸳㸧
㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻
History of cut and soil at the ruins
Katsuhiro Nishimura,1) Yukihiko Kani,2) Masao Okuda,3)
Youji Nakane,4) Kiyoshi Hayakawa5)
The origin of civil engineering work in Japan could be found at the pit dwellings built in the
Jomon period. Since then tumuli, residential hedge mount, leveling work of mountain castle and
defense wall of cantonment had been built by cut and fill of earthwork.
In any case, there were advantages as local procurement of materials, effective utilization of local
soil and speed up the work operation. Those advantages were noticed by people from the earliest
age.
Keywords; cut and soil, ruins, moat, bank.
E-mail: [email protected](K. Nishimura)
=================================================================================
1)ྛົཎᕷᙺᡤࠊ2)࢚࢖ࢺࣥࠊ3)ዟ⏣ᘓタࠊ4)᫛࿴ࢥࣥࢡ࣮ࣜࢺᕤᴗࠊ5)❧࿨㤋኱Ꮫ
⌮ᕤᏛ㒊
1)
Kakamigahara City: Naka-Sakura, Kakamigahara City, Gifu Pref., Japan
2)
Eiton Co. Ltd.: Meieki, Nakamura-Ku, Nagoya City, Japan
3)
Okuda Construction Company: Umegaoka, Tenpaku-Ku, Nagoya City, Japan
4)
Showa Concrete Industries Co. Ltd.: Meieki, Nakamura-Ku, Nagoya City, Japan
5)
Dept. of Science and Engineering, Ritsumeikan University, Noji-Higashi, Kusatsu City,
Shiga Pref., Japan
−63−
西村 勝広・可児 幸彦・奥田 昌男・中根 洋治・早川 清
1㸬ࡣࡌࡵ࡟
᪥ᮏ࡟࠾ࡅࡿึᮇࡢษ┒ᅵᕤ࡜ࡣ࡝ࢇ࡞ࡶࡢ࡛࠶ࢁ࠺࠿ࠋཎጞ௨㝆ࠊྂ௦ࠊ୰ୡࠊ㏆ୡ࡟⾜ࢃࢀࡓᕤ
஦ࡢ㊊㊧ࡣࠊ㑇㊧ࡢ୰࡟ṧࡉࢀ࡚࠸ࡿࠋ
㑇㊧ࡢⓎ᥀ㄪᰝ࡟ࡼࡗ࡚Ṕྐࢆ◊✲ࡍࡿ⪃ྂᏛ࡛ࡣࠊ㈨ᩱࢆ㑇≀࡜㑇ᵓ࡟༊ศࡋ࡚࠸ࡿࠋ㑇≀࡜ࡣࠊ
ᅵჾࠊ▼ჾࠊᮌჾࠊ㔠ᒓჾࠊື᳜≀㑇య࡞࡝ࡢ≀య࡛࠶ࡿࠋ㑇ᵓ࡜ࡣࠊఫᒃࠊᰕ✰ࠊ቎ᆙࠊ⁁ࠊᅵሠ࡞
࡝ᆅ㠃࡟⠏࠸ࡓᅵᮌᵓ㐀≀ࡢ⑞㊧࡛࠶ࡿࠋࡇࡢ㑇ᵓ࡜࠸࠺ᴫᛕ࡟ࡼࡗ࡚ࠊ㑇㊧࡟ṧࡉࢀࡓᅵᮌ࣭ᘓタᕤ
஦ࡢ᝟ሗࡀⓎ᥀ㄪᰝ࡟ࡼࡗ࡚グ㘓ಖᏑࡉࢀࡿࠋᮏ✏࡛ࡣࠊⓎ᥀ㄪᰝ஦౛ࡢ୰࡟ษ┒ᅵᕤࡢ㊊㊧ࢆ㏣࠺ࠋ
2㸬ኳ↛㈨ᮦࡢ౑⏝
᪥ᮏ࡟࠾ࡅࡿே㢮ࡢṔྐࡣࠊ3 ୓ 5 ༓ᖺ๓࠿ࡽጞࡲࡗ
ࡓࠋࡇࡢ᫬௦ࡣᚋᮇᪧ▼ჾ᫬௦࡜࿧ࡤࢀࠊịᮇࡀ฿᮶ࡋ
ⅆᒣάືࡀάⓎ࡞᫬௦࡛࠶ࡗࡓࠋ
ᪧ▼ჾ᫬௦ࡢ㑇㊧࠿ࡽࡣࠊཌࡃሁ✚ࡋࡓⅆᒣ⅊ᒙࡢ୰
࡟▼ჾ〇సࡸⅆẼ౑⏝ࡢ⑞㊧ࡀ᳨ฟࡉࢀ࡚࠸ࡿࠋᚋ⪅ࡣ
♟⩌࡜࿧ࡤࢀࡿ㑇ᵓ࡛ࠊ┤ᚄ 10cm ๓ᚋࡢ♟ࢆ 10 ᩘಶ
࠿ࡽᩘⓒಶ㞟✚ࡉࡏࡿࠋᅗ-1 ࡣ㟼ᒸ┴☬⏣ᕷᑎ㇂㑇㊧ 1)
ࡢ౛࡛࠶ࡿࠋࡑࡢ⏝㏵ࡣࠊㄪ⌮࣭ᬮᡣ࡜⪃࠼ࡽࢀࡿࠋ
♟⩌࡟ࡣࠊᆅ㠃ࢆ᥀ࡾ㎸ࢇࡔࡾᅵࢆ┒ࡾୖࡆࡓࡾࡋࡓ
⑞㊧ࡣ≉࡟☜ㄆࡉࢀ࡞࠸ࠋ♟࡜࠸࠺ኳ↛㈨ᮦࢆ⏝࠸ࡓⅬ
ࡣホ౯࡛ࡁ࡚ࡶࠊษ┒ᅵᕤ࡟ࡼࡿタഛ࡜ࡣゝ࠸㞴࠸ࠋ♟
⩌ࡢ┤㏆࡟ࡣᒃఫࡢሙࡀ࠶ࡗࡓࡣࡎࡔࡀࠊఫᒃ㊧࡞࡝ࡢ
ᅗ-1 ᑎ㇂㑇㊧ࡢ♟⩌
㑇ᵓࡀ☜ㄆࡉࢀࡿࡇ࡜ࡣ࡞࠸ࠋ
3㸬᭱ึࡢᅵᮌᕤ஦
ịἙᮇࡀ⤊ࢃࡿ㡭ࠊ᪥ᮏࡣ⦖ᩥ᫬௦ࢆ㏄࠼ࡓࠋ
Ẽೃࡢ ᬮ໬ࡣ㣗⎔ቃࢆ㇏࠿࡟ࡋࠊேࠎࡢᐃఫࢆ
ಁ㐍ࡉࡏࡓࠋᐃఫ࡟ࡼࡗ࡚⪏ஂᛶࡢ࠶ࡿఫᒃࡀᚲ
せ࡟࡞ࡾࠊ⪃᱌ࡉࢀࡓࡢࡀ❿✰ఫᒃ࡛࠶ࡿࠋ❿✰
ఫᒃࡣࠊᆅ㠃ࢆ෇ᙧࡸ᪉ᙧ࡟᥀ࡾ❑ࡵ࡚ᗋ࡜ࡋࠊ
ᗋ࠿ࡽࡣᰕࢆᕪࡋ㎸ࡴ✰㸦ᰕ✰㸧ࡀࡉࡽ࡟᥀ࡾ㎸
ࡲࢀࡿࠋࡲࡓࠊᗋࡢ୰ኸ࡟ࡶ✰ࢆ᥀ࡾࠊ▼࡛ᅖ࠺
࡞࡝ࡋ࡚⅔ࡀഛ࠼ࡽࢀࡓࠋୖᒇᵓ㐀࡟ࡘ࠸࡚ࡣࠊ
ᰕ✰ࡢ㓄ิࡸ↝ኻఫᒃࡢㄪᰝ౛࠿ࡽࠊ෇㗹ᙧࡢⱴ
ⵌ࡛࠶ࡗࡓ࡜᥎ᐃࡉࢀ࡚࠾ࡾࠊ඲ᅜྛᆅࡢ㑇㊧බ
ᅬ࡟᚟ඖࡉࢀ࡚࠸ࡿࠋᅵࢆ῝ࡃ᥀ࡾୗࡆ࡚ᗋ࡜ቨ
ࢆᵓ࠼ࡿࡇ࡜࡟ࡼࡾእẼ ࡢᙳ㡪ࢆཷࡅ࡟ࡃࡃࠊ
✚㞷ࡸ㢼㞵࡟ᑐࡍࡿᙉᗘࡶ☜ಖ࡛ࡁࡓ࡜ᛮࢃࢀࡿࠋ
ࡲࡉ࡟ࠊ
᪥ᮏࡢ㢼ᅵ࠿ࡽ⏕ࡲࢀࡓఫᒃᵓ㐀࡛࠶ࡿࠋ
ࡇࡢ❿✰ఫᒃࡣࠊ⦖ᩥ᫬௦ࡢࡳ࡛ࡣ࡞ࡃᘺ⏕᫬
௦ࠊྂቡ᫬௦ࠊࡑࡋ࡚ዉⰋ࣭ᖹᏳ᫬௦ࡢ୍⯡ఫᏯ
࡟ࡶ౑⏝ࡉࢀ⥆ࡅࡓࠋࡓࡔࡋࠊୖᒇᵓ㐀ࡣኚ໬ࡋ
ࡓྍ⬟ᛶࡀ࠶ࡿࠋ
−64−
ᅗ-2 ⅔⏿㑇㊧ 1 ྕఫᒃ㊧
遺跡から知る切盛土工
ࡇࡇ࡛ࠊ❿✰ఫᒃࡢᵓ㐀࡟ࡘ࠸࡚ᒱ㜧┴ྛົཎᕷ⅔⏿
㑇㊧ 1 ྕఫᒃ㊧ 2)ࡢ౛ࢆྲྀࡾୖࡆ࡚ࡳࡿ㸦ᅗ-2㸧
ࠋࡇࡢ㑇
㊧ࡣࠊ௒࠿ࡽ 4,300 ᖺ๓ࡢ⦖ᩥ᫬௦୰ᮇᚋⴥ࡟ᒓࡍࡿࠋ
┤ᚄ 7m ࡜኱ᆺࡢఫᒃ࡛ࠊ᳨ฟ᫬ࡢ῝ࡉ㸦ቨ㧗㸧ࡣ 65
੉࡛࠶ࡿࠋࡋ࠿ࡋࠊⓎ᥀ㄪᰝ࡟ࡼࡗ࡚ᚓࡽࢀࡿ㑇ᵓࡢ῝
ࡉࡣࠊᚲࡎࡋࡶᙜ᫬ࡢᆅ⾲㠃࠿ࡽࡢᩘ್࡛ࡣ࡞࠸ࠋ኱༙
ࡢ㑇㊧࡛ࡣᚋୡࡢ㛤ቧ࡞࡝࡟ࡼࡾ㑇ᵓࡢୖ㒊ࡀኻࢃࢀ࡚
࠸ࡿࡓࡵࠊಶࠎࡢ῝ࡉࡣᐇ㝿ࡼࡾࡶὸࡃ᳨ฟࡉࢀ࡚࠸ࡿࠋ
⅔⏿㑇㊧ 1 ྕఫᒃࡢሙྜࠊቨ㧗ࢆ᥎ᐃ࡛ 1m ࡜⿵ṇࡋ
ࡓ࠺࠼࡛᥀๐ᅵ㔞ࢆィ⟬ࡍࡿ࡜ࠊ3.5m㸦༙ᚄ㸧×3.5㹫㸦༙
ᚄ㸧×3.14×1m㸦ቨ㧗㸧=38.5 ੑ࡜࡞ࡿࠋࡇࢀࡔࡅࡢᅵ㔞
ࡀᡴ〇▼᩼㸦㘵ᙧࡢ▼ჾ㸧࡛᥀๐ࡉࢀࡓࡇ࡜࡟㦫ࡃࡀࠊ
ࡇࡇ୍࡛ࡘ␲ၥࡀ⏕ࡌࡿࠋࡑࢀࡣࠊᐈᅵࡀఱฎ࡬ฎ⌮ࡉ
ࢀࡓࡢ࠿࡜࠸࠺ၥ㢟࡛࠶ࡿࠋ㛗㊥㞳ࢆ⛣ືࡉࡏࡓ࡜ࡣ⪃
࠼㞴࠸ࡢ࡛ࠊఫᒃࡢ࿘ᅖ࡟┒ࡽࢀ࡚࠸ࡓ࠿ࠊ࠶ࡿ࠸ࡣᒇ
᰿࡟⿕ࡏࡽࢀ࡚࠸ࡓྍ⬟ᛶࢆ⪃࠼࡞ࡃ࡚ࡣ࡞ࡽ࡞࠸ࠋᐩ
෗┿-1 ୕ෆ୸ᒣ㑇㊧ࡢ༡┒ᅵ㑇ᵓ㸦᩿㠃㸧
㸦IPA ᝟ሗฎ⌮᥎㐍ᶵᵓᩍ⫱⏝⏬ീ⣲ᮦ㞟ࡼࡾ㸧
ᒣ┴ᐩᒣᕷ໭௦㑇㊧ࡸ㟷᳃┴㟷᳃ᕷ୕ෆ୸ᒣ㑇㊧࡞࡝ࡢ
᚟ඖఫᒃࡣࠊᚋ⪅ࡢሙྜࢆ෌⌧ࡋ࡚࠸ࡿࠋࡲࡓࠊ୕ෆ୸
ᒣ㑇㊧࡛ࡣ❿✰ఫᒃࡢᐈᅵࡸ⅊ࠊ↝ᅵࠊᅵჾ࣭▼ჾ࡞࡝
ࡢ⏕άᗫᲠ≀ࢆྠࡌሙᡤ࡟ᤞ࡚ࡿ⾜Ⅽࢆ⧞ࡾ㏉ࡋࡓࡇ࡜࡛ࠊ
ᑠᒣࡢࡼ࠺࡟࡞ࡗࡓ⠊ᅖࡀ☜ㄆࡉࢀ࡚࠸ࡿࠋ
ࡇࡢᑠᒣࡣᩚᆅࡉࢀ࡚࠾ࡾࠊᮧⴠࡢቃ⏺ࢆ♧ࡍ┒ᅵ㑇ᵓ࡜ࡶ⪃࠼ࡽࢀࡿ≉Ṧ࡞౛࡛࠶ࡿ㸦෗┿-1㸧
ࠋ
㸲㸬ഴᩳ㠃࡟࠾ࡅࡿ❿✰ఫᒃࡢᵓ⠏
ᒱ㜧┴㛵ᕷ◁⾜㑇㊧ 3)ࡣࠊᘺ⏕᫬௦ᚋᮇᮎ࠿ࡽྂቡ᫬௦୰ᮇࡢ㞟ⴠࢆ୺య࡜ࡍࡿ㑇㊧࡛࠶ࡿࠋⓎ᥀ㄪ
ᰝ࡟ࡼࡗ࡚ࠊࡑࡢ඲ㇺࡀ᫂ࡽ࠿࡟࡞ࡗ࡚࠸ࡿࠋࡇࡢ㑇㊧࡛≉ᚩⓗ࡞ࡢࡣࠊୣ㝠ᩳ㠃࡟❿✰ఫᒃ⩌ࡀᵓ⠏
ࡉࢀ࡚࠸ࡿ࡜ࡇࢁ࡛࠶ࡿࠋࡇࡢ᫬௦ࠊᖹᆅ㒊࡛Ỉ⏣ࢆᵓ࠼ࡿ㞟ⴠ࡜ᑐ↷ⓗ࡟ࠊᒣᆅ㒊࡛ࡣୣ㝠ᩳ㠃࡟㞟
ⴠࡢᒎ㛤ࡍࡿࡇ࡜ࡀ▱ࡽࢀ
࡚࠸ࡿࠋ◁⾜㑇㊧ࡣࠊᩳ㠃
ᆅ㞟ⴠࡢዲ౛࡛࠶ࡿࠋ
ᩳ㠃࡟ᵓ⠏ࡍࡿሙྜࡶࠊ
❿✰ఫᒃࡢᇶᮏ௙ᵝࡣྠࡌ
࡜࡞ࡿࠋᗋ㠃࡟ࡣᰕ✰࡜⅔
ࡀഛ࠼ࡽࢀ࡚࠸ࡿࠋࡋ࠿ࡋࠊ
ᅗ-3 ࡢ࡜࠾ࡾࠊ኱༙ࡢఫᒃ
㊧ࡣᗋࣉࣛࣥࡢ⣙ 1/2㹼2/3
ࢆḞⴠࡋ࡚࠸ࡿࠋ࠸ࡎࢀࡶࠊ
ഴᩳࡢప࠸ഃࡀṧᏑࡋ࡚࠸
࡞࠸ࠋࡇࡢ≧ἣࡣࠊഴᩳ㠃
࡟❿✰ఫᒃࢆᵓ࠼ࡿሙྜࠊ
㧗࠸ഃࡢ᥀๐ᅵ࡛ప࠸ഃࢆ
┒ᅵࡋ࡚ᗋ㠃ࢆᘏ㛗ࡍࡿࡀࠊ
ࡑࡢ㒊ศࡣᚋୡ࡟ὶฟࡋࡸ
ᅗ-3 ◁⾜㑇㊧ࡢ❿✰ఫᒃ⩌
−65−
西村 勝広・可児 幸彦・奥田 昌男・中根 洋治・早川 清
ࡍ࠸ࡇ࡜ࢆ♧ࡋ࡚࠸ࡿࠋఫᒃࡢධཱྀ࡬㏻ࡌ
ࡿ㊰ࡣṌࡁࡸࡍ࠸ࡼ࠺࡟ᩚᆅࡉࢀࡓࡣࡎࡔ
ࡀࠊ⌧ᅾࡢఫᏯᅋᆅࡢࡼ࠺࡟ᒃఫ༊ࢆิ༢
఩࡛㐀ᡂࡍࡿࡼ࠺࡞つᶍ࡛ࡣ࡞࠸ࠋ
㸳㸬ྂቡ⠏㐀ࡢ┒ᅵ
ྂቡࡣࠊ᭷ຊ⪅ࡢᐩ࡜ᶒຊࢆ♧ࡍቡ቎࡛
࠶ࡿࠋࡑࡢຊ࡜ẚ౛ࡋ࡚ࠊ▼ᐊࡢᵓ㐀ࡸ๪
ⴿရࠊ
ቡᙧࡸつᶍ࡞࡝ࡀᕪู໬ࡉࢀ࡚࠸ࡿࠋ
͆ቡ͇࡟ࠕ┒ࡾୖࡀࡗࡓᅵࠖ࡜࠸࠺ព࿡ࡀ
࠶ࡿࡼ࠺࡟ࠊᆅ㠃ࢆ┒ࡾୖࡆࡿࡇ࡜࡛ࠊ๓
᪉ᚋ෇ቡࡸ෇ቡ࡞࡝ࡀ⠏㐀ࡉࢀࡿࠋ
ࡋ࠿ࡋࠊ
ቡୣࡢ 100㸣ࡀ┒ᅵ࡛ᵓᡂࡉࢀ࡚࠸ࡿࢃࡅ
࡛ࡣ࡞࠸ࠋ
ᒱ㜧┴ྛົཎᕷᆓࡢሯྂቡࡣࠊቡ㛗 120
㹫ࡢ๓᪉ᚋ෇ቡ࡛࠶ࡿࠋྂቡ᫬௦୰ᮇࡢ 5
ୡ⣖௦࡟⠏㐀ࡉࢀࡓ࡜⪃࠼ࡽࢀ࡚࠸ࡿࠋࡇ
ࡢྂቡ࡟ࡣࠊ⌧ἣ࡛ࡣ☜ㄆࡋ㞴࠸ࡀ࿘ᅖ࡟
୍ẁపࡃ࡞ࡗࡓቸ㊧ࡀᏑᅾࡍࡿࠋࡑࡢ⠊ᅖ
ࡣ୍⯡࡟࿘ቸ࡜࿧ࡤࢀࡿࠋ㐣ཤࡢ 㔞 4)ࡸ
㒊ศⓗ࡞Ⓨ᥀ㄪᰝ㸦A࣭B ࢺࣞࣥࢳ㸧5)࡟ࡼ
ࡿ᝟ሗ࠿ࡽࠊቡୣ࡜࿘ቸࡢつᶍࢆ᥎ᐃࡍࡿ
ࡇ࡜ࡀ࡛ࡁࡿࠋᅗ-4 ࡟ࡼࡾ᥀๐ᅵ࡜┒ᅵࡢ
ᅵ㔞ࢆヨ⟬ࡋࡓ࡜ࡇࢁࠊ࿘ቸ᥀๐ᅵ㔞
18,255 ੑࠊቡୣ┒ᅵ㔞 18,385 ੑ࡜࡞ࡾࠊ
࠾ࡼࡑ➼ࡋ࠸ᩘ್ࡀᚓࡽࢀࡓ 6)ࠋ౛࠼ࡤࠊ
ᅗ-4 ᆓࡢሯྂቡࡢ᚟ཎᅗ
ᅗ-5 ໭ᒣ 2 ྕቡࡢቡୣ
−66−
遺跡から知る切盛土工
ᚋ෇㒊ࡢ୰ኸ㸦A-A'㸧࡛ࡣࠊቡୣୗ㒊ࡣ 2m ࡢ῝ࡉ࡟๐ࡾฟࡋࠊୖ㒊 8.5m ࡣ┒ᅵ࡟ࡼࡾຍ࠼ࡽࢀࠊ⠏
㐀᫬ࡣ┦ᑐⓗ࡞ぢ࠿ࡅࡢ㧗ࡉ࡜ࡋ࡚ 10.5㹫ࢆ♧ࡋ࡚࠸ࡓࡇ࡜࡟࡞ࡿࠋ
ቡୣࡢἲ㠃໙㓄ࡣ 1:1.7 ࡛࠶ࡿ 7)ࠋ
୍᪉ࠊᑠᆺࡢ෇ቡࡢ஦౛ࢆぢ࡚ࡳࡓ࠸ࠋᒱ㜧┴ྛົཎᕷ໭ᒣ 2 ྕቡ 8)ࡣࠊ6 ୡ⣖ᚋ༙ࡢྂቡ᫬௦ᚋᮇ
࡟⠏㐀ࡉࢀࡓ┤ᚄ 16.9m ࡢ෇ቡ࡛࠶ࡿࠋࡇࢀࡽࡢᚋᮇྂቡࡣࠊᑠᆺ໬ࡋ࡚ୣ㝠ࡢ〈㒊࡞࡝࡟㞟୰ࡋ࡚ྂ
ቡ⩌ࢆᙧᡂࡍࡿࡢࡀ୍⯡ⓗ࡛࠶ࡿࠋࡇࡢྂቡࡣᶓ✰ᘧ▼ᐊࢆ᭷ࡋࠊቡୣࡣ 2 ẁ⠏ᡂࠊࡑࡋ࡚┒ᅵࡢᔂⴠ
ࢆ㜵ࡄࡓࡵࡢእㆤิ▼ࢆഛ࠼࡚࠸ࡿࠋิ▼ࡢἲ㠃ࡣ 1:2.1 ࡜ᛴ໙㓄࡛࠶ࡿࠋ
໭ᒣ 2 ྕቡ࡛ࡣࠊ▼ᐊࡢㄪᰝࡢ࡯࠿ቡୣ᩿㠃ࡢㄪᰝࡶᐇ᪋ࡋ࡚࠾ࡾࠊ⮬↛ᆅᙧ࡜ேᕤᆅᙧ࡜ࡢ㛵ಀࡀ
࡜ࡽ࠼ࡽࢀ࡚࠸ࡿࠋࡇࡢྂቡࡣ໭ᒣ㸦ᶆ㧗 308m㸧ࡢ༡ᩳ㠃࡟⠏㐀ࡉࢀ࡚࠸ࡿࡀࠊ࡞࠿࡛ࡶ༡ᮾ࡬㈞ࡾ
ฟࡋࡓᑠᑿ᰿ࢆ฼⏝ࡋ࡚㐀ࡽࢀ࡚࠸ࡿࠋᅗ-5 ࡢ࡜࠾ࡾࠊᑿ᰿ࡢ㧗ࡲࡾࢆ฼⏝ࡋ࡚࿘ᅖࡢᅵࢆ୰ኸ࡬┒ࡾ
ୖࡆࡿࡇ࡜࡛ቡୣࡢ㧗ࡉࢆᚓ࡚࠸ࡿࠋ๐ࡾฟࡋ࡜┒ᅵࡢ༊ศࡣ᫂░࡛ࠊᚋୡ࡟┒ᅵࡀእㆤิ▼ࡢୖ㒊࡜
ඹ࡟ᔂⴠࡋ࡚࠸ࡿᵝᏊࡀࡼࡃ⌮ゎ࡛ࡁࡿࠋ
㸴㸬୰ୡ㤋ࡢቸ࡜ᅵሠ
㙊಴᫬௦ࡢ 13 ୡ⣖௦࡟ᘓ㐀ࡉࢀࡓᒃ㤋ࡢ౛ࢆぢ࡚ࡳࡓ࠸ࠋ஦౛࡜ࡋ࡚ྲྀࡾୖࡆࡿࡢࡣࠊᒱ㜧┴ྛົ
ཎᕷ㔝ཱྀ㤋㊧ 9)࡛࠶ࡿࠋ࠾ࡑࡽࡃࠊⲮᅬ㡿୺࡜ࡋ࡚ຊࢆ⵳࠼ࡓ㇦㎰ࡢ㤋࡜⪃࠼ࡽࢀࡿࠋࡇࡢ㤋ࢆྲྀࡾᅖ
ࡴ㜵ᚚ⏝ࡢᅵሠ࡜ቸࡀࠊᇙἐࡍࡿࡇ࡜࡞ࡃ⌧Ꮡࡍࡿ㈗㔜࡞㑇㊧࡛࠶ࡿ㸦ᅗ-6㸧ࠋ
ᅵሠ࡜ቸࢆ┤ゅ࡟᩿ࡕ๭ࡗࡓⓎ᥀ㄪᰝࡀሗ࿌ࡉࢀ࡚࠸ࡿࠋࡑࡢ⤖ᯝࠊ㏫ྎᙧࡢ᩿㠃ࢆ࿊ࡍࡿቸࡀᅵሠ
࡟ἢ࠺ࡇ࡜ࡀᨵࡵ࡚☜ㄆࡉࢀࡓࠋቸ࡜ᅵሠࡢᐜ✚ࡣ࡯ࡰ➼ࡋࡃࠊቸࡢᐈᅵࢆഃ㏆࡬┒ᅵࡋ࡞ࡀࡽᩜᆅࢆ
୍࿘ࡋ࡚୙ᩚ஬ゅᙧࡢᅖ࠸ࢆ᏶ᡂࡉࡏ࡚࠸ࡿࠋቸࡢ᥀๐㡰࡟ᅵሠ࡬┒ࡾୖࡆࡿࡓࡵࠊᅵሠഃࡢᅵᒙࡣ⮬
↛ሁ✚࡜㏫㡰࡟࡞ࡿࠋᅵሠࡣ㍈⥺ࡢ୰ᚰ࠿ࡽቸࡢᐈᅵࢆ┒ࡾጞࡵࠊࡑࡇࢆ⿕そࡍࡿࡼ࠺࡟ᖜ࡜㧗ࡉࢆቑ
ࡍᕤἲࡀ┳࡚ྲྀࢀࡿࠋ๐ࡾฟࡋࡢ῝ࡉࡣ 1.08mࠊᅵሠࡢ┒ᅵࡣ 2.08m㸦ࡓࡔࡋୖ㒊ࡣὶฟࡋ࡚࠸ࡿࡔࢁ
࠺㸧
ࠊ⌧ἣ࡛┦ᑐ㧗ࡣ 3.16cm ࡛࠶ࡿࠋἲ㠃໙㓄ࡣ 1:1.8 ࡛࠶ࡿࠋ
࡞࠾ࠊቸࡣᇙᅵࡢሁ✚㐣⛬ࡸ᩿㠃ᙧ࠿ࡽࠊ㏵୰࡛῝ࡃ᥀ࡾ┤ࡋࡀ⾜ࢃࢀ࡚࠸ࡿࡇ࡜ࡀศ࠿ࡿࠋࡑࡢ㝿
࡟ࠊᅵሠࡢᔂⴠᅵࢆඖ࡬ᡠࡋࠊࡉࡽ࡟㧗ࡉࢆቑࡋࡓࡇ࡜ࡀ⪃࠼ࡽࢀࡿࠋ
ᅗ-6 㔝ཱྀ㤋ࡢቸ࡜ᅵሠ
−67−
西村 勝広・可児 幸彦・奥田 昌男・中根 洋治・早川 清
㸵㸬୰ୡᒣᇛࡢ᭤㍯
ᡓᅜ᫬௦ࢆ୰ᚰ࡜ࡋ࡚ࠊᒣᇛࡣぢᬕࡽࡋࡢⰋ࠸ᒣ㡬࡟⠏࠿ࢀࡓࠋᇛ࡜࠸࠺₎Ꮠࡣ͆ᅵ͇࠿ࡽ͆ᡂࡿ͇
࡜⾲ࡍࠋࡑࡢ࡜࠾ࡾࠊᒣ㡬ࡢᅵࢆษᅵ࡜┒ᅵ࡟ࡼࡗ࡚⛣ືࡉࡏᕦࡳ࡟ᩚᆅࡍࡿࡇ࡜ࡀࠊᇛ㐀ࡾࡢᇶᮏ࡛
࠶ࡿࠋᇛࡢᵓ㐀࡟᭤㍯㸦ࡃࡿࢃ㸧࡜࿧ࡤࢀࡿࡶࡢࡀ࠶ࡿࠋࡇࢀࡣࠊᇛෆ࡟ᵝࠎ࡞᪋タࢆᵓ࠼ࡿᖹሙࡢ✵
㛫༢఩࡛ࠊᒣᇛ࡛ࡣ」ᩘࡢ᭤㍯ࢆ㞮ቭࡢࡼ࠺࡟㐀ᡂࡋ࡚ᒣ⛸࡟㓄⨨ࡉࢀࡿࠋ
ࡇࡇ࡟ࠊᒱ㜧┴ྛົཎᕷఀᮌᒣᇛᆎ 10)ࡢ౛ࢆ♧ࡍࠋఀᮌᒣᇛࡣࠊᶆ㧗 173.1m ࡢఀᮌᒣࡢᒣ㡬࡟⠏࠿
ࢀࡓᇛ࡛࠶ࡿࠋ⠏ᇛ᫬ᮇࡣᐃ࠿࡛ࡣ࡞࠸ࡀࠊఏグ࡟ࡼࢀࡤ⧊⏣ಙ㛗ࡢ⨾⃰ᨷࡵ࡛Ọ⚘ 3 ᖺ㸦1560㸧࡟ⴠ
࡜ࡉࢀࠊࡑࡢᚋኳṇ 19 ᖺ㸦1591㸧࡟ᗫᇛ࡟࡞ࡗࡓ࡜ࡉࢀࡿࠋᇛࡢᵝᏊ࡟ࡘ࠸࡚ࡣ₍↛࡜ࡋࡓグ㘓ࡋ࠿
࡞࠿ࡗࡓࡀࠊⓎ᥀ㄪᰝ࡟ࡼࡗ࡚ලయⓗ࡞᭤㍯ᵓ㐀ࡀ᫂ࡽ࠿࡟࡞ࡗࡓࠋఀᮌᒣࡢ᭱㧗ᡤ࡟ᵓ࠼ࡽࢀࡓ᭤㍯
㸯ࢆ୰ᚰ࡟ࠊすഃ࡟ 2 ẁࠊᮾഃ࡟ 2 ẁࠊ༡ഃ࡟ 1 ẁࡢྜィ 6 ẁࡢ᭤㍯ࡢᏑᅾࡀ☜ㄆࡉࢀࡓ㸦ᅗ-7㸧
ࠋ
ఀᮌᒣࡣࠊࢳ࣮ࣕࢺࢆ୺య࡜ࡍࡿ㝯㉳ᒾ┙࠿ࡽᡂࡿࠋⓎ᥀ㄪᰝ࡛ࡣᒣ㡬࠿ࡽᨺᑕ≧࡟ A㹼D ࡢࢺࣞࣥ
ࢳࡀ᥀๐ࡉࢀࠊࡑࡢ⤖ᯝࠊᒾ┙ࢆษࡾᔂࡋ࡚┒ᅵࢆ⾜࠸᭤㍯࡜࡞ࡿᖹሙࢆ㐀ᡂࡋࡓᕤ஦ࡀ᫂ࡽ࠿࡜࡞ࡗ
ࡓࠋࡲࡓࠊ᭤㍯㸯ࡢ୰ኸ࡟㓄ࡍࡿᷳྎ≧㑇ᵓࡣࠊ඲࡚┒ᅵ࡛ᵓᡂࡉࢀ࡚࠸ࡿࡇ࡜ࡶุ᫂ࡋࡓࠋࡑࡢ௚ࠊ
᭤㍯㛫࡟ࡣ┒ᅵࡢὶฟࢆ㜵ࡄࡓࡵ࡟ࠊᒾ┙ࡢ○▼ࢆ฼⏝ࡋࡓ▼✚ࡀ᪋ᕤࡉࢀ࡚࠸ࡿࡇ࡜ࡶ☜ㄆࡉࢀ࡚࠸
ࡿࠋ᭤㍯ࡢẚ㧗ᕪࡣࠊୖ㒊ࡀὶฟࡋ࡞ࡀࡽࡶⰋࡃṧᏑࡍࡿ᭤㍯ 1 ࡢ໭⦕㎶㸦D-4㸧࡛ 2.77m ࢆ ࡿࠋ▼
ᇉࡢ኱༙ࡣᔂⴠࡋ࡚࠸ࡿࠋ
ᅗ-7 ఀᮌᒣᇛᆎࡢ᭤㍯
−68−
遺跡から知る切盛土工
8㸬㏆ୡࡢ᪝ᮏ㝕ᒇ
᭱ᚋࡢ஦౛࡜ࡋ࡚ࠊỤᡞ᫬௦ࡢ᪝ᮏᒇᩜࢆྲྀࡾୖ
ࡆࡿࠋᒱ㜧┴ྛົཎᕷ᪝ᮏᆤෆẶ㝕ᒇ㊧ࡣࠊࡑࡢྡ
⛠ࡢ࡜࠾ࡾ᪝ᮏࡢᒇᩜᆅ࡛࠶ࡿࠋ⌧ᅾࡣࠊᡤᅾᆅ࡟
ࡑࡢ⑞㊧ࡣ࡞ࡃࠊ✵ᆅ㸦༊⏬ᩚ⌮῭㸧ࡸᕤሙࡢᩜᆅ
࡜࡞ࡗ࡚࠸ࡿࠋࡋ࠿ࡋࠊ᫂἞ᮇ࡟ධࡗ࡚࠿ࡽ୍᪘ࡢ
ᮎ⿰࡟ࡼࡗ࡚⦅⧩ࡉࢀࡓࠗᐩᶔᗢὶ᪝ᮏᆤෆᐙ୍⤫
⣔ᅗ୪⏤⥴࠘11)ࡢ⤮ᅗ㸦ᅗ㸧࠿ࡽࠊᒇᩜࡢᵝᏊࢆ
ఛ࠸▱ࡿࡇ࡜ࡀ࡛ࡁࡿࠋ
ࡇࡢ⤮ᅗ࡛ࡣࠊᘓ≀ࡢᵝᏊࡣ₍↛࡜ࡋ࡚࠸ࡿࡶࡢ
ࡢࠊᩜᆅࡢ⠊ᅖ࡟ࡘ࠸࡚ࡣ᫂☜࡟⾲⌧ࡉࢀ࡚࠸ࡿࠋ
ᩜᆅࢆྲྀࡾᅖࡴ㒊ศࡣ஧㔜ࡢᖏ࡛♧ࡉࢀ࡚࠾ࡾࠊෆ
ഃࡣࠕࢻ࢖ࠖ
ࠊእഃࡣࠕ࣍ࣜࠖ࡜ὀグࡉࢀ࡚࠸ࡿࠋࡘ
ࡲࡾᅵሠ࡜ቸ࡛࠶ࡿࠋ
ᅗ-8 ᆤෆẶ㝕ᒇࡢグ㘓
ቸࡢᐇែ࡟ࡘ࠸࡚ࡣࠊᖹᡂ 23 ᖺࡢⓎ
᥀ㄪᰝ 12)࡟ࡼࡗ࡚᫂ࡽ࠿࡜࡞ࡗࡓ㸦෗┿
-2㸧
ࠋቸࡢᖜࡣ 5.2㹫௨ୖ࡛ࠊ᩿㠃ࡣ㏫ྎ
ᙧࢆ࿊ࡍࡿࠋ῝ࡉࡣ 2.7㹼3.3㹫ࢆ ࡿࠋ
໭すゅ࡛ᙉࡃᒅᢡࡋ࡚࠾ࡾࠊ⤮ᅗ࡜ࡢᩚ
ྜᛶࡀ☜ㄆࡉࢀࡓࠋቸࡣᇙࡵᡠࡉࢀ࡚ࡋ
ࡲࡗ࡚࠸ࡓࡀࠊ⤮ᅗ࠿ࡽ⪃࠼ࡿ࡜ᮏ᮶ࡣ
ቸࡢᐈᅵࢆᩜᆅࡢෆഃ࡟┒ࡾୖࡆ࡚ᅵሠ
ࢆ⠏࠸ࡓࡇ࡜࡟࡞ࡿࠋ༢⣧࡟㧗ࡉ 3㹫๓
ᚋࡢᅵሠࢆᵓ⠏ࡋࡓ࡜ࡋ࡚ࠊቸᗏ࠿ࡽᅵ
ሠࡢ㡬ࡲ࡛ࡢ㧗ࡉࡣ 6㹫๓ᚋ࡜࡞ࢁ࠺ࠋ
᪝ᮏࡢ㝕ᒇ࡟ࠊᇛ㒌୪ࡳࡢ㜵ᚚ᪋タࡀഛ
࠼ࡽࢀ࡚࠸ࡿࡇ࡜ࡣᚓព࡞౛࡛࠶ࡿࠋ
෗┿-2 Ⓨ᥀ࡉࢀࡓ㝕ᒇࡢቸ㸦Ỉἐ㒊ศ㸧
9㸬⤖ㄽ
௨ୖ࡛ࡣࠊỤᡞ᫬௦ࡲ࡛ࡢษ┒ᅵᕤ࡟ࡘ࠸࡚ࠊ㑇㊧ࡢⓎ᥀ㄪᰝ஦౛ࢆྲྀࡾୖࡆ࡚ᴫほࡋࡓࠋࡑࡢ⤖ᯝࠊ
௨ୗࡢⅬࡀᣦ᦬࡛ࡁࡿࠋ
࣭ษ┒ᅵᕤ࡜ࡋ࡚᭱ึ࡟ᐃ╔ࡋࡓࡢࡣ❿✰ఫᒃࡢᵓ⠏࡜ゝ࠼ࡿࠋ❿✰᥀๐᫬ࡢᐈᅵ࡟ࡘ࠸࡚ࡣ⾜᪉ࡀุ
↛࡜ࡋ࡞࠸ࡀࠊఫᒃ࿘ᅖࡢᅵ┒ࡸᒇ᰿ᮦ࡜ࡋ࡚฼⏝ࡉࢀࡓྍ⬟ᛶࢆ⪃࠼࡞ࡃ࡚ࡣ࠸ࡅ࡞࠸ࠋࡲࡓࠊ୕ෆ
୸ᒣ㑇㊧࡞࡝ࡢࡼ࠺࡟┒ᅵ㑇ᵓ࡟⏝࠸ࡽࢀࡓ౛ࡀ▱ࡽࢀࡿࠋ
࣭ᩳ㠃ᆅ㞟ⴠࡢ❿✰ఫᒃࡣࠊษᅵࢆᩳ㠃ࡢప࠸ഃ࡬┒ᅵࡋ࡚Ỉᖹ࡞ᗋ㠃ࢆᣑᙇࡋࡓࠋ
࣭๓᪉ᚋ෇ቡࡣࠊ࿘ᅖࡢᅵࢆ᥀๐ࡋ୰ኸ࡬┒ࡾୖࡆ࡚㐀ࡽࢀࡓࠋࡑࡢᅵྲྀࡾࡢ㊧ࡀ࿘ቸ࡜࡞ࡗ࡚࠸ࡿࠋ
ᇶᮏⓗ࡟ቡୣࡢୗ㒊ࡣ๐ࡾฟࡋࠊୖ㒊ࡣ┒ᅵ࡜࡞ࡿࠋ
࣭ୣ㝠ࡢ〈㒊࡟㐀ࡽࢀࡓᑠᆺ෇ቡࡣࠊᑿ᰿ࡢࡼ࠺࡟ᙇࡾฟࡋࡓ⮬↛ᆅᙧࢆά࠿ࡋࠊ࿘ᅖࡢ᥀๐࡛ᚓࡽࢀ
ࡿᅵࢆ┒ࡗ࡚⠏㐀ࡉࢀࡓࠋ┒ᅵࡢᅵ␃ࡵ⏝࡟ࡣእㆤิ▼ࡀ᪋⾜ࡉࢀࡓࠋ
࣭୰ୡᒃ㤋ࢆྲྀࡾᕳࡃቸࡸᅵሠࡣࠊ᥀๐ᅵࢆቸࡢ୍᪉ࡢ⬥㸦ᩜᆅࡢෆഃ㸧࡟✚ࡳୖࡆ࡚⠏࠿ࢀࡓࠋࡇࡢ
−69−
西村 勝広・可児 幸彦・奥田 昌男・中根 洋治・早川 清
ᕤἲࡣࠊࡑࡢᚋࠊᇛ㤋ࡢ㜵ᚚ᪋タࡢᇶᮏᕤἲ࡜ࡋ࡚ࡶᗈࡃᬑཬࡍࡿࠋ
࣭ᡓᅜ᫬௦ࡢᒣᇛ࡛ࡣࠊ
ᒎᮃࡢࡼ࠸ୣ㝠࡟ษᅵ࡜┒ᅵ࡟ࡼࡗ࡚」ᩘࡢ᭤㍯࡜࿧ࡤࢀࡿᖹሙࡀ㐀ᡂࡉࢀࡓࠋ
┒ᅵࡢᅵ␃ࡵ⏝࡟▼✚ࡳࡀ᪋ࡉࢀࡓ౛ࡶ࠶ࡿࠋࡇࢀࡣࠊ௨ᚋࡢ▼ᇉ࡟Ⓨᒎࡋ࡚࠸ࡃᕤἲ࡛࠶ࡿࠋ
࣭Ụᡞ᫬௦ࡢ㝕ᒇ࡟࠾࠸࡚ࡶࠊᅵሟࡢ௦ࢃࡾ࡟ᅵሠ࡜ቸࢆഛ࠼ࡿ౛ࡀ࠶ࡿࠋቸࡣᔂⴠࡋ㞴࠸ࡼ࠺ࠊഃ㠃
࡟໙㓄ࡀ௜ࡅࡽࢀ᩿㠃ࡣྎᙧࢆᡂࡍࠋ
ษᅵ࡜┒ᅵࡢᕤἲࡣ⦖ᩥ᫬௦࡟ጞࡲࡾࠊᚋୡࡢᘓタᕤ஦࡟ዲࢇ࡛ྲྀࡾධࢀࡽࢀࡓࡇ࡜ࡀศ࠿ࡗࡓࠋ౛
࡟ᣲࡆࡓఱࢀࡢ஦౛࡟ࡶࠊ㈨ᮦࡢ⌧ሙㄪ㐩ࠊ᥀๐ᅵࡢ᭷ຠ฼⏝ࠊࡑࡋ࡚ᕤ⛬ࡢྜ⌮໬࡜࠸࠺฼Ⅼ࡛ඹ㏻
ࡋࠊࡇࢀࡽࡢ฼Ⅼࡀ᪩ࡃ࠿ࡽὀ┠ࡉࢀࡓ࡜⪃࠼ࡽࢀࡿࠋ㈨ᮦࡢ⌧ሙㄪ㐩࡜࡜ࡶ࡟ࠊṧᅵฎ⌮ࢆ⌧ሙෆ࡛
᏶஢࡛ࡁࡿࡓࡵࠊ୧⪅ࡢࣂࣛࣥࢫࡀ࡜ࢀࡿ⠊ᅖ࡛ᕤ஦ࡀタィࡉࢀ࡚࠸ࡓ࡜⪃࠼ࡽࢀࡿࠋ
ᮏ✏࡛ࡣษ┒ᅵᕤ࡟ὀ┠ࡋࡓࡀࠊ୍᪉࡛ᕧ▼㐠ᦙᢏ⾡ࢆ㥑౑ࡋࡓ㑇㊧ࡀᏑᅾࡍࡿࠋ኱つᶍ࡞㓄▼ࡸ❧
▼ࢆ᪋ࡋࡓ⦖ᩥ᫬௦ࡢ⎔≧ิ▼ࠊᕧ▼ࢆ౑⏝ࡋࡓྂቡࡢᶓ✰ᘧ▼ᐊࠊ㏆ୡᇛ㒌ࡢ▼ᇉ࡞࡝ࢆ౛࡟ᣲࡆࡿ
ࡇ࡜ࡀ࡛ࡁࡿࠋ᪥ᮏิᓥࡢ኱༙ࡣ ᖏẼೃ࡟ᒓࡋࠊ㇏࠿࡞᳜⏕࡜ᅵተ࡟ᜨࡲࢀࠊࡲࡓࠊⅆᡂᒾࡸሁ✚ᒾࠊ
ࡑࡋ࡚ᛴᓧ࡞Ἑᕝࡀ⏕ࢇࡔ♟ࡀ㇏ᐩ࡛࠶ࡿࠋᮏ✏࡟♧ࡋࡓ஦౛ࡢ࡜࠾ࡾࠊேࠎࡣ✚ᴟⓗ࡟ᅵ࡟ാࡁ࠿ࡅ
ࡓࡀࠊ▼ࡸᮌࡶࣂࣛࣥࢫࡼࡃᅵᮌᘓ⠏㈨ᮦ࡜ࡋ࡚฼⏝ࡋࡓࠋࡇ࠺ࡋࡓᅾࡾ᪉ࡀ᪥ᮏᅵᮌྐࡢ≉ᚩ࡛࠶ࡿ
࡜ணᐹࡍࡿࠋ
ཧ⪃ᩥ⊩
㕥ᮌᛅྖ㸸⪃ྂᏛࢩ࣮ࣜࢬ 㸪ඛᅵჾ᫬௦ࡢ▱㆑㸪ᮾி⨾⾡㸪S㸪㸬
ྛົཎᕷᩍ⫱ጤဨ఍⦅㸸⅔⏿㑇㊧㸫➨ ḟㄪᰝⓎ᥀ሗ࿌᭩㸫㸪S㸪㸬
ᡂ℩ṇ຾௚㸸ᒱ㜧┴ᩥ໬㈈ಖㆤࢭࣥࢱ࣮ㄪᰝሗ࿌᭩➨ 㞟◁⾜㑇㊧㸪㸬
ྛົཎᕷᩍ⫱ጤဨ఍⦅㸸௜ᅗ ᆓࡢሯྂቡ 㔞ᅗྛົཎᕷྐ⪃ྂẸ಑⦅⪃ྂ㸪
すᮧ຾ᗈ㸸ྛົཎᕷᩥ໬㈈ㄪᰝሗ࿌᭩➨ ྕᆓࡢሯྂቡ࿘⃾⠊ᅖ☜ㄆㄪᰝሗ࿌᭩㸪
すᮧ຾ᗈ࣭ྍඣᖾᙪ࣭ዟ⏣ᫀ⏨࣭୰᰿ὒ἞㸸ྛົཎᕷ㬼἟࡟⠏㐀ࡉࢀࡓᆓࡢሯྂቡࡢタィ࡟ࡘ࠸࡚㸪
➨ ᅇ୰㒊ᆅ┙ᕤᏛࢩ࣏ࣥࢪ࣒࢘ㄽᩥ㞟㸪SS㸪
୰᰿ὒ἞࣭ዟ⏣ᫀ⏨࣭ྍඣᖾᙪ࣭すᮧ຾ᗈ࣭᪩ᕝΎ㸸ἲ㠃໙㓄ࡢ᥎⛣㸪➨ ᅇㄪᰝ࣭タィ࣭᪋ᕤᢏ
⾡ሗ࿌఍Ⓨ⾲せ᪨㸪㸬
すᮧ຾ᗈ㸸ྛົཎᕷᩥ໬㈈ㄪᰝሗ࿌᭩➨ ྕ㸪໭ᒣྂቡ⩌Ⓨ᥀ㄪᰝሗ࿌᭩̺࣭ ྕቡࡢㄪᰝ̺㸪
SS㸪
ྛົཎᕷᩍ⫱ጤဨ఍⦅㸸ᖹᡂ ࣭ ᖺᗘྛົཎᕷᕷෆ㑇㊧Ⓨ᥀ㄪᰝሗ࿌᭩㸪SS㸪 ᖺ㸬
ྛົཎᕷᇙⶶᩥ໬㈈ㄪᰝࢭࣥࢱ࣮⦅㸸ྛົཎᕷᩥ໬㈈ㄪᰝሗ࿌᭩➨ ྕ㸪ఀᮌᒣᇛᆎⓎ᥀ㄪᰝሗ࿌
᭩㸫㑇ᵓࡢ⠊ᅖ☜ㄆㄪᰝ㸫㸪SS㸪㸬 ྛົཎᕷṔྐẸ಑㈨ᩱ㤋㸸ᐩᶔᗢὶ᪝ᮏᆤෆᐙ୍⤫⣔ᅗ୪⏤⥴㸦஬㸧
㸪㸬
すᮧ຾ᗈ㸸᪝ᮏᆤෆ㝕ᒇ㊧Ⓨ᥀ㄪᰝ⌧ᆅㄝ᫂఍㈨ᩱ㸪㸬
−70−
立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年
Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014
オペレーションズリサーチ
エクセルソルバーで解く線形計画法 1
林 芳樹
=============================================
Operations Research
Linear Planning solving with Excel Solver 1
Yoshiki Hayashi
As the Beginning of this series we sketch in this article with easy examples the symplex method and will
solve then with the help of the excel solver. In next articles we will go more deeply into this method.
Keywords; Operations research, Linear planning, Excel solver
E-mail: [email protected]
[email protected]
=============================================
立命館大学 理工学部
Department of Science and Engineering Ritsumeikan University
Kusatsu,Shiga 525-8577, Japan
−71−
林 芳樹
線形計画法とは,限られた資源を分配し,利益の最大化・費用の最小化・投資収益率の最大化・時間の最適配
分などを目指す方法であり,この問題を解決するためにシンプレックス法が適用されることはよく知られてい
る.また,エクセルのソルバーには最適化を実行する機能が組み込まれている.この論説では,シンプレック
ス表を用いて計算された問題を,図形的解法とエクセルソルバーによる解法を比較実行し,さらには輸送問題
に関する例についてもエクセルソルバーを使用して計算したい.例題としては,[3] p.190-,[1] p.15-, p.36を使用し,[2] の解説に従いエクセルのソルバーを利用した解法に言及したい.なお,[4] の図入りの解説も参
考にされたい.
線形計画モデルの構成と例題
線形計画モデルは,目的関数と制約条件からなる.目的関数は主として利益やコストの合計金額を表し,利
益に関しては最大になるように,コストなら最小になるようにする.そのときの変数の値が解となる.制約条
件は,目的関数で適用される変数がどのような値をとるのかを関数の形で表したもので,主として不等式で表
される.
現実の問題を最適化していく際には,現実の問題が置かれた状態の本質を見抜き(モデル化),それを目的
や制約となる条件を数式やグラフを利用して表す(定式化).モデル化では何が問題なのか何が制約条件なの
かを明確にする必要がある.このような理念の下にモデル化され定式化された次の例題を考察する.
例1.(以下の標準型は [3] p.190-のもの)
利益が4万円および5万円の商品 A と B の生産計画を考え,それぞれ x1 および x2 個を生産するとき生産ラ
イン上での生産情報により,変数 x1 , x2 をもつ目的関数 f と制約条件 gi (i = 1, 2, 3) からなる以下のような標準
型に定式化できるとき,利益の最大値を求めたい.
f = 40x1 + 30x2
g1 = 4x1 + 5x2 ≤ 40
g2 = 2x2 ≤ 50
g3 = 6x1 + 3x2 ≤ 210
x1 , x2 ≥ 0
この標準型について目的関数 f の最大値を求めるために,以下のようにスラック変数を導入し正規型に変換す
る.そして,制約条件が作る凸多角形の実行可能解集合(シンプレックス)の頂点で最適解が得られるという
性質を利用してある1頂点から出発して他の頂点に次から次へと移動しながら最適解をみつける方法(シンプ
レックス法)を適用する.以下の I) では図を用いた解法,II) でソルバーを利用した解法をみる.なお,ソル
バーでもアルゴリズムとしてシンプレックス法が採用されている.
I) 図形による解法
i) スラック変数の導入および標準型から正規型への変換 ii) 基底変数および非基底変数の分離と辞書
iii) 辞書の変形と,基底解に対する目的関数の値の読み取り 方針
i) スラック変数の導入による標準型から正規型への変換.問題の扱いを容易にするため,新しい非負の変数
(スラック変数) s1 , s2 , s3 を導入し,次の左の連立不等式の形(標準型)の不等式の部分を,右の形(正規型)
のようにスラック変数の非負条件の部分にまとめてしまい,不等式を同値な等式の形に表す.したがって,正
−72−
オペレーションズリサーチエクセルソルバーで解く線形計画法1
規型では不等式の部分を等式とは別の行(最後の行)におく.目的関数は Z で表す.
標準型
正規型
Z = 40x1 + 30x2
Z = 40x1 + 30x2
4x1 + 5x2 ≤ 200
4x1 + 5x2 + s1 = 200
2x2 ≤ 50
2x2 + s2 = 50
6x1 + 3x2 ≤ 210
6x1 + 3x2 + s3 = 210
x 1 , x2 ≥ 0
x1 , x 2 , s 1 , s 2 , s 3 ≥ 0
ii) 変数を基底変数と非基底変数に分け辞書の形に表す.正規型の制約条件の部分を次のように,左辺に基底
変数,右辺を非基底変数の式で表す.この形を辞書という呼び方で表す.
Z=
40x1 + 30x2
s1 = 200 − 4x1 − 5x2
s2 = 50
− 2x2
s3 = 210 − 6x1 − 3x2
辞書の左辺の変数 s1 , s2 , s3 が基底変数,右辺の変数 x1 , x2 が非基底変数であり,条件式での非基底変数 x1 , x2
の値を (0, 0) とするときの s1 , s2 , s3 の値の組 (200, 50, 210) は,この連立方程式の1つの解(基底解) となる.
したがって,この辞書に対応する(実行可能)基底解は
(x1 , x2 , s1 , s2 , s3 ) = (0, 0, 200, 50, 210)
であり,図形的には,これは x1 軸と x2 軸との成す平面の原点での解となる.
注意.辞書がひとつ決まると自動的に基底解がひとつ決まり,辞書の1行目は非基底変数 x1 , x2 と定数項で表
わされた目的関数 Z であり,上記の場合には,Z の定数項の位置に非基底変数の値を (0, 0) とした値 0 が入る.
したがって,目的関数は基底解に対するものであるので,辞書の1行目の定数項をみれば基底解の目的関数の
値がわかる.この辞書をさらに変形しても,辞書の1行目の定数項をみることでその辞書の基底解に対する目
的関数の値が読み取ることができる.
以下では,非負の変数 x1 , x2 , s1 , s2 , s3 に関して,非基底変数を増加させ基底変数を減少させて辞書を変形して
いくことにより,目的関数の値を求めていく.
iii) 辞書の変形 i) の辞書の目的関数 Z = 40x1 + 30x2 について,ふたつの変数のうち係数が「大きい方の正
数」となる x1 を基底変数におきかえて辞書を変形する.i) で求めた解が x1 x2 平面の原点での解であるのに対
し,これは x1 軸上を正方向に移動して,多角形の次の頂点での解を求めることに対応する(ソルバーによる解
法の後の図1参照).
この操作は次のようにする.x1 を正方向に増加させていくとき,基底変数 s1 , s2 , s3 のうちで 200, 50, 210 か
ら値の減少していくものがある.これら減少していくもののうち最初に 0 となるものを見つけ,それを基底変
数から非基底変数と名前を変える.具体的には x2 = 0 として,
s1 = 200 − 4x1 ≥ 0 のときは, x1 ≤ 50 を動く.
s2 = 50 ≥ 0
のときは, x1 の値とは関係ない.
s3 = 210 − 6x1 ≥ 0 のときは, x1 ≤ 35 を動く.
−73−
林 芳樹
を満たしながら x1 を正の方向に動かしていくとき,s1 , s2 , s3 のうち最初に 0 となるものとそのときの x1 を
探す.この場合,前の式から min(50, 35) = 35 となりで x1 = 35 のときすでに s3 が 0 になる.このとき,i)
の辞書の s3 の式 s3 = 210 − 6x1 − 3x2 における s3 と x1 の役割を入れ替えて x1 = 35 − 16 s3 − 12 x2 とい
う形にして s1 , s2 の式に代入する.この操作(ピボット操作)によって次の新しい辞書と(実行可能)基底解
(x1 , x2 , s1 , s2 , s3 ) = (35, 0, 60, 50, 0) を得る.
20
s3
3
2
− 3x2 + s3
3
− 2x2
1
1
− x 2 − s3
2
6
Z = 1400 + 10x2 −
s1 = 60
s2 = 50
x1 = 35
こうして新しく非基底変数となった s3 , x2 について同様のピボット操作を再度実行する.すなわち,s3 = 0 と
おいて x2 を正方向に動かし,s1 , s2 のうち最初に 0 となるものと,そのときの x2 を求める.この場合,s1 =
60−3x2 + 23 s3 , s2 = 50−2x2 であるので,min(20, 25) = 20 から s1 が s2 よりも先に 0 になり,s1 = 60−3x2 + 23 s3
での s1 と x2 を軸に再びピボット操作(s1 と x2 の入れ替え)を実行し,s2 と x2 の条件式の x2 の項に第1の
条件式 x2 を代入して次の新しい辞書を得る.
10
58
s1 − s3
3
9
1
2
− s1 + s3
3
9
2
4
+ s1 − s3
3
9
1
5
+ s1 − s3
6
18
Z = 1600 −
x2 = 20
s2 = 10
x1 = 25
この辞書から,基本解は (x1 , x2 , s1 , s2 , s3 ) = (25, 20, 0, 10, 0) であり Z = 1600 となる.すなわち,最大利益が
1600万円で,そのときの商品 A と B の個数はそれぞれ25個および20個となる.
II) ソルバーによる方法([2])
手順 1.定義式係数の入力.
2.変数セルの指定.
3.目的関数の定義式の入力と目的セルの指定.
4.制約条件の定義式の入力.
5.制約式右辺の値の入力.
6. 目的セルのソルバー上への入力.
7.目標値の選択.
8.変数セルの位置の入力.
9.制約条件の入力.
10.
「解決方法の選択」での「シンプレックス LP」を選択.
11.[解決] ボタンをクリック
12.
「ソルバーの解の保持」の確認と [OK].
i) [データ] タブをみてソルバー機能利用可能かを確認.
ii) [データ] タブに [ソルバー] ボタンの表示がなければ,[ファイル] → [オプション] を選択,[Excel のオプショ
準備と注意
−74−
オペレーションズリサーチエクセルソルバーで解く線形計画法1
ン] ダイアログボックス「アドイン」メニュー選択し,[アクティブでないアドイン] リストで [ソルバーアドイ
ン] をクリックしてアクティブの状態にし,[設定] ボタンをクリック.[OK] もクリック.表示された「アドイン」
ダイアログボックスの「有効なアドイン」欄の「ソルバーアドイン」をチェック.[OK] をクリック.
iii) リボンの [データ] タブ内の [ソルバー] をクリック.
「ソルバーのパラメータ」ダイアログボックスを入力.
「目的セルの設定」には最大(最小)にしたい数式の入ったワークシート上のセル E7 を指定.
「目標値」として
「変数セル
「目的セル」を「最大値」(「最小値」) に設定.特定の値と一致させたい場合には「特定値」を選択.
の変更」には,目的セルの値が最大(最小)値となる変数値を出力するセル C6,D6 を入力.
「制約条件の対象」
では,
「変数セル」で指定した変数(またはそれらを用いた関数)の取る値に条件を設定.
「オプション」ボタン
を選択すると,ソルバーの挙動などに関する設定を変更可能.
入力と設定.
1.値の入力.x1 の係数 C7「40」,C8「4」,C10「6」, x2 の係数 D7「30」,D8「5」,D9「2」,D10「3」
2.
「変数セル」を C6,D6 に指定.
3.セル E7 に以下の目的関数の定義式を入力し,
「目的セル」として指定.ここに最大値が出力される.
E7:”=C7*C6+D7*D6”または”=SUMPRODUCT(C7:D7,C$6:D$6)”
4. セル E8, E9, E10 に制約条件左辺の定義式を入力.ソルバー機能ではこれらのセルが参照される.
E8: ”=C8*C6+D8*D6” または”=SUMPRODUCT(C8:D8,C$6:D$6)”
E9: ”=C9*C6+D9*D6” または”=SUMPRODUCT(C9:D9,C$6:D$6)”
E10: ”=C10*C6+D10*D6” または”=SUMPRODUCT(C10:D10,C$6:D$6)”
絶対参照 C$6:D$6 の E8:E10 への貼り付ける方法.
i) E7:”=SUMPRODUCT(C7:D7,C$6:D$6)”は,”=SUMPRODUCT(C7:D7)”と入力した後にセルの範囲指
定して [F4] キーを2回押し ”C$6:D$6 ”となったら”)”を入力して [Enter] キーを押す.
ii) セル E7 を「コピー」([Ctrl]-[C] を同時に押)して [Shift] を押しながら [↓] を3回押して E8 から E10 を範
囲指定.[右クリック]→[形式を選択して貼り付け] を指定してダイアログボックスを出し,
「数式」にチェックし
[OK].または [ホーム]→ [貼り付け]→ [数式] ([Alt]→[H]→[V]→[F]) で数式のみがコピーされる.
5.制約式右辺の値の入力. F8: 「200」, F9: 「50」, F10: 「210」を入力.
続いて,目的セル E7 をクリックしてアクティブにし [データ]-[ソルバー] を選択しソルバーを起動して,以下
6から13までソルバー上の入力用ダイアログボックスで操作する.
6. 「目的セル」E7 のソルバー上の入力用ダイアログボックスへの入力.目的関数の式が入ったセル E7 をク
リックすると,ダイアログボックス入力欄は自動的に絶対参照「E$7」となる.
7.
「目標値」を選択.総利益を最大にしたいので,
「最大値」をチェック.
8.
「変数セルの変更」欄に変数セルの位置を入力.
「目的セル」の位置を設定したときと同様,右横のボタン
をクリックして入力用のダイアログボックスを出しセル C6:D6 を範囲指定.入力後に自動的に絶対参照の形
C$6:D$6 になる.
($の入力は不必要)
9.
「制約条件」を入力.
「制約条件」欄右横にある [追加] ボタンをクリックすると現れる「制約条件追加」ダ
イアログボックスに情報を入力.
非負条件 x1 , x2 ≥ 0 を除く3つの条件不等式をまとめて入力する(個々に入力することも可能).
「制約条件の
追加」ダイヤログボックスの「セル参照」に左辺の数式が入ったセル位置 E8:E10 と「制約条件」(右辺の数式
が入ったセル位置)を指定する際に,
(単独のセルではなく)対応するセル範囲をドラッグして指定.制約式の
「関係子 <=」を選択して,
「ソルバーのパラメータ」ダイヤログボックスに戻ると3つの不等式制約条件がまと
めて表示される.非負制約(x1 , x2 ≥ 0)についてもすべての決定変数に非負制約をもたせる場合,
「制約のな
い変数を非負数にする」をチェックして「制約条件の追加」手続きによって同様に指定できる.
10.
「解決方法の選択」には LP では「シンプレックス LP」を選択.
−75−
林 芳樹
11.[解決] ボタンをクリックするとソルバーが「シンプレックス法」
(単体法)を実行し,最適解を返し,
「ソ
ルバーの結果」ダイアログボックスが表示される.
12.
「ソルバーの解の保持」がチェックされていることを確認して [OK].求めた解がセルに出力され,シー
トに戻る.[キャンセル] を選ぶと求めた解は消え,変数セルや目的セルに 0 が表示される.
ソルバーによる計算の結果,利益の値 Z が最大になるのは A:25個,B:20個で,その時の最大利益が 1600
万円になる.この結果は図を用いた方法(やシンプレックス表を用いた方法)と一致する. 例1終
わり.
(0, 25)
(0, 0)
(18, 25)
Q
Q
Q
Q
BM (25, 20)
B
B
図1
B (35, 0)
-B
(0, 60)
PP
6 PP
PP
図2
(0, 0)
PP
PP
qb (120, 30)
b
b
b
(144, 0)
b
b
次に,パン売上げ利益の問題を定式化した例をあげる.この問題では,製パン工場での製造量や小麦粉と砂
糖の制限消費量に関する条件がついている.
例2. ([1]p.15-)
I) 図による解法.モデルを定式化したものを例1と同様に標準型と正規型に表すと次のようになる.
標準型
正規型
Z = 40x1 + 60x2
Z=
50x1 + 40x2 ≤ 7200
s1 = 7200 − 50x1 − 40x2
2x1 + 8x2 ≤ 480
s2 = 480 − 2x1 − 8x2
x1 , x 2 ≥ 0
40x1 + 60x2
x1 , x2 , s1 , s2 ≥ 0
この正規型から次の辞書を得る.
i) Z = 3600 + 25x1 −
15
s2
2
25
35
s1 − s2
4
8
1
1
x1 = 120 − s1 + s2
40
8
1
5
x2 = 30 +
s1 − s2
160
32
x 1 , x 2 , s 1 , s2 ≥ 0
ii) Z = 6600 −
s1 = 4800 − 40x1 + 5s2
x2 = 60
1
1
− x1 − s2
4
8
x1 , x 2 ≥ 0
この最後の辞書により,(120,30) で最大値「6600」をとることがわかる.
(図2参照)
II) エクセルソルバーでは,変数セル C6,D6,目的セル E7,制約条件の定義式 E8,E9 は例1と同じにし,目的
関数および条件式の係数 C7:「40」, C8:「50」, C9:「2」, D7:「60」, D8:「40」, D9:「8」を入力し,制約条
件の右辺の値を F8:「7200」, F9:「480」として例1と同様にソルバーを作動させると,目的セル E7 に 6600,
変数セル C6:D6 にはそれぞれ 120, 30 が出力され,(120, 30) で最大値 6600 を得る.
例2終わり. 他の例として,輸送問題を扱う.この問題に対しては北西隅ルールがあるが,ここでは,ソルバーのみ利用
して最小値をみる.
例3. ([1]p.36-)3ヶ所に工場を持っている企業が,4ヶ所ある販売店からの注文に応じて各販売店への
商品の輸送計画を立てる.各工場の供給能力を第1工場15個,第2工場25個,第3工場8個とし,販売店
−76−
オペレーションズリサーチエクセルソルバーで解く線形計画法1
からの注文は,販売店1から5個,販売店2から13個,販売店3から20個,販売店4から10個とする.各
販売店からの注文に応ずるため,各工場からの出荷量を決め輸送する際,総輸送量が最小となる計画を立てる.
この問題は次の標準形に定式化できる.
Z = 5x11 + 4x12 + x13 + 6x14 + 6x21 + 2x22 + 7x23 + 5x24 + 8x31 + 3x32 + 10x33 + 9x34
g1 = x11 + x12 + x13 + x14
≤ 15
x21 + x22 + x23 + x24
g2 =
x31 + x32 + x33 + x34
g3 =
g4 = x11
g5 =
g6 =
≤ 25
+ x21
x12
+ x31
+ x22
x13
g7 =
≥5
+ x32
+ x23
x14
≤8
≥ 13
+ x33
+ x24
≥ 20
+ x34
≥ 10
x11 , x12 , . . . x34 ≥ 0
これをソルバーにかけるためにセルには例えば次のような設定をする.
1) 変数セルを C6, D6, E6, F 6, . . . , N 6 に指定.
2) セル C16 に目的関数の定義式を入力し「目的セル」(最小値表示) として指定.
C16:”=SUMPRODUCT(C7:N7,C$6:N$6)”
3) セル C17, . . . C23 に制約条件左辺の定義式を入力.
C17:”=SUMPRODUCT(C8:F8,C$6:F$6)”
C18:”=SUMPRODUCT(G9:J9,G$6:J$6)”
C19:”=SUMPRODUCT(K10:N10,K$6:N$6)”
C20:”=C11*C$6+G11*G$6+K11*K$6”
C21:”=D12*D$6+H12*H$6+L12*L$6”
C22:”=E13*E$6+I13*I$6+M13*M$6”
C23:”=F14*F$6+J14*J$6+N14*N$6”
4) 制約式右辺の数値を入力.
D17:
「15」, D18:
「25」, D19:
「10」, D20:
「5」, D21:
「13」, D22:
「20」, D23:
「10」
5) 目的関数の係数および条件式の係数を入力.
C7,D7,E7,F7,. . . , N7 には,目的関数の係数「5, 4, 1, 6, 6, 2, 7, 5, 8, 3, 10, 9」を入力.
条件式の係数は,C8:F8,G9:J9,K10:N10 のすべてに「1」を入力し,
C11, G11, K11 に「1」,D12, H12, L12 に「1」,E13, I13, M13 に「1」,F14, J14, N14 に「1」を入力.
6) これらのデータをもとに,g1 , g2 , g3 は「<=」,g4 , . . . , g7 は「>=」であることに注意し,最小値を選択し
てソルバーを実行させると解は164となり,最適解を得る.すなわち,総輸送費が最小164万円であり,北
西隅ルールで求める初期値よりも良い値となる([1] 参照).
例3終わり.
**************
文献
[1] 宮川公男 経営数学入門 実教出版 1993 年 03 月
[2] 藤澤 克樹・後藤 順哉・安井 雄一郎 Excel で学ぶ OR Ohmsha 2011 年 07 月
[3] 平井裕久 他 経済経営を学ぶための数学入門 ミネルバ書房 2010 年 11 月
[4] Fritz Reinhardt ・Heinrich Soeder 著・Gerd Falk 図作 浪川 幸彦・成木 勇夫・長岡 昇勇・林 芳樹訳
カラー図解 数学事典 共立出版 2012 年 08 月
−77−
኱ᆺ◊✲⿦⨨ᡂᯝሗ࿌᭩
−79−
኱ᆺ◊✲⿦⨨ᡂᯝሗ࿌᭩
⿦⨨ྡ
◊✲㈐௵⪅
㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧
◊✲ࢸ࣮࣐
☢Ẽඹ㬆᩿ᒙ᧜ᙳ⿦⨨
ࢫ࣏࣮ࢶ೺ᗣ⛉Ꮫ㒊࣭ᩍᤵ࣭὾ᒸ㝯ᩥ
㐠ືࢺ࣮ࣞࢽࣥࢢ࡟ࡼࡿ⏕యࡢኚ໬࡟㛵ࡍࡿ◊✲
㌟య୙άື࡟ࡼࡿ⏕యኚ໬࡟㛵ࡍࡿ◊✲
㧗㱋⪅ࡢࢧࣝࢥ࣌ࢽ࢔ண㜵ࠊ⬻ᶵ⬟పୗண㜵ࡢࡓࡵࡢ◊✲
ࢧࣉ࣓ࣜࣥࢺᦤྲྀࡀ⏕య࡟ཬࡰࡍᙳ㡪࡟㛵ࡍࡿ◊✲
◊✲ࡢᴫせ
ᮏ⿦⨨ࡣࠊ☢Ẽඹ㬆⌧㇟ࢆ฼⏝ࡋ࡚ࠊ㠀౵くⓗ࡟⏕యෆ㒊ࡢ᝟ሗࢆᚓࡿ ᐃ⿦⨨࡛࠶ࡾࠊ
᝟ሗࢆ⏬ീ໬ࡍࡿ☢Ẽඹ㬆⏬ീἲ㸦MRI㸧࡜ࠊศᏊࡢᵓ㐀ࡸ≧ែ࡞࡝ࡢᛶ㉁ࢆㄪ࡭ࡿ☢
Ẽඹ㬆ศගἲ㸦MRS㸧ࡢ୧⪅ࢆഛ࠼࡚࠸ࡿࠋලయ౛࡜ࡋ࡚ࡣࠊ⏬ീ᝟ሗ࠿ࡽ⏕యෆ㒊ࡢ
㦵᱁➽㔞ࠊ⬡⫫㔞⓶ୗ⬡⫫ࠊෆ⮚⬡⫫ࠊ㦵ᐜ㔞ࠊ⬻ⴎ⦰➼ࡢホ౯ࡀྍ⬟࡛࠶ࡾࠊMRS
ᐃ࡟ࡼࡾࠊ⬻ෆ࢚ࢿࣝࢠ࣮௦ㅰ⏘≀ࡢኚ໬ࠊ㦵᱁➽ෆ㧗࢚ࢿࣝࢠ࣮ࣜࣥ㓟໬ྜ≀ࡢኚ
໬ࠊ㦵᱁➽⣽⬊ෆ㸭⣽⬊እ⬡⫫㔞➼ࢆホ౯࡛ࡁࡿࠋ␗࡞ࡿᑐ㇟೺ᖖⱝᖺ⪅ࠊ㧗㱋⪅ࠊ
㧗ᗘ࡟ࢺ࣮ࣞࢽࣥࢢࡉࢀࡓ➇ᢏ㑅ᡭ࡞࡝ࡀࠊᵝࠎ࡞㐠ື࠾ࡼࡧྛ✀㐠ືࢺ࣮ࣞࢽࣥࢢ
ࢆ⾜ࡗࡓ㝿࡟ࠊ⏕యࡢᙧែ࠾ࡼࡧᶵ⬟࡟ཬࡰࡍᙳ㡪࡟ࡘ࠸᳨࡚ウࢆ⾜ࡗࡓࠋࡲࡓࠊ㐠ື
࡜⾲⿬୍యࢆ࡞ࡍ୙άືࡀ⏕యࡢᙧែ࠾ࡼࡧ㐠ື᫬㦵᱁➽࢚ࢿࣝࢠ࣮௦ㅰ࡟ཬࡰࡍᙳ
㡪ࢆ᳨ウࡍࡿࡇ࡜࡟ࡼࡾࠊ೺ᗣࢆ⥔ᣢ࣭ቑ㐍ࡍࡿ࠺࠼࡛㔜せ࡞ᙺ๭ࢆᯝࡓࡍ㌟యάື࠾
ࡼࡧ㐠ືࡢ⏕య࡟࠾ࡅࡿᙺ๭࡟ࡘ࠸࡚◊✲ࢆᐇ᪋ࡋࡓࠋ
฼⏝ᡂᯝ
ᮏᖺᗘࠊᮏ⿦⨨ࢆ⏝࠸࡚⾜ࡗࡓ◊✲࡟㛵ࡍࡿᏛ⾡ⓗᡂᯝࡣࠊ௨ୗࡢ㏻ࡾ࡛࠶ࡿࠋ
ࠐⴭ᭩㸸㸯ሗ
ࠐᏛ⾡ㄽᩥ㸸㸯㸮ሗ㸦in press ྵࡴ㸧
ࠐᅜ㝿Ꮫ఍Ⓨ⾲㸸㸯㸱௳
ࠐᅜෆᏛ఍Ⓨ⾲㸸㸯㸮௳
ࠐ༤ኈㄽᩥ㸸㸰ሗ
ࠐಟኈㄽᩥ㸸㸳ሗ
ࠐᏛኈㄽᩥ㸸㸯㸳ሗ
ヲ⣽ࡣࠊ௨ୗཧ↷ࠋ
1
−80−
(ⴭ ᭩)
1
➽ᶵ⬟࣭ᙧែⓎ㐩ࡢࡓࡵࡢ᪂ࡋ
࠸ࢺ࣮ࣞࢽࣥࢢࢩࢫࢸ࣒ࡢ㛤
Ⓨ
(Ꮫ⾡ㄽᩥ)
1
ඹⴭ
ᖹᡂ 26 ᖺ 12
᭶
㐍໬ࡍࡿ㐠ື⛉Ꮫ
ࡢ◊✲᭱๓⥺
ᢸᙜ㡫㸸322-328
ᮏᇛ㇏அ㸪ሷ⃝ᡂᘯ㸪ᶓ஭୍ᫍ㸪ᰩཎಇஅ㸪
ఀᆏᛅኵ
28 ᕳ
Koji Sato, Motoyuki Iemitsu, Kenji
Matsutani, Toshiyuki Kurihara, Takafumi
Hamaoka,
and Satoshi Fujita
Resistance
training
restores
muscle sex steroid hormone
steroidogenesis in older men
2
ඹⴭ
ᖹᡂ 26 ᖺ 1 ᭶
The
Journal
Effects of different periods of
hypoxic training on glucose
metabolism
and
insulin
sensitivity
3
ඹⴭ
ᖹᡂ 26 ᖺ 2 ᭶
Clinical Physiology
and
Functional
Imaging
Takuma Morishima, Yuta Hasegawa, Hiroto
Sasaki, Toshiyuki Kurihara, Takafumi
Hamaoka, Kazushige Goto,
Establishment of a recording
method
for
surface
electromyography
in
the
iliopsoas muscle
4
ඹⴭ
ᖹᡂ 26 ᖺ 4 ᭶
Journal
of
Electromyography
and Kinesiology
23 ᕳ 4 ྕ 445-451 㡫
Takumi Jiroumaru, Toshiyuki
Tadao Isaka
ඹⴭ
ᖹᡂ 26 ᖺ 5 ᭶
Journal of Foot and
Ankle Research
7 ᕳ 25 㡫
Kurihara T, Yamauchi J, Otsuka M, Tottori N,
Hashimoto T and Isaka T
ඹⴭ
ᖹᡂ 26 ᖺ 7 ᭶
European Journal
of Sport Science
Toshiaki Ijichi, Yuta Hasegawa, Takuma
Morishima, Toshiyuki Kurihara, Takafumi
Hamaoka, Kazushige Goto
Maximum toe flexor muscle
strength and quantitative analysis
of human planta instrinsic and
extrinsic muscles by a magnetic
resonance imaging technique
5
Effect of sprint training: Training
once daily versus twice every
second day
6
4 weeks of high-intensity interval
training does not alter the
exercise-induced
growth
hormone response in sedentary
men
7
Measurement
of
muscle
length-related electromyography
activity of the hip flexor muscles
to determine individual muscle
contributions to the hip flexion
torque
8
Influence of neglecting the
curved path of the Achilles
tendon on Achilles tendon length
change at various ranges of
motion
Kurihara,
ඹⴭ
ᖹᡂ 26 ᖺ 7 ᭶
Springer Plus
3 ᕳ 336 㡫
Hiroto Sasaki, Takuma Morishima, Yuta
Hasegawa, Ayaka Mori, Toshiaki Ijichi,
Toshiyuki Kurihara, Kazushige Goto
ඹⴭ
ᖹᡂ 26 ᖺ 10
᭶
Springer Plus
3 ᕳ 624 㡫
Jiroumaru T, Kurihara T, Isaka T
ඹⴭ
ᖹᡂ 26 ᖺ 10
᭶
Physiological
Reports
2 ᕳ 10 ྕ e12176 㡫
Atsuki Fukutani, Satoru Hashizume, Kazuki
Kusumoto, Toshiyuki Kurihara
The
Journal
in press ᕳ
Watanabe, S., Sato, K., Hasegawa,
Kurihara, T., Matsutani, K., Sanada,
Hamaoka, T., Fujita, S., and Iemitsu,
Serum C1q as a novel biomarker
sarcopenia in older adults.
9
Serum C1q as a novel biomarker
of sarcopenia in older adults
FASEB
ඹⴭ
ᖹᡂ 26 ᖺ 12
᭶
2
−81−
FASEB
N.,
K.,
M.
of
10
Planned
Overreaching
and
Subsequent
Short-Term
Detraining Enhance Cycle Sprint
Performance.
ඹⴭ
ᖹᡂ 26 ᖺ 120
᭶
in press ᕳ
Hasegawa Y, Ijichi
Hamaoka T, Goto K.
Int J Sports Med
T,
Kurosawa
Y,
◊✲Ⓨ⾲
61st
Tendon cross sectional area is
not
associated
with
muscle
among
visceral
ඹⴭ
2014 ᖺ 5 ᭶
volume
61st
adipose tissue area observed in
multiple-slice,
syndrome
metabolic
risks
ඹⴭ
2014 ᖺ 5 ᭶
and
of
College
growth
ඹⴭ
2014 ᖺ 5 ᭶
hormone response in men
Effects
of
Atsuki
Fukutani,
Toshiyuki
Kurihara,
Kazushige Goto
fitness level, age, and sex on
and
61st
ඹⴭ
2014 ᖺ 5 ᭶
College
Motoyuki
Annual
of
College
Ayumi
Koji
Sato,
Iemitsu,
Ido,
Toshiyuki
Mitsuo
Takafumi
Otsuka,
Hamaoka,
Kiyoshi Sanada
Hiroto Sasaki, Yoshifumi Tsuchiya, Nobuhiro
Shimura,
Aya
Ishibashi,
Kumiko
Ebi,
Toshiyuki Kurihara, Kazushige Goto
Annual
Natsuki Hasegawa, Toshiyuki Kurihara,
of
Shinya Watanabe, Koji Sato, Satoshi Fujita,
Meeting
American
Nakayama,
Kurihara,
Meeting
American
Yuki
of
of Sports Medicine
cardiorespiratory
intramyocellular
American
61st
Effects of 3 days of high fat diet
exercise-induced
Annual
Meeting
of Sports Medicine
cardiorespiratory fitness
on
American
of Sports Medicine
Relationships
the
Annual
Meeting
College
Kiyoshi
Sanada,
Takafumi
Hamaoka,
extramyocellular lipid contents
of Sports Medicine
Motoyuki Iemitsu
Ageing-induced
61st
Annual
Shinya Watanabe, Koji Sato, Satoshi Fujita,
of
Natsuki Hasegawa, Shumpei Fujie, Kiyoshi
reduction
in
muscle cross-sectional area is
associated
with
serum
C1q
ඹⴭ
2014 ᖺ 5 ᭶
concentration
The
American
College
of Sports Medicine
relationship
subcutaneous
between
fat
and
intramuscular lipid in human
ඹⴭ
2014 ᖺ 7 ᭶
limb.
19th
Annual
Congress
of
European
College
the
of Sport Science
Effects of intramyocellular and
extramyocellular lipid contents
ඹⴭ
2014 ᖺ 7 ᭶
on arterial stiffness
Effect
Meeting
of
intermittent
low
training on the risk of falls and
in
ඹⴭ
2014 ᖺ 7 ᭶
japanese
Tendon
of
of
European
College
the
the
Length
Achilles
Change
Obtained between Direct and
19th
Annual
Congress
of
European
College
the
of Sport Science
postmenopausal women
Comparison
Annual
Congress
of Sport Science
intensity and high speed power
fractures
19th
7th
ඹⴭ
2014 ᖺ 7 ᭶
World
Congress
of
Biomechanics
Indirect Measurement
Sanada,
Toshiyuki
Kurihara,
Takafumi
Hamaoka, Motoyuki Iemitsu
YOSHIKAWA,
TAGUCHI,
M.,
S.,
KURIHARA,
YAMAUCHI,
T.,
J.,
HASHIMOTO, T.
HASEGAWA, N., KURIHARA, T., SATO, K.,
FUJITA, S., SANADA, K., OTSUKA, M.,
HAMAOKA, T., IEMITSU, M.
HAMAGUCHI,
K.,
KURIHARA,
T.,
IEMITSU, M., SATO, K., OTSUKA, K.,
HAMAOKA, T., SANADA, K.
A. Fukutani, S. Hashizume, K. Kusumoto, T.
Kurihara
Error evaluation of the tendon
excursion for determining the
Achilles tendon moment arm by
comparing
7th
ඹⴭ
2014 ᖺ 7 ᭶
the
World
Congress
of
Biomechanics
S. Hashizume, A. Fukutani, K. Kusumoto, T.
Kurihara, T. Yanagiya
three-dimensional value
EMG-angle relationship of hip
flexor muscles during maximum
7th
ඹⴭ
2014 ᖺ 7 ᭶
isometric hip flexion
muscle
of
T. Kurihara, T. Jiroumaru, T. Isaka
Biomechanics
The possibilities of recording the
iliopsoas
World
Congress
activity
by
ඹⴭ
2014 ᖺ 7 ᭶
7th
Congress
3
−82−
World
of
T. Jiroumaru, T. Kurihara, T. Isaka
surface EMG
Biomechanics
▷ᮇ㛫ࡢ㧗⬡⫫㣗ᦤྲྀࡀ୍㐣ᛶࡢ
㐠ື࡟ᑐࡍࡿᡂ㛗࣍ࣝࣔࣥࡢศἪ
ඹⴭ
2014 ᖺ 9 ᭶
ඹⴭ
2014 ᖺ 9 ᭶
ඹⴭ
2014 ᖺ 9 ᭶
ඹⴭ
2014 ᖺ 9 ᭶
ඹⴭ
2014 ᖺ 9 ᭶
ඹⴭ
2014 ᖺ 9 ᭶
ඹⴭ
2014 ᖺ 9 ᭶
ᛂ⟅࡟ཬࡰࡍᙳ㡪
⾑୰ C1q ࣞ࣋ࣝࡣ㧗㱋⪅ࡢࣞࢪࢫ
ࢱࣥࢫࢺ࣮ࣞࢽࣥࢢ࡟ࡼࡿ➽⫧኱
ຠᯝ࡟㛵㐃ࡍࡿ
ࣞࢪࢫࢱࣥࢫࢺ࣮ࣞࢽࣥࢢࡀ⓶ୗ
⬡⫫࡜➽⣽⬊ෆ⬡⫫࡟ཬࡰࡍᙳ㡪
➨ 69 ᅇ᪥ᮏయຊ་
బࠎᮌ⿱ே㸪▼ᶫᙬ㸪ᅵᒇྜྷྐ㸪ᚿᮧಙᘅ㸪ᰩ
Ꮫ఍኱఍
ཎಇஅ㸪ᾏ⪁ஂ⨾Ꮚ㸪ᚋ⸨୍ᡂ
➨ 69 ᅇ᪥ᮏయຊ་
Ώ㑓┿ஓ㸪బ⸨ᖾ἞㸪㛗㇂ᕝኟ㍤㸪⸨⏣⪽㸪ᰩ
Ꮫ఍኱఍
ཎಇஅ㸪ᯇ㇂೺ྖ㸪὾ᒸ㝯ᩥ㸪ᐙග⣲⾜
➨ 69 ᅇ᪥ᮏయຊ་
ᮏ㛫ಇ⾜㸪ᰩཎಇஅ㸪ᱵ㔝ᚨ㸪⸨⏣⪽㸪὾ᒸ㝯
Ꮫ఍኱఍
ᩥ
➨ 69 ᅇ᪥ᮏయຊ་
బ⸨ᖾ἞㸪ᐙග⣲⾜㸪ᯇ㇂೺ྖ㸪ᰩཎಇஅ㸪┠
Ꮫ఍኱఍
ᓮⓏ㸪὾ᒸ㝯ᩥ㸪⸨⏣⪽
㧗㱋⪅ࡢ୍㐣ᛶࣞࢪࢫࢱࣥࢫ㐠ື
࡟ࡼࡿ㦵᱁➽ᛶࢫࢸࣟ࢖ࢻ௦ㅰᛂ
⟅ࡣࢺ࣮ࣞࢽࣥࢢ࡟ࡼࡿ➽㔞࣭➽
ຊቑ኱࡟㛵㐃ࡍࡿ
㝣ୖ➇ᢏ▷㊥㞳㑅ᡭ࡟࠾ࡅࡿ 6 ᪥
㛫㐃⥆ࡢప㓟⣲ࢺ࣮ࣞࢽࣥࢢࡢຠ
ᯝ
᭷㓟⣲ࢺ࣮ࣞࢽࣥࢢ࡟ࡼࡿື⬦◳
໬ᨵၿ࡜➽⣽⬊ෆ࣭እ⬡⫫ྵ᭷㔞
࡜ࡢ㛵ಀ
㊊ᣦ➽ຊ࡜❧఩ጼໃㄪᩚᶵ⬟ࡢ㛵
ಀ
▷㊥㞳㉮㑅ᡭࡢ㊊ᣦ➽ຊ࡜㊊ᗏ㒊
➽᩿㠃✚
ඹⴭ
2014 ᖺ 11 ᭶
➨ 69 ᅇ᪥ᮏయຊ་
Ꮫ఍኱఍
➨ 69 ᅇ᪥ᮏయຊ་
㛗㇂ᕝኟ㍤㸪ᰩཎಇஅ㸪బ⸨ᖾ἞㸪┿⏣ᶞ⩏㸪
Ꮫ఍኱఍
὾ᒸ㝯ᩥ㸪ᐙග⣲⾜
➨ 69 ᅇ᪥ᮏయຊ་
ᰩཎಇஅࠊ⯚ᮌ୍ୡࠊ㫽ྲྀఙᙯࠊ኱ሯග㞝ࠊఀ
Ꮫ఍኱఍
ᆏᛅኵࠊᒣෆ₶୍㑻
➨ 35 ᅇ ࣂ࢖࣓࢜
ᰩཎ ಇஅ, ኱ሯ ග㞝, 㫽ྲྀ ఙᙯ, ᶫᮏ
࢝ࢽࢬ࣒Ꮫ⾡ㅮ₇఍
೺ᚿ, ఀᆏ ᛅኵ, ᒣෆ ₶୍㑻
American
Musclular Lipid is Associated
With a Risk Factor of Arterial
ඹⴭ
2014 ᖺ 11 ᭶
Stiffness
➟஭ಙ୍㸪ᰩཎಇஅ㸪㯮⃝⿱Ꮚ㸪ᚋ⸨୍ᡂ
Heart
Association's 2014
Natsuki Hasegawa; Toshiyuki Kurihara; Koji
Scientific Sessions
Sato; Satoshi Fujita; Kiyoshi Sanada; Mitsuo
and Resuscitation
Otsuka;
Science
Iemitsu
Takafumi
Hamaoka;
Motoyuki
Symposium
኱Ꮫࢦࣝࣇ㑅ᡭ࡟࠾ࡅࡿయᖿ➽ᙧ
ែࡢᕥྑᕪ
⫪㛵⠇ෆ᪕➽ຊ࡟ཬࡰࡍ⫪㛵⠇ᅇ
᪕ゅᗘࡢᙳ㡪
ඹⴭ
2014 ᖺ 11 ᭶
ඹⴭ
2014 ᖺ 11 ᭶
➨ 27 ᅇ᪥ᮏࢺ࣮ࣞ
Ἠᮏὒ㤶ࠊ࿴ᬛ㐨⏕ࠊⳢ၏ᚿࠊᰩཎಇஅࠊఀᆏ
ࢽࣥࢢ⛉Ꮫ఍኱఍
ᛅኵ
➨ 27 ᅇ᪥ᮏࢺ࣮ࣞ
ᑠᔱ㧗ᗈࠊఀ⸨ኴ♸ࠊ䬢ཱྀ㈗ಇࠊᰩཎಇஅࠊఀ
ࢽࣥࢢ⛉Ꮫ఍኱఍
ᆏᛅኵ
㻌
4
−83−
኱ᆺ◊✲⿦⨨ᡂᯝሗ࿌᭩
⿦⨨ྡ
◊✲㈐௵⪅
㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧
◊✲ࢸ࣮࣐
༙ᑟయᴟᚤᵓ㐀ホ౯⿦⨨
⌮ᕤᏛ㒊࣭෸ᩍᤵ Ⲩᮌ ດ
1.
RF-MBE ᡂ㛗 InN ⣔❅໬≀༙ᑟయࡢᴟᚤᵓ㐀࣭ගᏛⓗ≉ᛶホ౯
2.
⣸እ LED ⏝ MOCVD ᡂ㛗 GaN ⷧ⭷ࡢᴟᚤᵓ㐀࣭ගᏛⓗ≉ᛶホ౯
3.
࢝ࣝࢥࢤࢼ࢖ࢻᮦᩱ࣭ⷧ⭷ࡢᙧᡂ࡜ኴ㝧㟁ụ࡬ࡢᛂ⏝
᭷ᶵኴ㝧㟁ụࡢࢻࢼ࣮ᒙࡢศᏊ㓄ྥไᚚ࡟ࡼࡿຠ⋡ࡢᨵၿ
⣽⳦ࡢࢭࣞࣥࢼࣀ⢏Ꮚ⏕ᡂᶵᵓࡢゎ᫂
◊✲ࡢᴫせ
ᮏ⿦⨨ࡣ X ⥺ᅇᢡ⿦⨨㸦PANalytical 〇 XPertMRD㸧ࠊ㉮ᰝ㟁Ꮚ㢧ᚤ㙾
㸦HITACHI 〇 S-4300SE㸧ࠊ
࢝ࢯ࣮ࢻ࣑ࣝࢿࢵࢭࣥࢫ
㸦CL㸧 ᐃࢩࢫࢸ࣒
㸦GATAN
〇 MONO-CL2㸧
ࠊEBIC ᐃࢩࢫࢸ࣒㸦GATAN 〇㸧࠿ࡽᵓᡂࡉࢀ࡚࠾ࡾࠊ༙ᑟ
యᮦᩱศ㔝ࢆ୰ᚰ࡟ᖜᗈ࠸㡿ᇦ࡛◊✲άື࡟ά⏝ࡉࢀࡓࠋྛࢸ࣮࣐ࡢ◊✲ᴫせ
ࢆ௨ୗ࡟♧ࡍࠋ
1.
RF-MBE ἲࢆ⏝࠸࡚ᵝࠎ࡞ᇶᯈୖ࡟స〇ࡋࡓ GaNࠊInNࠊGaNࠊInGaN ⷧ
⭷࡟ᑐࡋࠊX ⥺ᅇᢡ⿦⨨ࢆ⏝࠸ࡓ⤖ᬗᛶࠊΰᬗ⤌ᡂࠊ㏫᱁Ꮚ࣐ࢵࣆࣥࢢ࡟
ࡼࡿ᱁Ꮚṍࡢ⢭ᐦホ౯ࠊSEM ࢆ⏝࠸ࡓ⾲㠃ࣔࣇ࢛ࣟࢪ࣮ホ౯ࠊCL ࢆ⏝࠸
ࡓᴟᚤᵓ㐀࡜Ⓨග≉ᛶࡢ㛵㐃ᛶホ౯࡞࡝ࢆ⾜࠸ࠊࡇࢀࡽᮦᩱࡢ⤖ᬗ㧗ရ㉁
໬ࠊ≀ᛶゎ᫂࡬ࡢ▱ぢࢆᚓࡓࠋ
2.
⣸ እ LED ᛂ ⏝ ࡟ ྥ ࡅ ࡚ ࠊ MOCVD ἲ ࢆ ⏝ ࠸ ࡚ స 〇 ࡋ ࡓ Si ᇶ ᯈ ୖ
AlGaN/GaN ከ㔜㔞Ꮚ஭ᡞᵓ㐀ࠊAlN ⷧ⭷࡟ᑐࡋ࡚ࠊX ⥺ᅇᢡ⿦⨨ࢆ⏝࠸
ࡓ⤖ᬗᛶࠊ᱁Ꮚᐃᩘࠊΰᬗ⤌ᡂࡢ⢭ᐦ ᐃࠊCL ࢆ⏝࠸ࡓⓎග≉ᛶホ౯ࢆ
⾜࠸ࠊᡂ㛗᮲௳ࡀୖグ≉ᛶ࡟ཬࡰࡍᙳ㡪ࢆ᳨ウࡋࡓࠋ
3.
㧗ຠ⋡໬ྜ≀ⷧ⭷ኴ㝧㟁ụࡢග྾཰ᮦᩱ㸦Ⓨ㟁ᒙ㸧࡜ࡋ࡚ᮇᚅࡉࢀࡿ࢝ࣝ
ࢥࢤࢼ࢖ࢻⷧ⭷ࡢ㧗ရ㉁໬࡟ࡘ࠸᳨࡚ウࡋࡓࠋ≉࡟ࠊCu(In,Ga)Se2ࠊ
Cu2SnSe3ࠊCu2ZnSn(S,Se)4ࠊSnS ࡞࡝ࡢከ⤖ᬗⷧ⭷ࡢ⤖ᬗ⢏ࢧ࢖ࢬࡸ⾲㠃
ࢆヲ⣽࡟ほᐹࡋࠊኴ㝧㟁ụᛶ⬟࡜ࡢ┦㛵ࢆ᳨ウࡋࡓࠋ
4.
ኴ㝧㟁ụᛂ⏝ࢆ┠ᣦࡋࡓ ITO ᇶᯈୖࡢ᭷ᶵⷧ⭷ᮦᩱࡢ㓄ྥᛶホ౯ࢆ X ⥺
ᅇᢡ⿦⨨ࢆ⏝࠸࡚⾜ࡗࡓࠋ
5.
Bacillus sp. NTP-1 ᰴ࠾ࡼࡧ Escherichia coli ࡞࡝ࡢ⣽⳦ࡀ⏕⏘ࡍࡿࢭࣞࣥ⢏
Ꮚࢆࢩࣙ⢾ᐦᗘ໙㓄㐲ᚰἲ࡟࡚ᅇ཰ࡋࠊSEM ࢆ⏝࠸ࡓほᐹ࡟ࡼࡾᙧ≧ࠊ
⢏ᚄ࡞࡝ࢆホ౯ࡋࡓࠋࡲࡓࠊࢭࣞࣥ⢏Ꮚ࠾ࡼࡧࢸࣝࣝ⢏Ꮚࡢᙧᡂ࡟㛵୚ࡍ
ࡿࢱࣥࣃࢡ㉁ࡢゎᯒࢆ⾜ࡗࡓࠋ
−84−
฼⏝ᡂᯝ
࠙Ꮫ⾡ㄽᩥࠚ
T. Araki, S. Uchimura, J. Sakaguchi, Y. Nanishi, T. Fujishima, A. Hsu, K. Kim, T.
Palacios, A. Pesquera, A. Centeno and A. Zurutuza, Radio-Frequency
Plasma-Excited Molecular Beam Epitaxy Growth of GaN on Graphene/Si(100)
Substrates, Applied Physics Express 7, 071001/1-3 (2014).
N. Kurose, K. Shibano, T. Araki, and Y. Aoyagi, Development of substrate removal - free vertical ultraviolet light-emitting diode (RefVLED), AIP Advances
4, 027122 (2014).
K. Wang, T. Araki, M. Takeuchi, E. Yoon and Y. Nanishi, Selective Growth of
N-polar InN Through an In Situ AlN Mask on a Sapphire Substrate, Appl. Phys.
Lett. 104, 032108/1-5 (2014).
K. Aoyagi, A. Tamura, H. Takakura, T. Minemoto, Effect of rear-surface buffer
layer on performance of lift-off Cu(In,Ga)Se 2 solar cells, Jpn. J. Appl. Phys. 53,
05FW05-1-5 (2014).
Z. Tang, Y. Nukui, K. Kosaka, N. Ashida, H. Uegaki, T. Minemoto, Reduction of
secondary phases in Cu2SnSe3 absorbers for solar cell application, J. Alloys
Compd. 608, 213-219(2014).
J. Chantana, T. Watanabe, S. Teraji, K. Kawamura, T. Minemoto, Effect of Crystal
Orientation in Cu(In,Ga)Se2 Fabricated by Multi-Layer Precursor Method on Its
Cell Performance, Appl. Surf. Sci. 314, 845-849 (2014).
J. Chantana, D. Hironiwa, T. Watanabe, S. Teraji, K. Kawamura, T. Minemoto,
Investigation of Cu(In,Ga)Se2 Absorber by Time-Resolved Photoluminescence
for Improvement of Its Photovoltaic Performance, Sol. Energy Mater. Sol. Cells
130, 567-572 (2014).
D. Hironiwa, N. Matsuo, N. Sakai, T. Katou, H. Sugimoto, J. Chantana, Z. Tang,
T. Minemoto, Sputtered (Zn,Mg)O buffer layer for band offset control in
Cu2ZnSn(S,Se)4 solar cells, Jpn. J. Appl. Phys. 53, 106502-1-6 (2014).
Y. Mizumoto, J. Chantana, D. Hironiwa, A. Yamamoto, K. Yabuki, A. Nakaue, T.
Minemoto, Junction quality evaluation of buffer-free Zn(O,S):Al/Cu(In,Ga)Se2
thin film solar cells, APEX 7, 125503-1-4 (2014).
J. Chantana, D. Hironiwa, T. Watanabe, S. Teraji, K. Kawamura, T. Minemoto,
Controlled back slope of Ga/(In+Ga) profile in Cu(In,Ga)Se2 absorber fabricated
by multi layer precursor method for improvement of its photovoltaic performance,
Sol. Energy Mater. Sol. Cells 133, 223-228 (2015).
J. Chantana, D. Hironiwa,T. Watanabe, S. Teraji, K. Kawamura, T. Minemoto,
Estimation of open-circuit voltage of Cu(In,Ga)Se2 solar cells before cell
fabrication, Renewable Energy 76, 575-581 (2015).
−85−
K. Harafuji, H. Sato, T. Matsuura, Y. Omoto, T. Kaji, and M. Hiramoto,
Degradation in organic solar cells under illumination and electrical stresses in air,
Jpn. J. Appl. Phys. 53, 122303/1-9 (2014).
R. Hidese, H. Mihara, T. Kurihara, N. Esaki, Global identification of genes
affecting iron-sulfur cluster biogenesis and iron homeostasis, J Bacteriol, 196,
1238-1249 (2014).
T. Imai, T. Kurihara, N. Esaki, H. Mihara, Glutathione contributes to the efflux of
selenium from hepatoma cells, Biosci Biotechnol Biochem, 78, 1376-1380
(2014).
H. Mihara, T. Kurihara, N. Esaki, Selenocysteine lyase: Delivering selenium in
biosynthetic pathway, Selenium in the Environment and Human Health, CRC
Press, London, UK, pp. 181 (2014).
Y. Tani, K. Omatsu, S. Saito, R. Miyake, H. Kawabata, M. Ueda, H. Mihara,
Heterologous expression of L-lysine -oxidase from Scomber japonicus in Pichia
pastoris and functional characterization of the recombinant enzyme, J Biochem,
(2015) in press.
Y. Tani, R. Miyake, R. Yukami, Y. Dekishima, H. China, S. Saito, H. Kawabata,
H. Mihara, Functional expression of L-lysine -oxidase from Scomber japonicus
in Escherichia coli for one-pot synthesis of L-pipecolic acid from DL-lysine, Appl
Microbiol Biotechnol, (2015) in press.
࠙ᅜ㝿Ꮫ఍ࠚ
Y. Nanishi, T.Yamaguchi and T. Araki, DERI Method; Possible Approach to
Longer Wavelength Light Emitters Based on Nitride Semiconductors, 6th Forum
on New Materials (CIMTEC2014), (2014.6), Tuscany Italy.
M. Sakamoto, K. Wang, T. Araki, Y. Nanishi and E. Yoon, Study on Thickness
Dependence of Composition and Strain Relaxation of RF-MBE Grown In-rich
InGaN, 56th Electronic Materials Conference (EMC 2014), (2014. 6) Santa
Barbara, California USA
Y. Nanishi, T. Yamaguchi, T. Araki, A. Uedono and T. Palacios, Plasma Induced
Point Defects in InN During RF-MBE Growth and Those Reduction by DERI
Method, Defects in Semiconductors Gordon Research Conference (2014.8)
Waltham, MA USA
T. Yamaguchi, K. Narutani, T. Onuma, T. Araki, T. Honda, Y. Nanishi,RF-MBE
Growth of GaInN Films Using DERI Method and Fabrication of
Homojunction-Type LED Structures, 6th International Symposium on Functional
Materials (ISFM 2014) (2014.8) Singapore.
−86−
N. Masuda, T. Kobayashi, T. Araki, Y. Nanishi, M. Oda, T. Hitora, RF-MBE
Growth of Nitride Semiconductors on Į-In2O3/Sapphire, International Workshop
on Nitride Semiconductor 2014 (2014.8) Wroclaw Poland.
T. Araki, T. Yamaguchi and Y. Nanishi, RF-MBE Growth of InN and InGaN
Ternary Alloys Using DERI, 19th International Conference on Ternary and
Multinary Compounds 㸦ICTMC-19㸧(2014.9) Niigata Japan.
K. Harafuji and Y. Omoto, Degradation in Organic Solar Cells with Thin Silver
Anode Buffer, XXIII Int. Materials Research Congress 2014 (IMRC23)
2014/08/19
K. Harafuji and K. Arisawa, Organic Solar Cells with Multiple-Layer Donor, Int.
Conf. & Exhibition on Advanced & Nano Materials (ICANM2014) 2014/08/12
H. Tajima, T. Nagano, R. Ouchida, K. Okanishi, K. Kim, R. Masui, S. Kuramitsu,
Y. Tani, S. Saito, T. Minemoto, N.T. Prakash, H. Mihara, Identification of Proteins
Involved in Bacterial Synthesis of Selenium Particles, Institute for Chemical
Research International Symposium 2014ICR, Kyoto University, Uji, 2014.
Y. Tani, H. Nakamoto, R. Miyake, H. Kawabata, M. Ueda, H. Mihara, D-Lysine
catabolic enzymes of Pseudomonas putida, Institute for Chemical Research
International Symposium 2014ICR, Kyoto University, Uji, 2014.
࠙ᅜෆᏛ఍ࠚ
኱ෆ⏣❳኱, ⏣ᓥᐶ㝯, ᒣᮏ⣫㈨, ᩪ⸨ⱱᶞ, ㇂Ὀྐ, ᓟඖ㧗ᚿ, N.T.
Prakash, ୕ཎஂ᫂, ⣽⳦࡟࠾ࡅࡿࢭࣞࣥᚤ⢏Ꮚ⏕ᡂ࡟㛵ࢃࡿࢱࣥࣃࢡ㉁ࡢ
ྠᐃ, ᪥ᮏ㎰ⱁ໬Ꮫ఍ 2014 ᖺᗘ኱఍᫂἞኱Ꮫ⏕⏣࢟ࣕࣥࣃࢫࠊ⚄ዉᕝ,
2014.
ྡ⏣࢖ࢧࢼ, ⏣ᓥᐶ㝯, ᩪ⸨ⱱᶞ, ㇂Ὀྐ, N.T. Prakash, ୕ཎஂ᫂,
Cellulomonas sp. D3a ᰴ࡟࠾ࡅࡿࢸࣝࣝ㓟㑏ඖ࡟㛵ࢃࡿ㑇ఏᏊࡢྠᐃ, ᪥
ᮏ㎰ⱁ໬Ꮫ఍ 2014 ᖺᗘ኱఍᫂἞኱Ꮫ⏕⏣࢟ࣕࣥࣃࢫࠊ⚄ዉᕝ, 2014.
ྡ⏣࢖ࢧࢼ, ᒣ㝿ᜤᖹ, Ọ㔝▱ဢ, ⏣ᓥᐶ㝯, ᩪ⸨ⱱᶞ, ㇂Ὀྐ, N.T.
Prakash, ୕ཎஂ᫂, ࢢ࣒ࣛ㝧ᛶ⣽⳦ࡢࢸࣝࣝ㓟㑏ඖ࡟㛵ࢃࡿ㑇ఏᏊࡢྠᐃ,
᪥ᮏ㎰ⱁ໬Ꮫ఍㛵すᨭ㒊౛఍➨ 484 ᅇㅮ₇఍ி㒔ᗓ❧኱Ꮫ㸦ி㒔ᗓ㸧, 2014.
࠙ಟኈㄽᩥࠚ
ෆᮧ ᬛࠕRF-MBE ἲ࡟ࡼࡿ Si(100)ᇶᯈୖ GaN ⤖ᬗᡂ㛗࡟㛵ࡍࡿ◊✲ࠖ
Ύཎ ⪽௓ࠕKFM ࡟ࡼࡿ InGaN ⾲㠃ࡢ In ⤌ᡂᦂࡽࡂཬࡧ GaN ⣔ࢹࣂ࢖ࢫࡢ᩿
㠃㟁఩ศᕸࡢホ౯ࠖ
ᆏᮏ ṇὒࠕRF-MBE ἲࢆ⏝࠸ࡓ InGaN ࡢ⭷ཌ࡟ᑐࡍࡿ In ⤌ᡂኚ໬࡟㛵ࡍࡿ
◊✲ࠖ
−87−
ᰘ㔝 ㅬኴᮁࠕSi ᇶᯈୖ⦪ᆺ῝⣸እ LED ࡢ㛤Ⓨࠖ
ᶫᮏ 㞝௓ࠕ㓟໬࣒࢞ࣜ࢘ࡢ⣸እ⥺᳨ฟჾᛂ⏝࡟ྥࡅࡓ᳨ウࠖ
ྜྷᮧ ཭ᏕࠕInN 㟁Ꮚࢹࣂ࢖ࢫᛂ⏝࡟ྥࡅࡓࢹࣂ࢖ࢫࣉࣟࢭࢫ࡟㛵ࡍࡿ◊✲ࠖ
ᮧ⏣ 㞞ࠕSCAPS ࢆ⏝࠸ࡓ໬ྜ≀ኴ㝧㟁ụࡢࣂࣥࢻࣉࣟࣇ࢓࢖ࣝࡢ᭱㐺໬ࠖ
᳃ ໶ࠕCu2ZnSn(S,Se)4 ኴ㝧㟁ụ࡟࠾ࡅࡿ NaF ᚋฎ⌮ࡢ᳨ウࠖ
Ỉᮏ 㞝ኴࠕZn(O,S):Al/Cu(In,Ga)Se2 ࣂࢵࣇ࢓ࣇ࣮ࣜኴ㝧㟁ụࡢస〇࡜ホ౯ࠖ
ᑠ㜰 ㈗୍
ࠕSnS ⢊ᮎ࡜ S ⢊ᮎࢆ⏝࠸ࡓ◲໬ἲ࡟ࡼࡿ Cu2SnS3 ኴ㝧㟁ụࡢస〇ࠖ
㧗஭ ㄹ
ࠕCu2ZnSn(S,Se)4 ⷧ⭷ኴ㝧㟁ụࡢ Cd ᣑᩓฎ⌮࡟ࡼࡿ pn ᥋ྜᙧᡂ᮲௳ࠖ
஭ ♸႐ࠕ3 ࢰ࣮ࣥ⟶≧⅔ࢆ⏝࠸ࡓ Cu2SnSe3 ග྾཰ᒙࡢస〇࡜ホ౯ࠖ
㉥ᕊ ೺ྖࠕࢻࢼ࣮ᒙࢆศᏊ㓄ྥไᚚࡋࡓ᭷ᶵኴ㝧㟁ụࡢᛶ⬟࡟㛵ࡍࡿ◊✲ࠖ
✄ᇉ ⩧኱ࠕ᭷ᶵኴ㝧㟁ụ࡟࠾ࡅࡿ࢔ࣀ࣮ࢻ⏺㠃ไᚚ࡜↷ᑕຎ໬࡟㛵ࡍࡿ◊✲ࠖ
ዟ㔝 ᘯேࠕ᭷ᶵⷧ⭷ኴ㝧㟁ụ࡟࠾ࡅࡿ᭤⥺ᅉᏊࡢ↷ᑕຎ໬ࡢ᳨ウࠖ
ᮎᒸ ៅ⟇ࠕ㝧ᴟ⾲㠃ࢆ㹓㹔࢜ࢰࣥฎ⌮ࡋࡓ᭷ᶵኴ㝧㟁ụࡢᛶ⬟࡟㛵ࡍࡿ◊✲ࠖ
ఫ཭ ᘯஅࠕ᭷ᶵኴ㝧㟁ụ࡟࠾ࡅࡿ㛤ᨺ➃㟁ᅽࡢ↷ᑕຎ໬࡟㛵ࡍࡿ◊✲ࠖ
࿋ ಇ൲ࠕPseudomonas sp. F2a ࡢளࢭࣞࣥ㓟㑏ඖ⬟࡟㛵ࡍࡿ◊✲ࠖ
−88−
኱ᆺ◊✲⿦⨨ᡂᯝሗ࿌᭩
⿦⨨ྡ
ࣄ࣮࣐࣮࣓࣮ࣗࣥ࢝ࣟࣜࢱ࣮࣭ேᕤ⎔ቃヨ㦂ᐊ㸦ప㓟⣲ࢳࣕࣥࣂ࣮㸧
◊✲㈐௵⪅
ࢫ࣏࣮ࢶ೺ᗣ⛉Ꮫ㒊࣭ᩍᤵ࣭┿⏣ᶞ⩏
㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧
◊✲ࢸ࣮࣐
࣭ప㓟⣲⎔ቃ࡛ࡢ㐠ືࡀ೺ᗣቑ㐍࡟ཬࡰࡍࡶࡓࡽࡍຠᯝ࡟㛵ࡍࡿ◊✲㸦◊✲ 㸧
࣭ࢫ࣏࣮ࢶ➇ᢏ⪅࡟࠾ࡅࡿప㓟⣲⎔ቃ࡛⾜࠺ࢺ࣮ࣞࢽࣥࢢࡀ㐠ື⬟ຊࡸ
㦵᱁➽ෆࡢ࢚ࢿࣝࢠ࣮ᇶ㉁࡟ཬࡰࡍᙳ㡪࡟㛵ࡍࡿ◊✲㸦◊✲ 㸧
࣭Ᏻ㟼᫬࠾ࡼࡧ㐠ື᫬࡟࠾ࡅࡿ࢚ࢿࣝࢠ࣮ᾘ㈝㔞ࡢ ᐃ࡟㛵ࡍࡿ◊✲㸦◊✲ 㸧
◊✲ࡢᴫせ
࠙◊✲ ࠚ
㏻ᖖ㓟⣲⎔ቃୗ㸦㓟⣲⃰ᗘ 㸧ࡲࡓࡣప㓟⣲⎔ቃୗ㸦㓟⣲⃰ᗘ 㸧࡛ࡢ
㣗ᚋࡢ⾑୰ࢢࣝࢥ࣮ࢫࡸ࢖ࣥࢫࣜࣥ⃰ᗘࠊ㣗ḧㄪ⠇࡟㛵ࢃࡿෆศἪᣦᶆࡢ⤒᫬
ᛂ⟅ࢆẚ㍑ࡋࡓࠋࡲࡓࠊ୍㐣ᛶࡢ㐠ືࡀ㐠ື୰࠾ࡼࡧ㐠ື⤊஢ᚋࡢ௦ㅰ࣭ෆศ
Ἢືែ࡟ཬࡰࡍᙳ㡪ࢆ᳨ウࡋࡓࠋ
࠙◊✲ ࠚ
ࢫ࣏࣮ࢶ➇ᢏ⪅ࢆᑐ㇟࡟ࠊ㏻ᖖ㓟⣲⎔ቃୗ㸦㓟⣲⃰ᗘ 㸧ࡲࡓࡣప㓟⣲⎔
ቃୗ㸦㓟⣲⃰ᗘ 㸧࡛⾜࠺㧗ᙉᗘࢺ࣮ࣞࢽࣥࢢࡀ㐠ື㐙⾜⬟ຊࡸ㦵᱁➽ෆ
ࡢ࢚ࢿࣝࢠ࣮ᇶ㉁㸦ࢡࣜ࢔ࢳࣥࣜࣥ㓟㔞㸧࡟ཬࡰࡍᙳ㡪ࢆ᳨ウࡋࡓࠋ
࠙◊✲ ࠚ
▷᫬㛫࣭㧗ᙉᗘ࡛ࡢࢺ࣮ࣞࢽࣥࢢ࡟ᑐࡍࡿ࢚ࢿࣝࢠ࣮ᾘ㈝㔞ࡢኚ໬ࠊ೺ᗣ࡙ࡃ
ࡾࡸ⫧‶ண㜵ࢆࡡࡽ࠸࡜ࡋࡓᇶ♏௦ㅰ㔞ࡢホ౯࡞࡝ࢆ⾜ࡗࡓࠋ
฼⏝ᡂᯝ
࠙ㄽᩥࠚ
1. Hasegawa Y, Ijichi T, Kurosawa Y, Hamaoka T, Goto K. Planned overreaching and
subsequent short-term detraining enhance sprint performance. Int J Sports Med, 2015
(in press)
2. Ijichi T, Hasegawa Y, Morishima T, Kurihara T, Hamaoka T, Goto K. Effect of sprint
training: Training once daily versus twice every second day. Eur J Sport Sci, 15:
143-150, 2014.
3. Takuma Morishima and Kazushige Goto. Successive exposure to moderate hypoxia
does not affect glucose metabolism and substrate oxidation in young healthy men.
SpringerPlus 3: p. 370, 2014.
4. Takuma Morishima, Ayaka Mori, Hiroto Sasaki and Kazushige Goto.ಯಯImpact of
exercise and moderate hypoxia on glycemic regulation and substrate oxidation pattern.”
−89−
PLOS ONE 9(10): p.e 108629, 2014.
࠙Ꮫ఍Ⓨ⾲㸦ᅜ㝿Ꮫ఍㸧
ࠚ
1. Nobukazu Kasai, Sahiro Mizuno, Sayuri Ishimoto, Etsuko Sakamoto, Misato Maruta,
Kazushige Goto. Effect of 6 days of hypoxic training on repeated pedaling performance in
short sprinters. 61st Annual Meeting of American College of Sports Medicine, Orlando,
USA. May, 2014.
2. Takuma Morishima, Ayaka Mori, Hiroto Sasaki and Kazushige Goto. “Metabolic
Endocrine Responses during Rest and Exercise under Moderate Hypoxic Condition.”
61st Annual Meeting of American College of Sports Medicine, Orlando, USA. May, 2014.
࠙Ꮫ఍Ⓨ⾲㸦ᅜෆᏛ఍㸧
ࠚ
1. ➟஭ಙ୍ࠊᚋ⸨୍ᡂ. ప㓟⣲⎔ቃୗ࡟࠾ࡅࡿ▷ᮇ㛫ࡢࢫࣉࣜࣥࢺࢺ࣮ࣞࢽࣥ
ࢢࡢຠᯝ. ➨ 22 ᅇ᪥ᮏ㐠ື⏕⌮Ꮫ఍኱఍ࠊᒸᒣࠊ2014 ᖺ 7 ᭶
2. ᚋ⸨୍ᡂ. 㧗ᙉᗘࢫࣉࣜࣥࢺࢺ࣮ࣞࢽࣥࢢࡢຠᯝ. ➨ 22 ᅇ᪥ᮏ㐠ື⏕⌮Ꮫ
఍኱఍ࠊᒸᒣࠊ2014 ᖺ 7 ᭶㸦ᣍᚅㅮ₇㸧
3. ➟஭ಙ୍ࠊᚋ⸨୍ᡂ. 㝣ୖ➇ᢏ▷㊥㞳㑅ᡭ࡟࠾ࡅࡿ 6 ᪥㛫㐃⥆ࡢప㓟⣲ࢺࣞ
࣮ࢽࣥࢢࡢຠᯝ. ➨ 69 ᅇ᪥ᮏయຊ་Ꮫ఍኱఍ࠊ㛗ᓮࠊ2014 ᖺ 9 ᭶
4. ᳃ᔱ⌶┿ࠊ᳃ᩥ㤶ࠊబࠎᮌ⿱ேࠊᚋ⸨୍ᡂ㸬⫧‶⪅࡟࠾ࡅࡿప㓟⣲⎔ቃ࡛ࡢ
Ᏻ㟼ࡸ㐠ື࡟క࠺㣗ḧㄪ⠇ࡢኚ໬ࠊ➨ 69 ᅇ᪥ᮏయຊ་Ꮫ఍ࠊ㛗ᓮ┴ࠊ2014
ᖺ9᭶
5. ᚋ⸨୍ᡂ. ప㓟⣲⎔ቃୗ࡛ࡢ㐠ືࡀ⢾௦ㅰࡸෆศἪᛂ⟅࡟ཬࡰࡍᙳ㡪. ➨ 69
ᅇ᪥ᮏయຊ་Ꮫ఍኱఍ࠊ㛗ᓮࠊ2014 ᖺ 7 ᭶㸦ᣍᚅㅮ₇㸧
6. ᚋ⸨୍ᡂ. ➇ᢏ⪅ࢆᑐ㇟࡜ࡋ࡚ప㓟⣲⎔ቃୗ࡛ࡢ㧗ᙉᗘࢺ࣮ࣞࢽࣥࢢࡢຠ
ᯝ. ➨ 18 ᅇ㧗ᡤࢺ࣮ࣞࢽࣥࢢᅜ㝿ࢩ࣏ࣥࢪ࣒࢘ 2014 ᮾிࠊᮾிࠊ2014 ᖺ
10 ᭶㸦ᣍᚅㅮ₇㸧
࠙༤ኈㄽᩥࠚ
1. ᳃ᔱ⌶┿ࠕ೺ᗣቑ㐍ࢆࡡࡽ࠸࡜ࡋࡓప㓟⣲⎔ቃ࡛ࡢ㐠ືࡢຠᯝ࡟㛵ࡍࡿ◊
✲ࠖ
ࠊ2015 ᖺ 3 ᭶
−90−
኱ᆺ◊✲⿦⨨ᡂᯝሗ࿌᭩
⿦⨨ྡ
◊✲㈐௵⪅
㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧
◊✲ࢸ࣮࣐
BKC ኳయほ ࢻ࣮࣒
⌮ᕤᏛ㒊࣭ᩍᤵ ᳃ ṇᶞ
60cm ගᏛ཯ᑕᘧኳయᮃ㐲㙾ࢆ⏝࠸ࡓኳయほ ◊✲ࡢᴫせ
2014 ᖺ 3 ᭶࡟ BKC ࢺࣜࢩ࢔ࡢᒇୖ࡟タ⨨ࡉࢀࡓ 60cm ኳయᮃ㐲㙾ࢆ⏝࠸࡚ࠊ
1) ኴ㝧⣔እᝨᫍࡢࢺࣛࣥࢪࢵࢺἲ㸦ᝨᫍࡀᜏᫍࡢග⌫㠃ࢆ㏻㐣ࡍࡿ㝿࡟
㉳ࡇࡿῶගࢆ⢭ᐦ࡟ ᐃࡍࡿࡇ࡜࡟ࡼࡗ࡚ᝨᫍࢆ᳨ฟࡍࡿ㸧࡟ࡼࡿほ 2) ⇿Ⓨᚋᩘ᪥࡛ῶගࡍࡿ࣐࢞ࣥ⥺ࣂ࣮ࢫࢺኳయࡢṧගほ 3) ࣇࣞ࢔ࢆ᫬ᢡ㉳ࡇࡍάື㖟Ἑࡢ᫬㛫ኚືࡢࣔࢽࢱ࣮ほ ࡞࡝ࢆᐇ᪋ࡍࡿࠋ࢟ࣕࣥࣃࢫෆ࡜࠸࠺タ⨨᮲௳ࢆά࠿ࡋࠊࡇࢀࡽ᫬㛫ኚືࡍࡿ
ኳయࡢගᗘࢆ㧗࠸㢖ᗘ࡛⢭ᐦ࡟ ᐃࡍࡿࡇ࡜ࢆ┠ᣦࡍࠋ60cm ཱྀᚄࡢᮃ㐲㙾࡛࠶
ࢀࡤࠊ෭༷ CCD ࣓࢝ࣛࢆ↔Ⅼ㠃ࡢග᳨ฟჾ࡜ࡋ࡚⏝࠸ࡿࡇ࡜࡟ࡼࡾ 21 ➼⣭⛬
ᗘࡢᬯ࠸ኳయࡲ࡛ࡢほ ࡀྍ⬟࡟࡞ࡿࠋ
฼⏝ᡂᯝ
2014 ᖺᗘࡣࡲࡎほ ࢩࢫࢸ࣒ࡢᩚഛࢆ⾜ࡗࡓࠋほ ࡀᐜ᫆࡟⾜࠼ࡿࡼ࠺ࠊᮃ
㐲㙾ࢩࢫࢸ࣒ࡀࡍ࡭࡚㐲㝸᧯స࡛ྍ⬟࡟࡞ࡿࡇ࡜ࢆ┠ᶆ࡜ࡋࡓࠋ
Virtual Network
Computing ࢯࣇࢺ࢙࢘࢔ࢆ⏝࠸࡚ࠊWindows ࡛ືࡃᮃ㐲㙾࠾ࡼࡧࢻ࣮࣒ࡢࢥࣥ
ࢺ࣮ࣟࣝ PCࠊ࠾ࡼࡧ 7 ಶࡢࢥ࣐ࣥࢻษࡾ᭰࠼ᘧගᏛࣇ࢕ࣝࢱ࣮ࢆഛ࠼ࡓ෭༷
CCD ࣓࢝ࣛࡢࢥࣥࢺ࣮ࣟࣝ PC ࢆࠊࢻ࣮࣒⬥ࡢ᥍ᐊ࠾ࡼࡧ࢚ࢡࢭࣝ 1 ࡟࠶ࡿ◊
✲ᐊࡢ Linux PC ࠿ࡽ᧯సࡋࠊྲྀᚓࡋࡓ⏬ീࢹ࣮ࢱࢆࢹ࣮ࢱࢧ࣮ࣂ࡟㌿㏦ࡋ࡚᱁
⣡࡛ࡁࡿࡼ࠺࡞ࢩࢫࢸ࣒ࢆᩚഛࡋࡓࠋࡲࡓࠊ㐲㝸᧯స୰ࡢኳೃኚ໬ࢆࣔࢽࢱ࣮
ࡍࡿࡓࡵࠊィ⟬ᶵ࠿ࡽࢹ࣮ࢱྲྀᚓྍ⬟࡞Ẽ㇟ほ ᶵჾ࠾ࡼࡧ㞵⁲ࢭࣥࢧ࣮ࠊᮃ
㐲㙾ࢫࣜࢵࢺࡢ㛤㛢≧ែࢆㄪ࡭ࡿ㊥㞳ࢭࣥࢧ࣮࡜ࠊࢻ࣮࣒ෆ≧ἣࢆ┘どࡍࡿ
Web ࣓࢝ࣛࢆタ⨨ࡋ࡚ࠊࡍ࡭࡚ࡢ᝟ሗࡀ Web Browser ࠿ࡽᏛෆᑓ⏝࡛㜀ぴྍ⬟
࡞ࡼ࠺࡞ࢩࢫࢸ࣒࡜ࡋ࡚ᩚഛࡋࡓࠋࡇࢀࡽࡢᩚഛࡣ≀⌮⛉Ꮫ⛉≉௵ຓᩍࡢዟ⏣
๛ྖẶࡀ୺࡟ᢸᙜࡋࡓࠋࡉࡽ࡟ࠊ✵ࡢ≧ែࢆࣔࢽࢱ࣮ࡍࡿ඲ኳ࣓࢝ࣛࢆタ⨨ࡍ
ࡿ‽ഛ࡜ࡋ࡚ࠊ㨶║ࣞࣥࢬ࡛ᫍ✵ࢆ᧜ᙳࡋࠊ㞼㔞࡞࡝✵ࡢ≧ែࢆุ᩿ࡍࡿࢩࢫ
ࢸ࣒ࢆᵓ⠏୰࡛࠶ࡿ [1]ࠋ
ࡲࡓࠊ෭༷ CCD ࣓࢝ࣛࢆ⏝࠸࡚ࡇࡢࢩࢫࢸ࣒࡛ヨ㦂᧜ᙳࢆ⾜ࡗࡓࠋྲྀᚓࡋ
ࡓ⏬ീࢹ࣮ࢱࡢရ㉁ࢆホ౯ࡍࡿࡓࡵࠊᫍീࢆ⮬ື᳨ฟࡋ࡚࢝ࢱࣟࢢ್࡜ẚ㍑ࡋࠊ
㝈⏺➼⣭ࡸど㔝ࡢ࿘㎶ῶග࡞࡝ࠊᮃ㐲㙾ࡢගᏛ≉ᛶࢆㄪ࡭ࡿᚲせࡀ࠶ࡾࠊࡑࡢ
ࡓࡵࡢࢯࣇࢺ࢙࢘࢔ࡶ㛤Ⓨ୰࡛࠶ࡿ [2]ࠋ
ࡇࢀࡽࡢ‽ഛసᴗࢆ㐍ࡵ࡞ࡀࡽࠊࡲࡶ࡞ࡃᮏ᱁ⓗ࡞ᐃᖖほ ࡟ධࡾࠊ┠ⓗࡢ
−91−
ࢸ࣮࣐࡟ྲྀࡾ⤌ࡴࡇ࡜ࢆணᐃࡋ࡚࠸ࡿࠋ
࠙༞ᴗㄽᩥࠚ
[1] すᒣᘯ୍ࠊࠕBKC ኳᩥྎ࡟タ⨨ࡍࡿࢫ࢝࢖ࣔࢽࢱ࣮ࡢ᳨ウࠖ
ࠊ≀⌮⛉Ꮫ⛉
༞ᴗ◊✲㸦2015 ᖺ 2 ᭶㸧
[2] Ṋ㒊⋞ᔞࠊࠕ600mm ཯ᑕᮃ㐲㙾ࡢගᏛ≉ᛶホ౯ࠖ
ࠊ≀⌮⛉Ꮫ⛉༞ᴗ◊✲
㸦2015 ᖺ 2 ᭶㸧
࠙ࡑࡢ௚ࠚ
2014 ᖺ 10 ᭶ࡢⓙ᪤᭶㣗࡟ྜࢃࡏࠊ୍⯡ྥࡅࡢほᮃ఍ࢆࠊࡲࡓ 10 ᭶࡟㧗ᰯ⏕
ྥࡅほᮃ఍ࠊ6 ᭶࡜ 10 ᭶࡟Ꮫෆྥࡅࡢほᮃ఍ࢆ㛤ദࡋࡓࠋ኱Ꮫࡢ࣮࢜ࣉࣥ࢟ࣕ
ࣥࣃࢫࡸ኱Ꮫྠ❆఍⥲఍ࠊBKC ࢧࣥࢡࢫࢹ࣮ࠊᨺᑕගᏛ఍኱఍ࠊ⁠㈡ኳᩥࡢࡘ
࡝࠸࡞࡝ࡢ࢖࣋ࣥࢺࡢ㝿࡟ࠊኳᩥྎࡢぢᏛᕼᮃࡀከᩘᐤࡏࡽࢀࠊࡇࢀ࡟ᑐᛂࡋ
ࡓࠋࡉࡽ࡟ࠊᏛ⏕ࢧ࣮ࢡ࡛ࣝ࠶ࡿⲡὠኳᩥ◊✲఍࡟ࡣぢᏛ᫬࡞࡝࡟ᡭఏ࠸ࢆ౫
㢗ࡍࡿ࡜࡜ࡶ࡟ࠊㅮ⩦఍ࢆ⾜ࡗ࡚ᮃ㐲㙾ࢆ౑⏝ࡋ࡚ࡶࡽࡗ࡚࠸ࡿࠋ
−92−
⿦⨨ྡ㸹 ㉸㧗ศゎ⬟ศᯒࢩࢫࢸ࣒ ◊✲㈐௵⪅
ᶵᲔᕤᏛ⛉ ᩍᤵ 䭯ᒣ᝴ 㸦⟶⌮ጤဨ㛗㸧
㒊㛛ྡ
ㄪ࿴⤌⧊ไᚚ࡟ࡼࡿ㧗ᶵ⬟ᮦᩱࡢ๰〇
」┦ྜ㔠࡟࠾ࡅࡿ➨ ┦ࡢᙧែ࡜⤖ᬗᏛⓗ≉ᚩ
㧗 ࡟࠾ࡅࡿከ㍈పࢧ࢖ࢡࣝ⑂ປ࠾ࡼࡧࢡ࣮ࣜࣉ◚᩿ᑑ࿨ホ౯ἲࡢ◊✲
◊✲ࢸ࣮࣐
㟁Ꮚࢹࣂ࢖ࢫ⏝ᶞ⬡ⷧ⭷ࡢ≀ᛶ್ホ౯ἲࡢ᳨ウ
㟁Ꮚ㢧ᚤ㙾࡟ࡼࡿ㓟໬≀࡟ᢸᣢࡋࡓ㔠ᒓゐ፹ᮦᩱࡢ⾲㠃ほᐹ
୕ḟඖࣇ࢛ࢺࢽࢵࢡ⤖ᬗࡢᙧᡂ
❅໬≀༙ᑟయࡢᴟᚤᵓ㐀ホ౯
Cu(InࠊGa)Se2 ⣔ከ⤖ᬗⷧ⭷ኴ㝧㟁ụࡢ⏺㠃ᵓ㐀ไᚚ
㉸㧗ศゎ⬟ศᯒࢩࢫࢸ࣒ࡣࠊຍ㏿㟁ᅽ N9 ࡢ ('6 ศᯒ⿦⨨௜ᒓᆺ㉮ᰝᆺ㟁
Ꮚ㢧ᚤ㙾㸦6(0㸧
ࠊN9ࠊ87:('6 ศᯒ⿦⨨௜ᒓ㧗ศゎ⬟ 7(0 ࠿ࡽᵓᡂࡉࢀ࡚
࠾ࡾࠊ≀㉁⛉Ꮫศ㔝ࢆ୰ᚰ࡟ᗈ࠸㡿ᇦ࡛ά⏝ࡉࢀ࡚࠸ࡿ㸬ά⏝౛࡜ࡋ࡚ࠊ◊
✲ࢸ࣮࣐㸯ࢆ௨ୗ࡟⤂௓ࡍࡿ㸬
㔠ᒓᮦᩱࡣࠊຊᏛ≉ᛶࡢࡳ࡞ࡽࡎຍᕤᛶࡸ⪏㣗ᛶ࡞࡝ࠊඃࢀࡓᛶ㉁ࢆᩘከ
ࡃഛ࠼࡚࠾ࡾࠊ᭷⏝࡞⣲ᮦ࡛࠶ࡿࠋ࡜ࡾࢃࡅࠊᘓ⠏ᵓ㐀యࡸ㍺㏦ᶵჾ࡞࡝ࡢ
㠃࠿ࡽ♫఍ᇶ┙ࢆᨭ࠼ࡿᵓ㐀⏝ᮦᩱ࡟࡜ࡾᙉᗘࡣ㔜せ࡞ᛶ㉁࡛࠶ࡾࠊࡇࢀࡲ
࡛ᵝࠎ࡞ᡭἲ࡟ࡼࡾ㧗ᙉᗘᮦᩱࡢ㛤Ⓨࡀ㐍ࡵࡽࢀ࡚ࡁࡓࠋࡑࡢ୰࡛ࡶ≉࡟ࠊ
⤖ᬗ⢏ᚤ⣽໬ἲࡣ㧗ᙉᗘ໬࡟ᴟࡵ࡚᭷ຠ࡛࠶ࡿࡇ࡜࠿ࡽ኱ࡁ࡞㛵ᚰࢆ㞟ࡵ࡚
ࡁࡓࠋ⤖ᬗ⢏ࡀᚤ⣽໬ࡍࡿ࡜ +DOO3HWFK ࡢ㛵ಀ ࡛▱ࡽࢀࡿࡼ࠺࡟ࠊ⤖ᬗ⢏
◊✲ࡢᴫせ
ᚄࡢᖹ᪉᰿ࡢ㏫ᩘ࡟ẚ౛ࡋ࡚ᙉᗘࡀୖ᪼ࡍࡿࠋࡋ࠿ࡋࠊ୍᪉࡛ࠊ㧗ᙉᗘᮦᩱ
࡛ࡣ㝆అᚋࠊ᪩ᮇ࡟ረᛶ୙Ᏻᐃࡀ⏕ࡌ࡚ࢿࢵ࢟ࣥࢢࢆ㉳ࡇࡋ◚᩿࡟⮳ࡾᘏᛶ
ࡀᦆ࡞ࢃࢀࡿ࡜࠸࠺ၥ㢟ࡀ࠶ࡿࠋࡇࡢࠕᙉᗘࠖ࡜ࠕᘏᛶࠖࡢࢺ࣮ࣞࢻ࢜ࣇࡢ
㛵ಀࡣࠊ㔠ᒓᮦᩱࡢ㧗ᙉᗘ໬࡟࠾࠸࡚㔜せ࡞ㄢ㢟࡜࡞ࡗ࡚࠸ࡿࠋࡇࢀ࡟ᑐࡋ
࡚ࠊ኱ࡁ࡞ረᛶࡦࡎࡳࢆᚓࡿࡓࡵ࡟ࠊኚែㄏ㉳ረᛶ㸦7UDQVIRUPDWLRQ,QGXFHG
3ODVWLFLW\75,3㸧ࡸ཮ᬗㄏ㉳ረᛶ㸦7ZLQQLQJ,QGXFHG3ODVWLFLW\7:,3㸧
ࡢ฼⏝ࡀ᳨ウࡉࢀ࡚࠸ࡀࠊࡇࢀࡽࡢ 75,3ࠊ7:,3 ⌧㇟ࡣⓎ⌧ࡍࡿᮦᩱࡀ㝈ᐃࡉ
ࢀ࡚࠸ࡿࠋ୍᪉࡛ࠊ⢊ᮎ෬㔠ἲࢆᛂ⏝ࡋࡓㄪ࿴⤌⧊ไᚚἲ㸦+DUPRQLF6WUXFWXUH
'HVLJQ㸧ࡣ⣧㔠ᒓࠊྜ㔠࡟㝈ࡽࡎ㔠ᒓᮦᩱࡢ㧗ᘏᛶ໬࡟᭷ຠ࡞ᡭἲ࡛࠶ࡾࠊ
㏆ᖺࠊ✀ࠎࡢ㔠ᒓᮦᩱ࡟㐺⏝ࡋࡓ◊✲ࡀሗ࿌ࡉࢀ࡚࠸ࡿࠋᚑ᮶࠿ࡽࡢ࣑ࢡࣟ
࡞ᙉ໬ἲ࡜ᵓ㐀⏤᮶ࡢ࣐ࢡࣟ࡞㧗ᘏᛶ໬࡜ࢆ⤌ࡳྜࢃࡏࡓ᪂ࡋ࠸ᮦ㉁タィᡭ
ἲ࡛࠶ࡿࠋᮏ◊✲࡛ࡣㄪ࿴⤌⧊ไᚚἲ࡟ࡘ࠸࡚ヲ⣽࡞᳨ウࡋࡓࠋ
−93−
฼⏝ᡂᯝ
㸺ㄽᩥ㸼
㸦㸯㸧Misaki Katayamaࠊ Koichi Sumiwakaࠊ Ryota Miyaharaࠊ Hisao Yamashigeࠊ Hajime
Araiࠊ Yoshiharu Uchimotoࠊ Toshiaki Ohtaࠊ Yasuhiro Inadaࠊ Zempachi Ogumiࠊ
“X-ray absorption fine structure imaging of inhomogeneous electrode reaction in
LiFePO4 lithium-ion battery cathode”ࠊ J. Power Sourcesࠊ 2014ࠊ 269ࠊ 994-999.
㸦㸰㸧Takayasu Morokiࠊ Hiroyuki Yasuiࠊ Yusuke Adachiࠊ Katsuhiko Yoshizawaࠊ Airo
Tsuburaࠊ Kazuhiko Ozutsumiࠊ Misaki Katayamaࠊ and Yutaka Yoshikawaࠊ “New
Insulin-Mimetic
and
Hypoglycemic
Hetero-Binuclear
Zinc(II)/Oxovanadium(IV)
Complex”ࠊ Curr. Inorg. Chem.ࠊ 2014ࠊ 4(1)ࠊ 54-58.
㸦㸱㸧Satoshi Asaokaࠊ Hideo Okamuraࠊ Yusuke Akitaࠊ Katsuyoshi Nakanoࠊ Kenji
Nakamotoࠊ Kazutoshi Hinoࠊ Tadashi Saitoࠊ Shinjiro Hayakawaࠊ Misaki Katayamaࠊ
Yasuhiro Inadaࠊ “Regeneration of manganese oxide as adsorption sites for hydrogen
sulfide on granulated coal ash”ࠊ Chem. Eng. J.ࠊ 2014ࠊ 254ࠊ 531-537.
㸦㸲㸧∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ͆DXAFS ࡟ࡼࡿ᫬㛫ศゎ X ⥺྾཰ศග͇
ࠊ ⾲㠃⛉Ꮫࠊ 2014ࠊ 35(3)ࠊ
141-145.
㸦㸳㸧Zhicong Mengࠊ Aya Fujiiࠊ Takeshi Hashishinࠊ Noriyuki Wadaࠊ Tomoe Sanadaࠊ Jun
Tamakiࠊ Kazuo Kojimaࠊ Hitoshi Haneokaࠊ Takeyuki Suzukiࠊ “Morphological and
crystal structural control of tungsten trioxide for highly sensitive NO2 gas sensors”ࠊ J.
Mater. Chem. Cࠊ 3 (2015) pp. 1134-1141.
㸦㸴㸧Aya Fujiiࠊ Zhicong Mengࠊ Chihiro Yogiࠊ Takeshi Hashishinࠊ Tomoe Sanadaࠊ Kazuo
Kojimaࠊ “Preparation of Pt-loaded WO3 with different types of morphology and
photocatalytic degradation of methylene blue”ࠊ Surface and Coating Technologyࠊ in
press.
㸦㸵㸧T. Arakiࠊ S. Uchimuraࠊ J. Sakaguchiࠊ Y. Nanishiࠊ T. Fujishimaࠊ A. Hsuࠊ K. Kimࠊ T.
Palaciosࠊ A. Pesqueraࠊ A. Centeno and A. Zurutuza: “Radio-Frequency Plasma-Excited Molecular
Beam Epitaxy Growth of GaN on Graphene/Si(100) Substrates”ࠊ Applied Physics Express 7ࠊ
071001/1-3 (2014).
㸦㸶㸧K. Wangࠊ T. Arakiࠊ M. Takeuchiࠊ E. Yoon and Y. Nanishiࠊ “Selective Growth of N-polar InN
Through an In Situ AlN Mask on a Sapphire Substrate”ࠊAppl. Phys. Lett. 104ࠊ032108/1-5 (2014).
㸦㸷㸧"Effect of rear-surface buffer layer on performance of lift-off Cu(InࠊGa)Se 2 solar cells" K.
Aoyagiࠊ A. Tamuraࠊ H. Takakuraࠊ T. Minemoto Jpn. J. Appl. Phys. 53 (2014) 05FW05-1-5.
㸦㸯㸮㸧
Z. Tangࠊ Y. Nukuiࠊ K. Kosakaࠊ N. Ashidaࠊ H. Uegaki and T. Minemoto; “Reduction
of secondary phases in Cu2SnSe3 absorbers for solar cell application”ࠊ J. Alloys Compd. 608
(2014) 213-219.
㸦㸯㸯㸧
J. Chantanaࠊ T. Watanabeࠊ S. Terajiࠊ K. Kawamura and T. Minemoto; “Effect of
Crystal Orientation in Cu(InࠊGa)Se2 Fabricated by Multi-Layer Precursor Method on Its Cell
−94−
Performance”ࠊ
㸦㸯㸰㸧
Appl. Surf. Sci. 314 (2014) 845-849.
J. ChantanaࠊD. HironiwaࠊT. Watanabeࠊ S. TerajiࠊK. Kawamura and T. Minemoto;
“Investigation of Cu(InࠊGa)Se2 Absorber by Time-Resolved Photoluminescence for Improvement
of Its Photovoltaic Performance”ࠊ Sol. Energy Mater. Sol. Cells 130 (2014) 567-572.
㸦㸯㸱㸧
D. Hironiwaࠊ N. Matsuoࠊ N. Sakaiࠊ T. Katouࠊ H. Sugimotoࠊ J. Chantanaࠊ Z. Tang
and T. Minemoto; “Sputtered (ZnࠊMg)O buffer layer for band offset control in Cu2ZnSn(SࠊSe)4
solar cells”ࠊ Jpn. J. Appl. Phys. 53 (2014) 106502-1-6.
㸦㸯㸲㸧
Y. Mizumotoࠊ J. Chantanaࠊ D. Hironiwaࠊ A. Yamamotoࠊ K. Yabukiࠊ A. Nakaueࠊ
T. Minemoto; “Junction quality evaluation of buffer-free Zn(OࠊS):Al/Cu(InࠊGa)Se2 thin film solar
cells”ࠊ APEX 7 (2014) 125503-1-4.
㸦㸯㸳㸧
J. ChantanaࠊD. HironiwaࠊT. Watanabeࠊ S. TerajiࠊK. Kawamura and T. Minemoto;
“Controlled back slope of Ga/(In+Ga) profile in Cu(InࠊGa)Se2 absorber fabricated by multi layer
precursor method for improvement of its photovoltaic performance”ࠊ Sol. Energy Mater. Sol. Cells
133 (2015) 223-228.
㸦㸯㸴㸧
J. Chantanaࠊ D. HironiwaࠊT. Watanabeࠊ S. Terajiࠊ K. Kawamura and T. Minemoto;
“Estimation of open-circuit voltage of Cu(In ࠊ Ga)Se2 solar cells before cell fabrication” ࠊ
Renewable Energyࠊ 76 (2015)ࠊ 575-581.
㸦㸯㸵㸧
Masao Sakaneࠊ Takamoto Itohࠊ Hideyuki Kanayama; “Effect of Multiaxial Stress on
Low Cycle Fatigue”ࠊ International Journal of the Japan Society of Mechanical Engineeringࠊ
(2014) in printing.
㸦㸯㸶㸧
Naomi Hamadaࠊ Masao Sakaneࠊ Takamoto Itohࠊ Hideyuki Kanayama; “High
Temperature Nonproportional Low Cycle Fatigue Using Fifteen Loading Paths”ࠊ Theoretical and
Applied Fracture Mechanicsࠊ (2014)ࠊ in printing.
㸦㸯㸷㸧
Takahiro Morishita ࠊ Shuli Liu ࠊ Takamoto Itoh ࠊ Masao Sakane ࠊ Hideyuki
Kanayamaࠊ Masahiro Sakabeࠊ Norio Takedaࠊ “Fatigue Failure Life of SS400 Steel under
Non-proportional Loading in High Cycle Region”ࠊ Advanced Materials Researchࠊ 11 (2014)ࠊ pp.
1385-1390
㸦㸰㸮㸧
Shuli Liuࠊ Takamoto Itohࠊ Noriyuki Fuji; “Visualization of Multiaxial Stress/Strain
State and Evaluation of Failure Life by Developed Analyzing Program under Non-proportional
Loading”ࠊ Advanced Materials Researchࠊ 11 (2014)ࠊ pp. 1391-1396
㸦㸰㸯㸧
Hidetoshi Kobayashiࠊ Keitaro Horikawaࠊ Kinya Ogawa and Keiko Watanabe: “Impact
Compressive and Bending Behaviour of Rocks Accompanied by Electromagnetic Phenomena”ࠊ
Philosophical Transactions of The Royal Society Aࠊ Vol.372 (2014)ࠊ 20130292.
㸦㸰㸰㸧
Keiko Watanabeࠊ Syungo Fukumaࠊ Tadashi Yoshisaka and Hidetoshi Kobayashi:
“Penetration Velocity Measurement in Sands Using Magnet-Coil Gagesࠊ Applied Mechanics and
Materials”ࠊ Vol. 566 (2014)ࠊ pp.371-376.
㸦㸰㸱㸧
Akifumi Yoshimotoࠊ Hidetoshi Kobayashiࠊ Keitaro Horikawaࠊ Keiko Watanabe and
−95−
Kinya Ogawa: “Dynamic and Quasi-static Compressive Deformation Behaviour of Polyimide Foam
at Various Elevated Temperature”ࠊ Applied Mechanics and Materialsࠊ Vol. 566 (2014)ࠊ
pp.158-163.
㸦㸰㸲㸧
Mie Otaࠊ Kiichi Sawaiࠊ Mitsuhiro Kawakuboࠊ Sanjay Kumar Vajpai and Kei
Ameyama: “Harmonic structure formation and deformation behavior in a (Į + Ȗ) two phase stainless
steel”ࠊ Materials Science and Engineeringࠊ Vol.63 (2014)ࠊ doi:10.1088/1757-899X/63/1/012027
㸦㸰㸳㸧
Sanjay Kumar Vajpaiࠊ Kei Ameyamaࠊ Mie Otaࠊ Tomoyuki Watanabeࠊ Ryo Maedaࠊ
Tatsuya Sekiguchiࠊ Guy Dirras and David Tingaud: “High performance Ti-6Al-4V alloy by creation
of harmonic structure design”ࠊ Materials Science and Engineeringࠊ Vol.63 (2014)ࠊ
doi:10.1088/1757-899X/63/1/012030
㸦㸰㸴㸧
Mie Otaࠊ Keisuke Shimojoࠊ Shun Okadaࠊ Sanjay Kumar Vajpai and Kei Ameyama:
“Harmonic Structure Design and Mechanical Properties of Pure Ni Compact”ࠊ Journal of Powder
Metallurgy & Miningࠊ vol.3ࠊ No.1 (2014)ࠊ doi:0.4172/2168-9806.1000122
㸦㸰㸵㸧
Mie Otaࠊ Sanjay Kumar Vajpaiࠊ Ryota Imaoࠊ Kazuaki Kurokawa and Kei Ameyama:
“Application of High Pressure Gas Jet Mill Process to Fabricate High Performance Harmonic
Structure Designed Pure Titanium”ࠊ Journal of Materials Transactionsࠊ vol.56ࠊ No.1 (2015)ࠊ
pp.154-159. doi:10.2320/matertrans.M2014280
㸦㸰㸶㸧
Sanjay Kumar Vajpaiࠊ Mie Otaࠊ Tomoyuki Watanabeࠊ Ryo Maedaࠊ Tatsuya
Sekiguchiࠊ Takayuki Kusaka and Kei Ameyama:ࠊ “The Development of High Performance
Ti-6Al-4V Alloy via a Unique Microstructural Design with Bimodal Grain Size Distribution”ࠊ
Metallurgical and Materials Transactions Aࠊ (2014)ࠊ doi:10.1007/s11661-014-2649-7
㸦㸰㸷㸧
Yanbo Sunࠊ Sanjay Kumar Vajpaiࠊ Kei Ameyama and Chaoli Ma: “Fabrication of
multilayered Ti–Al intermetallics by spark plasma sintering”ࠊ Journal of Alloys and Compoundsࠊ
Vol.585ࠊ No.2 (2014)ࠊ pp.734–740.
㸦㸱㸮㸧
Choncharoen Sawangratࠊ Osamu Yamaguchiࠊ Sanjay Kumar Vajpai and Kei
Ameyama: “Application of Harmonic Structure Design to Biomedical Co-Cr-Mo alloy for improved
mechanical properties”ࠊ J. Materials Transactionsࠊ Vol.55ࠊ (2014)ࠊ pp.99-105.
㸦㸱㸯㸧
Ruixiao Zhengࠊ Yanbo Sunࠊ Kei Ameyama and Chaoli Ma: “Optimizing the strength
and ductility of spark plasma sintered Al2024 alloy by conventional thermo-mechanical treatment”ࠊ
Materials Science & Engineering Aࠊ Vol.590ࠊ (2014)ࠊ pp. 147-152.
㸦㸱㸰㸧
Shoichi Kikuchiࠊ Yuta Nakamuraࠊ Akira Ueno and Kei Ameyama: “Development of
Low Temperature Nitriding Process and Its Effects on the 4-points Bending Fatigue Properties of
Commercially Pure Titanium”ࠊ Advanced Materials Researchࠊ Vols. 891-892ࠊ (2014)ࠊ
pp.656-661.
㸦㸱㸱㸧
Lydia Anggrainiࠊ Ryohei Yamamotoࠊ Kazuma Hagiࠊ Hiroshi Fujiwara and Kei
Ameyama: “Improving Mechanical Properties of Ceramic Composites by Harmonic Microstructure
Control”ࠊ Advanced Materials Researchࠊ Vol. 896ࠊ (2014)ࠊ pp.570-573.
−96−
㸦㸱㸲㸧
Zhe Zhangࠊ Sanjay Kumar Vajpaiࠊ Dmitry Orlov and Kei Ameyama: “Improvement of
mechanical properties in SUS304L steel through the control of bimodal microstructure
characteristics”ࠊ Materials Science & Engineering Aࠊ Vol. 598ࠊ (2014)ࠊ pp.106-113.
㸦㸱㸳㸧
Choncharoen Sawangratࠊ Shota Katoࠊ Dmitry Orlov and Kei Ameyama:
“Harmonic-structured copper: performance and proof of fabrication concept based on severe plastic
deformation of powders”ࠊ Journal of Materials Scienceࠊ No.5 (2014)ࠊ DOI
10.1007/s10853-014-8258-4
㸦㸱㸴㸧
Yasuhiro Kanokoࠊ Kei Ameyamaࠊ Shigeo Tanaka and Benjamin Hefler:
“PRODUCTION OF ULTRA-THIN POROUS METAL PAPER BY APPLYING THE FIBRE
SPACE HOLDER METHOD”ࠊ Powder Metallurgyࠊ Vol.57ࠊ No.3 (2014)ࠊ pp.168-170.
㸦㸱㸵㸧
Y Tsuzukiࠊ H Fujiwaraࠊ H Miyamoto and Kei Ameyama: “Deformation behavior of
high speed steel/low Carbon steel composite with harmonic structure by MM/SPS process”ࠊ
Materials Science and Engineeringࠊ Vol.63ࠊ (2014)ࠊ doi:10.1088/1757-899X/63/1/012029
㸦㸱㸶㸧
Z. Zhangࠊ D. Orlovࠊ S. K. Vajpaiࠊ B. Tong and Kei Ameyama: “Importance of
Bimodal Structure Topology in the Control of Mechanical Properties of a Stainless Steel”ࠊ J.
Advanced Engineering Materialsࠊ (2014)ࠊ DOI: 10.1002/adem.201400358
㸦㸱㸷㸧
Choncharoen Sawangratࠊ Osamu Yamaguchiࠊ Sanjay Vajpai and Kei Ameyama:
“Harmonic structure design of Co-Cr-Mo alloy with outstanding mechanical properties”ࠊ Advanced
Materials Researchࠊ Vol.939ࠊ (2014)ࠊ pp.60-67.
㸦㸲㸮㸧
Nurul Nadia MEHMUDࠊ Sanjay Kumar Vaipai and Kei Ameyama: “Fabrication of
Yttria Stabilized Zirconia-Silicon Carbide Composites with High Strength and High Toughness by
Spark Plasma Sintering of Mechanically Milled Powders”ࠊ J. Materials Transactionsࠊ Vol. 55ࠊ
No.12 (2014)ࠊ pp.1827-1833.
㸦㸲㸯㸧
R Yoshidaࠊ T Tsudaࠊ H Fujiwaraࠊ H Miyamoto and K Ameyama: “Annealing Effect
on Mechanical Properties of Ti-Al Alloy/Pure Ti Harmonic-Structured Composite by MM/SPS
Process”ࠊ Materials Science and Engineeringࠊ Vol. 63ࠊ (2014)ࠊ
doi:10.1088/1757-899X/63/1/012031
㸦㸲㸰㸧
Mie Otaࠊ Sanjay Kumar Vajpaiࠊ Kazuaki Kurokawaࠊ Tomoyuki Watanabeࠊ Kei
Ameyama and Guy Dirras: “Creation of High Performance Ti and Ti-6Al-4V via Harmonic Structure
Design Approach”ࠊNew Frontiers of NanomaterialsࠊED. By S. FaesterࠊN. HanseࠊD. J. Jensenࠊ
B. Ralpf and J. Sun (2014)ࠊ pp.421-427.
㸦㸲㸱㸧
Kusaka, T., Kono, T., Nomura, Y., Wakabayashi, H.: “Dynamic Compression Test of
CFRP Laminates Using SHPB Technique”, Applied Mechanics and Materials, 566 (June, 2014),
122-127.
㸦㸲㸲㸧
᪥ୗ㈗அ, Ἑ㔝Ꮥ඾, 㔝ᮧὈ⛱, ⱝᯘᏹᶞ: “SHPB ἲࢆ⏝࠸ࡓ CFRP ✚ᒙᮦࡢ⾪ᧁ
ᅽ⦰ヨ㦂ἲ", ᮦᩱ, 63-5 (May, 2014), 362-367.
−97−
㸺ⴭ᭩㸼
㸦㸯㸧✄⏣ᗣᏹ࣭∦ᒣ┿⚈ࠊ
ࠕXAFS/EELS ᒁᡤᵓ㐀ゎᯒࠖࠊ᝟ሗᶵᵓࠊ59-66 (2014).
㸦㸰㸧᪥ୗ㈗அࠊ
ࠕ⾪ᧁ㸦ືⓗ㸧◚ቯࡌࢇᛶ࡜ࡑࡢホ౯ἲࠖ
ࠕ⾪ᧁᕤᏛࡢᇶ♏࡜ᛂ⏝ࠖ
ࠊᶓᒣ㝯⦅ࠊ
(May, 2014)ࠊ61-74.
㸺ᅜ㝿఍㆟࣭ㄽᩥ㸼
㸦㸯㸧Aya Fujii ࠊ Shisou Yoshimura (Mou) ࠊ Tsuyoshi Hashishin ࠊ Chihiro Yogiࠊ Tomoe
Sanadaࠊ Kazuo Kojima; “Preparation of Pt-loaded WO3 photocatalysts with different
types of morphology and degradation of organic compounds”ࠊ The Seventh Tokyo
Conference on Advanced Catalytic Science and Technology (TOCAT7)ࠊ Kyoto (Japan)ࠊ
2014 ᖺ 6 ᭶.
㸦㸰㸧Aya Fujiiࠊ Zhicong Mengࠊ Tomoe Sanadaࠊ Takeshi Hashishinࠊ Kazuo Kojima;
“Preparation of Pt-loaded WO3 with different types of morphology and photocatalytic
degradation of methylene blue” ࠊ NANOSMAT 9th International Conference on
Surfacesࠊ Coatings and Nanostructured Materialsࠊ Dublin (Ireland)ࠊ 2014 ᖺ 9 ᭶.
㸦㸱㸧Aya Fujiiࠊ Zhicong Mengࠊ Chihiro Yogiࠊ Takeshi Hashishinࠊ Tomoe Sanadaࠊ Kazuo
Kojima; “Preparation of Pt-loaded WO3 and degradation mechanism of methylene
blue” ࠊ 3rd International Symposium on Functionalization and Applications of
Soft/Hard Materials (Soft/Hard 2014)ࠊ Kusatsu (Japan)ࠊ 2014 ᖺ 11 ᭶.
㸦㸲㸧Y. Nanishiࠊ T.Yamaguchi and T. Araki; “DERI Method; Possible Approach to Longer Wavelength
Light Emitters Based on Nitride Semiconductors”ࠊ 6th Forum on New Materials (CIMTEC2014)ࠊ
(2014.6)ࠊ Tuscany Italy.
㸦㸳㸧M. Sakamotoࠊ K. Wangࠊ T. Arakiࠊ Y. Nanishi and E. Yoon; “Study on Thickness Dependence of
Composition and Strain Relaxation of RF-MBE Grown In-rich InGaN”ࠊ 56th Electronic Materials
Conference (EMC 2014)ࠊ (2014. 6) Santa Barbaraࠊ California USA
㸦㸴㸧Y. Nanishiࠊ T. Yamaguchiࠊ T. Arakiࠊ A. Uedono and T. Palacios; “Plasma Induced Point Defects
in InN During RF-MBE Growth and Those Reduction by DERI Method” ࠊ Defects in
Semiconductors Gordon Research Conference (2014.8) Walthamࠊ MA USA
㸦㸵㸧T. Yamaguchiࠊ K. Narutaniࠊ T. Onumaࠊ T. Arakiࠊ T. Hondaࠊ Y. Nanishi; “RF-MBE
Growth of GaInN Films Using DERI Method and Fabrication of Homojunction-Type
LED Structures”ࠊ 6th International Symposium on Functional Materials (ISFM 2014)
(2014.8) Singapore Singapore.
㸦㸶㸧N. Masudaࠊ T. Kobayashiࠊ T. Arakiࠊ Y. Nanishiࠊ M. Odaࠊ T. Hitora; “RF-MBE
Growth of Nitride Semiconductors on Ș-In2O3/Sapphire”ࠊ International Workshop on
Nitride Semiconductor 2014 (2014.8) Wroclaw Poland.
㸦㸷㸧T. Arakiࠊ T. Yamaguchi and Y. Nanishi; “RF-MBE Growth of InN and InGaN Ternary Alloys Using
DERI”ࠊ 19th International Conference on Ternary and Multinary Compounds 㸦ICTMC-19㸧
−98−
(2014.9) Niigata Japan.
㸦㸯㸮㸧
J. Chantanaࠊ D. HironiwaࠊT. Watanabeࠊ S. Terajiࠊ K. Kawamuraࠊ T. Minemotoࠊ
“Raman Peak Position of Cu(InࠊGa)Se2 Film for Predication of Ga/(In+Ga) Content near Its Surface
and Open-Circuit Voltage”ࠊ 2014 European Material Research Society Spring Meeting (Lilleࠊ
Franceࠊ May 2014)
㸦㸯㸯㸧
D. Hironiwaࠊ N. Sakaiࠊ T. Katouࠊ H. Sugimotoࠊ R. Takaiࠊ J. Chantanaࠊ
T. Minemoto; “Impact of Annealing Treatment Before Buffer Layer Deposition on
Cu2ZnSn(SࠊSe)4 Solar Cell”ࠊ 2014 European Material Research Society Spring
Meeting (Lilleࠊ Franceࠊ May 2014)
㸦㸯㸰㸧
Z. Tangࠊ Y. Nukuiࠊ K. Kosakaࠊ N. Ashidaࠊ H. Uegakiࠊ T. Minemoto;
“Infuluencing Factors on Carrier Concentration in Cu2SnSe3 Thin Films”ࠊ Grand
Renewable Energy 2014 (Tokyoࠊ Japanࠊ July 2014)
㸦㸯㸱㸧
J. Chantanaࠊ D. Hironiwaࠊ T. Watanabeࠊ S. Terajiࠊ K. Kawamuraࠊ T. Minemoto;
“Bismuth-doped Cu(InࠊGa)Se2 absorber prepared by multi-layer precursor method and its solar
cell”ࠊ 19th International Conference on Ternary and Multinary Compounds (Niigataࠊ Japanࠊ
September 1-5)
㸦㸯㸲㸧
T. Minemoto; “Development of chalcogenide compound semiconductors for solar cell
applications”ࠊ 19th International Conference on Ternary and Multinary Compounds (Niigataࠊ
Japanࠊ September 1-5)
㸦㸯㸳㸧
J. Chantanaࠊ D. Hironiwaࠊ Z. Tangࠊ T. Watanabeࠊ S. Terajiࠊ K. Kawamuraࠊ T.
Minemoto; “Importance of Precursor Deposition Temperature of Cu(InࠊGa)Se2 Films under
Multi-Layer Precursor Method”ࠊ 6th World Conference on Photovoltaic Energy Conversion
(Kyotoࠊ Japanࠊ Nov. 2014).
㸦㸯㸴㸧
Z. Tangࠊ J. Chantanaࠊ Y. Nukuiࠊ K. Kosakaࠊ H. Uegakiࠊ T. Minemotoࠊ “Reaction
paths for formation of Cu2SnSe3 films by selenization of Cu-Sn precursors”ࠊ 6th World Conference
on Photovoltaic Energy Conversion (Kyotoࠊ Japanࠊ Nov. 2014).
㸦㸯㸵㸧
T. Minemoto; “High efficiency design of chalcogenide solar cells and its application to
new material”ࠊ Global Photovoltaic Conference 2014 (Nov. 11ࠊ 2014ࠊ Busan).
㸦㸯㸶㸧
Kazuhisa Andoࠊ Tadashi Yoshisakaࠊ Keiko Watanabe: “Dynamic Behavior under
High-Speed Penetration of Projectile into Sand”ࠊ 3rd International Symposium on Functionalization
and Applications of Soft/Hard Materials (Soft/Hard 2014)ࠊ Shigaࠊ 2014 ᖺ 11 ᭶.
㸦㸯㸷㸧
Koki Umedaࠊ Kosuke Mizoiࠊ Keiko Watanabeࠊ Hiroyuki Yamadaࠊ Nagahisa
Ogasawara: “Experiment and Numerical Analysis of Vibration on Impact Load Cell for Foam
Structure”ࠊ 3rd International Symposium on Functionalization and Applications of Soft/Hard
Materials (Soft/Hard 2014)ࠊ Shigaࠊ Novemberࠊ 2014.
㸦㸰㸮㸧
Yuya Egawaࠊ Peter Gardinerࠊ Keiko Watanabe: “Development and Performance
Evaluation of Diaphragmless Vertical Gas Gun”ࠊ 3rd International Symposium on Functionalization
−99−
and Applications of Soft/Hard Materials (Soft/Hard 2014)ࠊ Shigaࠊ Novemberࠊ 2014.
㸦㸰㸯㸧
Koki Umedaࠊ Takanari Sakaiࠊ Keiko Watanabe: “Investigation of Crater Formation
Mechanism on Aluminum Foam under High-speed Impact”ࠊ 4th International Symposium on
Functionalization and Applications of Soft/Hard Materials / 8th German-Japanese / 8th International
Symposium on Nanostructuresࠊ Kyotoࠊ Marchࠊ 2015.
㸦㸰㸰㸧
Kazuaki Kurokawaࠊ Hikaru Kawabataࠊ Tomoyuki Watanabeࠊ Mie Otaࠊ Sanjay
Kumar Vajpai and Kei Ameyama: “Structure and mechanical properties of pure-Ti with harmonic
structure by High Pressure Gas Milling Process”ࠊ Proceedings of the 13th Advances in Materials &
Processing Technology Conference (AMPT2014)
㸦㸰㸱㸧
Tomoyuki Watanabeࠊ Ryo Maedaࠊ Kazuaki Kurokawaࠊ Mie Otaࠊ Sanjay Kumar
Vajpai and Kei Ameyama: “Harmonic Structure Design of Ti-6Al-4V Alloy by High Pressure Gas
Milling Process”ࠊ Proceedings of the 13th Advances in Materials & Processing Technology
Conference (AMPT2014)
㸦㸰㸲㸧
Osamu Yamaguchiࠊ Sanjay Kumar Vajpai and Kei Ameyama: ”Deformation Mechanism
of Harmonic Structure Designed Co-Cr-Mo Alloy”ࠊ Proceedings of the 13th Advances in
Materials & Processing Technology Conference (AMPT2014)
㸦㸰㸳㸧
Han Yuࠊ Ikumu Watanabeࠊ Kei Ameyama: “Deformation Behavior Analysis of
Harmonic Structure Materials by Multi-Scale Finite Element Analysis”ࠊ Proceedings of the
International Conference on Advances in Materials (ICAM 2014)
㸦㸰㸴㸧
Nurul Nadiah MAHMUDࠊ Mie OTAࠊ Sanjay K. VAJPAIࠊ Kei Ameyama:
“Preparation of SiC/YSZ Composites with High Strength and High Toughness”ࠊ The 9th
International Materials Technology Conference and Exhibition (IMTCE 2014)ࠊ Kuala Lumpurࠊ
Malaysiaࠊ 2014.5.13-16
㸦㸰㸵㸧
Nur Zalikha Binti KHALILࠊ Sanjay K. VAJPAIࠊ Mie OTAࠊ Kei Ameyama:
“Microstructure and Mechanical Properties of SiC Compacts Produced by Mechanical Milling and
Spark Plasma Sintering”ࠊ The 9th International Materials Technology Conference and Exhibition
(IMTCE 2014)ࠊ Kuala Lumpurࠊ Malaysiaࠊ 2014.5.13-16
㸦㸰㸶㸧
Bhupendra Sharmaࠊ Sanjay Kumar VAJPAIࠊ Kei Ameyama: “Development of New
Powder Metallurgy route to fabricate a Ti-Nb Beta-Titanium alloy”ࠊ The 4th International
Conference on Engineering and Applied Sciences (ICEAS 2014)ࠊ Hokkaidoࠊ JAPANࠊ
2014.7.22-24
㸦㸰㸷㸧
Han Yuࠊ Kei Ameyamaࠊ Mie Otaࠊ Sanjay Kumar Vajpaiࠊ Zhe Zhangࠊ Bo Tongࠊ
Tomoyuki Watanabeࠊ Ikumu Watanabe: “Deformation Behavior Analysis of Harmonic Structure
Materials by FEM and DIC method”ࠊ The 4th International Conference on Engineering and Applied
Sciences (ICEAS 2014)ࠊ Hokkaidoࠊ JAPANࠊ 2014.7.22-24
㸦㸱㸮㸧
Sanjay Kumar Vajpaiࠊ Kei Ameyama: “Synthesis and Evaluation of Structural
Biomaterials with Unique Bimodal Harmonic Structure Design”ࠊ 3rd International Symposium on
−100−
Functionalization and Applications of Soft/Hard materialsࠊ Ritsumeikan Universityࠊ Shigaࠊ
2014.11.7-8
㸦㸱㸯㸧
Bhupendra Sharma ࠊ Sanjay Kumar Vajpaiࠊ Kei Ameyama: “Fabrication of Ti-Nb
-Titanium alloy by following an innovative powder metallurgy route”ࠊ 3rd International
Symposium on Functionalization and Applications of Soft/Hard materialsࠊ Ritsumeikan Universityࠊ
Shigaࠊ 2014.11.7-8
㸦㸱㸰㸧
Han Yuࠊ Kei Ameyamaࠊ Ikumu Watanabe: “Multi-scale Finite Element Analysis of
Harmonic Structure Materials”ࠊ 3rd International Symposium on Functionalization and
Applications of Soft/Hard materialsࠊ Ritsumeikan Universityࠊ Shigaࠊ 2014.11.7-8
㸦㸱㸱㸧
Nur Zalikha Binti Khalilࠊ Sanjay Kumar VAJPAIࠊ Mie OTAࠊ Kei Ameyama: “Effect
of Particle Size Distribution and Particle Morphology on Sinterability of SiC Ceramic”ࠊ 3rd
International Symposium on Functionalization and Applications of Soft/Hard materials Ritsumeikan
Universityࠊ Shigaࠊ 2014.11.7-8
㸦㸱㸲㸧
Han Yuࠊ Ikumu Watanabeࠊ Kei Ameyama: “Deformation Behavior Analysis of
Harmonic Structure Materials by Multi-Scale Finite Element Analysis”ࠊ 2014 International
Conference on Advances in Materials (ICAM 2014)ࠊ Shanghaiࠊ CHINAࠊ 2014.12.13-14
㸦㸱㸳㸧
Muhammad, A.B.A.H., Kusaka, T, Miyazaki, T., Arimitsu, K.: “Effect of Loading Rate
on Fatigue Crack Growth in Carbon Fiber Reinforced Plastics Adhesive Joint”, 3rd International
Symposium on Functionalization and Applications of Soft/Hard Materials, November 6-9, 2014,
(Kusatsu, Japan).
㸦㸱㸴㸧
Zailani, S., Kusaka, T., Tanegashima, R., Kawamura, Y., Wakabayashi, H.: “Experimental
Method for Evaluating the Energy Absorption Capability of CFRP Laminates”, 3rd International
Symposium on Functionalization and Applications of Soft/Hard Materials, November 6-9, 2014,
(Kusatsu, Japan).
㸦㸱㸵㸧
Oshima, S., Kusaka, T., Tanegashima, R.: “Improvement of Accuracy of Crack Detection
System for Concrete Structures Using Non-contact Displacement Measurement”, 3rd International
Symposium on Functionalization and Applications of Soft/Hard Materials, November 6-9, 2014,
(Kusatsu, Japan).
㸦㸱㸶㸧
Muhammad, A.B.A.H., Kusaka, T, Tanageshima, R.: “Loading Rate Effects on Fatigue
Crack Growth Behaviour of CFRP Adhesive Joints under Mixed Mode Conditions”, 8th
International Symposium on Nanostructures, March 1-3, 2015, (Kyoto, Japan).
㸦㸱㸷㸧
Oshima, S., Kusaka, T., Tanegashima, R.: “Development of Crack Detection System
Based on DIC Method Using Flexible Nodes Arrangement”, 8th International Symposium on
Nanostructures, March 1-3, 2015, (Kyoto, Japan).
㸦㸲㸮㸧
㸺ゎㄝ࣭⥲ㄝㄽᩥ㸼
−101−
㸦㸯㸧 ࡞ࡋ
㸺ᅜෆᏛ఍㸼
㸦㸯㸧∦ᒣ┿⚈ࠊ ᐑཎⰋኴࠊ Ώ㑔⛱ᶞࠊ ᒣୗ⩧ᖹࠊ ✄⏣ᗣᏹࠊ ࠕ㖄┤᪉ྥἼ㛗ศᩓᆺ XAFS
ἲࡢ㛤Ⓨ࡜᫬㛫-✵㛫ศゎゎᯒ࡬ࡢᛂ⏝ࠖ
ࠊ ➨ 17 ᅇ XAFS ウㄽ఍ࠊ ᚨᓥࠊ 2014 ᖺ 9 ᭶.
㸦㸰㸧ᐑ⏣ఙᘯࠊ ㇏⏣೺἞ࠊ ᪥㔝ୖ㯇Ꮚࠊ Ώ㑔⛱ᶞࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕࢹࣛࣇ࢛ࢧ࢖
ࢺᆺ㓟໬≀࡟࠾ࡅࡿ d 㟁Ꮚࢫࣆࣥ≧ែࠖ
ࠊ ➨ 17 ᅇ XAFS ウㄽ఍ࠊ ᚨᓥࠊ 2014 ᖺ 9 ᭶.
㸦㸱㸧ᒣୗ⩧ᖹࠊ ᒣᮏᝆ⟇ࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕᢸᣢࢽࢵࢣࣝ⢏Ꮚࡢ⾲㠃㓟໬཯ᛂ࡟㛵ࡍ
ࡿ㏿ᗘㄽⓗゎᯒࠖ
ࠊ ➨ 17 ᅇ XAFS ウㄽ఍ࠊ ᚨᓥࠊ 2014 ᖺ 9 ᭶.
㸦㸲㸧ᒣᮏᝆ⟇ࠊ ᒣୗ⩧ᖹࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕIn situ XAFS ἲ࡟ࡼࡿࢰࣝ-ࢤࣝἲ࡛ࡢ
ᢸᣢ Ni ゐ፹ㄪ〇㐣⛬ࡢゎᯒࠖ
ࠊ ➨ 17 ᅇ XAFS ウㄽ఍ࠊ ᚨᓥࠊ 2014 ᖺ 9 ᭶.
㸦㸳㸧∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊࠕ✵㛫ศゎ࢜࣌ࣛࣥࢻほ ᡭἲࡢ㛤Ⓨ࡜㟁ᴟ཯ᛂゎᯒ࡬ࡢᛂ⏝ࠖࠊ ᨺ
ᑕගᏛ఍➨ 7 ᅇⱝᡭ◊✲఍͆᭱ඛ➃࢜࣌ࣛࣥࢻほ ࡛᫂ࡽ࠿࡟࡞ࡿ≀ᛶ⛉Ꮫ͇
ࠊ ᯽ࠊ 2014
ᖺ 9 ᭶.
㸦㸴㸧ᓥ⏣ెዉࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕ࢔࣑ࣝࢼ࡟ᢸᣢࡋࡓ Pd ࡜ Cu ࡢᅛ┦ྜ㔠໬࣓࢝ࢽ
ࢬ࣒ࠖ
ࠊ ➨ 4 ᅇ CSJ ໬Ꮫࣇ࢙ࢫࢱ 2014ࠊ ᮾிࠊ 2014 ᖺ 10 ᭶.
㸦㸵㸧኱㈏㞝ᘺࠊ ᐑཎⰋኴࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕX ⥺྾཰ศගἲ࡟ࡼࡿࣜࣥ㓟ࣂࢼࢪ࣒࢘
ࣜࢳ࣒࢘ṇᴟࡢ㟁ᴟ཯ᛂゎᯒࠖ
ࠊ ➨ 4 ᅇ CSJ ໬Ꮫࣇ࢙ࢫࢱ 2014ࠊ ᮾிࠊ 2014 ᖺ 10 ᭶.
㸦㸶㸧ᯇᒸဴஓࠊ ᒣୗ⩧ᖹࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕin-situ XAFS ἲ࡟ࡼࡿࢩࣜ࢝ᢸᣢ Ni
ゐ፹ࡢ CO ࡟ࡼࡿ㑏ඖ཯ᛂࡢゎᯒࠖ
ࠊ ➨ 4 ᅇ CSJ ໬Ꮫࣇ࢙ࢫࢱ 2014ࠊ ᮾிࠊ 2014 ᖺ 10
᭶.
㸦㸷㸧ᐑཎⰋኴࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕ᫬✵㛫ศゎྍ⬟࡞᪂つἼ㛗ศᩓᆺ XAFS ἲࡢ㛤Ⓨࠖ
ࠊ
➨ 50 ᅇ X ⥺ศᯒウㄽ఍ࠊ ௝ྎࠊ 2014 ᖺ 10 ᭶.
㸦㸯㸮㸧
∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕ❧࿨㤋 SR ࢭࣥࢱ࣮XAFS ࣅ࣮࣒ࣛ࢖ࣥࢆ⏝࠸ࡓゐ፹
࡜㟁ụࡢ཯ᛂゎᯒࠖ
ࠊ ྜྠࢩ࣏ࣥࢪ࣒࢘ 2014㹼ᨺᑕග࡜࣮ࣞࢨ࣮ࡢ༠ാ࡟ࡼࡿ᪂⏘ᴗ๰ᡂ
㹼ࠊ ⚄ᡞࠊ 2014 ᖺ 11 ᭶.
㸦㸯㸯㸧
ᐑཎⰋኴࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕṇᴟ཯ᛂࡢ᫬✵㛫ศゎゎᯒ࡟ྥࡅࡓ᪂ࡋ
࠸Ἴ㛗ศᩓᆺ XAFS ἲࡢ㛤Ⓨࠖ
ࠊ ➨ 55 ᅇ㟁ụウㄽ఍ࠊ ி㒔ࠊ 2014 ᖺ 11 ᭶.
㸦㸯㸰㸧
ᒣᮏᝆ⟇ࠊ ᒣୗ⩧ᖹࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕᢸᣢ Ni ⢏Ꮚࡢ㓟໬㑏ඖ≉ᛶ
࡟ཬࡰࡍ⢏Ꮚࢧ࢖ࢬຠᯝࠖ
ࠊ ➨ 28 ᅇ᪥ᮏᨺᑕගᏛ఍ᖺ఍࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘ࠊ
ⲡὠࠊ 2015 ᖺ 1 ᭶.
㸦㸯㸱㸧
Ώ㑔⛱ᶞࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕ㌿᥮㟁Ꮚ཰㔞 XAFS ࡟ࡼࡿᙧ≧ไᚚࡋࡓ
ᢸᣢ Cu2O ⢏Ꮚࡢ⾲㠃㑏ඖ཯ᛂࠖࠊ ➨ 28 ᅇ᪥ᮏᨺᑕගᏛ఍ᖺ఍࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ
࣒࢘ࠊ ⲡὠࠊ 2015 ᖺ 1 ᭶.
㸦㸯㸲㸧
ᓥ⏣ెዉࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕࣃࣛࢪ࣒࢘㖡ྜ㔠ゐ፹ࡢ⏕ᡂ࡟ᑐࡍࡿ๓
㥑య⤌ᡂࡢຠᯝࠖ
ࠊ ➨ 28 ᅇ᪥ᮏᨺᑕගᏛ఍ᖺ఍࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘ࠊ ⲡὠࠊ
2015 ᖺ 1 ᭶.
−102−
㸦㸯㸳㸧
࿴⏣᠇ᖾࠊ ∦ᒣ┿⚈ࠊ ┾⏣ᬛ⾨ࠊ ᑠሐ࿴ᙪࠊ ᑠᓥ୍⏨ࠊ ✄⏣ᗣᏹࠊ ࠕ㓟໬
≀࢞ࣛࢫ୰࡟࠾ࡅࡿ Mn ࢖࢜ࣥࡢᒁᡤᵓ㐀ࠖ
ࠊ ➨ 28 ᅇ᪥ᮏᨺᑕගᏛ఍ᖺ఍࣭ᨺᑕග⛉Ꮫྜ
ྠࢩ࣏ࣥࢪ࣒࢘ࠊ ⲡὠࠊ 2015 ᖺ 1 ᭶.
㸦㸯㸴㸧
኱ᆤᐶኴࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕࢮ࢜ࣛ࢖ࢺ࡟ᢸᣢࡋࡓ Ni(II)࢖࢜ࣥࡢ྾
╔≧ែࡢゎᯒࠖ
ࠊ ➨ 28 ᅇ᪥ᮏᨺᑕගᏛ఍ᖺ఍࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘ࠊ ⲡὠࠊ 2015
ᖺ 1 ᭶.
㸦㸯㸵㸧
Siwaruk Chotiwan, Hiroki Tomiga, Misaki Katayama, Yasuhiro Inada,
͆ Thermodynamic and kinetic study on redox reaction of silica supported cobalt
catalysts͇
ࠊ ➨ 28 ᅇ᪥ᮏᨺᑕගᏛ఍ᖺ఍࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘ࠊ ⲡὠࠊ 2015
ᖺ 1 ᭶.
㸦㸯㸶㸧
䭜Ꮥ♸ࠊ ୚൤༓ᑜࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ⸨ᒸ኱Ẏࠊ ኴ⏣ಇ᫂ࠊ ᑠᓥ୍⏨ࠊ
ࠕṇᴟά≀㉁ Li2MnSiO4 ࡢࢰࣝïࢤࣝἲ࡟ࡼࡿస〇࡜ホ౯ࠖࠊ㟁Ẽ໬Ꮫ఍➨ 82 ᅇ኱఍ࠊᶓ
὾ࠊ 2015 ᖺ 3 ᭶.
㸦㸯㸷㸧
㕥ᮌ῟ྖࠊ ᒣୗ⩧ᖹࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕᕼⷧ࡞ࢩࣜ࢝ᢸᣢ Ni ゐ፹ࡢ
㓟໬㑏ඖ≉ᛶࠖ
ࠊ ᪥ᮏ໬Ꮫ఍➨ 95 ᫓Ꮨᖺ఍ࠊ ⯪ᶫࠊ 2015 ᖺ 3 ᭶.
㸦㸰㸮㸧
▼஭㥴ᖹࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕ࣓ࢯ࣏࣮ࣛࢫࢩࣜ࢝࡟ᢸᣢࡋࡓ Co ゐ፹ࡢ
㓟໬㑏ඖ≉ᛶࠖ
ࠊ ᪥ᮏ໬Ꮫ఍➨ 95 ᫓Ꮨᖺ఍ࠊ ⯪ᶫࠊ 2015 ᖺ 3 ᭶.
㸦㸰㸯㸧
⸨஭ள⪨ࠊ ྜྷᮧᚿ⪽ࠊ ୚൤༓ᑜࠊ ⸨ᒸ኱Ẏࠊ ┾⏣ᬛ⾨ࠊ ᑠᓥ୍⏨ࠊ ͆ᙧ≧
ไᚚࡋࡓ Pt ᢸᣢ WO3 ࡢᾮ┦࣭Ẽ┦࡛ࡢගゐ፹≉ᛶ͇ࠊ ࠗ➨ 4 ᅇ CSJ ࣇ࢙ࢫࢱ࠘
㸦ࢱ࣮࣡
࣮࣍ࣝ⯪ᇼ㸧
ࠊ 2014 ᖺ 10 ᭶.
㸦㸰㸰㸧
⸨஭ள⪨ࠊ ྜྷᮧ(Ꮧ)ᚿ⪽ࠊ ᶫ᪂๛ࠊ ୚൤༓ᑜࠊ ┾⏣ᬛ⾨ࠊ ᑠᓥ୍⏨ࠊ ͆ᙧ
ែไᚚࡋࡓ Pt ᢸᣢ WO3 ⢊ᮎࡢస〇࡜࣓ࢳࣞࣥࣈ࣮ࣝศゎάᛶホ౯͇
ࠊࠗ➨ 21 ᅇࢩ࣏ࣥࢪ
࣒࢘ࠕගゐ፹཯ᛂࡢ᭱㏆ࡢᒎ㛤ࠖ
࠘
㸦ᮾ኱ඛ➃◊㸧
ࠊ 2014 ᖺ 12 ᭶.
㸦㸰㸱㸧
䭜Ꮥ♸ࠊ ୚൤༓ᑜࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᘯࠊ ⸨ᒸ኱Ẏࠊ ኴ⏣ಇ᫂ࠊ ᑠᓥ୍⏨ࠊ
͆ṇᴟά≀㉁ Li2MnSiO4 ࡢࢰࣝ㸫ࢤࣝἲ࡟ࡼࡿస〇࡜ホ౯͇ࠊ ࠗ㟁Ẽ໬Ꮫ఍➨ 82 ᅇ኱఍࠘
㸦ᶓ὾ᅜ❧኱Ꮫ㸧
ࠊ 2015 ᖺ 3 ᭶.
㸦㸰㸲㸧
Ỉᮏ㞝ኴࠊᘅᗞ኱㍜ࠊ-DNDSDQ&KDQWDQDࠊᓟඖ㧗ᚿࠊ͆ࣂࢵࣇ࢓ࣇ࣮ࣜ&X,Qࠊ
*D6H ⷧ⭷ኴ㝧㟁ụࡢ≉ᛶ࡜᥋ྜ⏺㠃͇
ࠊ➨ ᅇࠕḟୡ௦ࡢኴ㝧ගⓎ㟁ࠖࢩ࣏ࣥࢪ࣒࢘ᐑ
ᓮࠊ ᖺ ᭶
㸦㸰㸳㸧
᪂஭⿱அࠊᘅᗞ኱㍜ࠊ᪂⃝㞝㧗ࠊᓟඖ㧗ᚿࠊ
͆=Q2$O&X,Qࠊ*D6H ᥋ྜ
ࡢࢫࣃࢵࢱࢲ࣓࣮ࢪ౫Ꮡᛶ͇
ࠊ➨ ᅇࠕḟୡ௦ࡢኴ㝧ගⓎ㟁ࠖࢩ࣏ࣥࢪ࣒࢘ᐑᓮࠊ
ᖺ ᭶
㸦㸰㸴㸧
ᯇᑿᑑ኱ࠊᘅᗞ኱㍜ࠊ▼ᓮ㞝ஓࠊ㓇஭⣖⾜ࠊຍ⸨ ᣅஓࠊᮡᮏ ᗈ⣖ࠊᓟඖ 㧗
ᚿࠊ
͆ࣇ࢛ࢺ࣑ࣝࢿࢵࢭࣥࢫࢆ⏝࠸ࡓ &X=Q6Q6ࠊ6H ኴ㝧㟁ụࡢࢫࣃࢵࢱࢲ࣓࣮ࢪࡢᐃ㔞
໬͇
ࠊ➨ ᅇࠕḟୡ௦ࡢኴ㝧ගⓎ㟁ࠖࢩ࣏ࣥࢪ࣒࢘ᐑᓮࠊ ᖺ ᭶
㸦㸰㸵㸧
ୖ㔝᫭ᖹࠊᏳ⸨ጁᏊࠊ
ࠕࢼࣀࢫࢣ࣮ࣝ༢⤖ᬗ 6L ࡢ⬤ᛶᘏᛶ㑄⛣ ᗘࡢᑍἲ౫Ꮡ
ᛶࠖ
ࠊᖹᡂ ᖺ㟁ẼᏛ఍඲ᅜ኱఍ࠊ ᖺ ᭶
−103−
㸦㸰㸶㸧
Ᏻ⸨࿴⋪ࠊྜྷᆏṇࠊΏ㎶ᆂᏊࠊࠕ◁࡬ࡢ㧗㏿≀య㈏ධ࡟࠾ࡅࡿຊᏛⓗᣲືࠊ᪥ᮏ
ᶵᲔᏛ఍00 ᮦᩱຊᏛ࢝ࣥࣇ࢓ࣞࣥࢫࠖ
ࠊ⚟ᓥࠊ ᖺ ᭶㸬
㸦㸰㸷㸧
ᱵ⏣᫭ᶞࠊ⁁஭බுࠊࣔࣁ࣐ࢻ࣭ࢬࣝࣇ࢕ࠊΏ㎶ᆂᏊࠊᒣ⏣ᾈஅࠊᑠ➟ཎỌஂࠊ
ࠕⓎἻᵓ㐀య⏝⾪ᧁⲴ㔜 ᐃ⿦⨨ࡢⲴ㔜᣺ື⌧㇟ࡢᐇ㦂࠾ࡼࡧゎᯒⓗ᳨ウࠖ
ࠊ᪥ᮏᶵᲔᏛ఍
00 ᮦᩱຊᏛ࢝ࣥࣇ࢓ࣞࣥࢫࠊ⚟ᓥࠊ ᖺ ᭶㸬
㸦㸱㸮㸧
Ụᕝ♸ஓࠊᱵ⏣᫭ᶞࠊΏ㎶ᆂᏊࠊ
ࠕ⦪ᆺ↓㝸⭷࢞ࢫ㖠ࡢ㛤Ⓨཬࡧᛶ⬟ホ౯ࠖ
ࠊ᪥ᮏ
ᶵᲔᏛ఍00 ᮦᩱຊᏛ࢝ࣥࣇ࢓ࣞࣥࢫࠊ⚟ᓥࠊ ᖺ ᭶㸬
㸦㸱㸯㸧
ᒣ⏣ᾈஅࠊ❧ᒣ⪔ᖹࠊᑠ➟ཎỌஂࠊΏ㎶ᆂᏊࠊᑠᕝḯஓࠊ
ࠕ࣮ࣟࢻࢭࣝᑐྥᘧⴠ
㗽ヨ㦂⿦⨨ࢆ⏝࠸ࡓⓎἻᵓ㐀యࡢືⓗᅽ⦰≉ᛶホ౯ࠖࠊ➨ ᅇ᪥ᮏᏛ⾡఍㆟ᮦᩱᕤᏛ㐃ྜㅮ
₇఍ࠊி㒔ࠊ ᖺ ᭶㸬
㸦㸱㸰㸧
ᒣ⏣ᾈஅࠊᑠ➟ཎỌஂࠊ❧ᒣ⪔ᖹࠊᱵ⏣᫭ᶞࠊΏ㎶ᆂᏊࠊ
ࠕ඲ኚᙧ㏿ᗘᑐᛂᆺࣟ
࣮ࢻࢭࣝࡢ㛤Ⓨ࠾ࡼࡧホ౯ࠖ
ࠊ᪥ᮏᶵᲔᏛ఍➨ ᅇィ⟬ຊᏛㅮ₇఍㸦&0'㸧
ࠊᒾᡭࠊ
ᖺ ᭶㸬
㸦㸱㸱㸧
࣮࢞ࢹ࢕ࢼ࣮ࣆ࣮ࢱ࣮ࠊỤᕝ♸ஓࠊΏ㎶ᆂᏊࠊ
ࠕ⦪ᆺ↓㝸⭷࢞ࢫ㖠ࡢᛶ⬟ホ౯ࠖࠊ
㛵すᏛ⏕఍ᖹᡂ ᖺᗘᏛ⏕ဨ༞ᴗ◊✲Ⓨ⾲ㅮ₇఍ࠊி㒔ࠊ ᖺ ᭶㸬
㸦㸱㸲㸧
㜰஭Ꮥᡂࠊᱵ⏣᫭ᶞࠊΏ㎶ᆂᏊࠊ
ࠕ㉸㧗㏿⾪✺᫬࡟Ⓨ⏕ࡍࡿࣉࣛࢬ࣐ࡢィ ࠖ
ࠊ㛵
すᏛ⏕఍ᖹᡂ ᖺᗘᏛ⏕ဨ༞ᴗ◊✲Ⓨ⾲ㅮ₇఍ࠊி㒔ࠊ ᖺ ᭶㸬
㸦㸱㸳㸧
ᯇᓥரᚿࠊΏ㎶ᆂᏊࠊ
ࠕ㧗㏿ᅽ⦰◚○ࢆཷࡅࡿ◁ᒙ࡟ᑐࡍࡿࣘࢦࢽ࢜≧ែ᪉⛬ᘧ
ࡢᅵ㉁ຊᏛⓗゎ㔘ࠖ
ࠊ➨ ᅇᛂ⏝ຊᏛࢩ࣏ࣥࢪ࣒࢘ࠊᛂ⏝ຊᏛㄽᩥ㈹ཷ㈹ㅮ₇ࠊἈ⦖ࠊ
ᖺ ᭶㸬
㸦㸱㸴㸧
Ώ㎶ᆂᏊࠊྜྷᆏṇࠊ
ࠕ◁୰㈏ධ㏿ᗘ࠾ࡼࡧጼໃィ ࢆ⢭⦓໬ࡍࡿࡓࡵࡢᇶ♏◊✲ࠖࠊ
Ᏹᐂ⛉Ꮫ࡟㛵ࡍࡿᐊෆᐇ㦂ࢩ࣏ࣥࢪ࣒࢘ࠊ⚄ዉᕝࠊ ᖺ ᭶㸬
㸦㸱㸵㸧
Ώ㎶ᆂᏊ㸸
ࠕศ㔝ᶓ᩿ࢆ┠ᣦࡋࡓ⾪ᧁ◊✲ࠖࠊ➨ ᅇ⾪ᧁ㒊㛛ጤဨ఍ཬࡧㅮ₇఍ࠊ
ி㒔ࠊ ᖺ ᭶㸬
㸦㸱㸶㸧
<X+$1ࠊ䭯ᒣ᝴ࠊΏ㑔⫱ክࠊࠕ࣐ࣝࢳࢫࢣ࣮ࣝ᭷㝈せ⣲ἲ࡟ࡼࡿㄪ࿴⤌⧊ᮦᩱࡢ
ຊᏛ≉ᛶࡢゎᯒࠖ
ࠊ⢊య⢊ᮎ෬㔠༠఍ᖹᡂ ᖺᗘ᫓Ꮨ኱఍ࠊ᪩✄⏣኱Ꮫᅜ㝿఍㆟ሙࠊᮾிࠊ
㸦㸱㸷㸧
ᒸ⏣㥴ࠊୗᇛၨభࠊኴ⏣⨾⤮ࠊ䭯ᒣ᝴ࠊ
ࠕㄪ࿴⤌⧊ไᚚࡉࢀࡓ⣧ 1L ࡢ⤌⧊ᙧᡂ࡜
ኚᙧᣲືࠖࠊ⢊య⢊ᮎ෬㔠༠఍ᖹᡂ ᖺᗘ᫓Ꮨ኱఍ࠊ᪩✄⏣኱Ꮫᅜ㝿఍㆟ሙࠊᮾிࠊ
㸦㸲㸮㸧
బཎ㈗⾜ࠊ℩ᑿ༟ᘯࠊኴ⏣⨾⤮ࠊ䭯ᒣ᝴ࠊࠕᢲฟᡂᙧ࡟ࡼࡾస〇ࡋࡓ⣧࢔࣑ࣝࢽ
࣒࢘ㄪ࿴⤌⧊ไᚚᮦᩱࡢ⤌⧊࡜ᶵᲔⓗᛶ㉁ࠖ
ࠊ⢊య⢊ᮎ෬㔠༠఍ᖹᡂ ᖺᗘ᫓Ꮨ኱఍ࠊ᪩✄
⏣኱Ꮫᅜ㝿఍㆟ሙࠊᮾிࠊ
㸦㸲㸯㸧
㡲⸨኱࿴ࠊ&KRQFKDURHQ6DZDQJUDWࠊຍ⸨⩧ኴࠊኴ⏣⨾⤮ࠊ䭯ᒣ᝴ࠊ
ࠕ⣧㖡ࡢຊᏛ
≉ᛶ࡟ཬࡰࡍㄪ࿴⤌⧊ࡢᙺ๭ࠖ
ࠊ⢊య⢊ᮎ෬㔠༠఍ᖹᡂ ᖺᗘ᫓Ꮨ኱఍ࠊ᪩✄⏣኱Ꮫᅜ㝿఍
㆟ሙࠊᮾிࠊ
㸦㸲㸰㸧
ᕝ⏿ගࠊ㯮ᕝ࿴᫭ࠊኴ⏣⨾⤮ࠊ䭯ᒣ᝴ࠊ
ࠕ-HW0LOOἲ࡟ࡼࡿ⣧ࢳࢱࣥㄪ࿴⤌⧊ไ
−104−
ᚚᮦᩱࡢ๰〇ࠖ
ࠊ⢊య⢊ᮎ෬㔠༠఍ᖹᡂ ᖺᗘ᫓Ꮨ኱఍ࠊ᪩✄⏣኱Ꮫᅜ㝿఍㆟ሙࠊᮾிࠊ
㸦㸲㸱㸧
๓⏣ுࠊΏ㑔ᬛஅࠊኴ⏣⨾⤮ࠊ䭯ᒣ᝴ࠊ
ࠕㄪ࿴⤌⧊ไᚚࡉࢀࡓ 7L$O9 ྜ㔠ࡢ
ᚤどⓗ⤌⧊ᙧᡂ࡜ኚᙧᣲືࠖ
ࠊ⢊య⢊ᮎ෬㔠༠఍ᖹᡂ ᖺᗘ᫓Ꮨ኱఍ࠊ᪩✄⏣኱Ꮫᅜ㝿఍㆟
ሙࠊᮾிࠊ
㸦㸲㸲㸧
ኴ⏣⨾⤮ࠊ⃝஭㈗୍ࠊᕝஂಖගὒࠊ䭯ᒣ᝴ࠊࠕㄪ࿴⤌⧊ไᚚࡉࢀࡓ஧┦ࢫࢸࣥࣞ
ࢫ㗰ࡢࢿࢵࢺ࣮࣡ࢡᵓ㐀ࡀᶵᲔⓗ≉ᛶ࡟࠾ࡼࡰࡍᙳ㡪ࠖࠊ⢊య⢊ᮎ෬㔠༠఍ᖹᡂ ᖺᗘ᫓Ꮨ
኱఍ࠊ᪩✄⏣኱Ꮫᅜ㝿఍㆟ሙࠊᮾிࠊ
㸦㸲㸳㸧
⃝஭㈗୍ࠊỈ㇂༡ࠊኴ⏣⨾⤮ࠊ䭯ᒣ᝴ࠊ
ࠕ63'30 ࣉࣟࢭࢫ࡟ࡼࡾㄪ࿴⤌⧊ไᚚࡉ
ࢀࡓ⣧㕲ࡢ≉␗࡞ኚᙧᣲືࠖ
ࠊ⢊య⢊ᮎ෬㔠༠఍ᖹᡂ ᖺᗘ᫓Ꮨ኱఍ࠊ᪩✄⏣኱Ꮫᅜ㝿఍㆟
ሙࠊᮾிࠊ
㸦㸲㸴㸧
ᒣཱྀ⌮ࠊ&KRQFKDURHQ6DZDQJUDWࠊ6DQMD\.XPDU9DMSDLࠊ䭯ᒣ᝴ࠊ
ࠕ&R&U0R ㄪ
࿴⤌⧊ᮦᩱࡢᐊ ࡛ࡢኚᙧᣲືࠖ
ࠊ᪥ᮏ㕲㗰༠఍➨ ᅇ⛅Ꮨㅮ₇኱఍ࠊྡྂᒇ኱Ꮫࠊឡ▱ࠊ
㸦㸲㸵㸧
㯮ᕝ࿴᫭ࠊᕝ⏿ගࠊ๓ἑⱥ඾ࠊኴ⏣⨾⤮ࠊ䭯ᒣ᝴ࠊ
ࠕࢪ࢙ࢵࢺ࣑ࣝࣉࣟࢭࢫ࡟ࡼ
ࡾస〇ࡋࡓ⣧ࢳࢱࣥㄪ࿴⤌⧊ᮦࡢ⤌⧊࡜ᶵᲔⓗ≉ᛶࠖࠊ᪥ᮏ㕲㗰༠఍➨ ᅇ⛅Ꮨㅮ₇኱఍ࠊ
ྡྂᒇ኱Ꮫࠊឡ▱ࠊ
㸦㸲㸶㸧
Ώ㑔ᬛஅࠊ๓⏣ுࠊ␇⩧ஓࠊኴ⏣⨾⤮ࠊ6DQMD\9DMSDLࠊ䭯ᒣ᝴ࠊ
ࠕ7L$O9 ྜ
㔠ࡢࢪ࢙ࢵࢺ࣑ࣜࣥࢢࣉࣟࢭࢫ࡟ࡼࡿㄪ࿴⤌⧊ไᚚࠖࠊ᪥ᮏ㕲㗰༠఍➨ ᅇ⛅Ꮨㅮ₇኱఍ࠊ
ྡྂᒇ኱Ꮫࠊឡ▱ࠊ
㸦㸲㸷㸧
୰㖊㐩ஓࠊ䭯ᒣ᝴ࠊ
ࠕ‵ᘧ࣑ࣜࣥࢢ࡟ࡼࡿ 6L&<6= ㄪ࿴⤌⧊」ྜᮦᩱࡢస〇ࠖ
ࠊ᪥
ᮏ㕲㗰༠఍➨ ᅇ⛅Ꮨㅮ₇኱఍ Ꮫ⏕࣏ࢫࢱ࣮ࢭࢵࢩࣙࣥࠊྡྂᒇ኱Ꮫࠊឡ▱ࠊ
㸦㸳㸮㸧
䭯ᒣ᝴ࠊࠕㄪ࿴⤌⧊ไᚚ࡟ࡼࡿ㠉᪂ⓗຊᏛ≉ᛶࢆ᭷ࡍࡿ㔠ᒓᮦᩱࡢ๰〇࡜ࡑࡢ≉
ᛶⓎ⌧ᶵᵓࡢゎ᫂ࠖ
ࠊ-67⏘Ꮫඹ๰ᇶ♏ᇶ┙◊✲ࣉࣟࢢ࣒ࣛࠕ࣊ࢸࣟᵓ㐀ไᚚࠖබ㛤ࢩ࣏ࣥ
ࢪ࣒࢘ࠊ
ࠕ࣊ࢸࣟᵓ㐀ไᚚ࡛㉳ࡇࡍ࢖ࣀ࣮࣋ࢩࣙࣥ㸫ᵓ㐀⏝㔠ᒓᮦᩱࡢ᪂ᣦᑟཎ⌮㸫ࠖ
ࠊྡ
ྂᒇ኱Ꮫࠊឡ▱ࠊ
㸦㸳㸯㸧
ኴ⏣⨾⤮ࠊ䭯ᒣ᝴ࠊࠕㄪ࿴⤌⧊ไᚚ࡟ࡼࡿ㠉᪂ⓗຊᏛ≉ᛶࢆ᭷ࡍࡿ㔠ᒓᮦᩱࡢ๰
〇࡜ࡑࡢ≉ᛶⓎ⌧ᶵᵓࡢゎ᫂ࠖ
ࠊ-67⏘Ꮫඹ๰ᇶ♏ᇶ┙◊✲ࣉࣟࢢ࣒ࣛࠕ࣊ࢸࣟᵓ㐀ไᚚࠖ
+ ࢟ࢵࢡ࢜ࣇࠊ㕲㗰఍㤋ࠊᮾிࠊ
㸦㸳㸰㸧
␇⩧ஓࠊΏ㑔ᬛஅࠊ๓⏣ுࠊኴ⏣⨾⤮ࠊ6DQMD\.XPDU9DMSDLࠊ䭯ᒣ᝴ࠊ
ࠕࢪ࢙ࢵ
ࢺ࣑ࣜࣥࢢἲ࡟ࡼࡾㄪ࿴⤌⧊ไᚚࡉࢀࡓ 7L$O9 ྜ㔠ࡢኚᙧᣲືࠖ➨஬༑ඵᅇ᪥ᮏᏛ⾡఍
㆟ᮦᩱᕤᏛ㐃ྜㅮ₇఍ࠊி㒔ࢸࣝࢧࠊி㒔ࠊ
㸦㸳㸱㸧
ቑ⏣୍ᶞࠊୗᇛၨభࠊᒸ⏣㥴ࠊኴ⏣⨾⤮ࠊ䭯ᒣ᝴ࠊ
ࠕ⣧ 1L ㄪ࿴⤌⧊ᮦᩱࡢኚᙧᶵ
ᵓࠖ
ࠊ➨஬༑ඵᅇ᪥ᮏᏛ⾡఍㆟ᮦᩱᕤᏛ㐃ྜㅮ₇఍ࠊி㒔ࢸࣝࢧࠊி㒔ࠊ
㸦㸳㸲㸧
ኴ⏣⨾⤮ࠊ⃝஭㈗୍ࠊỈ㇂༡ࠊኴ⏣⨾⤮ࠊ䭯ᒣ᝴ࠊ
ࠕㄪ࿴⤌⧊ไᚚࡉࢀࡓ⣧㕲ࡢ
≉␗࡞ኚᙧᣲື࡜⤌⧊ᅉᏊࠖ⢊య⢊ᮎ෬㔠༠఍ᖹᡂ ᖺᗘ⛅Ꮨ኱఍ࠊ኱㜰኱Ꮫࢥࣥ࣋ࣥࢩ
−105−
ࣙࣥࢭࣥࢱ࣮ࠊ྿⏣ᕷࠊ
㸦㸳㸳㸧
బཎ㈗⾜ࠊኴ⏣⨾⤮ࠊ䭯ᒣ᝴ࠊࠕ࢔࣑ࣝࢽ࣒࢘ㄪ࿴⤌⧊ᮦᩱࡢ⤌⧊࡜ຊᏛ≉ᛶࠖ
㍍㔠ᒓᏛ఍➨ ᅇ⛅Ꮨ኱఍ࠊᮾிᕤᴗ኱Ꮫࠊᮾிࠊ
㸦㸳㸴㸧
ᕝ⏿ගࠊ㯮ᕝ࿴᫭ࠊ๓ἑⱥ඾ࠊኴ⏣⨾⤮ࠊ䭯ᒣ᝴ࠊ
ࠕ⣧ࢳࢱࣥㄪ࿴⤌⧊ᮦᩱࡢ -HW
0LOOἲ࡟ࡼࡿ๰〇ࠖ
ࠊ㍍㔠ᒓᏛ఍➨ ᅇ⛅Ꮨ኱఍ࠊᮾிᕤᴗ኱Ꮫࠊᮾிࠊ
㸦㸳㸵㸧
ኴ⏣⨾⤮ࠊ⃝஭㈗୍ࠊỈ㇂༡ࠊୖ⏣኱グࠊ䭯ᒣ᝴ࠊ
ࠕ)H ㄪ࿴⤌⧊ᮦࡢ≉␗࡞ኚᙧ
ᣲືࠖ
ࠊ᪥ᮏ㔠ᒓᏛ఍ ᖺ᫓ᮇ㸦➨ ᅇ㸧኱఍ࠊᮾி኱Ꮫࠊᮾிࠊ
㸦㸳㸶㸧
%KXSHQGUD6KDUPDࠊ6DQMD\.XPDU9DMSDLࠊ䭯ᒣ᝴ࠊ
ࠕ)DEULFDWLRQRI8OWUD)LQH
*UDLQHG%HWD7LWDQLXPDOOR\E\IROORZLQJDQ1RYHO3RZGHU0HWDOOXUJ\DSSURDFKࠖࠊ᪥
ᮏ㔠ᒓᏛ఍ ᖺ᫓ᮇ㸦➨ ᅇ㸧኱఍ࠊᮾி኱Ꮫࠊᮾிࠊ
㸦㸳㸷㸧
1XU =DOLNKD %LQWL .KDOLO ࠊ 6DQMD\ .XPDU 9DMSDL ࠊ ኴ ⏣ ⨾ ⤮ ࠊ 䭯 ᒣ ᝴ ࠊ
ࠕ5HODWLRQVKLSEHWZHHQ*UDLQ6L]H&RHILFLHQWRI9DULDWLRQRQ0HFKDQLFDO3URSHUWLHV
RI6L&&RPSDFWVࠖ
ࠊ᪥ᮏ㔠ᒓᏛ఍ ᖺ᫓ᮇ㸦➨ ᅇ㸧኱఍ࠊᮾி኱Ꮫࠊᮾிࠊ
㸦㸴㸮㸧
<X+DQࠊ䭯ᒣ᝴ Ώ㑔⫱ክࠊࠕ'HIRUPDWLRQ%HKDYLRU$QDO\VLVRI+DUPRQLFDQG
+HWHURJHQHRXV%LPRGDO6WUXFWXUHG&RPSDFWV%DVHGRQ0XOWL6FDOH)(0ࠖ
ࠊ᪥ᮏ㔠ᒓᏛ఍
ᖺ᫓ᮇ㸦➨ ᅇ㸧኱఍ࠊᮾி኱Ꮫࠊᮾிࠊ
㸦㸴㸯㸧
㔝ᮧὈ⛱ࠊᑎඖ୔㞝ࠊ᪥ୗ㈗அࠊࠕ⼥ྜ⢏Ꮚࣇ࢕ࣝࢱ࡟ᇶ࡙ࡃࢹ࣮ࢱྠ໬ᢏ⾡
ࢆ฼⏝ࡋࡓᵓ㐀ྠᐃ࡜ᮍほ ࢹ࣮ࢱࡢྲྀᚓࠖ
ࠊ
➨ ᮇᏛ⾡ㅮ₇఍ࠊ⚟ᒸ኱Ꮫ⚟ᒸᕷࠊ0D\
ࠊ
㸦㸴㸰㸧
ᒸ ┤㍤ࠊ‫‮‬ὸᔞஅࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴ㸸
ࠕࣛࣥࣉධຊἼࢆ⏝࠸ࡓ &)53
᥋╔᥋ྜ⥅ᡭࡢΰྜ࣮ࣔࢻ⾪ᧁ◚ቯࡌࢇᛶホ౯ࠖࠊ00 ᮦᩱຊᏛ࢝ࣥࣇ࢓ࣞࣥࢫࠊ⚟
ᓥ኱Ꮫ⚟ᓥᕷࠊ-XO\ࠊ
㸦㸴㸱㸧
Ἑᮧ♸㈗ࠊ=DLODQLࠊ6ࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴࠊⱝᯘᏹᶞࠊ
ࠕ6+3% ἲࢆ⏝
࠸ࡓ &)53 ✚ᒙᮦࡢ࢚ࢿࣝࢠ࣮྾཰≉ᛶホ౯ࠖ
ࠊ00 ᮦᩱຊᏛ࢝ࣥࣇ࢓ࣞࣥࢫࠊ⚟ᓥ኱
Ꮫ⚟ᓥᕷࠊ-XO\ࠊ
㸦㸴㸲㸧
Ἑᮧ♸㈗ࠊ=DLODQLࠊ6ࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴࠊⱝᯘᏹᶞࠊ
ࠕ&)53 ✚ᒙᮦ
ࡢ⾪ᧁ࢚ࢿࣝࢠ࣮྾཰≉ᛶࡢᐇ㦂ⓗホ౯ࠖࠊ➨ ᅇ )53&21(; ㅮ₇఍ࠊி㒔ᕤⱁ⧄⥔
኱Ꮫி㒔ᕷࠊ2FWREHUࠊ
㸦㸴㸳㸧
=DLODQLࠊ6ࠊἙᮧ♸㈗ࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴࠊⱝᯘᏹᶞࠊ
ࠕ⾪ᧁⲴ㔜ୗ
࡟࠾ࡅࡿ &)53 ✚ᒙᮦࡢᅽ⦰ᣲືࡢᐇ㦂ⓗホ౯ࠖࠊ➨ ᅇ᪥ᮏᏛ⾡఍㆟ᮦᩱᕤᏛ㐃ྜㅮ₇఍ࠊ
ி㒔ࢸࣝࢧி㒔ᕷࠊ2FWREHUࠊ
㸦㸴㸴㸧
᪥ୗ㈗அࠊ
ࠕ&)53 ࡢ⾪ᧁ◚ቯ⌧㇟࡜ࡑࡢホ౯࠾ࡼࡧᑐ⟇ࠖ
ࠊ➨ ᅇ」ྜᮦᩱ㒊㛛
ጤဨ఍ࠊᮾⰪᶵᲔ἟ὠᕷࠊ1RYHPEHUࠊ
㸦㸴㸵㸧
Ἑᮧ♸㈗ࠊ=DLODQLࠊ6ࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴࠊⱝᯘᏹᶞࠊ
ࠕ&)53 ✚ᒙᮦ
ࡢ㍈ᅽቯ㐣⛬࡜࢚ࢿࣝࢠ࣮྾཰⬟ࡢᐇ㦂ⓗホ౯ࠖࠊ
➨ ᅇᮦᩱࡢ⾪ᧁၥ㢟ࢩ࣏ࣥࢪ࣒࢘ࠊ㇏
ᶫᢏ⾡⛉Ꮫ኱Ꮫ㇏ᶫᕷࠊ1RYHPEHUࠊࠊ
㸦㸴㸶㸧
ᒸ ┤㍤ࠊ‫‮‬ὸᔞஅࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴࠊ
ࠕ6+3% ἲࢆ⏝࠸ࡓ &)53 ᥋╔᥋
−106−
ྜ⥅ᡭࡢΰྜ࣮ࣔࢻ◚ቯࡌࢇᛶホ౯ࠖࠊ➨ ᅇᮦᩱࡢ⾪ᧁၥ㢟ࢩ࣏ࣥࢪ࣒࢘ࠊ㇏ᶫᢏ⾡⛉
Ꮫ኱Ꮫ㇏ᶫᕷࠊ1RYHPEHUࠊࠊ
㸦㸴㸷㸧
ᐑᓮᣅஓࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴࠊࠕ&)53 ᥋╔᥋ྜ㒊ᮦࡢΰྜ࣮ࣔࢻ⑂ປ◚ቯ
≉ᛶ࡟ཬࡰࡍ⧞ࡾ㏉ࡋ㏿ᗘࡢᙳ㡪ࠖࠊ➨ ᅇ᪥ᮏ」ྜᮦᩱ఍㆟ࠊᮾி⌮⛉኱Ꮫᮾி㒔ࠊ
0DUFKࠊ
㸦㸵㸮㸧
=DLODQLࠊ6ࠊἙᮧ♸㈗ࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴࠊ㧗ᶫ₶ᖹࠊ
ࠕ&)53 ✚ᒙᮦ
ࡢ⾪ᧁ࢚ࢿࣝࢠ࣮྾཰≉ᛶࡢᐇ㦂ⓗホ౯ࠖࠊ➨ ᅇ᪥ᮏ」ྜᮦᩱ఍㆟᪥ᮏᮦᩱᏛ఍ࠊᮾி
⌮⛉኱Ꮫᮾி㒔ࠊ0DUFKࠊ
㸺༤ኈㄽᩥ㸼
㸦㸯㸧ኴ⏣ ⨾⤮ࠊ
ࠕ༢┦࡞ࡽࡧ࡟஧┦⣔㔠ᒓᮦᩱ࡟࠾ࡅࡿㄪ࿴⤌⧊ไᚚࣉࣟࢭࢫ࡟㛵ࡍࡿ◊✲ࠖ
㸺ಟኈㄽᩥ㸼
㸦㸯㸧኱ᆤᐶኴࠊ
ࠕ✀ࠎࡢࢮ࢜ࣛ࢖ࢺ࡟ᑐࡍࡿࢽࢵࢣࣝ(II)࢖࢜ࣥࡢ࢖࢜ࣥ஺᥮≧ែࡢゎ᫂ࠖ
㸦㸰㸧ᓥ⏣ెዉࠊ
ࠕ⤌ᡂࡢ␗࡞ࡿࣃࣛࢪ࣒࢘㖡ྜ㔠ゐ፹ࡢ⏕ᡂ࣓࢝ࢽࢬ࣒ࠖ
㸦㸱㸧䭜 Ꮥ♸ࠊ
ࠕࣜࢳ࣒࢘࢖࢜ࣥ㟁ụ㧗ᐜ㔞ṇᴟά≀㉁ Li2MnSiO4 ࡢస〇࡜ホ౯ࠖ
㸦㸲㸧⸨஭ ள⪨ࠊ
ࠕPt ᢸᣢ WO3 ࡢస〇࡜ᾮ┦࣭Ẽ┦࡛ࡢගゐ፹άᛶホ౯ࠖ
㸦㸳㸧ᰗ஭ ຾ኴࠊ
ࠕࢰࣝ-ࢤࣝἲ࠾ࡼࡧ W/O ࢚࣐ࣝࢩࣙࣥἲ࡟ࡼࡿ Eu3+ྵ᭷ Ta2O5 ⌫≧⢏Ꮚ⺯
ගయࡢస〇࡜ホ౯ࠖ
㸦㸴㸧ෆᮧ ᬛࠊ
ࠕRF-MBE ἲ࡟ࡼࡿ Si(100)ᇶᯈୖ GaN ⤖ᬗᡂ㛗࡟㛵ࡍࡿ◊✲ࠖ
㸦㸵㸧Ύཎ ⪽௓ࠊ
ࠕKFM ࡟ࡼࡿ InGaN ⾲㠃ࡢ In ⤌ᡂᦂࡽࡂཬࡧ GaN ⣔ࢹࣂ࢖ࢫࡢ᩿㠃㟁఩ศ
ᕸࡢホ౯ࠖ
㸦㸶㸧ᆏᮏ ṇὒࠊ
ࠕRF-MBE ἲࢆ⏝࠸ࡓ InGaN ࡢ⭷ཌ࡟ᑐࡍࡿ In ⤌ᡂኚ໬࡟㛵ࡍࡿ◊✲ࠖ
㸦㸷㸧ᰘ㔝 ㅬኴᮁࠊ
ࠕSi ᇶᯈୖ⦪ᆺ῝⣸እ LED ࡢ㛤Ⓨࠖ
㸦㸯㸮㸧
ᶫᮏ 㞝௓ࠊ
ࠕ㓟໬࣒࢞ࣜ࢘ࡢ⣸እ⥺᳨ฟჾᛂ⏝࡟ྥࡅࡓ᳨ウࠖ
㸦㸯㸯㸧
ྜྷᮧ ཭Ꮥࠊ
ࠕInN 㟁Ꮚࢹࣂ࢖ࢫᛂ⏝࡟ྥࡅࡓࢹࣂ࢖ࢫࣉࣟࢭࢫ࡟㛵ࡍࡿ◊✲ࠖ
㸦㸯㸰㸧
ᮧ⏣㞞ࠊ
ࠕ6&$36 ࢆ⏝࠸ࡓ໬ྜ≀ኴ㝧㟁ụࡢࣂࣥࢻࣉࣟࣇ࢓࢖ࣝࡢ᭱㐺໬ࠖ
㸦㸯㸱㸧
᳃໶ࠊ
ࠕ&X=Q6Q6ࠊ6H ኴ㝧㟁ụ࡟࠾ࡅࡿ 1D) ᚋฎ⌮ࡢ᳨ウࠖ
㸦㸯㸲㸧
Ỉᮏ㞝ኴࠊ
ࠕ=Q2ࠊ6$O&X,Qࠊ*D6H ࣂࢵࣇ࢓ࣇ࣮ࣜኴ㝧㟁ụࡢస〇࡜ホ౯ࠖ
㸦㸯㸳㸧
ᑠ㜰㈗୍ࠊ
ࠕ6Q6 ⢊ᮎ࡜ 6 ⢊ᮎࢆ⏝࠸ࡓ◲໬ἲ࡟ࡼࡿ &X6Q6 ኴ㝧㟁ụࡢస〇ࠖ
㸦㸯㸴㸧
㧗஭ㄹࠊ
ࠕ&X=Q6Q6ࠊ6H ⷧ⭷ኴ㝧㟁ụࡢ &G ᣑᩓฎ⌮࡟ࡼࡿ SQ ᥋ྜᙧᡂ᮲௳ࠖ
㸦㸯㸵㸧
஭♸႐ࠊ
ࠕ ࢰ࣮ࣥ⟶≧⅔ࢆ⏝࠸ࡓ &X6Q6H ග྾཰ᒙࡢస〇࡜ホ౯ࠖ
㸦㸯㸶㸧
⁁஭ බுࠕ㉸㧗㏿⾪✺᫬࡟࠾ࡅࡿ⾪ᧁ◚ቯ⌧㇟ゎ᫂ࡢࡓࡵࡢ ᗘኚ໬ᶵᵓ࡟㛵
ࡍࡿ◊✲ࠖ
㸦㸯㸷㸧
ྜྷᆏṇࠊ
ࠕ◁࡬ࡢ㣕⩧య㧗㏿㈏ධᐇ㦂࡟࠾ࡅࡿᣲືィ ᡭἲࡢ☜❧࣐ࢢࢿࢵࢺ࣭
ࢥ࢖ࣝἲ࡟ࡼࡿ㟁ᅽฟຊࡢࣔࢹࣝ໬ࠖ
㸦㸰㸮㸧
Ώ㑔ᬛஅࠊ
ࠕ7L$O9 ྜ㔠ࡢ㧗ࡦࡎࡳຍᕤ࡟ࡼࡿㄪ࿴⤌⧊ไᚚࠖ
−107−
㸦㸰㸯㸧
㧗ᶫᝆᶞࠊ
ࠕ+LJK3UHVVXUH7RUVLRQ+37ຍᕤࡉࢀࡓ686- ஧┦ࢫࢸࣥࣞࢫ㗰
ࡢ⤌⧊ᙧᡂࠖ
㸦㸰㸰㸧
ᕝஂಖගὒࠊ
ࠕ3063' ࣉࣟࢭࢫ࡟ࡼࡿ஧┦ࢫࢸࣥࣞࢫ㗰ࡢᚤどⓗ⤌⧊ไᚚࠖ
㸦㸰㸱㸧
1XUXO1DGLDK%LQWL0DKPXGࠊࠕ)DEULFDWLRQRI&HUDPLFV&RPSRVLWHV0DWHULDOVࠖ
㸦㸰㸲㸧
㯮ᕝ࿴᫭ࠊ
ࠕ⣧ࢳࢱࣥࡢㄪ࿴⤌⧊ᙧᡂ࡟ཬࡰࡍ࣑ࣜࣥࢢࣉࣟࢭࢫࡢᙳ㡪ࠖ
㸦㸰㸳㸧
=KDQJ 0HQJࠊ
ࠕ686/ ࠾ࡼࡧ 6866 ࡟࠾ࡅࡿ 636 ᮲௳࡜ᚤ⣽⤌⧊ࡢ㛵ಀࠖ
㸦㸰㸴㸧
୰ᓥṇἲࠊ
ࠕ㧗࢚ࢿࣝࢠ࣮࣮࣑࣎ࣝࣝ࡟ࡼࡿ 6L7L ࡢ࣓࢝ࢽ࢝ࣝ࢔ࣟ࢖ࣥࢢࠖ
㸦㸰㸵㸧
ୗᇛၨ♸ࠊ
ࠕ↓㟁ゎ 1L ࡵࡗࡁࢆ⏝࠸ࡓ⣧ 1L ࡢ⤌⧊ไᚚ࡜ኚᙧᣲືࠖ
㸦㸰㸶㸧
7RQJ%Rࠊ
ࠕ686/ ࣮࢜ࢫࢸࢼ࢖ࢺ⣔ࢫࢸࣥࣞࢫ㗰ࡢຊᏛ≉ᛶ࡟ཬࡰࡍㄪ࿴⤌⧊
ࡢᙺ๭ࠖ
㸦㸰㸷㸧
ᒣཱྀ⌮ࠊ
ࠕ&R&U0R ྜ㔠ㄪ࿴⤌⧊ᮦᩱࡢ⤌⧊ᙧᡂ࠾ࡼࡧኚᙧᣲືࠖ
㸦㸱㸮㸧
㇂཭⾜ࠊ
ࠕ᭷㝈せ⣲ゎᯒࢆ⏝࠸ࡓ &)53 〇㧗ᅽᐜჾࡢᵓ㐀タィࠖ
㸦㸱㸯㸧
ஂᮌ⚈ᖹࠊ
ࠕ7L$O9 ྜ㔠ࡢኚᙧᣲື࡟ཬࡰࡍㄪ࿴⤌⧊ไᚚࡢᙳ㡪ࠖ
㸦㸱㸰㸧
ᐑᓮᣅஓࠊ
ࠕ&)53 ᥋╔᥋ྜ㒊ᮦࡢΰྜ࣮ࣔࢻ⑂ປ◚ቯ≉ᛶ࡟ཬࡰࡍ㈇Ⲵ㏿ᗘࡢᙳ
㡪ࠖ
㸦㸱㸱㸧
ᒣ⏣㍤᫂ࠊ
ࠕ3=7 ࢺࣛࣥࢫࢹ࣮ࣗࢧࡢᅽ㟁≉ᛶ࡟ཬࡰࡍᚤどⓗᦆയࡢᙳ㡪ࠖ
㸦㸱㸲㸧
‫‮‬ὸᔞஅࠊ
ࠕ&)53 ᥋╔᥋ྜ㒊ᮦࡢ◚ቯࡌࢇᛶホ౯࡟ཬࡰࡍ㠀⥺ᙧኚᙧࡢᙳ㡪ࠖ
㸦㸱㸳㸧
ྜྷ⏣࿴ᶞࠊ
ࠕ&)53 ᶵᲔ᥋ྜ⥅ᡭࡢᙉᗘ≉ᛶ࡟ཬࡰࡍ⧄⥔㓄ྥࡢᙳ㡪ࠖ
㸺ᅜ㝿఍㆟ᇶㄪ࣭ᣍᚅㅮ₇㸼
㸦㸯㸧࡞ࡋ
㸺◊✲఍࣭ຮᙉ఍㛤ദ≧ἣ㸼
㸦㸯㸧ྡ⛠㸸QG,QWHUQDWLRQDO6\PSRVLXPRQ)XQFWLRQDOL]DWLRQDQG$SSOLFDWLRQVRI6RIW+DUG
0DWHULDOV6RIW+DUGࠊሙᡤ㸸࣮࣒ࣟグᛕ㤋ࠊ❧࿨㤋኱Ꮫࡧࢃࡇࡃࡉࡘ࢟ࣕࣥࣃࢫࠊ
⁠㈡┴ⲡὠᕷࠊ᪥᫬㸸 ᖺ ᭶ ᪥
㸦㸰㸧ྡ⛠㸸WK*HUPDQ-DSDQHVHWK,QWHUQDWLRQDO6\PSRVLXPRQ1DQRVWUXFWXUHVࠊሙᡤ㸸
ᮒ㞛࢟ࣕࣥࣃࢫࠊி㒔ᕷࠊ᪥᫬㸸 ᖺ ᭶ ᪥
㸦㸱㸧
㸺≉チ㸼
㸦㸯㸧࡞ࡋ
−108−
኱ᆺ◊✲⿦⨨ᡂᯝሗ࿌᭩
⿦⨨ྡ
◊✲㈐௵⪅
㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧
᪥❧ప┿✵ศᯒ㉮ᰝ㟁Ꮚ㢧ᚤ㙾
⌮ᕤᏛ㒊࣭ᩍᤵ࣭ୖ㔝 ᫂
◊✲ࢸ࣮࣐
ྛ✀ᮦᩱࡢᚤどⓗ⤌⧊࠾ࡼࡧ◚㠃ほᐹ➼ࢆ㏻ࡌࡓᮦᩱ๰ᡂ㸤ホ౯◊✲
◊✲ࡢᴫせ
ᙜヱ㢧ᚤ㙾ࡣ㸪ձ᪥❧ࣁ࢖ࢸࢡࣀࣟࢪ࣮ࢬ〇ప┿✵ศᯒ㉮ᰝ㟁Ꮚ㢧ᚤ 㙾
SU6600㸪ղ࢜ࢵࢡࢫࣇ࢛࣮ࢻ࣭࢖ࣥࢫࢺ࣓ࢗࣝࣥࢶ〇࢚ࢿࣝࢠ࣮ศᩓᆺ㹖⥺ඖ
⣲ศᯒ⿦⨨ EDS㸪ճ࢜ࢵࢡࢫࣇ࢛࣮ࢻ࣭࢖ࣥࢫࢺ࣓ࢗࣝࣥࢶ〇㟁Ꮚ⥺ᚋ᪉ᩓ஘
ᅇᢡ⤖ᬗ᪉఩ゎᯒ⿦⨨ EBSD ࠿ࡽᵓᡂࡉࢀ࡚࠾ࡾ㸪ձࡣྛ✀ᮦᩱࡸ◚㠃ࡢᚤど
ⓗほᐹ࡟㸪ղࡣᚤᑠ㡿ᇦࡢඖ⣲ศᯒ࡟㸪ճࡣ⤖ᬗ᪉఩ゎᯒࡸᚤど㡿ᇦࡢኚᙧ⛬
ᗘศᯒ࡞࡝ࡢ⏝࠸ࡽࢀ࡚࠸ࡿ㸬ྛ⿦⨨㸦ձ㸪ղ㸪ճ㸧ࢆ⏝࠸ࡿࡇ࡜࡛ᚓࡽࢀࡓ
◊✲ᡂᯝࡢᴫせࢆ௨ୗ࡟♧ࡍ㸬
Ϩ㸬SU6600 ࢆ⏝࠸ࡓ◊✲ᡂᯝ㸸
࣭ྛ✀◚㠃ࡢほᐹ㸪ࡁ⿣ᑍἲࡢ ᐃ
࣭◚㠃พฝࡢ㸱ḟඖ໬㸪FRASTA ゎᯒ
࣭ヨᩱ⾲㠃ᛶ≧ࡢほᐹ ࡞࡝
ϩ㸬EDS ࢆ⏝࠸ࡓ◊✲ᡂᯝ㸸
࣭ྛ✀ᮦᩱࡢ໬Ꮫᡂศศᯒ
࣭ᮦᩱ୰ࡢඖ⣲ศᕸศᯒ ࡞࡝
Ϫ㸬EBSD ࢆ⏝࠸ࡓ◊✲ᡂᯝ㸸
࣭⤖ᬗ᪉఩ゎᯒ
࣭㞟ྜ⤌⧊⏕ᡂ≧ែศᯒ
࣭⤖ᬗ⢏ᚄゎᯒ
࣭ෆ㒊ࡦࡎࡳゎᯒ ࡞࡝
−109−
฼⏝ᡂᯝ
SEM ࢆ⏝࠸ࡓᮦᩱ⤌⧊࣭◚㠃ほᐹ㸪EDS ࢆ⏝࠸ࡓ໬Ꮫ⤌ᡂศᯒ㸪EBSD ࢆ⏝
࠸ࡓ⤖ᬗ᪉఩ゎᯒ➼࡛㈗㔜࡞◊✲ᡂᯝࢆከࡃᚓࡓ㸬⿦⨨฼⏝᫬㛫ࡀ≉࡟ከ࠸㸰
◊✲ᐊࡢᙜヱ⿦⨨ࢆ⏝࠸ࡓ⤖ᯝࢆྵࡴ◊✲ᡂᯝࢆ௨ୗ࡟♧ࡍ㸬
䛆ㄽᩥ䛇㻌
1. Benjamin Guennec, Akira Ueno, Tatsuo Sakai, Masahiro Takanashi, Yu Itabashi
and Mie Ota, "Dislocation-based Interpretation on the Effect of the Loading
Frequency on the Fatigue Properties of JIS S15C Low Carbon Steel",
International Journal of Fatigue, Vol.70, pp.328-341, 2015.
2. Shoichi Kikuchi, Yuta Nakamura, Akira Ueno and Kei Ameyama, "Development of
Low Temperature Nitriding Process and Its Effects on the 4-points Bending
Fatigue Properties of Commercially Pure Titanium", Advanced Materials
Research, No.891-892, pp.656-661, 2014.
3. Benjamin Guennec, Akira Ueno, Tatsuo Sakai, Masahiro Takanashi and Yu
Itabashi, "Effect of the Loading Frequency on Fatigue Properties of JIS S15C Low
Carbon Steel and Some Discussions Based on Micro-plasticity Behavior",
International Journal of Fatigue, Vol.66, pp.29-38, 2014.
4. Masahiro Nawa, Naoki Kurizoe, Yasunori Okamoto and Akira Ueno,
"Transformation-induced Plastic Deformation in Ce-TZP/alumina Nanocomposite
Generated During Fatigue Tests at Room Temperature", Journal of the European
Ceramic Society, Vol.34, pp.4337-4345, 2014.
5. ୖ㔝 ᫂㸪す⏣໷⚽㸪ᐑᕝ㐍㸪ᒣ⏣⪔஧㸪⳥ụᑗ୍㸪
ࠕ¥area ἲࢆ⏝࠸ࡓ࢔
࣑ࣝࢲ࢖࢝ࢫࢺྜ㔠ࡢ⑂ປ㝈ᗘண ࠖ㸪ᮦᩱ㸪Vol.63, No.12, pp.844-849, 2014.
6. ྥᒣ࿴Ꮥ㸪ⰼᮌᏹಟ㸪ᒸ⏣᠇ྖ㸪ቃ⏣ᙲⰾ㸪୰ᮧ⿱⣖㸪Ⳣ⏣ ῟㸪すᕝ ฟ㸪
ୖ㔝 ᫂㸪㓇஭㐩㞝㸪
ࠕ㟼ⓗᙉᗘ≉ᛶ್࡟ࡼࡿᶵᲔᵓ㐀⏝Ⅳ⣲㗰ࡢ S-N ᭤⥺
࡟㛵ࡍࡿ⤫ィⓗ᥎ᐃࠖ㸪ᮦᩱ㸪ᥖ㍕ྍ.
7. ୕ᾆᣅ㸪䬟ཎ㝯அ㸪୕ᮧ┿࿃㸪ஂ㔝㝯⣖㸪⳥ụᑗ୍㸪ୖ㔝᫂㸪㓇஭㐩㞝㸪
ࠕࣇ
ࣛࢡࢺࢢࣛࣇ࢕࡟ࡼࡿ⇕㛫ᡂᙧࡤࡡ⏝㗰 SUP7 ࡢෆ㒊㉳Ⅼᆺ⑂ປ◚ቯ࣓࢝
ࢽࢬ࣒ࡢ᳨ウࠖ
㸪ᮦᩱ㸪ᥖ㍕ྍ.
8. Sanjay Kumar Vajpai, Mie Ota, Tomoyuki Watanabe, Ryo Maeda, Tatsuya
Sekiguchi, Takayuki Kusaka and Kei Ameyama, "The Development of High
Performance Ti-6Al-4V Alloy via a Unique Microstructural Design with Bimodal
Grain Size Distribution", Metallurgical and Materials Transactions A, Vol.64,
No.2, pp.903-914, 2015.
9. Mie Ota, Sanjay Kumar Vajpa, Ryota Imao, Kazuaki Kurokawa and Kei Ameyama,
"Application of High Pressure Gas Jet Mill Process to Fabricate High Performance
Pure Titanium", J. Materials Transactions, Vol.56, No.1, pp.154-159, 2015.
10. Nurul Nadia MEHMUD, Sanjay Kumar Vaipai and Kei Ameyama, "Fabrication of
−110−
Yttria Stabilized Zirconia-Silicon Carbide Composites with High Strength and
High Toughness by Spark Plasma Sintering of Mechanically Milled Powders", J.
Materials Transactions, Vol.55, No.12, pp.1827-1833, 2014.
11. Z. Zhang, D. Orlov, S. K. Vajpai, B. Tong and K. Ameyama, "Importance of
Bimodal Structure Topology in the Control of Mechanical Properties of a Stainless
Steel", J. Advanced Engineering Materials, DOI: 10.1002/adem.201400358, 2014.
12. R. Yoshida, T. Tsuda, H. Fujiwara, H. Miyamoto and K. Ameyama, "Annealing
Effect on Mechanical Properties of Ti-Al Alloy/Pure Ti Harmonic-Structured
Composite by MM/SPS Process", Materials Science and Engineering, 63,
doi:10.1088/1757-899X/63/1/012031, 2014.
13. Y. Tsuzuki, H. Fujiwara, H. Miyamoto and K. Ameyama, "Deformation behavior of
high speed steel/low Carbon steel composite with harmonic structure by MM/SPS
process", Materials Science and Engineering, 63,
doi:10.1088/1757-899X/63/1/012029, 2014.
14. Sanjay Kumar Vajpai, Kei Ameyama, Mie Ota, Tomoyuki Watanabe, Ryo Maeda,
Tatsuya Sekiguchi, Guy Dirras and David Tingaud, "High performance Ti-6Al-4V
alloy by creation of harmonic structure design", Materials Science and
Engineering, 63, doi:10.1088/1757-899X/63/1/012030, 2014.
15. M. Ota, K. Sawai, M. Kawakubo, S. K. Vajpai and K. Ameyama, "Harmonic
structure formation and deformation behavior in a (Į + Ȗ) two phase stainless
steel", Materials Science and Engineering, Vol.63, No.1, pp.12-27, 2014.
16. Yasuhiro Kanoko, Kei Ameyama, Shigeo Tanaka and Benjamin Hefler, "Production
of ultra-thin porous metal paper by applying the fibre space holder method",
Powder Metallurgy, Vol.57, No.3, pp.1-5, 2014.
17. Mie Ota, Keisuke Shimojo, Shun Okada, Sanjay Kumar Vajpai and Kei Ameyama,
"Harmonic Structure Design and Mechanical Properties of Pure Ni Compact",
Journal of Powder Metallurgy & Mining, Vol.3, No.1, Doi:0.4172/2168-9806.
1000122, 2014.
18. Ruixiao Zheng, Yanbo Sun, Wenlong Xiao, Kei Ameyama and Chaoli Ma,
"Nanostructured Al87Ni8.5Ce3Fe1Cu0.5 alloy prepared by mechanical milling spark
plasma sintering and hot extrusion", Materials Science & Engineering A, Vol.606,
No.3, pp.426-433, 2014.
19. Dmitry Orlov, Daniele Pelliccia, Xiya Fang, Laure Bourgeois, Nigel Kirby, Andrei
Y Nikulin, Kei Ameyama and Yuri Estrin, "Particle evolution in Mg-Zn-Zr alloy
processed by integrated extrusion and equal channel angular pressing: Evaluation
by electron microscopy and synchrotron small-angle X-Ray scattering", Acta
Materiala, Vol.3, No.1, Doi:0.4172/2168-9806. 1000122, 2014.
−111−
20. Mie Ota, Keisuke Shimojo, Shun Okada, Sanjay Kumar Vajpai and Kei Ameyama,
"Harmonic Structure Design and Mechanical Properties of Pure Ni Compact",
Journal of Powder Metallurgy & Mining, Vol.72, pp.110-124, 2014.
21. Choncharoen Sawangrat, Shota Kato, Dmitry Orlov and Kei Ameyama,
"Harmonic-structured copper: performance and proof of fabrication concept based
on severe plastic deformation of powders", Journal of Materials Science, Vol.3,
No.1, Doi:0.4172/2168-9806. 1000122, 2014.
22. Mie Ota, Keisuke Shimojo, Shun Okada, Sanjay Kumar Vajpai and Kei Ameyama,
"Harmonic Structure Design and Mechanical Properties of Pure Ni Compact",
Journal of Powder Metallurgy & Mining, Vol.5, 2014.
23. Choncharoen Sawangrat, Osamu Yamaguchi, Sanjay Vajpai and Kei Ameyama,
"Harmonic structure design of Co-Cr-Mo alloy with outstanding mechanical
properties", Advanced Materials Research, No.939, pp.60-67, 2014.
䛆ᅜ㝿఍㆟ 㻼㼞㼛㼏㼑㼑㼐㼕㼚㼓㼟䛇㻌
1. Yiwen Yang, Nobuyuki Fujitsuna, Ryota Yakura, Mariko Matsuda, Taku Miura,
Akira Ueno, Shoichi Kikuchi and Tatsuo Sakai, " Effects of Cleanliness and
Induction Hardening on Very High Cycle Fatigue Properties of Low Alloy Forged
Steel", Proc. of the 6th International Conference on VHCF, USB, No.INS06,
October 15–18, 2014, Chengdu, China.
2. Tatsuo Sakai, Noriyasu Oguma, Akinari Morikawa and Akira UENO, "Micro
scopic and Nanoscopic Observations of Metallographic Structures around
Inclusions at Interior Crack Initiation Site in Very High Cycle Fatigue", Proc. of the
6th International Conference on VHCF, USB, No.MIM02, October 15–18, 2014,
Chengdu, China.
3. Taku Miura, Takayuki Sakakibara, Takanori Kuno, Akira Ueno, Shoichi Kikuchi
and Tatsuo Sakai, "Interior-induced Fracture Mechanism of Valve Spring Steel (JIS
SWOSC-V) with High Cleanliness in Very High Cycle Regime", Proc. of the 6th
International Conference on VHCF, USB, No.MIM09, October 15–18, 2014,
Chengdu, China.
4. Tatsuo Sakai, Koushu Hanaki, Akiyoshi Sakaida, Kenji Okada, Yuki Nakamura,
Kazutaka Mukoyama, Noriyasu Oguma, Takashi Matsumura, Yoshinobu
Shimamura and Akira Ueno, "Construction of Electronic Database on Very High
Cycle Fatigue Properties for Metallic Materials", Proc. of the 6th International
Conference on VHCF, USB, No.MIM10, October 15–18, 2014, Chengdu, China.
5. Akiyoshi Sakaida, Yanbin Zhang, Shoichi Kikuchi, Yoshihiko Yokoyama, Akira
Ueno and Tatsuo Sakai, "A Study on Very High Cycle Fatigue Properties of Bulk
Amorphous Alloy in Rotating Bending", Proc. of the 6th International Conference
−112−
on VHCF, USB, No.PSM14, October 15–18, 2014, Chengdu, China.
6. Shoichi Kikuchi, Stefan Heinz, Dietmar Eifler, Yuta Nakamura and Akira Ueno,
"Effects of Low Temperature Nitriding Process on the Very High Cycle Fatigue
Properties of Ti-6Al-4V Alloy", Proc. of the 6th International Conference on
VHCF, USB, No.PSM04, October 15–18, 2014, Chengdu, China.
7. Shoichi Kikuchi, Kotaro Takemura, Yosuke Hayami, Akira Ueno and Kei
Ameyama, "Evaluation of the 4-points Bending Fatigue Properties of Ti-6Al-4V
Alloy with Harmonic Structure Created by Mechanical Milling and Spark Plasma
Sintering", Proc. of the 3rd Japan-Chine Fatigue Symposium, November 6–8,
2014, Takayama, Japan.
8. Akira Ueno, Masahide Nishida, Susumu Miyakawa, Koji Yamada, Shoichi
Kikuchi, "ǻKth estimation of aluminum die-casting alloy by means of ¥area
method ", Proc. of the APCFS/SIF-2014 International Congress, December 9-12,
2014, Sydney, Australia.
9. Microstructure And Mechanical Properties Of Sic Compacts Produced By
Mechanical Milling And Spark Plasma Sintering, N. Z. B. Khalil, S. K. Vajpai, K.
Ameyama, 9th International Materials Technology Conference & Exhibition
(IMTCE2014), Kuala Lumpur (Malaisia), May 13-16, 2014.
䛆ཱྀ㢌Ⓨ⾲䛇㻌
1. ๓ᮧᝆ㍤㸪ୖ㔝 ᫂㸪ᮧᒣ⩧ဢ㸪ຍ⸨ྑஓ㸪㺀ෆᅽᘧ㧗ᅽỈ⣲ἲࢆ⏝࠸ࡓ࢔
࣑ࣝࢽ࣒࢘ྜ㔠 A7075-T6511 ࡢ ⑂ປ≉ᛶ࡟ཬࡰࡍ㧗ᅽỈ⣲࢞ࢫࡢᙳ㡪ホ
౯㺁㸪᪥ᮏᶵᲔᏛ఍㛵すᨭ㒊➨ 90 ᮇᐃ᫬⥲఍࣭ㅮ₇఍࣭Ⓨ⾲ணᐃ, 2015.
2. Ᏻ⏣࿘ᖹ㸪ୖ㔝 ᫂㸪ᑠᯘ⠜ྐ㸪௰஭ ⫕㸪ᶓᒣ჆ᙪ㸪㓇஭㐩㞝㸪ቃ⏣ᙲ
ⰾ㸪⳥ụᑗ୍㸪㺀Zr ᇶࣂࣝࢡ㔠ᒓ࢞ࣛࢫࡢ 4 Ⅼ᭤ࡆ⑂ປ≉ᛶ࡟ཬࡰࡍỈศࡢ
ᙳ㡪ホ౯㺁㸪᪥ᮏᶵᲔᏛ఍㛵すᨭ㒊㛵すᏛ⏕఍ᖹᡂ 26 ᖺᗘᏛ⏕ဨ༞ᴗ◊✲
Ⓨ⾲ㅮ₇఍࣭Ⓨ⾲ணᐃ, 2015.
3. ᗮ ᮏᑀ㸪ୖ㔝 ᫂㸪㺀ᅇ㌿᭤ࡆ⑂ປヨ㦂ᶵ⏝⑂ປࡁ⿣㐃⥆ほᐹࢩࢫࢸ࣒ࡢ
㛤Ⓨ㺁㸪᪥ᮏᮦᩱᏛ఍➨ 32 ᅇ⑂ປࢩ࣏ࣥࢪ࣒࢘ㅮ₇ㄽᩥ㞟㸪2014.
4. ✄ᇉᰆ㤶㸪ᇼᕝᩍୡ㸪ᐑᓥᩄ㑻㸪ⳫᏊ㈗ᬕ㸪ୖ㔝 ᫂㸪ቃ⏣ᙲⰾ㸪ᒾ஭ၿ
㑻㸪ᕝ㔝ඃᕼ㸪㺀AIP ἲ࡜ UBMS ἲ࡟ࡼࡾ TiAlN ⭷ࢆ⿕そࡋࡓ㧗㏿ᗘᕤ
ල㗰ࡢ⑂ປᙉᗘẚ㍑㺁㸪᪥ᮏᶵᲔᏛ఍ M&M2014 ᮦᩱຊᏛ࢝ࣥࣇ࢓ࣞࣥࢫ,
⚟ᓥ኱Ꮫ㸪USB, 2014.
5. ᇼᕝᩍୡ㸪ᕝ㔝ඃᕼ㸪ୖ㔝 ᫂㸪ቃ⏣ᙲⰾ㸪ᐑᓥᩄ㑻㸪㺀࢟ࣥࢡᦆയࢆ୚࠼
ࡓ PBO ⧄⥔ࡢᘬᙇᙉᗘࡢ☜⋡ศᕸ㺁㸪᪥ᮏᶵᲔᏛ఍ M&M2014 ᮦᩱຊᏛ࢝
ࣥࣇ࢓ࣞࣥࢫ㸪⚟ᓥ኱Ꮫ㸪USB, 2014.
6. ୖ㔝 ᫂㸪㧗᰿ ┿㸪ୖ㔝ᩥᘯ㸪㺀ᅛయ㧗ศᏊᙧ⇞ᩱ㟁ụ⏝㟁ゎ㉁⭷ࡢຎ໬
ホ౯㺁㸪᪥ᮏᶵᲔᏛ఍ M&M2014 ᮦᩱຊᏛ࢝ࣥࣇ࢓ࣞࣥࢫ㸪⚟ᓥ኱Ꮫ㸪USB,
−113−
2014.
7. ୰ᮧᝆኴ㸪⳥ụᑗ୍㸪ྜྷ⏣ ⩧㸪ୖ㔝 ᫂㸪䭯ᒣ ᝴㸪㺀ప ࣉࣛࢬ࣐❅໬
ࢆ᪋ࡋࡓᕤᴗ⏝⣧ࢳࢱࣥࡢ 4 Ⅼ᭤ࡆ⑂ປ≉ᛶ࡟ཬࡰࡍ⤖ᬗ⢏ᚄࡢᙳ㡪ホ
౯㺁㸪
8. ᒸ⏣ᝋ㑻㸪ᇼᕝᩍୡ㸪ᐑᓥᩄ㑻㸪ⳫᏊ㈗ᬕ㸪ୖ㔝 ᫂㸪ቃ⏣ᙲⰾ㸪ᒾ஭ၿ
㑻㸪
ᕝ㔝ඃᕼ㸪
㺀⭷ཌࡢ␗࡞ࡿ TiCrAlSiN/CrN ⿕そ㧗㏿ᗘᕤල㗰ࡢ⑂ປ≉ᛶ㺁㸪
᪥ᮏᶵᲔᏛ఍ M&M2014 ᮦᩱຊᏛ࢝ࣥࣇ࢓ࣞࣥࢫ㸪⚟ᓥ኱Ꮫ㸪USB, 2014.
9. ▮಴ுኴ㸪᳃ ၨஅ㸪すཱྀඞⱱ㸪ᯇ⏣┿⌮Ꮚ㸪㓇஭㐩㞝㸪ୖ㔝 ᫂㸪⳥ụ
ᑗ୍㸪୕ᾆ ᣅ㸪㺀⯪⯧⏝ࢡࣛࣥࢡ㍈ᮦᩱࡢࢠ࢞ࢧ࢖ࢡࣝ⑂ປ≉ᛶ࡜௓ᅾ≀
ࢧ࢖ࢬࡢ㛵ಀ࡟ࡘ࠸࡚㺁㸪᪥ᮏᮦᩱᏛ఍➨ 63 ᮇᏛ⾡ㅮ₇఍㸪⚟ᒸ኱Ꮫ㸪USB,
2014.
10. ቃ⏣ᙲⰾ㸪ᙇ Ⰿᩩ㸪⳥ụᑗ୍㸪ᶓᒣ჆ᙪ㸪ୖ㔝 ᫂㸪㓇஭㐩㞝㸪㺀࢔ࣔࣝ
ࣇ࢓ࢫ࣭ࣂࣝࢡᮦࡢ㉸㧗ࢧ࢖ࢡࣝᇦ࡟࠾ࡅࡿ☜⋡⑂ປ≉ᛶࡢゎᯒ㺁㸪᪥ᮏᮦ
ᩱᏛ఍➨ 63 ᮇᏛ⾡ㅮ₇఍㸪⚟ᒸ኱Ꮫ㸪USB, 2014.
11. ྥᒣ࿴Ꮥ㸪ⰼᮌᏹಟ㸪ᒸ⏣᠇ྖ㸪ቃ⏣ᙲⰾ㸪Ⳣ⏣ ῟㸪すᕝ ฟ㸪ୖ㔝 ᫂㸪
㓇஭㐩㞝㸪㺀㟼ⓗᙉᗘ≉ᛶ್࡟ࡼࡿ㕲㗰ᮦᩱࡢ S-N ᭤⥺࡟㛵ࡍࡿ⤫ィⓗ᥎
ᐃ㺁㸪᪥ᮏᮦᩱᏛ఍➨ 63 ᮇᏛ⾡ㅮ₇఍㸪⚟ᒸ኱Ꮫ㸪USB, 2014.
12. ྥᒣ࿴Ꮥ㸪୰ᮧ⿱⣖㸪ⰼᮌᏹಟ㸪ᒸ⏣᠇ྖ㸪ቃ⏣ᙲⰾ㸪㓇஭㐩㞝㸪Ⳣ⏣ ῟㸪
すᕝ ฟ㸪ୖ㔝 ᫂㸪㺀㟼ⓗᙉᗘ≉ᛶ್࡟ࡼࡿ㠀㕲㔠ᒓᮦᩱࡢ S-N ᭤⥺࡟㛵
ࡍࡿ⤫ィⓗ᥎ᐃ㺁㸪᪥ᮏᮦᩱᏛ఍➨ 63 ᮇᏛ⾡ㅮ₇఍㸪⚟ᒸ኱Ꮫ㸪USB, 2014.
13. ⳥ụᑗ୍㸪୰ᮧᝆኴ㸪ྜྷ⏣ ⩧㸪ୖ㔝 ᫂㸪༡㒊⣫୍㑻㸪୰ᮧ⿱⣖㸪㺀ᚤ⢏
Ꮚࣆ࣮ࢽࣥࢢࢆ฼⏝ࡋࡓᕤᴗ⏝⣧ࢳࢱࣥ⾲㠃࡬ࡢࣁ࢖ࢻࣟ࢟ࢩ࢔ࣃࢱ࢖ࢺ
ᒙࡢ๰〇㺁㸪᪥ᮏᮦᩱᏛ఍➨ 63 ᮇᏛ⾡ㅮ₇఍㸪⚟ᒸ኱Ꮫ㸪USB, 2014.
14. ୖ㔝 ᫂㸪௰஭ ⫕㸪ᑠᯘ⠜ྐ㸪㺀ࢭࣜ࢔Ᏻᐃ໬ṇ᪉ᬗࢪࣝࢥࢽ࢔ࢼࣀ」ྜ
ࢭ࣑ࣛࢵࢡࢫࡢ⑂ປᙉᗘಙ㢗ᛶホ౯㸦➨㸯ሗ㸸኱Ẽ୰㸧㺁㸪᪥ᮏᮦᩱᏛ఍➨
63 ᮇᏛ⾡ㅮ₇఍㸪⚟ᒸ኱Ꮫ㸪USB, 2014.
15. ୖ㔝 ᫂㸪ᑠᯘ⠜ྐ㸪௰஭ ⫕㸪㺀ࢭࣜ࢔Ᏻᐃ໬ṇ᪉ᬗࢪࣝࢥࢽ࢔ࢼࣀ」ྜ
ࢭ࣑ࣛࢵࢡࢫࡢ⑂ປᙉᗘಙ㢗ᛶホ౯㸦➨㸰ሗ㸸Ỉ୰㸧㺁㸪᪥ᮏᮦᩱᏛ఍➨ 63
ᮇᏛ⾡ㅮ₇఍㸪⚟ᒸ኱Ꮫ㸪USB, 2014.
16. ⳥ụᑗ୍㸪S. Heinz㸪E. Dietmar㸪୰ᮧᝆኴ㸪ྜྷ⏣ ⩧㸪ୖ㔝 ᫂㸪㺀ప ❅
໬ࣉࣛࢬ࣐ࢆ᪋ࡋࡓ Ti-6Al-4V ྜ㔠ࡢ㉸㡢Ἴ⑂ປ≉ᛶ㺁㸪᪥ᮏᮦᩱᏛ఍➨ 63
ᮇᏛ⾡ㅮ₇఍㸪⚟ᒸ኱Ꮫ㸪USB, 2014.
17. ྜྷ⏣ ⩧㸪⳥ụᑗ୍㸪୰ᮧᝆኴ㸪ୖ㔝 ᫂㸪㺀Ti-6Al-4V ྜ㔠ࡢ 4 Ⅼ᭤ࡆ⑂
ປ≉ᛶ࡟ཬࡰࡍప ࣉࣛࢬ࣐❅໬ࡢᙳ㡪ホ౯㺁㸪᪥ᮏᮦᩱᏛ఍➨ 63 ᮇᏛ⾡
ㅮ₇఍㸪⚟ᒸ኱Ꮫ㸪USB, 2014.
䛆ᣍᚅㅮ₇䛇㻌
−114−
1. ࢫࢬ࢟㈈ᅋᣍᚅㅮ₇㸪ୖ㔝 ᫂㸪㺀¥area ἲࢆ⏝࠸ࡓ࢔࣑ࣝࢲ࢖࢝ࢫࢺྜ㔠
ࡢ⑂ປ㝈ᗘண ࡜㸪ᅇ㌿᭤ࡆ⑂ປヨ㦂ᶵ⏝⑂ປࡁ⿣㐃⥆ほᐹࢩࢫࢸ࣒ࡢ㛤
Ⓨ㺁㸪2014 ᖺ 10 ᭶ 8 ᪥.
௨ୖ
−115−
኱ᆺ◊✲⿦⨨ᡂᯝሗ࿌᭩
⿦⨨ྡ
◊✲㈐௵⪅
㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧
☢Ẽศᯒ⿦⨨㸦NMR㸧
⏕࿨⛉Ꮫ㒊࣭ᩍᤵ࣭ሐ ἞
◊✲ࢸ࣮࣐
ࢯࣇࢺ࣭ࣁ࣮ࢻ⼥ྜᮦᩱࡢ㝵ᒙⓗᵓ㐀ไᚚ࡟ࡼࡿ᪂ᮦᩱࡢ๰Ⓨ
◊✲ࡢᴫせ
࠸ࢁ࠸ࢁ࡞ࢯࣇࢺᮦᩱ㸦᭷ᶵ࣭㧗ศᏊᮦᩱ㸧࡜ࣁ࣮ࢻᮦᩱ㸦㔠ᒓ㸪㔠ᒓ㓟໬≀࡞
࡝㸧ࢆ⼥ྜࡉࡏ㸪ศᏊࣞ࣋ࣝ࠿ࡽᕧどⓗࣞ࣋ࣝ࡟࠾ࡅࡿྛ㝵ᒙ࡟࠾࠸࡚⢭ᐦ࡟ᵓ㐀
ไᚚࢆ⾜࠺ࡇ࡜࡛㠉᪂ⓗ࡞ᛶ⬟࣭ᶵ⬟ࢆ♧ࡍᮦᩱࡢ๰Ⓨࢆ┠ᣦࡋࡓ◊✲ࢆ⾜ࡗࡓࠋ
≉࡟ᮏ⿦⨨ࢆศᏊᵓ㐀ࡢỴᐃ࡟ࡶࡕ࠸࡚㸪ศᏊ࡛ࣞ࣋ࣝࡢ⢭ᐦᵓ㐀ࡀᮦᩱ≀ᛶ࡟୚
࠼ࡿᙳ㡪࡟ࡘ࠸᳨࡚ウࡋ㸪ୗグ࡟♧ࡍࡼ࠺࡞ᡂᯝࢆⓎ⾲ࡋࡓࠋ
ㄽᩥ
1) Photoluminescent Gold(I) Complex with Biphenyl Acetylene Ligand Showing Stable
Nematic Liquid-Crystalline Phase, N. Sugimoto, S. Tamai, K. Fujisawa, O. Tsutsumi,
Mol. Cryst. Liq. Cryst., 601, 97–106 (2014).
2) Synthesis, liquid–crystalline behavior, and photoluminescence properties of novel
Au(I) complex with naphthalene ring in a mesogenic core, Y. Rokusha, N. Sugimoto,
S. Yamada, O. Tsutsumi, Proc. SPIE, 9182, 918206, DOI: 10.1117/12.2060334
(2014).
3) Reversible thermal-mode control of luminescence from liquid-crystalline gold(I)
complexes, K. Fujisawa, Y. Okuda, Y. Izumi, A. Nagamatsu, Y. Rokusha, Y. Sadaike,
O. Tsutsumi, J. Mater. Chem. C, 2, 3549–3555 (2014).
4) Tuning the photoluminescence of condensed-phase cyclic trinuclear Au(I) complexes
through control of their aggregated structures by external stimuli, K. Fujisawa, S.
Yamada, Y. Yanagi, Y. Yoshioka, A. Kiyohara, O. Tsutsumi, Sci. Rep., in press.
ᅜ㝿Ꮫ఍
1) Full-Color Luminescence from a Single Liquid-Crystalline Gold Complex, O.
Tsutsumi, O.M. Younis, M. Tamaru, S. Tamai, N. Sugimoto, K. Fujisawa, 2014
Organic Photonics + Electronics (SPIE Optics + Photonics), San Diego, USA,
August 17, 2014.
ᅜෆᏛ఍
1) ࣆࣛࢰ࣮ࣝ㓄఩Ꮚࢆ᭷ࡍࡿᾮᬗᛶ୕᰾㔠㘒యࡢ㟁Ẽఏᑟ≉ᛶ㸪ᓥ஭ಙ࿃㸪⏣
୸㞞୍㸪ሐ἞㸪➨ 63 ᅇ㧗ศᏊᏛ఍ᖺḟ኱఍㸪ྡྂᒇᅜ㝿఍㆟ሙ㸪2014 ᖺ 5
᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥
2) ᾮᬗᛶ୕᰾㔠㘒యࡢࢼࣀ✵㛫࡟࠾ࡅࡿⓎග≉ᛶ㸪୰ᮧᜤ㍜㸪⏣୸㞞୍㸪⋢஭
⩧㸪ሐ἞㸪➨ 63 ᅇ㧗ศᏊᏛ఍ᖺḟ኱఍㸪ྡྂᒇᅜ㝿఍㆟ሙ㸪2014 ᖺ 5 ᭶ 28
᪥ࠥ5 ᭶ 30 ᪥
3) White-Color Emission from Polymer Liquid Crystals Containing Rod-Like Gold
Complexes in Side-Chain, O. Younis㸪S. Tamai㸪O. Tsutsumi㸪➨ 63 ᅇ㧗ศᏊᏛ఍
ᖺḟ኱఍㸪ྡྂᒇᅜ㝿఍㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥
4) ᾮᬗᛶᲬ≧㔠㘒యࡢ࢟ࣛࣝࢿ࣐ࢳࢵࢡ┦࡟࠾ࡅࡿⓎග≉ᛶ㸪ᮡᮏ⳯ࠎ㸪ሐ἞㸪
➨ 63 ᅇ㧗ศᏊᏛ఍ᖺḟ኱఍㸪ྡྂᒇᅜ㝿఍㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30
᪥
5) ᾮᬗᛶ᭷ᶵ࣭↓ᶵࢼࣀࣁ࢖ࣈࣜࢵࢻᮦᩱࡢ㟁Ẽ໬Ꮫ≉ᛶ㸪す⏣໶ử㸪ሐ἞㸪
➨ 63 ᅇ㧗ศᏊᏛ఍ᖺḟ኱఍㸪ྡྂᒇᅜ㝿఍㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30
᪥
6) ኱⎔≧࣏ࣜ࢜࢟ࢯࣔࣜࣈࢹ࣮ࢺ࡜ࢹࣥࢻ࣐࣮ࣜ」ྜయࡢᾮᬗᣲື㸪Ώ㑓ுᖹ㸪
ὠᏲ㐩ၨ㸪ሐ἞㸪➨ 63 ᅇ㧗ศᏊᏛ఍ᖺḟ኱఍㸪ྡྂᒇᅜ㝿఍㆟ሙ㸪2014 ᖺ 5
᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥
฼⏝ᡂᯝ
−116−
኱ᆺ◊✲⿦⨨ᡂᯝሗ࿌᭩
⿦⨨ྡ
◊✲㈐௵⪅
㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧
ᙉຊ X ⥺⿦⨨
⏕࿨⛉Ꮫ㒊࣭ᩍᤵ࣭ሐ ἞
◊✲ࢸ࣮࣐
ࢯࣇࢺ࣭ࣁ࣮ࢻ⼥ྜᮦᩱࡢ㝵ᒙⓗᵓ㐀ไᚚ࡟ࡼࡿ᪂ᮦᩱࡢ๰Ⓨ
◊✲ࡢᴫせ
࠸ࢁ࠸ࢁ࡞ࢯࣇࢺᮦᩱ㸦᭷ᶵ࣭㧗ศᏊᮦᩱ㸧࡜ࣁ࣮ࢻᮦᩱ㸦㔠ᒓ㸪㔠ᒓ㓟໬≀࡞
࡝㸧ࢆ⼥ྜࡉࡏ㸪ศᏊࣞ࣋ࣝ࠿ࡽᕧどⓗࣞ࣋ࣝ࡟࠾ࡅࡿྛ㝵ᒙ࡟࠾࠸࡚⢭ᐦ࡟ᵓ㐀
ไᚚࢆ⾜࠺ࡇ࡜࡛㠉᪂ⓗ࡞ᛶ⬟࣭ᶵ⬟ࢆ♧ࡍᮦᩱࡢ๰Ⓨࢆ┠ᣦࡋࡓ◊✲ࢆ⾜ࡗࡓࠋ
≉࡟ᮏ⿦⨨࡛ࡣ㸪⤖ᬗ୰࡟࠾ࡅࡿศᏊࡢࣃࢵ࢟ࣥࢢᵓ㐀ࢆࢼࣀ࣓࣮ࢱ࣮࡛ࣞ࣋ࣝゎ
᫂ࡋ㸪ศᏊจ㞟ᵓ㐀ࡀᮦᩱ≀ᛶ࡟୚࠼ࡿᙳ㡪࡟ࡘ࠸᳨࡚ウࡋࡓࠋ
ㄽᩥ
1) Photoluminescent Gold(I) Complex with Biphenyl Acetylene Ligand Showing Stable
Nematic Liquid-Crystalline Phase, N. Sugimoto, S. Tamai, K. Fujisawa, O. Tsutsumi,
Mol. Cryst. Liq. Cryst., 601, 97–106 (2014).
2) Synthesis, liquid–crystalline behavior, and photoluminescence properties of novel
Au(I) complex with naphthalene ring in a mesogenic core, Y. Rokusha, N. Sugimoto,
S. Yamada, O. Tsutsumi, Proc. SPIE, 9182, 918206, DOI: 10.1117/12.2060334
(2014).
3) Reversible thermal-mode control of luminescence from liquid-crystalline gold(I)
complexes, K. Fujisawa, Y. Okuda, Y. Izumi, A. Nagamatsu, Y. Rokusha, Y. Sadaike,
O. Tsutsumi, J. Mater. Chem. C, 2, 3549–3555 (2014).
4) Tuning the photoluminescence of condensed-phase cyclic trinuclear Au(I) complexes
through control of their aggregated structures by external stimuli, K. Fujisawa, S.
Yamada, Y. Yanagi, Y. Yoshioka, A. Kiyohara, O. Tsutsumi, Sci. Rep., in press.
ᅜ㝿Ꮫ఍
1) Full-Color Luminescence from a Single Liquid-Crystalline Gold Complex, O.
Tsutsumi, O.M. Younis, M. Tamaru, S. Tamai, N. Sugimoto, K. Fujisawa, 2014
Organic Photonics + Electronics (SPIE Optics + Photonics), San Diego, USA,
August 17, 2014.
ᅜෆᏛ఍
1) ࣆࣛࢰ࣮ࣝ㓄఩Ꮚࢆ᭷ࡍࡿᾮᬗᛶ୕᰾㔠㘒యࡢ㟁Ẽఏᑟ≉ᛶ㸪ᓥ஭ಙ࿃㸪⏣
୸㞞୍㸪ሐ἞㸪➨ 63 ᅇ㧗ศᏊᏛ఍ᖺḟ኱఍㸪ྡྂᒇᅜ㝿఍㆟ሙ㸪2014 ᖺ 5
᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥
2) ᾮᬗᛶ୕᰾㔠㘒యࡢࢼࣀ✵㛫࡟࠾ࡅࡿⓎග≉ᛶ㸪୰ᮧᜤ㍜㸪⏣୸㞞୍㸪⋢஭
⩧㸪ሐ἞㸪➨ 63 ᅇ㧗ศᏊᏛ఍ᖺḟ኱఍㸪ྡྂᒇᅜ㝿఍㆟ሙ㸪2014 ᖺ 5 ᭶ 28
᪥ࠥ5 ᭶ 30 ᪥
3) White-Color Emission from Polymer Liquid Crystals Containing Rod-Like Gold
Complexes in Side-Chain, O. Younis㸪S. Tamai㸪O. Tsutsumi㸪➨ 63 ᅇ㧗ศᏊᏛ఍
ᖺḟ኱఍㸪ྡྂᒇᅜ㝿఍㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥
4) ᾮᬗᛶᲬ≧㔠㘒యࡢ࢟ࣛࣝࢿ࣐ࢳࢵࢡ┦࡟࠾ࡅࡿⓎග≉ᛶ㸪ᮡᮏ⳯ࠎ㸪ሐ἞㸪
➨ 63 ᅇ㧗ศᏊᏛ఍ᖺḟ኱఍㸪ྡྂᒇᅜ㝿఍㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30
᪥
5) ᾮᬗᛶ᭷ᶵ࣭↓ᶵࢼࣀࣁ࢖ࣈࣜࢵࢻᮦᩱࡢ㟁Ẽ໬Ꮫ≉ᛶ㸪す⏣໶ử㸪ሐ἞㸪
➨ 63 ᅇ㧗ศᏊᏛ఍ᖺḟ኱఍㸪ྡྂᒇᅜ㝿఍㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30
᪥
6) ኱⎔≧࣏ࣜ࢜࢟ࢯࣔࣜࣈࢹ࣮ࢺ࡜ࢹࣥࢻ࣐࣮ࣜ」ྜయࡢᾮᬗᣲື㸪Ώ㑓ுᖹ㸪
ὠᏲ㐩ၨ㸪ሐ἞㸪➨ 63 ᅇ㧗ศᏊᏛ఍ᖺḟ኱఍㸪ྡྂᒇᅜ㝿఍㆟ሙ㸪2014 ᖺ 5
᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥
฼⏝ᡂᯝ
−117−
⿦⨨ྡ㸹 㹖⥺ᅇᢡ⿦⨨ ◊✲㈐௵⪅
㒊㛛ྡ
◊✲ࢸ࣮࣐
㹖⥺ᅇᢡ⿦⨨࡟ࡼࡿ㓟໬≀ᢸᣢ㔠ᒓゐ፹ᮦᩱ࡜஧ḟ㟁ụṇᴟᮦᩱࡢ≧ែゎᯒ
୙ᆒ୍⣔ゐ፹ᮦᩱ࡜ࡋ࡚⏝࠸ࡽࢀࡿྛ✀㓟໬≀ᢸయୖ࡟ࠊ1Lࠊ&Rࠊ0Q ࡞࡝ࡢ
㔠ᒓࢼࣀ⢏Ꮚ࠾ࡼࡧ 3G&X ࡞࡝ࡢྜ㔠ࢼࣀ⢏Ꮚࢆᢸᣢࡋࡓ⢊ᮎゐ፹ᮦᩱࢆྜᡂ
ࡋࠊ㹖⥺ᅇᢡ⿦⨨ࢆ⏝࠸࡚ࡑࡢ⤖ᬗ≧ែࡢゎᯒࢆ⾜ࡗࡓࠋ᪤▱ᵓ㐀ࡢᶆ‽ヨ
ᩱ࡜ࡢẚ㍑࡞࡝࠿ࡽྜᡂࡋࡓヨᩱࡢ⤌ᡂࡸ⤖ᬗᵓ㐀ࢆỴᐃࡋࡓࠋࡲࡓࠊᨺᑕ
◊✲ࡢᴫせ
ගࢆ⏝࠸ࡓࡑࡢሙ໬Ꮫ≧ែゎᯒࡢ⤖ᯝ࡜ྜࢃࡏࠊᢸᣢ㔠ᒓゐ፹ࡢ཯ᛂάᛶ࡜
㔠ᒓ໬Ꮫ✀ࡢ໬Ꮫ≧ែ࡜ࡢ┦㛵ࢆ᫂ࡽ࠿࡟ࡋࡓࠋࡲࡓࠊࣜࢳ࣒࢘࢖࢜ࣥ஧ḟ
㟁ụࡢṇᴟά≀㉁࡛࠶ࡿ /L1L2 ࡸ /L)H32 ࡞࡝ࢆྜᡂࡋࠊࡑࡢ㟁ụ≉ᛶࢆホ౯
ࡍࡿ࡜ྠ᫬࡟ࠊࡑࢀࡽࡢ⢊ᮎᮦᩱࡢ≧ែゎᯒࢆ⾜ࡗࡓࠋࡇࢀࡣࠊ㟁ụ≉ᛶࢆ
ホ౯ࡍࡿୖ࡛ᚲせ୙ྍḞ࡞᝟ሗ࡛࠶ࡿࠋ
฼⏝ᡂᯝ
࠙ཎⴭㄽᩥ㸦ᰝㄞ௜ࡁ㸧
ࠚ
Misaki Katayama, Koichi Sumiwaka, Ryota Miyahara, Hisao Yamashige, Hajime Arai, Yoshiharu
Uchimoto, Toshiaki Ohta, Yasuhiro Inada, Zempachi Ogumi, “X-ray absorption fine structure imaging
of inhomogeneous electrode reaction in LiFePO4 lithium-ion battery cathode”, J. Power Sources,
2014, 269, 994-999.
Takayasu Moroki, Hiroyuki Yasui, Yusuke Adachi, Katsuhiko Yoshizawa, Airo Tsubura, Kazuhiko
Ozutsumi, Misaki Katayama, and Yutaka Yoshikawa, “New Insulin-Mimetic and Hypoglycemic
Hetero-Binuclear Zinc(II)/Oxovanadium(IV) Complex”, Curr. Inorg. Chem., 2014, 4(1), 54-58.
Satoshi Asaoka, Hideo Okamura, Yusuke Akita, Katsuyoshi Nakano, Kenji Nakamoto, Kazutoshi
Hino, Tadashi Saito, Shinjiro Hayakawa, Misaki Katayama, Yasuhiro Inada, “Regeneration of
manganese oxide as adsorption sites for hydrogen sulfide on granulated coal ash”, Chem. Eng. J.,
2014, 254, 531-537.
∦ᒣ┿⚈, ✄⏣ᗣᏹ, “DXAFS ࡟ࡼࡿ᫬㛫ศゎ X ⥺྾཰ศග”, ⾲㠃⛉Ꮫ, 2014, 35(3), 141-145.
࠙ⴭ᭩ࠚ
✄⏣ᗣᏹ࣭∦ᒣ┿⚈ࠊ
ࠕXAFS/EELS ᒁᡤᵓ㐀ゎᯒࠖ
ࠊ᝟ሗᶵᵓࠊ59-66 (2014).
࠙ᅜෆᏛ఍Ⓨ⾲ࠚ
∦ᒣ┿⚈, ᐑཎⰋኴ, Ώ㑔⛱ᶞ, ᒣୗ⩧ᖹ, ✄⏣ᗣᏹ, ࠕ㖄┤᪉ྥἼ㛗ศᩓᆺ XAFS ἲࡢ㛤Ⓨ
࡜᫬㛫-✵㛫ศゎゎᯒ࡬ࡢᛂ⏝ࠖ, ➨ 17 ᅇ XAFS ウㄽ఍, ᚨᓥ, 2014 ᖺ 9 ᭶.
−118−
ᐑ⏣ఙᘯ, ㇏⏣೺἞, ᪥㔝ୖ㯇Ꮚ, Ώ㑔⛱ᶞ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕࢹࣛࣇ࢛ࢧ࢖ࢺᆺ㓟໬≀
࡟࠾ࡅࡿ d 㟁Ꮚࢫࣆࣥ≧ែࠖ, ➨ 17 ᅇ XAFS ウㄽ఍, ᚨᓥ, 2014 ᖺ 9 ᭶.
ᒣୗ⩧ᖹ, ᒣᮏᝆ⟇, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕᢸᣢࢽࢵࢣࣝ⢏Ꮚࡢ⾲㠃㓟໬཯ᛂ࡟㛵ࡍࡿ㏿ᗘ
ㄽⓗゎᯒࠖ, ➨ 17 ᅇ XAFS ウㄽ఍, ᚨᓥ, 2014 ᖺ 9 ᭶.
ᒣᮏᝆ⟇, ᒣୗ⩧ᖹ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕIn situ XAFS ἲ࡟ࡼࡿࢰࣝ-ࢤࣝἲ࡛ࡢᢸᣢ Ni ゐ
፹ㄪ〇㐣⛬ࡢゎᯒࠖ, ➨ 17 ᅇ XAFS ウㄽ఍, ᚨᓥ, 2014 ᖺ 9 ᭶.
∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕ✵㛫ศゎ࢜࣌ࣛࣥࢻほ ᡭἲࡢ㛤Ⓨ࡜㟁ᴟ཯ᛂゎᯒ࡬ࡢᛂ⏝ࠖ, ᨺᑕ
ගᏛ఍➨ 7 ᅇⱝᡭ◊✲఍͆᭱ඛ➃࢜࣌ࣛࣥࢻほ ࡛᫂ࡽ࠿࡟࡞ࡿ≀ᛶ⛉Ꮫ͇, ᯽, 2014 ᖺ 9 ᭶.
ᓥ⏣ెዉ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ,ࠕ࢔࣑ࣝࢼ࡟ᢸᣢࡋࡓ Pd ࡜ Cu ࡢᅛ┦ྜ㔠໬࣓࢝ࢽࢬ࣒ࠖ
, ➨
4 ᅇ CSJ ໬Ꮫࣇ࢙ࢫࢱ 2014, ᮾி, 2014 ᖺ 10 ᭶.
኱㈏㞝ᘺ, ᐑཎⰋኴ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕX ⥺྾཰ศගἲ࡟ࡼࡿࣜࣥ㓟ࣂࢼࢪ࣒࢘ࣜࢳ࢘
࣒ṇᴟࡢ㟁ᴟ཯ᛂゎᯒࠖ, ➨ 4 ᅇ CSJ ໬Ꮫࣇ࢙ࢫࢱ 2014, ᮾி, 2014 ᖺ 10 ᭶.
ᯇᒸဴஓ, ᒣୗ⩧ᖹ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕin-situ XAFS ἲ࡟ࡼࡿࢩࣜ࢝ᢸᣢ Ni ゐ፹ࡢ CO
࡟ࡼࡿ㑏ඖ཯ᛂࡢゎᯒࠖ, ➨ 4 ᅇ CSJ ໬Ꮫࣇ࢙ࢫࢱ 2014, ᮾி, 2014 ᖺ 10 ᭶.
ᐑཎⰋኴ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕ᫬✵㛫ศゎྍ⬟࡞᪂つἼ㛗ศᩓᆺ XAFS ἲࡢ㛤Ⓨࠖ, ➨ 50
ᅇ X ⥺ศᯒウㄽ఍, ௝ྎ, 2014 ᖺ 10 ᭶.
∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕ❧࿨㤋 SR ࢭࣥࢱ࣮XAFS ࣅ࣮࣒ࣛ࢖ࣥࢆ⏝࠸ࡓゐ፹࡜㟁ụࡢ཯ᛂゎ
ᯒࠖ, ྜྠࢩ࣏ࣥࢪ࣒࢘ 2014㹼ᨺᑕග࡜࣮ࣞࢨ࣮ࡢ༠ാ࡟ࡼࡿ᪂⏘ᴗ๰ᡂ㹼, ⚄ᡞ, 2014 ᖺ
11 ᭶.
ᐑཎⰋኴ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕṇᴟ཯ᛂࡢ᫬✵㛫ศゎゎᯒ࡟ྥࡅࡓ᪂ࡋ࠸Ἴ㛗ศᩓᆺ
XAFS ἲࡢ㛤Ⓨࠖ, ➨ 55 ᅇ㟁ụウㄽ఍, ி㒔, 2014 ᖺ 11 ᭶.
ᒣᮏᝆ⟇, ᒣୗ⩧ᖹ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕᢸᣢ Ni ⢏Ꮚࡢ㓟໬㑏ඖ≉ᛶ࡟ཬࡰࡍ⢏Ꮚࢧ࢖ࢬ
ຠᯝࠖ, ➨ 28 ᅇ᪥ᮏᨺᑕගᏛ఍ᖺ఍࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘, ⲡὠ, 2015 ᖺ 1 ᭶.
Ώ㑔⛱ᶞ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕ㌿᥮㟁Ꮚ཰㔞 XAFS ࡟ࡼࡿᙧ≧ไᚚࡋࡓᢸᣢ Cu2O ⢏Ꮚࡢ
⾲㠃㑏ඖ཯ᛂࠖ, ➨ 28 ᅇ᪥ᮏᨺᑕගᏛ఍ᖺ఍࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘, ⲡὠ, 2015 ᖺ 1
᭶.
ᓥ⏣ెዉ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕࣃࣛࢪ࣒࢘㖡ྜ㔠ゐ፹ࡢ⏕ᡂ࡟ᑐࡍࡿ๓㥑య⤌ᡂࡢຠᯝࠖ,
➨ 28 ᅇ᪥ᮏᨺᑕගᏛ఍ᖺ఍࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘, ⲡὠ, 2015 ᖺ 1 ᭶.
࿴⏣᠇ᖾ, ∦ᒣ┿⚈, ┾⏣ᬛ⾨, ᑠሐ࿴ᙪ, ᑠᓥ୍⏨, ✄⏣ᗣᏹ, ࠕ㓟໬≀࢞ࣛࢫ୰࡟࠾ࡅࡿ
Mn ࢖࢜ࣥࡢᒁᡤᵓ㐀ࠖ, ➨ 28 ᅇ᪥ᮏᨺᑕගᏛ఍ᖺ఍࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘, ⲡὠ,
2015 ᖺ 1 ᭶.
኱ᆤᐶኴ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕࢮ࢜ࣛ࢖ࢺ࡟ᢸᣢࡋࡓ Ni(II)࢖࢜ࣥࡢ྾╔≧ែࡢゎᯒࠖ, ➨
28 ᅇ᪥ᮏᨺᑕගᏛ఍ᖺ఍࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘, ⲡὠ, 2015 ᖺ 1 ᭶.
Siwaruk Chotiwan, Hiroki Tomiga, Misaki Katayama, Yasuhiro Inada, “Thermodynamic and kinetic
study on redox reaction of silica supported cobalt catalysts”, ➨ 28 ᅇ᪥ᮏᨺᑕගᏛ఍ᖺ఍࣭ᨺᑕග
⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘, ⲡὠ, 2015 ᖺ 1 ᭶.
䭜Ꮥ♸, ୚൤༓ᑜ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ⸨ᒸ኱Ẏ, ኴ⏣ಇ᫂, ᑠᓥ୍⏨, ࠕṇᴟά≀㉁
−119−
Li2MnSiO4 ࡢࢰࣝѸࢤࣝἲ࡟ࡼࡿస〇࡜ホ౯ࠖ, 㟁Ẽ໬Ꮫ఍➨ 82 ᅇ኱఍, ᶓ὾, 2015 ᖺ 3 ᭶.
㕥ᮌ῟ྖ, ᒣୗ⩧ᖹ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕᕼⷧ࡞ࢩࣜ࢝ᢸᣢ Ni ゐ፹ࡢ㓟໬㑏ඖ≉ᛶࠖ, ᪥
ᮏ໬Ꮫ఍➨ 95 ᫓Ꮨᖺ఍, ⯪ᶫ, 2015 ᖺ 3 ᭶.
▼஭㥴ᖹ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕ࣓ࢯ࣏࣮ࣛࢫࢩࣜ࢝࡟ᢸᣢࡋࡓ Co ゐ፹ࡢ㓟໬㑏ඖ≉ᛶࠖ,
᪥ᮏ໬Ꮫ఍➨ 95 ᫓Ꮨᖺ఍, ⯪ᶫ, 2015 ᖺ 3 ᭶.
࠙ಟኈᏛ఩ㄽᩥࠚ
኱ᆤᐶኴࠊ
ࠕ✀ࠎࡢࢮ࢜ࣛ࢖ࢺ࡟ᑐࡍࡿࢽࢵࢣࣝ(II)࢖࢜ࣥࡢ࢖࢜ࣥ஺᥮≧ែࡢゎ᫂ࠖ
ᓥ⏣ెዉࠊ
ࠕ⤌ᡂࡢ␗࡞ࡿࣃࣛࢪ࣒࢘㖡ྜ㔠ゐ፹ࡢ⏕ᡂ࣓࢝ࢽࢬ࣒ࠖ
−120−
኱ᆺ◊✲⿦⨨ᡂᯝሗ࿌᭩
⿦⨨ྡ
NMR
◊✲㈐௵⪅
ᑠᓥ୍⏨ 㸦⏕࿨⛉Ꮫ㒊࣭ᛂ⏝໬Ꮫ⛉࣭ᩍᤵ㸧
JEOL ECS-400
㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧
◊✲ࢸ࣮࣐
⺯ගᛶᾮᬗᇶࢆ⾲㠃ಟ㣭ࡉࡏࡓࢩࣜ࢝ࢼࣀ⢏Ꮚࡢྜᡂ࡜≀ᛶࡢホ౯
◊✲ࡢᴫせ
ࢩࣜ࢝ࢼࣀ⢏Ꮚࡣ㟁ሙ༳ຍୗ࡛≉␗࡞ᣲືࢆ♧ࡍࡇ࡜ࡀ▱ࡽࢀ࡚࠸ࡿࡀࠊࡑࡢ
ᣲືࡣゎ᫂ࡉࢀ࡚࠸࡞࠸ࠋࢩࣜ࢝ࢼࣀ⢏Ꮚ⾲㠃ࢆ⺯ගᛶᾮᬗᇶ࡛ಟ㣭ࡍࡿࡇ࡜
࡛㸦౛࠼ࡤࠊSilica:11-(Ethoxydimethylsilyl)undecyl-2,5-bis
((4-(octyloxy)phenyl)ethynyl)benzoate 㸧 ࡸ 㛵 㐃 ໬ ྜ ≀ ࡛ ࠶ ࡿ
Silica:Undecylethoxydimethylsilane㸧ࠊ㟁ሙ༳ຍୗ࡟࠾ࡅࡿࢩࣜ࢝ࢼࣀ
⢏Ꮚࢆྍど໬ࡋࠊࡑࡢᣲືࢆどぬⓗ࡟ゎ᫂ࡍࡿࡇ࡜ࢆ┠ⓗ࡜ࡍࡿࠋ
⺯ගᛶᾮᬗᇶࡢᵓ㐀ࢆゎᯒࡍࡿࡓࡵ࡟ᐊ (20Υ)ࠊ400 MHz ᮲௳ୗࡢ⁐ᾮ 1H
NMR ࢫ࣌ࢡࢺࣝ࡟ࡼࡿ ᐃࢆ⾜ࡗࡓࠋලయⓗ࡟ ᐃࡋࡓ໬ྜ≀ 5 ✀ࢆ௨ୗ࡟
♧ࡍࠋ࡞࠾ඹྠ◊✲ᩍဨࡣࠊᑠᓥ୍⏨ࠊ┾⏣ᬛ⾨ࠊⰼᓮ▱๎ࠊ㔠Ꮚගభ࡛࠶ࡿࠋ
(1) 1-(Octyloxy)-4-(2-(trimethylsilyl)ethynyl)benzene
(2) 1-Ethynyl-4-(octyloxy)benzene
(3) 10-Undecen-1-yl-2,5-dibromobenzoate
(4) 10-Undecen-1-yl 2,5-bis((4-(octyloxy)phenyl)ethynyl)benzoate
(5) Undecylethoxydimethylsilane
฼⏝ᡂᯝ
᫖ᖺᗘᮍᥖ㍕ศࡢᅜෆᏛ఍Ⓨ⾲
㸦1㸧Ώ㑔ಟᖹࠊⰼᓮ▱๎ࠊᑠᓥ୍⏨ࠊࠕࢩࣜ࢝ࢼࣀ⢏Ꮚ࡟ᾮᬗศᏊࢆ⤖ྜࡉࡏ
ࡓ↓ᶵ࣮᭷ᶵࣁ࢖ࣈࣜࢵࢻᆺ໬ྜ≀ࡢྜᡂ࡜≀ᛶࠖࠊ᪥ᮏ໬Ꮫ఍➨ 94 ᫓Ꮨᖺ
఍㸸4E4-11ࠊ
㸦ྡྂᒇ኱Ꮫࠊ2014 ᖺ 3 ᭶ 30 ᪥㸧
−121−
኱ᆺ◊✲⿦⨨ᡂᯝሗ࿌᭩
⿦⨨ྡ
◊✲㈐௵⪅
㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧
◊✲ࢸ࣮࣐
ࣞࢡࢭࣝ
⏕࿨⛉Ꮫ㒊࣭ᩍᤵ㸦ࣞࢡࢭࣝ᪋タ㛗㸧
࣭᪩㔝ಇဢ
࣑ࢻࣜࢰ࣒࢘ࣜࢩ⣽⬊ෆඹ⏕⸴࡟㛵ࡍࡿ◊✲㸦ᢸᙜ㸸⸆Ꮫ㒊࣭ᩍᤵ࣭௒ᮧ
ಙᏕ㸧
࣌ࣉࢳࢻࢺࣛࣥࢫ࣏࣮ࢱ࣮ (PEPT1) ࢆࢱ࣮ࢤࢵࢺ࡜ࡋࡓ 5㸫࢔࣑ࣀࢧࣜࢳ
ࣝ㓟 (5-ASA) ࣉࣟࢻࣛࢵࢢࡢྜᡂ࡜ Caco-2 ⣽⬊࡟ᑐࡍࡿ㍺㏦≉ᛶ◊✲
㸦ᢸ
ᙜ㸸⸆Ꮫ㒊࣭ᩍᤵ࣭⸨⏣༟ஓ㸧
◊✲ࡢᴫせ
࣑ࢻࣜࢰ࣒࢘ࣜࢩඹ⏕⸴ࡣࠊ㓟ᛶ᮲௳ୗ࡛ගྜᡂ⏘≀ࡢ࣐ࣝࢺ࣮ࢫࢆᨺฟࡍࡿ
ࡇ࡜ࡀ≉ᚩ࡛࠶ࡾࠊࡇࡢᨺฟ⤒㊰࡟ࡘ࠸࡚ࡣ୙᫂࡞Ⅼࡀከࡃ᳨ウࢆ⾜ࡗࡓࠋᨺ
ฟ᮲௳ୗ࡛Ⅳ㓟ࡢྲྀࡾ㎸ࡳ࠿ࡽᨺฟࡲ࡛ࡣࠊᩘศ࡜࠸ࡗࡓ▷࠸཯ᛂ࡛㉳ࡇࡿࡇ
࡜ࡀศ࠿ࡗࡓࠋࡲࡓࠊᨺฟࡉࢀࡿ࣐ࣝࢺ࣮ࢫࡢ኱㒊ศࡀ⵳✚ࡉࢀࡓࢹࣥࣉࣥ࠿
ࡽ࡛ࡣ࡞ࡃࠊᅛᐃࡋࡓⅣ⣲࠿ࡽ᪂ࡓ࡟ྜᡂࡋ࡚࠸ࡿࡇ࡜ࡀศ࠿ࡗࡓࠋ
₽⒆ᛶ኱⭠⅖ࡣཌ⏕ປാ┬ࡼࡾ㞴⑓࡟ᣦᐃࡉࢀ࡚࠸ࡿ⑌ᝈ࡛࠶ࡿࠋ₽⒆ᛶ኱⭠
⅖ࡢ἞⒪⸆࡜ࡋ࡚ࡣ㸫࢔࣑ࣀࢧࣜࢳࣝ㓟$6$ࡀỗ⏝ࡉࢀ࡚࠸ࡿࡀࠊ⅖
⑕㒊఩࡬ࡢ㏦㐩ᛶࡀஈࡋࡃࠊ༑ศ࡞἞⒪ຠᯝࡀᚓࡽࢀ࡞࠸ࡇ࡜ࡶከ࠸ࠋ⤒ཱྀȕ
㸫ࣛࢡࢱ࣒ᢠ⏕≀㉁ࡢᑠ⭠࠿ࡽࡢ྾཰࡟㛵୚ࡋ࡚࠸ࡿROLJRSHSWLGH
WUDQVSRUWHU3(37ࡣࠊ೺ᖖே࡛ࡣ኱⭠࡛ࡢⓎ⌧ࡣ࡯࡜ࢇ࡝ㄆࡵࡽࢀ࡞࠸ࡢ
࡟ᑐࡋࠊ₽⒆ᛶ኱⭠⅖ࡢᝈ⪅࡛ࡣ኱⭠⅖⑕㒊఩࡟ࡶ㧗Ⓨ⌧ࡋ࡚࠸ࡿࡇ࡜ࡀሗ࿌
ࡉࢀ࡚࠸ࡿࠋᮏ◊✲࡛ࡣࠊ$6$ࡢ1+ᇶ࠶ࡿ࠸ࡣ&22+ᇶ࡟࢔࣑ࣀ㓟ࢆᑟධ
ࡋࡓࢪ࣌ࣉࢳࢻᆺࣉࣟࢻࣛࢵࢢࢆྜᡂࡋࠊࡇࢀࡽ໬ྜ≀ࡢ3(37ࢆ௓ࡋࡓ㍺
㏦࣭௦ㅰ≉ᛶࢆ&DFR⣽⬊ࢆ⏝࠸᳨࡚ウࡋࡓࠋ&DFR⣽⬊࡟࠾ࡅࡿ3(37
ࢆ௓ࡋࡓ *O\6DUࡢྲྀࡾ㎸ࡳࡣࠊ᳨ウࡋࡓ $6$ࣉࣟࢻࣛࢵࢢ඲࡚ࡀ⃰ᗘ౫
Ꮡⓗ࡟㜼ᐖࡉࢀࡓࠋ*OXࢆ$6$ࡢ1+ᇶ࠶ࡿ࠸ࡣ&22+ᇶ࡟ᑟධࡋࡓࣉࣟ
ࢻࣛࢵࢢ࡛ࡣࠊ>+@*O\6DUྲྀࡾ㎸ࡳ࡟ᑐࡍࡿ,&್࡟㢧ⴭ࡞ᕪࡀㄆࡵࡽࢀࡓ
ࡇ࡜࠿ࡽࠊ࢔࣑ࣀ㓟ࡢᑟධ㒊఩࡟ࡼࡾࣉࣟࢻࣛࢵࢢ࡜3(37ࡢぶ࿴ᛶ࡟ᕪ␗
ࡀ⏕ࡌࡿࡇ࡜ࡀ♧၀ࡉࢀࡓࠋࡲࡓࠊ$6$ࡢ1+ᇶ࡟࢔࣑ࣀ㓟9DOࠊ7\Uࠊ/\V
ࢆᑟධࡋࡓࣉࣟࢻࣛࢵࢢࡣࠊ&DFR࣍ࣔࢪࢿ࣮ࢺ୰࡛ศゎࡉࢀࡓࡀࠊ&22+ᇶ
࡟࢔࣑ࣀ㓟ࢆᑟධࡋࡓࣉࣟࢻࣛࢵࢢ࡛ࡣ඲ࡃศゎࡀㄆࡵࡽࢀ࡞࠿ࡗࡓࠋࡇࡢ⤖
ᯝࡣࠊぶ⸆≀࡛࠶ࡿ$6$࡟ኚ᥮ࡏࡎ࡟኱⭠㒊఩࡟Ⓨ⌧ࡍࡿ3(37࡟㏦㐩ࡉ
ࡏࡿࡇ࡜ࡀ࡛ࡁࢀࡤࠊࡼࡾຠ⋡ⓗ࡞἞⒪ࢆ⾜࠺ࡇ࡜ࡀ࡛ࡁࡿྍ⬟ᛶࢆ♧၀ࡍࡿ
ࡶࡢ࡛࠶ࡾࠊ௒ᚋࡣࠊᐇ㝿࡟ $6$ ࡢࣉࣟࢻࣛࢵࢢࡢྲྀࡾ㎸ࡳᐇ㦂ࠊ,%'ࣔࢹ
ࣝື≀ࢆ⏝࠸ࡓ἞⒪ᐇ㦂ࢆ⾜࠺ࡇ࡜࡛,%'࡟ᑐࡍࡿ᪂つ἞⒪⸆࡜ࡋ࡚ࡢྍ⬟
ᛶࢆ㏣ồࡋ࡚࠸ࡃணᐃ࡛࠶ࡿࠋ
−122−
฼⏝ᡂᯝ
㸺ᅜෆᏛ఍㸼
ᰘ⏣࠶࠸࠿ࠊ㧗ᶫᩥ㞝ࠊ➟ཎ㈼ὒࠊ௒ᮧಙᏕ ࣑ࢻࣜࢰ࣒࢘ࣜࢩඹ⏕
ࢡࣟࣞࣛ࡟࠾ࡅࡿ࣐ࣝࢺ࣮ࢫᨺฟࡢไᚚᶵᵓ࡟ࡘ࠸࡚ ཎ⏕⏕≀Ꮫ఍➨
ᅇ኱఍ࠊ
㸦௝ྎ㸧ࠊ ᖺ ᭶
⏤฼㱟Ⴙࠊす ㈗ᘯࠊἙ㔝⿱ඔࠊᑎ⏣ᬛ♸ࠊ⸨⏣༟ஓ 3(37ࢆᶆⓗ࡜ࡋ
ࡓ࢔࣑ࣀࢧࣜࢳࣝ㓟ࣉࣟࢻࣛࢵࢢࡢ &DFR⣽⬊࡟࠾ࡅࡿ㍺㏦≉ᛶࡢ᳨
ウ᪥ᮏ⸆๣Ꮫ఍➨ ᖺ఍㸦㛗ᓮ㸧
ࠊ ᖺ ᭶㸦Ⓨ⾲ணᐃ㸧
㸺ㄽᩥ㸼
࡞ࡋ
㸺ࡑࡢ௚㸼
⸨⏣༟ஓ㸬 ᾘ໬⟶ࢺࣛࣥࢫ࣏࣮ࢱ࣮ࡢ྾཰㞀ቨ࡜ࡋ࡚ࡢᙺ๭࡜ᾘ໬⟶௦ㅰ࡟
࠾ࡅࡿ✀ᕪ㸬 ᣢ⏣〇⸆ㅮ₇఍㸦㟼ᒸ㸧ࠊ2014 ᖺ 12 ᭶
−123−
኱ᆺ◊✲⿦⨨ᡂᯝሗ࿌᭩
⿦⨨ྡ
◊✲㈐௵⪅
㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧
◊✲ࢸ࣮࣐
SR ග㟁Ꮚศග࣭࢖࢜ࣥᩓ஘」ྜศᯒ⿦⨨
⌮ᕤᏛ㒊≀⌮⛉Ꮫ⛉࣭ᩍᤵ࣭㞴Ἴ⚽฼
㧗ศゎ⬟୰࢚ࢿࣝࢠ࣮࢖࢜ࣥᩓ஘࡜ 65 ග㟁Ꮚศග࡟ࡼࡿᅛయ⾲㠃ࡢᵓ㐀ࠊ㟁Ꮚ
≧ែ࡜ゐ፹ᶵ⬟ࡢゎᯒ
◊✲ࡢᴫせ
ᖺᗘࡢ୺ࡓࡿࢸ࣮࣐
㸧 651(;$)6 ࡟ࡼࡿᾮᬗࡢୗᆅ㓄ྥ⭷ࡢゎᯒ
㸧 ཎᏊ≧㓟⣲࡟ࡼࡿࢢࣛࣇ࢓࢖ࢺࡢ⾲㠃㓟໬
㸧 ᩥ㒊⛉Ꮫ┬ඛ➃◊✲ᇶ┙ඹ⏝࣭ࣉࣛࢵࢺࣇ࢛࣮࣒ᙧᡂ஦ᴗ࡟࠾ࡅࡿඹྠ฼
⏝
฼⏝ᡂᯝ
ᮏ⿦⨨ࡢ฼⏝ࡣ⾲㠃≀⌮࣭⾲㠃⛉Ꮫ࡛ࡢ◊✲ᡂᯝࢆୖࡆࡿࡓࡵࡔࡅ࡛࡞ࡃࠊ
ᩘᖺ๓࠿ࡽ⌮ᕤᏛ㒊≀⌮⛉Ꮫ⛉ 3 ᅇ⏕ࡢṇㄢᤵᴗ࡛࠶ࡿࠕ≀⌮Ꮫ≉ูᐇ㦂㸯ࠖ
ࡢ୍ࡘࡢࣃ࣮ࢺ࡜ࡋ࡚౪⏝ࡉࢀࠊᏛ⏕࡟ᨺᑕගࢆᐇ㝿࡟฼⏝ࡋ࡚ࡶࡽ࠸ࠊࡑࡢ
࣏ࢸࣥࢩࣕࣝࡢ㧗ࡉࢆయ㦂ࡋ࡚ࡶࡽࡗ࡚ࡁࡓࠋ ᮏ⿦⨨ࡣ㏻ᖖࡢᐇ㦂ᐊ࡟ࡣ࡞
࠸኱ᆺᐇ㦂⿦⨨࡛ࡶ࠶ࡾࠊࡑࢀ࡟័ࢀࡿࡇ࡜ࡶ㈗㔜࡞⤒㦂࡟࡞ࡗ࡚࠸ࡿࠋ
◊✲ᡂᯝሗ࿌᭩
M. Takizawa, K. Kondo and H. Namba,“Oxidation states of graphite studied by near
edge x-ray absorption fine structure measurements”, Memories of the SR Center
Ritsumeikan University, No.16, 2014,pp.145-146.
ᅜෆ఍㆟
ἑඃࠊ㏆⸨ㅬసࠊ㞴Ἴ⚽฼ࠕ྾཰➃㏆ഐ ; ⥺྾཰ᚤ⣽ᵓ㐀 ᐃ࡟ࡼࡿࢢࣛࣇ
࢓࢖ࢺ⾲㠃ࡢ㓟໬≧ែࠖ
ࠊ➨ ᅇ᪥ᮏᨺᑕගᏛ఍ᖺ఍࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥ
ࢪ࣒࢘㸦❧࿨㤋኱Ꮫࠊ ᖺ ᭶㸧
ࠋ
−124−
⌮ ᕤ Ꮫ ◊ ✲ ᡤ グ ஦
−125−
⌮ᕤᏛ◊✲ᡤࢩ࣏ࣥࢪ࣒࣭࣮࢘࣡ࢡࢩࣙࢵࣉሗ࿌᭩
௦⾲⪅
(ᡤᒓ࣭⫋ྡ࣭Ặྡ)
㞟఍ྡ
⸆Ꮫ㒊⸆Ꮫ⛉࣭ᩍᤵ࣭Ẹ⛅ ᆒ
ᅜ㝿◊✲㞟఍㻌 ➨ 㻝㻜 ᅇ䛂໬Ꮫⓗ䛻䝥䝻䜾䝷䝮䛥䜜䛯ྜᡂⰍ⣲㢮䛾㉸ศᏊ䝘䝜⛉Ꮫ䛃㻌
Tenth International Workshop on Supramolecular Nanoscience of Chemically
Programmed Pigments (SNCPP14)
㛤ദ᪥⛬
఍ሙ
ሗ࿌ෆᐜ
㸰㸮㸯㸲ᖺ㸳᭶㸱㸮᪥㹼㸰㸮㸯㸲ᖺ㸴᭶㸯᪥
࢚࣏ࢵࢡ❧࿨㸰㸯
ணࡵᵝࠎ࡞᝟ሗࢆࣉࣟࢢ࣒ࣛࡋࡓศᏊࢆタィࡍࡿࡇ࡜࡛ࠊ࢚ࢿࣝࢠ࣮ᢞධࡍ
ࡿࡇ࡜࡞ࡃࠊ⮬ᕫ㞟✚⬟ࢆ฼⏝ࡋ࡚ࠊෆ㒊ᵓ㐀ࡀ⦓ᐦ࡛඲యᵓ㐀ࡶ᫂☜࡞ࢼࣀ
㉸ศᏊᵓ㐀యࢆᵓ⠏ࡍࡿࡇ࡜ࡣࠊࢼࣀ⛉Ꮫࡢ᥎㐍࡟኱ࡁ࡞ᙳ㡪ࢆ୚࠼ࡿࠋࡑࡇ
࡛ࠊᗈ࠸ព࿡࡛ࡢࠕ໬Ꮫⓗ࡟ࣉࣟࢢ࣒ࣛࡉࢀࡓྜᡂⰍ⣲㢮ࡢ㉸ศᏊࢼࣀ⛉Ꮫࠖ
࡟㛵ࢃࡿ◊✲ᡂᯝࢆⓎ⾲ࡍࡿᅜ㝿◊✲㞟఍ SNCC2014ࢆࠊ❧࿨㤋኱Ꮫࡧࢃࡇ࣭
ࡃࡉࡘ࢟ࣕࣥࣃࢫ࡛ୖグᮇ㛫࡟⾜ࡗࡓࠋ
ᇶㄪㅮ₇ 1 ௳ࠊᣍᚅㅮ₇ 8 ௳ࠊ㑅ᢤㅮ₇ 2 ௳ࠊ࣏ࢫࢱ࣮Ⓨ⾲ 36 ௳ࡀ⾜ࢃࢀࠊ
⣙ 100 ྡࡢཧຍ⪅ࡀ࠶ࡾࠊ኱ኚ┒ἣ࡛࠶ࡗࡓࠋ≉࡟ࠊⱝᡭ࡛㉸ศᏊࢼࣀ⛉Ꮫࡢ
ศ㔝࡛◊✲ࢆ⾜ࡗ࡚࠸ࡿ◊✲⪅ࢆᅜෆእ࠿ࡽᣍᚅࡋ࡚ࠊάⓎ࡟㆟ㄽࢆ⾜࠸ࠊࡇ
ࡢศ㔝ࡢⓎᒎ࡟࡜ࡗ࡚኱ࡁ࡞ព⩏ࡀ࠶ࡗࡓࠋ
௒ᅇࡢ SNCC2014 ࡢ BKC ࡛ࡢ㛤ദࡣࠊᮏᏛࡢ◊✲⪅ࠊ≉࡟኱Ꮫ㝔⏕ࢆྵࡴ
ⱝᡭࡢ◊✲⪅࡟࡜ࡗ࡚኱ࡁ࡞่⃭ࢆ୚࠼࡚ࡃࢀࡓࠋࡇࡢࡼ࠺࡞஺ὶ࡟ࡼࡗ࡚ࠊ
❧࿨㤋኱Ꮫࡢᅜ㝿໬࡟㈨ࡍࡿࡇ࡜ࡀ࡛ࡁࡓࠋࡲࡓࠊ༤ኈ◊✲ဨࡸ኱Ꮫ㝔⏕࡞࡝
ࡢⱝᡭ◊✲⪅ࢆྵࡴᮏᏛࡢ◊✲⪅ࡀࠊࠕ໬Ꮫⓗ࡟ࣉࣟࢢ࣒ࣛࡉࢀࡓྜᡂⰍ⣲㢮
ࡢ㉸ศᏊࢼࣀ⛉Ꮫࠖࡢ◊✲Ⓨ⾲ࢆⱥㄒ࡛⾜࠺ࡇ࡜࡛ࠊ❧࿨㤋኱Ꮫ࠿ࡽࡢ◊✲Ⓨ
ಙࡔࡅ࡛ࡣ࡞ࡃࠊᅜ㝿໬ࡶ᥎㐍࡛ࡁࡓࠋ
ཱྀ㢌ㅮ₇⪅ࡣࠊJishan Wu㸦ࢩ࣏࣮ࣥ࢞ࣝᅜ❧኱㸧ࠊ⏣୰㝯⾜㸦ி኱⌮㸧ࠊ໭
ᕝ⿱୍㸦໭኱ᕤ㸧ࠊᑎᮧ⨾㔛㸦❧࿨㤋኱㸧ࠊᒣཱྀ೺ኴ㸦❧࿨㤋኱㸧ࠊJeongho Kim
㸦㡑ᅜ㺃Inha Univ.㸧ࠊᲚ ㈗༤㸦ᮍ᮶ ICT ◊㸧ࠊᯘ ᏹᬸ㸦ዉⰋඛ➃⛉ᢏ኱㸧ࠊ
㰺⸨ᑦᖹ㸦ྡ኱⌮㸧ࠊ⋤ ᬡᓠ㸦ᶓ὾᱒ⶱ኱㸧ࠊᆏᮏⰋኴ㸦ᮾ኱⌮㸧ࡢ 11 ྡ
㸦ᩗ⛠␎࣭Ⓨ⾲㡰㸧࡛࠶ࡾࠊࡑࡢ௚ࡢヲ⣽ࡣࠊබᘧ HP ࢆཧ↷ࡋ࡚ୗࡉ࠸ࠋ
http://www.ritsumei.ac.jp/se/rc/staff/tamiaki/sncpp14/
−126−
ࢩ࣏ࣥࢪ࣒࣭࣮࢘࣡ࢡࢩࣙࢵࣉ㛤ദຓᡂ ሗ࿌᭩
௦⾲⪅
⏕࿨⛉Ꮫ㒊࣭ᩍᤵ࣭ୗጔ ᫭஧㑻
(ᡤᒓ࣭⫋ྡ࣭Ặྡ)
㞟఍ྡ
➨ 2 ᅇ⏕࿨་⛉Ꮫࢥ࣒ࣟ࢟࢘
㛤ദ᪥⛬
2014 ᖺ 6 ᭶ 27 ᪥
఍ሙ
ࢧ࢖࢚ࣥࢫࢥ࢔㸯F S ㅮ⩏ᐊ
⏕࿨་⛉Ꮫ⛉࡛ࡣࠊᖺ 1 ᅇ⛬ᗘࠊᡤᒓᩍဨࡢ◊✲ᡂᯝࢆ㡰࡟⤂௓ࡍࡿ࡜࡜ࡶ
ሗ࿌ෆᐜ
࡟ࠊᏛእ࠿ࡽࡑࡢ᫬௦ࡢࢺࣆࢵࢡࢫ࡟ヲࡋ࠸₇⪅ࢆᣍ⪸ࡋࠊ⏕࿨་⛉Ꮫࢥࣟ࢟
࣒࢘ࢆ㛤ദࡋ࡚࠸ࡿࠋ
௒ᅇࡢࣉࣟࢢ࣒࡛ࣛࡣࠊ⏕࿨་⛉Ꮫ⛉ࡢᩍᤵ 2 ྡ࡜ࠊ≉ูㅮ₇࡜ࡋ࡚ࠊி㒔
኱Ꮫࡼࡾጒᑿㅮᖌࡢㅮ₇ࢆ⾜ࡗࡓࠋ
ᴫせࡣୗグ࡛࠶ࡿࠋ
յ࣮࢜ࣉࢽࣥࢢ࣐࣮ࣜࢡ Ꮫ⛉㛗㸦ࢥ࣮ࢫ㛗㸧
࣭ྖ఍ 17:00-17:05
յㅮ₇
㸯㸬 ୗጔ ᫭஧㑻㸦⏕࿨་⛉Ꮫ⛉࣭ᩍᤵ㸧 ࠕຠ⋡ⓗ࠿ࡘබᖹ࡞་⒪㈨※㓄ศ
᪉ἲ☜❧࡬ࡢࢳࣕࣞࣥࢪࠖ 17:05-17:40
㸰㸬 ᇼ ฼⾜㸦⏕࿨་⛉Ꮫ⛉࣭ᩍᤵ㸧ࠕࡀࢇ⣽⬊ࡢ⣽⬊ෆࢩࢢࢼࣝఏ㐩ࠥHippo
⤒㊰ࢆᡭࡀ࠿ࡾ࡜ ࡋ࡚ࠥࠖ 17:40-18:15
㸱㸬 ጒᑿ ᾈ㸦ி㒔኱Ꮫ኱Ꮫ㝔་Ꮫ◊✲⛉࣭ᾘ໬ჾෆ⛉Ꮫ࣭ㅮᖌ㸧 ࠕࡀࢇᖿ
⣽⬊ࢆᶆⓗ࡜ࡋࡓ᪂ࡋ࠸ࡀࢇ἞⒪ࡢྍ⬟ᛶࠖ 18:15-19:00
ᮏ◊✲఍࡬ࡢㅮ₇⪅ࡢᣍ⪸ㅰ♩࡟ࠊ◊✲㈝ࢆ౑ࢃࡏ࡚࠸ࡓࡔ࠸ࡓࠋ
−127−
ࢩ࣏ࣥࢪ࣒࣭࣮࢘࣡ࢡࢩࣙࢵࣉ㛤ദຓᡂ ሗ࿌᭩
௦⾲⪅
⌮ᕤᏛ㒊 ᩍᤵ ⸨ ᐙ 㞷 ᮁ
(ᡤᒓ࣭⫋ྡ࣭Ặྡ)
㞟఍ྡ
㻡㻙㼠㼔㻌㻸㼑㼏㼠㼡㼞㼑㼟㻌㼛㼚㻌㻿㼑㼙㼕㻙㻯㼘㼍㼟㼟㼕㼏㼍㼘㻌㻭㼚㼍㼘㼥㼟㼕㼟㻌 㻌 㻔㻌 ‽ྂ඾ゎᯒධ㛛ㅮ⩏㻌 㻕
㛤ദ᪥⛬
䠎䠌䠍䠐㻌 ᖺ㻌 䠓㻌 ᭶㻌 䠏㻌 ᪥㻌 䡚㻌 㻌 䠎䠌䠍䠐㻌 ᖺ㻌 㻌 䠓㻌 ᭶㻌 䠑㻌 ᪥
఍ሙ
❧࿨㤋኱Ꮫ䜃䜟䛣䛟䛥䛴䜻䝱䞁䝟䝇㻌 䝁䝷䞊䝙䞁䜾䠥䠥㻌 㻌
䝥䝺䝊䞁䝔䞊䝅䝵䞁䝹䞊䝮
ሗ࿌ෆᐜ
ᩘᏛࡢᚤศ᪉⛬ᘧࡢ⌮ㄽࡢ୰࡛ࡶࠊ≉࡟‽ྂ඾ゎᯒࡢศ㔝࡟⤠ࡗࡓࢧ࣐࣮ࢫ
ࢡ࣮ࣝࢆࠊ❧࿨㤋኱Ꮫࡢ BKC ࢟ࣕࣥࣃࢫ࡟࠾࠸࡚㛤ദࡋࡓࠋࡇࡢศ㔝ࡢୡ⏺
ࡢ➨㸯ே⪅࡛࠶ࡿ Nicolas Burq ᩍᤵ㸦ࣃࣜ㸯㸯኱Ꮫ㸧ࠊMichael Hitrik ᩍᤵ
㸦UCLA㸧ࢆㅮᖌ࡜ࡋ࡚ᣍࡁࠊ᭱ඛ➃ࡢヰ㢟ࡢ୰࠿ࡽࡑࢀࡒࢀࢺ࣮ࣛࢫୖࡢࢩ
ࣗࣞࢹ࢕࣮ࣥ࢞᪉⛬ᘧࡢไᚚ⌮ㄽࠊ‽ྂ඾㠀⮬ᕫඹᙺస⏝⣲ࡢࢫ࣌ࢡࢺࣝ⌮ㄽ
࡟ࡘ࠸࡚ࠊ኱Ꮫ㝔⏕࡟ࡶ⌮ゎ࡛ࡁࡿධ㛛ࣞ࣋ࣝ࠿ࡽ᭱᪂ࡢ◊✲ᡂᯝࡲ࡛ࠊ㸱᫬
㛫࡙ࡘ㐃⥆ㅮ⩏ࢆ⾜ࡗ࡚ࡶࡽࡗࡓࠋࡑࡢ௚ࠊᾏእࠊᅜෆ࡛ά㌍ࡍࡿ㸳ேࡢⱝᡭ
ࡢ◊✲⪅ࡢㅮ₇ࡶࣉࣟࢢ࣒ࣛ࡟ධࢀࡓࠋ㸳㸮ே㏆࠸ཧຍ⪅ࡀࡇࡢ◊✲ศ㔝ࡢⓎ
ᒎ࡟ᐤ୚ࡍ࡭ࡃ⇕ᚰ࡟ຮᙉࡋࠊ㆟ㄽࢆ῝ࡵࡓࠋ
ㅮᖌࡽࡢᣍ⪸ࡣࡶࡕࢁࢇࠊ໭ᾏ㐨኱Ꮫ࣭⟃Ἴ኱Ꮫ࣭ᮾி኱Ꮫ࣭኱㜰኱Ꮫ࣭⚄
ᡞ኱Ꮫ࣭ᗈᓥ኱Ꮫ࡞࡝ࡢ࣏ࢫࢻࢡࡸ኱Ꮫ㝔⏕࡜࠸ࡗࡓⱝᡭ◊✲⪅ࡢ᪑㈝ࡢ᥼ຓ
࡟ᮏຓᡂ㔠ࢆά⏝࡛ࡁࡓࠋ
୍㒊ࡢㅮ₇࡟ࡘ࠸࡚ࡣࠊ࣮࣒࣮࣍࣌ࢪ
http://www.math.ritsumei.ac.jp/takuwatanabe/LSCA/LSCA2014.html
ୖ࡟ㅮ⩏㘓ࢆබ㛤ࡋ࡚࠸ࡿࠋ
−128−
ࢩ࣏ࣥࢪ࣒࣭࣮࢘࣡ࢡࢩࣙࢵࣉ㛤ദຓᡂ ሗ࿌᭩
௦⾲⪅
᝟ሗ⌮ᕤᏛ㒊࣭ᩍᤵ࣭ᒣୗⱱ
(ᡤᒓ࣭⫋ྡ࣭Ặྡ)
㞟఍ྡ
Asian Conference on Quantum Information Science (AQIS)
㛤ദ᪥⛬
2014 ᖺ 8 ᭶ 20 ᪥ 㹼2014 ᖺ 8 ᭶ 24 ᪥
఍ሙ
ி㒔ᕷࠊⰪ⹒఍㤋
ሗ࿌ෆᐜ
㔞Ꮚィ⟬࣭㔞Ꮚ㏻ಙࡢᐇ⌧࡟㛵ࢃࡿⴌⱆⓗ࣭Ꮫ㝿ⓗ࡞ࢺࣆࢵࢡࢆᢅ࠺㔞Ꮚ᝟
ሗ⛉Ꮫ࡟㛵ࡍࡿᅜ㝿఍㆟ $VLDQ&RQIHUHQFHRQ4XDQWXP,QIRUPDWLRQ6FLHQFH
$4,6࡛ࡣࠊ⌮ㄽⓗ࠾ࡼࡧᐇ㦂ⓗ࡞ഃ㠃ࢆᣢࡘࢺࣆࢵࢡ඲⯡ࢆࢫࢥ࣮ࣉ࡜
ࡋ࡚ࠊᙜヱศ㔝ࡢ᭱᪂ࡢ◊✲ᡂᯝⓎ⾲࡟ࡼࡿ◊✲⪅࡟᝟ሗ஺᥮ࡢᶵ఍ࢆ୚࠼ࡿ
ࡇ࡜ࢆ┠ⓗ࡜ࡋࡓࠋ㔞Ꮚ᝟ሗ⛉Ꮫࡢ◊✲࡟ࡣࠊᚲ↛ⓗ࡟ᚑ᮶ࡣูࡢศ㔝࡛࠶ࡗ
ࡓ」ᩘࡢ◊✲ศ㔝ࡢ◊✲⪅ࡀ㞟࠺ࡼ࠺࡟࡞ࡾࠊᙜヱศ㔝ࡣ᪂ࡋ࠸Ꮫ㝿࣭⼥ྜ㡿
ᇦ࡜ࡋ࡚ࡶὀ┠ࡉࢀ࡚࠸ࡿࠋࡇࡢࡼ࠺࡟ᵝࠎ࡞㠃࠿ࡽᏛ⾡ⓗ࡟ࡶ௒ᚋࡲࡍࡲࡍ
ࡑࡢ㔜せᛶࡀቑࡍ࡜⪃࠼ࡽࢀࡿ㔞Ꮚ᝟ሗ⛉Ꮫ࡟㛵ࡍࡿ◊✲ࢆࠊ≉࡟࢔ࢪ࢔ᅪ࡟
࠾࠸࡚᣺⯆ࢆࡍࡿࡇ࡜ࢆ୺࡞┠ⓗ࡜ࡋࡓࠋ
ᮏ఍㆟ࡣࠊᣍᚅㅮ₇ࠊ୍⯡ㅮ₇ࠊ࣏ࢫࢱ࣮ࢭࢵࢩࣙࣥ࠿ࡽᵓᡂࡋࡓࠋᣍᚅㅮ
₇⪅ࡣࠊ$QGU«&+$,//28;,15,$3DULV5RFTXHQFRXUWࠊ$UDP+$552:0,7ࠊ
+ROJHU +2)0$11 +LURVKLPD 8QLYHUVLW\ ࠊ $OH[DQGHU +2/(92 6WHNORY
0DWKHPDWLFDO,QVWLWXWHࠊ-RKQ0$57,1,68&6DQWD%DUEDUDࠊ0DVDQDR2=$:$
1DJR\D8QLYHUVLW\ࠊ9DOHULR6&$5$1,&476LQJDSRUHࠊ<RVKLKLVD<$0$0272
6WDQIRUG8QLYHUVLW\DQG1,,࡛࠶ࡗࡓࠋࡲࡓࠊ௒ᅇࡣࠊ*LOOHV%5$66$5'
8QLYHUVLW«GH0RQWUHDOࠊ5LFKDUG&/(9(,4&:DWHUORRࠊ'DQLHO*277(60$1
3HULPHWHU,QVWLWXWHࠊ7KRPDV9,',&.6LPRQV,QVWLWXWH8&%HUNHOH\ࡽ
࡟ࡼࡿࢳ࣮ࣗࢺࣜ࢔ࣝࢆࠊᮏศ㔝࡟ཧධࢆ⪃࠼࡚࠸ࡿࡼ࠺࡞࿘㎶ࡢ◊✲⪅࡞࡝
ࡶẼᴦ࡟⫈ㅮ࡛ࡁࡿࡼ࠺࡟↓ᩱ࡛බ㛤ࡋࡓࠋ
୍⯡ㅮ₇ࡣ᥇ᢥ⋡ࢆ ๭௨ୗ࡜ࡋ࡚ཝ㑅ࡍࡿ୍᪉ࠊ࣏ࢫࢱ࣮ࡣᏛ⏕ࢆྵࡵ࡚
࡛ࡁࡿࡔࡅከࡃࡢ◊✲⪅࡟Ⓨ⾲ࡢሙࢆᥦ౪ࡋࠊάⓎ࡞㆟ㄽࡀ࡛ࡁࡿࡼ࠺࡟㓄៖
ࡋࡓࠋⓎ⾲࡟ᑐࡋ࡚ࡣάⓎ࡞㉁␲ᛂ⟅ࡀ⾜ࢃࢀࡓࠋ఍㆟඲య࡛ࡣࠊཱྀ㢌Ⓨ⾲௳
ᩘ ௳㸦/RQJ7DON ௳㸪6KRUW7DON ௳㸧㸪࣏ࢫࢱ࣮Ⓨ⾲௳ᩘ ௳࡛࠶
ࡗࡓࠋࡲࡓࠊᏛ⏕ࡀⓎ⾲ࡋࡓ࣏ࢫࢱ࣮ࡢ୰࠿ࡽ 6WXGHQW3RVWHU$ZDUG ࢆ ௳
㑅ࢇࡔࠋ
୺࡞ཧຍᅜࡣࠊᙜึࡢ┠ⓗࡢ㏻ࡾࠊ᪥ᮏࠊ୰ᅜࠊ㡑ᅜࠊࢩ࣏࣮ࣥ࢞ࣝ࡞࡝ࡢ
࢔ࢪ࢔ࢆ୰ᚰ࡜ࡋ࡚ࠊࢳ࢙ࢥࠊ࢔࣓ࣜ࢝࡞࡝࠿ࡽከᩘཧຍࡋࠊࡑࡢ௚࡟ࡶ㸯㸵
࠿ᅜ࠿ࡽࠊ඲య࡛㸯㸴㸮ྡ㸦࠺ࡕእᅜ࠿ࡽࡢཧຍ⪅㸷㸴ྡ㸧࡛࠶ࡗࡓࠋ
ࡲࡓࠊ㛵㐃ศ㔝ࡢࢧࢸࣛ࢖ࢺ࣮࣡ࢡࢩࣙࢵࣉࢆ఍㆟ࡢ๓ᚋ࡟ᮾி኱Ꮫ࠾ࡼࡧ
኱㜰኱Ꮫ࡛௻⏬ࡋࠊཧຍ⪅ࡢቑຍ࠾ࡼࡧ㛵㐃ศ㔝ࡢ◊✲⪅ࡢ஺ὶ࡞࡝ࢆಁ㐍ࡋ
ࡓࠋ
ୖグࡢ఍㆟ࢆ㏻ࡋ࡚ࠊᙜึࡢ┠ⓗ㏻ࡾࠊ㔞Ꮚ᝟ሗฎ⌮ࡢ◊✲ศ㔝࡟㛵ࡋ࡚ࠊ
᭱᪂ࡢ◊✲ᡂᯝࡢⓎ⾲࡜᝟ሗ஺᥮ࢆ⾜࠺ሙࢆ࢔ࢪ࢔ᅪ㸦௒ᅇࡣ᪥ᮏ㸧࡟࠾࠸
࡚ᥦ౪ࡍࡿࡇ࡜ࡀ࡛ࡁࡓ࡜⪃࠼࡚࠸ࡿࠋࡑࢀ࡟ࡼࡾᙜヱศ㔝ࡢ≉࡟࢔ࢪ࢔ᅪ࡛
ࡢࡉࡽ࡞ࡿⓎᒎ࡟ຠᯝࡀ࠶ࡗࡓ࡜⪃࠼࡚࠸ࡿࠋ
−129−
(
)
2014
8
2015
21
3
2013
−130−
ࢩ࣏ࣥࢪ࣒࣭࣮࢘࣡ࢡࢩࣙࢵࣉ㛤ദຓᡂ ሗ࿌᭩
௦⾲⪅
⌮ᕤᏛ㒊࣭ᩍᤵ࣭኱ᆏ༤ᖾ
(ᡤᒓ࣭⫋ྡ࣭Ặྡ)
㞟఍ྡ
Workshop on Quantum Information Theory and related Topics
㛤ദ᪥⛬
2014 ᖺ 9 ᭶ 4 ᪥㹼2014 ᖺ 9 ᭶ 6 ᪥
఍ሙ
⾰➟࢟ࣕࣥࣃࢫ ◊ᚰ㤋 632 ྕᐊ
ሗ࿌ෆᐜ
࣭ཧຍ⪅㸱㸵ྡ㸦Ꮫእ⪅㸰㸰ྡࠊᏛෆ⪅㸯㸳ྡ㸧
㸦ࡑࡢෆᾏእ◊✲⪅㸵ྡ㸧
࣭ㅮ₇⪅㸯㸰ྡ㸦༤ኈ㝔⏕㸰ྡ㸧(ࡑࡢෆᾏእ◊✲⪅㸱ྡ)
࣭2012 ᖺ࠿ࡽ⥅⥆ࡋ࡚㛤ദࡉࢀ࡚࠸ࡿ㔞Ꮚ᝟ሗ⌮ㄽ࡟㛵ಀࡍࡿᅇ┠ࡢᅜ㝿◊
✲㞟఍࡛࠶ࡾࠊ௒ᅇࡣከࡃࡢᅜෆእࡢ኱Ꮫ࣭◊✲ᡤ࠿ࡽཧຍࡀ࠶ࡾࠊ┒ἣ࡛࠶
ࡗࡓࠋ㸯᪥┠ࡣࠊ㔞Ꮚ࢚ࣥࢺࣟࣆ࣮ࡸస⏝⣲୙➼ᘧ࡟㛵㐃ࡍࡿㅮ₇ࠊ㸰᪥┠ࡣࠊ
㔞Ꮚࣇ࢓࢖ࢼࣥࢫ࡟㛵㐃ࡍࡿㅮ₇ࡸ㔞Ꮚ࢚ࣥࢱࣥࢢ࣓ࣝࣥࢺࠊ⮬⏤☜⋡ㄽ࡟㛵
ࡍࡿㅮ₇ࠊ᭱⤊᪥ࡣస⏝⣲༢ㄪ㛵ᩘ࡟㛵ࡍࡿㅮ₇ࡀ࠾ࡇ࡞ࢃࢀࡓࠋㅮ₇ᚋάⓎ
ࡢ㆟ㄽࡀ࡞ࡉࢀ㠀ᖖ࡟඘ᐇࢆࡋࡓࠋ2015 ᖺ 9 ᭶ 1 ᪥㹼9 ᭶ 3 ᪥࡟ࡣࠊࣁࣀ࢖
ᩘᏛ◊✲ᡤ࡛➨㸲ᅇࡢྠྡࡢᅜ㝿◊✲㞟఍ࡀ㛤ദࡉࢀࡿࡇ࡜ࡀ☜ᐃࡋ࡚࠸ࡿࠋ
ሗ࿌⪅ࡣࡇࡢ◊✲㞟఍ࡢ୺ദ⪅ࡢ୍ே࡜ࡋ࡚ࠊㅮ₇⪅ࡢᡭ㓄ࢆࡋ࡚࠸ࡿࠋ
−131−
ࢩ࣏ࣥࢪ࣒࣭࣮࢘࣡ࢡࢩࣙࢵࣉ㛤ദຓᡂ ሗ࿌᭩
௦⾲⪅
(ᡤᒓ࣭⫋ྡ࣭Ặྡ)
⸆Ꮫ㒊㺃ᩍᤵ࣭ὸ㔝 ┿ྖ
㞟఍ྡ
➨ 2 ᅇ ୖ⓶ࣂࣜ࢔࡜ୖ⓶㍺㏦࡟㛵ࡍࡿᅜ㝿ࢩ࣏ࣥࢪ࣒࢘
㛤ദ᪥⛬
2014 ᖺ 11 ᭶ 1 ᪥㸦ᅵ㸧 㹼 11 ᭶ 2 ᪥㸦᪥㸧
఍ሙ
BKC ࣮࣒ࣟグᛕ㤋࣮࣍ࣝ ࡯࠿
ሗ࿌ෆᐜ
ᅜෆࡢ⏕⌮Ꮫࠊ⣽⬊⏕≀Ꮫࠊ⸆≀ືែᏛࡢ➨୍⥺ࡢ◊✲⪅㸦33 ྡࠊࢩ࣏ࣥ
ࢪࢫࢺ 18 ྡ㸧࡟ຍ࠼ࠊ⭈ୖ⓶ࣂࣜ࢔࣭㍺㏦ศ㔝ࡢ➨୍⥺ࡢ◊✲⪅࡛࠶ࡿ࢝ࣥ
ࢨࢫ኱Ꮫ་Ꮫ㒊࣓ࢹ࢕࢝ࣝࢭࣥࢱ࣮ࡢ Yu ᩍᤵࢆᣍࡁࢩ࣏ࣥࢪ࣒࢘ࢆ㛤ദࡋ
ࡓࠋࢩ࣏ࣥࢪ࣒࡛࢘ࡣ⏕య㜵ᚚࡸࠊ⸆≀྾཰ࡢ᭱๓⥺࡛࠶ࡿୖ⓶⤌⧊ࡢᶵ⬟ᵓ
⠏࡟ࡘ࠸࡚ศᏊࣞ࣋ࣝࠊ⤌⧊ࣞ࣋ࣝࠊಶయ࡛ࣞ࣋ࣝࡢ᭱ඛ➃ࡢ◊✲ᡂᯝࢆⓎ⾲
ࡋࠊពぢ஺᥮ࢆ⾜ࡗࡓ㸦ཧຍ⪅ 60 ྡ㸧
ࠋᮏᏛ࠿ࡽࡣ⸆Ꮫ㒊ࡢ᱇ᩄஓඛ⏕ࠊ⸨⏣
㝯ྖඛ⏕ࠊἼከ㔝ுඛ⏕ࡀࢩ࣏ࣥࢪ࣒࢘Ⓨ⾲ࢆࡉࢀࡓࠋ
ࢩ࣏ࣥࢪ࣒࡛࢘ࡣࠊྡྂᒇ኱Ꮫ኱Ꮫ㝔ࡢ⸨ྜྷዲ๎ᩍᤵࢆ࠾ᣍࡁࠊࢱ࢖ࢺࢪࣕ
ࣥࢡࢩࣙࣥ㸦⣽⬊㛫ࡢᐦ╔⤖ྜ㸧ࢆᵓᡂࡍࡿࢱࣥࣃࢡ㉁࡛࠶ࡿࢡ࣮ࣟࢪࣥࡢ⤖
ᬗᵓ㐀࡜⏕యࣂࣜ࢔ࡢ⏕⌮ᶵ⬟࡟ࡘ࠸࡚≉ูㅮ₇ࢆ㛤ദࡋࡓࠋࡲࡓࠊᇶ♏◊✲
࡜ࡋ࡚⏕యࣂࣜ࢔ࡢศᏊᇶ┙ࡸ㍺㏦࡟㛵ࡍࡿ◊✲࠿ࡽࠊ᪂ࡓ࡞๰⸆࡟┤⤖ࡍࡿ
ᛂ⏝◊✲ࡲ࡛ᖜᗈࡃⓎ⾲ࡀ࡞ࡉࢀࠊάⓎ࡞ពぢ஺᥮ࠊ᝟ሗ஺᥮ࡀ࡞ࡉࢀࡓ㸦〇
⸆௻ᴗ࠿ࡽࡢཧຍ⪅ 2 ྡ㸧ࠋࡉࡽ࡟ࠊⱝᡭ◊✲⪅㸦Ꮫ㒊⏕࣭኱Ꮫ㝔⏕㸧ࢆ୰ᚰ
࡟࣏ࢫࢱ࣮Ⓨ⾲ࠊ࣏ࢫࢱ࣮ウㄽࢆ⾜ࡗࡓࠋᮏᏛࡢᏛ⏕ࠊ኱Ꮫ㝔⏕ 13 ྡࡶࢩࣥ
࣏ࢪ࣒࢘࡟ཧຍࡋࡓࠋ
࠾ࡶ࡞ཧຍ⪅ࡣ௨ୗࡢ㏻ࡾࠋ
࣭Alan SL. Yu㸦University of Kansas Medical Center, Kansas City㸧
࣭⸨ྜྷዲ๎㸦ྡྂᒇ኱Ꮫ኱Ꮫ㝔๰⸆⛉Ꮫ◊✲⛉㸧
࣭୸୰Ⰻ඾㸦ி㒔ᗓ❧་⛉኱Ꮫ་Ꮫ㒊㸧
࣭᭶⏣᪩ᬛᏊ㸦኱㜰኱Ꮫ኱Ꮫ㝔⏕࿨⛉Ꮫ◊✲⛉㸧
࣭Ọ᳃཰ᚿ㸦኱㜰኱Ꮫ኱Ꮫ㝔་Ꮫ⣔◊✲⛉㸧
࣭ᮌᮧ ᚭ㸦ᮥᯘ኱Ꮫ་Ꮫ㒊㸧
࣭Ἑཎඞ㞞㸦໭㔛኱Ꮫ་Ꮫ㒊㸧
࣭㓇஭⚽⣖㸦ᐩᒣ኱Ꮫ኱Ꮫ㝔་⸆⣔㸧
࣭㕥ᮌ႐㑻㸦⏕⌮Ꮫ◊✲ᡤ㸧
࣭Ọ஭⣧ஓ㸦኱㜰⸆⛉኱Ꮫ㸧
࣭ᯘ ஂ⏤㸦㟼ᒸ┴❧኱Ꮫ㣗ရᰤ㣴Ꮫ㒊㸧
࣭ᐑᮏ㈼୍㸦ᚨᓥ኱Ꮫ་Ꮫ㒊་⛉ᰤ㣴Ꮫ⛉㸧
−132−
࣭㕥ᮌ႐㑻㸦ᒸᓮࣂ࢖࢜ࢧ࢖࢚ࣥࢫࢭࣥࢱ࣮⣽⬊⏕⌮㒊㛛㸧
࣭஬༑㔛ᙲ㸦ᒱ㜧⸆⛉኱Ꮫ㸧
࣭ຍ⸨ᑗኵ㸦㔠ἑ኱Ꮫ኱Ꮫ㝔⸆Ꮫ◊✲⛉㸧
࣭ᑿ⏿♸ᶞ㸦༓ⴥ኱Ꮫ኱Ꮫ㝔་Ꮫ◊✲㝔㸧 ࡯࠿
−133−
ࢩ࣏ࣥࢪ࣒࣭࣮࢘࣡ࢡࢩࣙࢵࣉ㛤ദຓᡂ ሗ࿌᭩
௦⾲⪅
(ᡤᒓ࣭⫋ྡ࣭Ặྡ)
᝟ሗ⌮ᕤᏛ㒊࣭ᩍᤵ࣭ᖹᯘ᫭
㞟఍ྡ
㟁Ꮚ᝟ሗ㏻ಙᏛ఍➨㸰㸷ᅇಙྕฎ⌮ࢩ࣏ࣥࢪ࣒࢘
㛤ദ᪥⛬
ᖹᡂ㸰㸴ᖺ㸯㸯᭶㸯㸯᪥ࠥ㸯㸱᪥
఍ሙ
❧࿨㤋኱Ꮫᮒ㞛࢟ࣕࣥࣃࢫ
ሗ࿌ෆᐜ
ୖグ᪥⛬࡛ࢩ࣏ࣥࢪ࣒࢘ࢆ㛤ദࡋ㸪❧࿨㤋኱Ꮫᮒ㞛࢟ࣕࣥࣃࢫ࡟࠾࠸࡚ࡣ௨
ୗࡢෆᐜࢆᐇ᪋ࡋࡓ㸸
ᵏᵏᵍᵏᵏᵆ້ᵇᵏᵑᵘᵑᵎ㛈ᵏᵕᵘᵓᵎύ‫ܖ‬ဃӼẬᜒ๫˟Ẑ˖ಅỉஇЭዴỂ෇ẨỦ̮ӭϼྸ২ᘐẑᴾ
㊃᪨࡟㈶ྠ㡬ࡅࡓ㸷♫࠿ࡽಙྕฎ⌮ศ㔝ࡢ◊✲⪅࡟࠾㉺ࡋ࠸ࡓࡔࡁ㸪ྛ♫࡛
ࡢಙྕฎ⌮◊✲ࡢྲྀࡾ⤌ࡳࡸࡑࡢά⏝ἲ࡟ࡘ࠸࡚ࡈㅮ₇㡬࠸ࡓ㸬ᢏ⾡ⓗ࡞ヰࡔ
ࡅ࡛࡞ࡃ㸪ྛㅮ₇⪅ࡈ⮬㌟ࡢ⤒㦂ࢆ㋃ࡲ࠼ࡓⱝᡭ◊✲⪅ྥࡅࡢ࣓ࢵࢭ࣮ࢪࡀࡑ
ࢀࡒࢀࡢㅮ₇࡟ࡕࡾࡤࡵࡽࢀ࡚࠾ࡾ㸪ᙜヱศ㔝ࡢᏛ⏕࡟࡜ࡗ࡚㠀ᖖ࡟౯್ࡢ࠶
ࡿ㈗㔜࡞⤒㦂࡜࡞ࡗࡓ㸬ࡲࡓ㸪኱Ꮫ࡜ࡣ␗࡞ࡿไ⣙ࡸどⅬ࠿ࡽࡢ◊✲άື࡟ࡘ
࠸࡚ࡢヰࡣ㸪Ꮫ⏕ࡸⱝᡭࡔࡅ࡛࡞ࡃࢩࢽ࢔ࡢ኱Ꮫ◊✲⪅࡟࡜ࡗ࡚ࡶ᪂㩭࡛⯆࿡
῝࠸ࡶࡢ࡛࠶ࡗࡓ㸬
ㅮ₇ᚋ࡟࠾ࡼࡑ㸯᫬㛫ࡢ᠓ㄯ఍ࢆタࡅ࡚㸪Ꮫ⏕࡜ྛ♫ࡢ◊✲⪅࡜ࡢ஺ὶࡢ᫬
㛫ࢆ⏝ពࡋࡓࡀ㸪఍ሙࡢ࠶ࡕࡽࡇࡕࡽ࡛⇕ᚰ࡟㉁ၥࢆࡍࡿᏛ⏕ࡢጼࡀࡳࡽࢀ㸪
⤊஢᫬้࡟࡞ࡗ࡚ࡶ఍ሙࢆ㛢ࡵࡽࢀ࡞࠸࡯࡝┒ἣ࡛࠶ࡗࡓ㸬
ཧຍ⪅࡬ࡢ࢔ࣥࢣ࣮ࢺ࡟ᑐࡋ࡚㸪ᅇ⟅ࡢ࠶ࡗࡓ᪉ࡢ 94%ࡀᮏࣉࣞ࢖࣋ࣥࢺࡢ
ホ౯࡜ࡋ࡚ࠕᮇᚅ௨ୖࠖ࠶ࡿ࠸ࡣࠕᮇᚅ㏻ࡾࠖ࡜⟅࠼࡚࠾ࡾ㸪ᮏ࢖࣋ࣥࢺࡢ┠
ⓗࡀ㐩ᡂࡉࢀࡓ࡜⪃࠼ࡽࢀࡿ㸬
ᵏᵏᵍᵏᵑᵆ້ᵇᵏᵓᵘᵎᵎ㛈ᵏᵕᵘᵑᵎύཎКᜒ๫ᴾ
ி 㒔 ኱ ྡ ㄃ ᩍ ᤵ ∦ ᒣ ᚭ ඛ ⏕ ࠾ ࡼ ࡧ IEEE Signal Processing Society
Distinguished Lecturer ࡛࠶ࡿ V. John Mathews ᩍᤵࢆᣍ⪸ࡋ࡚ࡑࢀࡒࢀ㸪
ࣇ ࢕ ࣝ ࢱ ࣜ ࣥ ࢢ ࡜ ࢩ ࢫ ࢸ ࣒ ྠ ᐃ ࠾ ࡼ ࡧ Signal Processing for Health
Monitoring of Aerospace Structures ࡟㛵ࡍࡿ≉ูㅮ₇ࢆ㡬࠸ࡓ㸬200 ྡࢆ㉺
࠼ࡿཧຍ⪅ࡀ⫈ㅮࡋ㸪ᴟࡵ࡚᭷ព⩏࡞ㅮ₇఍࡜ࡍࡿࡇ࡜ࡀ࡛ࡁࡓ㸬
−134−
᪥㻌 ᫬䠖
2014 ᖺᗘ ❧࿨㤋኱Ꮫ⌮ᕤᏛ◊✲ᡤ Ꮫ⾡ㅮ₇఍
୺ദ㻌 䠖⌮ᕤᏛ◊✲ᡤ
㻌㻌㻌㻌㻌㻌㻌
2014 ᖺ 12 ᭶ 10 ᪥䠄Ỉ䠅㻌 㻌 18䠖00䡚19䠖30
఍㻌 ሙ䠖
❧࿨㤋኱Ꮫ䜃䜟䛣䞉䛟䛥䛴䜻䝱䞁䝟䝇 䝻䞊䝮グᛕ㤋㻌 5 㝵㻌 ኱఍㆟ᐊ
ㅮ㻌 ᖌ䠖
₇㻌 㢟䠖
せ㻌 ᪨䠖
㻌
ி㒔኱Ꮫ་Ꮫ◊✲⛉㻌 䝯䝕䜱䜹䝹䜲䝜䝧䞊䝅䝵䞁䝉䞁䝍䞊㻌
䝉䞁䝍䞊㛗㻌 ᡂᐑ㻌 ࿘Ặ㻌
㻌
䛂䝇䝖䝺䝇䚸䛣䛣䜝䚸䝥䝻䝇䝍䜾䝷䞁䝆䞁䛃㻌
㻌
䝇䝖䝺䝇䛿䚸ෆⓗ䜔እⓗ⎔ቃ䛾ኚ໬䛷⏕య䛾ᜏᖖᛶ䛜◚⥢䛧䛯≧ែ䜢䛔䛖䚹䝇䝖
䝺䝇䛿䚸⑓Ẽ䛺䛹䛾㌟య䜈䛾่⃭䛸䛸䜒䛻᪂つ⎔ቃ䜔እᩛ䜈䛾ᭀ㟢䛸䛔䛳䛯ᚰ
⌮ⓗ่⃭䛷ច㉳䛥䜜䚸஺ឤ⚄⤒䛾⥭ᙇ䜔䝇䝖䝺䝇䝩䝹䝰䞁䛾ศἪ䛸ゝ䛳䛯㌟య
ⓗ཯ᛂ䛻ຍ䛘䚸୙Ᏻ䚸ᜍᛧ䚸ᨷᧁᛶ䚸䛒䜛䛔䛿䚸䛖䛴≧ែ䛸䛔䛳䛯䛣䛣䜝䛾཯ᛂ䜢
ᘬ䛝㉳䛣䛩䚹ㅮ₇䛷䛿䚸䛣䜜䜙䝇䝖䝺䝇཯ᛂ䛾⬻ෆ䝯䜹䝙䝈䝮䛻䛚䛡䜛⅖⑕ศᏊ
䝥䝻䝇䝍䜾䝷䞁䝆䞁䛾ാ䛝䛻䛴䛔䛶㏙䜉䜙䜜䛯䚹㻌
−135−
⌮ᕤᏛ◊✲ᡤ䛾㐠Ⴀ
㻞㻜㻝㻠 ᖺᗘ㻌
ᡤ㛗㻌
῝ᕝ㻌 Ⰻ୍㻌
⌮ᕤᏛ㒊㒔ᕷ䝅䝇䝔䝮ᕤᏛ⛉㻌
㻌
୺஦㻌
ᇼ㻌 ฼⾜㻌
⏕࿨⛉Ꮫ㒊⏕࿨་⛉Ꮫ⛉㻌
㻌
ጤဨ㻌
⚟ᮏ㻌 ၿὒ㻌
⌮ᕤᏛ㒊ᩘ⌮⛉Ꮫ⛉㻌
㻌
㻌
ᒣᓮ㻌 ຾ᘯ㻌
⌮ᕤᏛ㒊㟁Ꮚ᝟ሗᕤᏛ⛉㻌
㻌
㻌
ᮌ⫤㻌 㞞❶㻌
⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉㻌
㻌
㻌
ዟ㻌 ೺ኴ㻌
᝟ሗ⌮ᕤᏛ㒊᝟ሗ䝁䝭䝳䝙䜿䞊䝅䝵䞁Ꮫ⛉㻌
㻌
㻌
すཎ㻌 㝧Ꮚ㻌
᝟ሗ⌮ᕤᏛ㒊䝯䝕䜱䜰᝟ሗᏛ⛉㻌
㻌
㻌
㔝㛫㻌 ᫛඾㻌
⏕࿨⛉Ꮫ㒊⏕࿨᝟ሗᏛ⛉㻌
㻌
㻌
୍ᕝ㻌 ᬸᏹ㻌
⸆Ꮫ㒊⸆Ꮫ⛉㻌
ሷ⃝㻌 ᡂᘯ㻌
䝇䝫䞊䝒೺ᗣ⛉Ꮫ㒊䝇䝫䞊䝒೺ᗣ⛉Ꮫ⛉㻌
㻌㻌
−136−
2015 ᖺ 3 ᭶ 10 ᪥ ༳ๅ
2015 ᖺ 3 ᭶ 31 ᪥ Ⓨ⾜
❧࿨㤋኱Ꮫ⌮ᕤᏛ◊✲ᡤ⣖せ ➨ 73 ྕ
ࠛ525-8577
⦅ 㞟 ව
⁠㈡┴ⲡὠᕷ㔝㊰ᮾ୍୎┠ 1 ␒ 1 ྕ
❧࿨㤋኱Ꮫ⌮ᕤᏛ◊✲ᡤ
Ⓨ ⾜ ᡤ
௦ ⾲ ⪅ ࠛ600-8047
Ⰻ ୍
ி㒔ᗓி㒔ᕷୗி༊ᯇཎ㏻㯑ᒇ⏫ᮾධ
▼୙ືஅ⏫ 677-2
༳ ๅ ᡤ
῝ ᕝ ओ⏣୰ࣉࣜࣥࢺ
CONTENTS of No. 73, 2014
<Treatise>
1. Quadratic reciprocity law over number fields
……………………………………………………………………………………………………… Hidenori Ishii ………
1
2. Relationship between polishing performance and viscoelasticity of epoxy resin polishing pads
………………………………………………………………… Yasuhiro TANI, Yu ZHANG and Junji MURATA ………
5
3. Development of partiallty Ni-coated diamond abrasives for electroplated tools
………………………………………………………………… Yu ZHANG, Yasuhiro TANI and Junji MURATA ……… 15
4. A feasibility study for the application for slicing Si ingots using a wet etching assisted by wire-friction
………………………………………………………………… Yasuhiro TANI, Yu ZHANG and Junji MURATA ……… 27
5. Social Sciences of Hope in the Theory of Language Communication and Language Philosophy - Is it possible for us to
fully understand each other? : From discussions of W.V.O. Quine, D. Davidson & R. Rorty
………………………………………………………………………………………………… Tsukasa Yamanaka ……… 37
6. Formation of Forsterite Grains Nd Direct Observation of The Sublimaion of Crystal Formation Grain
……………………………………………………………………… Chihiro Kaito, Saito Yoshio, Chiyoe Koike ……… 45
7. Shikiba Construction Method and its Origin
……………………Masao Okuda, Youji Nakane, Yukihiko Kani, Katsuhiro Nishimura and Kiyoshi Hayakawa ……… 53
8. History of cut and soil at the ruins
……………………… Katsuhiro Nishimura, Yukihiko Kani, Masao Okuda, Youji Nakane, Kiyoshi Hayakawa ……… 63
9. Operations Research Linear Planning solving with Excel Solver 1
…………………………………………………………………………………………………… Yoshiki Hayashi ……… 71
Abstracts of Research Projects using Institute Experimental Apparatuses …………………………………………… 79
Other Activities …………………………………………………………………………………………………………… 125
Fly UP