Comments
Description
Transcript
理工学研究所紀要73号(2014年度)
ISSN 0370-4254 CODEN:RDRKAJ 立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 MEMOIRS OF THE INSTITUTE OF SCIENCE & ENGINEERING RITSUMEIKAN UNIVERSITY KUSATSU, SHIGA, JAPAN NO. 73 2014 理工学研究所紀要 第73号 2014 目次 <一般論文> 1. 代数体上の平方剰余の相互法則 ……………………………………………………………………………………………………… 石井 秀則 …… 1 2. エポキシ樹脂研磨パッドの粘弾性と研磨特性 ……………………………………………………………………… 谷 泰弘・張 宇・村田 順二 …… 5 3. 電着工具用の部分Ni被覆ダイヤモンド砥粒の開発 ……………………………………………………………………… 張 宇・谷 泰弘・村田 順二 …… 15 4. ワイヤ擦過援用ウェットエッチングによるシリコンインゴットの切断の基礎的検討 ……………………………………………………………………… 谷 泰弘・張 宇・村田 順二 …… 27 5. 言語コミュニケーション論における「希望学」─「分かり合う」ことは可能か: W.V.O. Quine, D. Davidson, R. Rortyの議論を出発点に ……………………………………………………………………………………………………… 山中 司 …… 37 6. Formation of Forsterite Grains and Direct Observation of The Sublimation of Crystal Formation Grain ……………………………………………………………………………………………………… 墻内 千尋 …… 45 7. 敷葉(しきば)工法とその起源 ……………………………………… 奥田 昌男・中根 洋治・可児 幸彦・西村 勝広・早川 清 …… 53 8. 遺跡から知る切盛土工 …………… 西村 勝広・可児 幸彦・奥田 昌男・中根 洋治・早川 清 …… 63 9. オペレーションズリサーチ エクセルソルバーで解く線形計画法1 ……………………… 林 芳樹 …… 71 大型研究装置成果報告書 ……………………………………………………………………………………………… 79 理工学研究所記事 ……………………………………………………………………………………………………… 125 立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年 Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014 ମ্ͷฏํ༨ͷ૬ޓ๏ଇ ੴҪलଇ ======================================================================= Quadratic reciprocity law over number ¿elds Hidenori Ishii Quadratic reciprocity law, which was ¿rst proved by C.F. Gauss [1], can be viewed as a relation of two quadratic Dirichelet characters. The author has given a proof by virtue of the functional equation of Dedekind zeta function of biquadratic number ¿elds. [3], In this paper, similar argument as in [3] will be applied to relative biquadratic extensions of number ¿elds. Then we will show a generalization of quadratic reciprocity law over number ¿elds. Keywors ; Qadratic reciprocity, quadratic extension of number ¿elds, functioal equation of Dedekind zeta function, Hecke characters of the ideal class group E-mail: [email protected] ========================================================================== ໋ཱؗେֶཧֶ෦ཧՊֶՊ Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan 1 −1− 石井 秀則 1 ংจ ࣍ͷฏํ༨ͷ૬ޓ๏ଇ 1801 ʹ Gauss[1] ͕࠷ॳͷূ໌Λ༩͔͑ͯΒɺΨεؚࣗΊɺ ଟ͘ͷֶऀʹΑΓɺ 240 ͷผূ໌͕༩͑ΒΕ͖ͯͨɻcf.Lemmermeyer[4] ఆཧʢฏํ༨ͷ૬ޓ๏ଇʣɹ p ͱ q ૬ҟͳΔحૉͱ͢Δɻ͜ͷͱ͖ p−1 q−1 p q = (−1) 2 2 q p ͕Γཱͭɻ √ √ ஶऀ [3] ʹ͓͍ͯɺL = Q( p∗ , q∗ ) ͱ͠ɺL ͷσσΩϯτɾθʔλؔ ζL (s) ΛྨମΛ༻͍ͯ ղ͠ɺؔࣜΛద༻͢Δ͜ͱʹΑͬͯɺฏํ༨ͷ૬ޓ๏ଇΛূ໌ͨ͠ɻ͜͜Ͱɺɹ p∗ = (−1) p−1 2 p, q−1 q∗ = (−1) 2 q Ͱ͋Δɻ͜ͷํ๏ɺ༗ཧମͷಛघੑΛΘͳ͍ͷͰҰൠͷମ্ͷ߹ʹ֦ு ͕ՄೳͰ͋ͬͨɻຊจʹ͓͍ͯɺF Λମͱ͠ɺF ͷ 2 ͱૉͳ૬ҟͳΔૉΠσΞϧ p,q ʹର ͠ɺχp , χq ΛͦΕͧΕɺಋख p,q ͷΠσΞϧྨࢦඪͰɺҐ͕̎ͷͷͱ͢Δɻ͜ͷͱ͖ɺ͕࣍ Γཱͭɻ ఆཧ 1. χp (q) = χq (p) 2 ؔࣜʹ͍ͭͯ K ମͱ͠ɺ࣮ૉͷݸɺڏૉͷݸΛͦΕͧΕɺr1 ,r2 ͱ͢Δɻ·ͨɺm K ͷΠ σΞϧͱ͢Δɻm Λ๏ͱ͢Δ࢝ݪతྨࢦඪ χ ͕ ∀α ≡ 1 mod m ʹରͯ͠ɺ αν uν χ((α)) = |αν | ν ͜͜Ͱɺੵ࣮ૉΛΔɻαν ࣮ૉ ν ʹରԠ͢Δ α ͷڞͰ͋Δɻuν = 0, 1 ͜ͷͱ͖ɺ s ΛK (s, χ) = (|dK |N(m)) 2 π− s+uν 2 Γ( ν s + uν ) (2(2π)−s Γ(s))r2 L(s, χ) 2 ͱ͓͘ɻ͜͜Ͱɺੵ࣮ૉΛΔɻdK K ͷผࣜͰ͋ΔɻL(s, χ) Hecke ͷ̡ؔͰɺ L(s, χ) = χ(n)N(n)−s n ͱ͘ʹɺχ = 1 ͷͱ͖ L(s, 1) = ζK (s) K ͷσσΩϯτθʔλͰ͋Δ͜ͱʹҙ͢ΔɻΛK (s) = Λ(s, 1) ͱॻ͘ɻ࣍ʹɺΨε W(χ) ʹ͍ͭͯઆ໌͢Δɻ αν uν χ∞ (α) = |αν | ν 2 −2− 代数体上の平方剰余の相互法則 ͱ͓͘ɻ͜͜Ͱɺੵ࣮ૉΛΔɻ χ f (α) = χ((α))χ∞ (α)−1 ͱ͢ΔɻK ͷڞࠩੵ d ʹରͯ͠ɺdmc = (b) ͱͳΔΑ͏ʹɹΠσΞϧ c, (c, m) = 1 ΛͱΓɺ χ∞ (b) χ f (α)e2πitr(α/b) χ(c) α W(χ) = ʹΑͬͯɺΨε W(χ) Λఆٛ͢Δɻ(cf. Miyake.[5]) Hecke[2] ࣍ͷؔࣜΛূ໌ͨ͠ɻ ఆཧʢHecke) Λ(1 − s, χ) = T (χ)Λ(s, χ) T (χ) = i−u W(χ)/N(m)1/2 u= uν ν 3 ఆཧ̍ͷূ໌ F n ࣍ମͱ͠ɺF ͷҟͳΔحૉΠσΞϧ p,q ʹର͠ɺχ1 = χp , χ2 = χq ΛͦΕͧΕɺಋख p,q ͷྨࢦඪͰɺҐ͕̎ͷͷͱ͢Δɻχ1 , χ2 ʹରԠ͢Δ F ͷ 2 ֦࣍େମΛͦΕͧΕɺK1 ,K2 ͱ ͠ɺͦͷ߹ମΛ L ͱ͢ΔɻL F ্ͷ (2,2) ܕΞʔϕϧ֦େମͰ͋Γɺ͋ͱ̍ͭͷ 2 ࣍தؒମΛ K3 ͱ͠ɺK3 ʹରԠ͢ΔྨࢦඪΛɹ χ3 ͱ͢Δͱɺχ3 = χ1 χ2 Ͱ͋ΔɻྨମʹΑΓɺζL ࣍ͷΑ͏ ʹղ͢Δɻ 3 ζL (s) = ζF (s) ͜ΕΑΓɺχ3 = χ1 χ2 ͳΒͼʹɺ |dL | = |dF |4 L(s, χi ). i=1 3 N(mi ) ʢmi χi ͷಋखʣʹҙͯ͠ɺ i=1 ΛL (s) = ΛF (s) 3 Λ(s, χi ). i=1 ͕ಘΒΕΔɻχi Ґ͕̎ͳͷͰɺχi = χi Ͱ͋Δɻͦ͜ͰɺΛL (1 − s) = ΛL (s) ͷ྆ลʹೖͯ͠ɺ 3 i=1 W(χi ) = 3 N(mi )1/2 i=1 ͕Θ͔Δɻm1 = p, m2 = q ʹ͍ޓૉͳͷͰɺm3 = pqɺ·ͨɺ W(χ1 χ2 ) = χ1 (q)χ2 (p)W(χ1 )W(χ2 ) W(χi )2 = |W(χi )|2 = N(mi ) (i = 1, 2) χ1 (q)χ2 (p) = 1 ͜ΕͰɺఆཧ͕̍ূ໌͞Εͨɻ 3 −3− 石井 秀則 ࢀߟจݙ [1] Gauss, C. F. Disquisiones arithmeticae, Lipsiae (Leipzig): Gerhard Fleischer (1801) [2] Hecke, E. Über eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. Math.Z.,1(1918), 357-376;4(1920),11-21. [3] Ishii, H. Functional equations and the law of quadratic reciprocity, Mem. Inst. Sci. Eng. Ritsumeikan Univ.No.57(1998)1-3. [4] Lemmermeyer,H. Reciprocity Laws From Euler to Eisenstein, , Springer-Verlag(2000).. [5] Miyake, T. Modular forms, Springer-Verlag(1989). 4 −4− 立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年 Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014 ࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ⢓ᙎᛶ◊☻≉ᛶ ㇂ Ὀᘯ 1)㸪ᙇ Ᏹ 1)㸪ᮧ⏣㡰 2) ᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹ Relationship between polishing performance and viscoelasticity of epoxy resin polishing pads Yasuhiro TANI1), Yu ZHANG1) and Junji MURATA 2) Polishing performances of glass using epoxy resin polishing pads from the aspect of their mechanical properties are described. Material removal rates are independent to the hardness of the epoxy resin pads. The different types of epoxy resin pads are produced by varying the composition of the resin and the curing agent. Dynamic mechanical analysis (DMA) of the epoxy and conventional urethane resin polishing pads was conducted to investigate the relationship between the material removal rates and the mechanical properties of the epoxy resin polishing pads. DMA measurement indicates that the epoxy resin polishing pads showed a significant difference in the storage and loss modulus compared to the conventional urethane pads. Moreover, the epoxy resin pads showed a higher loss tangent (tan į) than the urethane resin polishing pad. From the investigation of the relationship between the material removal rates and tan į of the polishing pads, the strong positive correlation between the material rate and tan į is observed. Finally, the dependence of polishing conditions on the material removal rate by the epoxy and urethane resin pads is evaluated. It is found that the difference in the material removal rate between the epoxy and urethane resin pads becomes larger under a condition of a low abrasive concentration and a high rotation rate. Key Words : Polishing, Abrasive Grain, Polishing Pad, Epoxy Resin, Cerium Oxide, Glass, Viscoelasticity E-mail㸸[email protected] (Y. Zhang) ᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹ ❧㤋Ꮫ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉ ㏆␥Ꮫ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉ 1) Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan 2) Department of Mechanical Engineering, Kinki University, Higashiosaka, Osaka, 577-8502, Japan 1) 2) −5− 谷 泰弘・張 宇・村田 順二 ⥴ ゝ ࢞ࣛࢫࡢ㙾㠃◊☻ከ⏝ࡉࢀ࡚࠸ࡿ◊☻ᮦ㸪㓟ࢭ࣒ࣜ࢘ࡣࡢ࣮ࣞࢫ౪⤥㊊ࡢᙳ㡪ࢆཷࡅ㸪ᅜෆ ࠾ࡅࡿ౯᱁ࡀ㧗㦐ࡋ࡚࠸ࡿ㸬ࡇࡢࡼ࠺࡞≧ἣࡢ࡞㸪࢞ࣛࢫ◊☻࠾ࡅࡿ㓟ࢭ࣒ࣜ࢘◒⢏ࡢ⏝㔞ࢆపῶࡍࡿ ࡇࡸࡢ◒⢏௦᭰ࡍࡿྲྀࡾ⤌ࡳࡀ⏘Ꮫᐁ࠾࠸࡚㐍ࡵࡽࢀ࡚࠸ࡿ㸦㡲⏣㸪2012㸧㸦ᒣᓮ㸪2011㸧㸦ụ⏣㸪 2011㸧㸬➹⪅ࡽࡣ㸪ࡑࡢྲྀࡾ⤌ࡳࡋ࡚᪂つ㧗ᶵ⬟◊☻ᮦࡸ◊☻ᕤලࡢ㛤Ⓨࢆ⾜ࡗ࡚࠸ࡿ㸬㸦୍ᘕ✑㸪2009 ࡞ 㸧ࡑࡢ୍ࡘᚑ᮶ࡢ࢘ࣞࢱࣥᶞ⬡௦ࢃࡾ࢚࣏࢟ࢩᶞ⬡ࢆ᥇⏝ࡋࡓከᏍ㉁࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡀ࠶ࡿ㸬ከ Ꮝ㉁࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡣࢫ࣮ࣛࣜᑐࡍࡿぶᛶࡀ㧗ࡃ㸪స⏝◒⢏ᩘࡀྥୖࡍࡿࡇࡽ㸪ᚑ᮶ࡢከᏍ㉁ ࢘ࣞࢱࣥࣃࢵࢻẚ㍑ࡋ࡚ 2 ಸ⛬ᗘࡢ◊☻⬟⋡ࡀᚓࡽࢀࡿࡇࡀࢃࡗ࡚࠸ࡿ㸬ࡲࡓ㸪⾲㠃⢒ࡉࡸ࠺ࡡࡾ࡞ࡢ ୖࡆ㠃ရ㉁ࡢྥୖࡀ☜ㄆࡉࢀ࡚࠸ࡿ㸬ࡉࡽ㸪ࢪࣝࢥࢽ◒⢏࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࢆే⏝ࡍࡿࡇࡼ ࡾ㸪㓟ࢭ࣒ࣜ࢘◒⢏ࡢ࡞௦᭰ࢆᐇ⌧ࡋ࡚࠸ࡿ㸦ᮧ⏣㸪2011㸧㸬◊☻ࣃࢵࢻࡀ◊☻≉ᛶ࠼ࡿせᅉࡣ㸪 ࢫ࣮ࣛࣜᑐࡍࡿぶᛶ௨እࣃࢵࢻࡢᶵᲔⓗ≀ᛶࡀᣲࡆࡽࢀࡿ㸬ࡋࡋ㸪࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢᶵᲔⓗ≉ ᛶ◊☻≉ᛶࡢ㛵ಀࡘ࠸࡚ࡣ᫂ࡽ࡞ࡗ࡚࠸࡞࠸㸬ࡑࡇ࡛㸪ᮏሗ࡛ࡣ㸪࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢᶵᲔⓗ࡞ ≀ᛶࡀ◊☻≉ᛶ࠼ࡿᙳ㡪ࢆㄪᰝࡋࡓ㸬 ࡲࡎ㸪 ࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࢆ⏝࠸࡚࢞ࣛࢫࡢ◊☻≉ᛶホ౯ࢆ⾜࠸㸪 ◊☻ࣃࢵࢻࡢ◳ᗘࡀ◊☻≉ᛶཬࡰࡍᙳ㡪ࡘ࠸࡚ホ౯ࢆ⾜ࡗࡓ㸬ḟ㸪࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ⢓ᙎᛶࢆື ⓗᶵᲔศᯒ㸦Dynamic Mechanical Analysis, DMA㸧ࡼࡾホ౯ࡋ㸪◊☻ࣃࢵࢻࡢ⢓ᙎᛶ◊☻≉ᛶࡢ㛵ಀࢆㄪ ࡓ㸬᭱ᚋ㸪࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ◊☻≉ᛶࡢຍᕤ᮲௳౫Ꮡᛶࢆホ౯ࡋ㸪ᚑ᮶ࡢ࢘ࣞࢱࣥᶞ⬡◊☻ࣃࢵࢻ ࡢẚ㍑ࢆ⾜࠺ࡇ࡛㸪࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻ㐺ࡋࡓ⏝᪉ἲࡢ᳨ウࢆ⾜ࡗࡓ㸬 ࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ◳ᗘ◊☻≉ᛶࡢ㛵ಀ ࡲࡎ㸪࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻ㸦௨ୗ㸪࢚࣏࢟ࢩࣃࢵࢻࡍࡿ㸧ࡢ◳ᗘࡀ◊☻≉ᛶ࠼ࡿᙳ㡪ࡘ࠸࡚ホ౯ Fig. 1 Schematic view of polishing experiment Table 1 Experimental condition Workpiece Material Soda-lime glass Dimension 20 mm×t10 mm 0.4 ȝmRa Surface roughness Abrasives Material CeO2 Average diameter (D50) 1.2 ȝm Product name SHOROX A-10 Polishing condition Polishing machine 200 mm single-sided Slurry Base fluid Deionized water Polishing pressure, P 20 kPa Abrasive concentration, C 3.0 wt% Rotation rate, R 90 rpm Supply rate, S 25 mL/min Polishing time 30 min −6− エポキシ樹脂研磨パッドの粘弾性と研磨特性 ࢆ⾜ࡗࡓ㸬ホ౯ࡋࡓ◊☻ࣃࢵࢻࡣ◳ᗘ㸦A ࢹ࣓࣮ࣗࣟࢱ◳ᗘ㸧ࡀ␗࡞ࡿ࢚࣏࢟ࢩࣃࢵࢻ㸪࡞ࡽࡧẚ㍑ᑐ㇟ࡋ ࡚ᕷ㈍ࡢከᏍ㉁࢘ࣞࢱࣥᶞ⬡◊☻ࣃࢵࢻ㸦㔜㟁Ẽ㸪KSP-66A㸪௨ୗ㸪࢘ࣞࢱࣥࣃࢵࢻࡍࡿ㸧࡛࠶ࡿ㸬࢚࣏࢟ ࢩࣃࢵࢻࡢ◳ᗘࡢ㐪࠸ࡣ㸪◊☻ࣃࢵࢻෆྵࡲࢀࡿẼᏍ⋡࠾ࡼࡧᶞ⬡⤌ᡂࡢᕪࡼࡿࡶࡢ࡛࠶ࡿ㸬ᅗ 1 ࠾ࡼࡧ⾲ 1 ◊☻ᐇ㦂⨨࠾ࡼࡧ◊☻᮲௳ࢆ♧ࡍ㸬◊☻ᶵࡣ㸪ᐃ┙ᚄ 200 mm ࡢ∦㠃⢭ᐦࣛࢵࣆࣥࢢ⨨㸦ࢼࣀࣇࢡ ࢱ㸪NF-300㸧ࢆ⏝࠸ࡓ㸬ᕤస≀ࡣࢯ࣮ࢲ࢞ࣛࢫ࡛࠶ࡾ㸪 3 Ⅼࡢᕤస≀ࢆ┤ᚄ 90 mm ࡢ࣮࣡ࢡ࣍ࣝࢲᑐࡋ㸪୰ ᚰࡽ༙ᚄ 35 mm ࡢ⨨➼㛫㝸࡛㈞ࡅࡓ㸬ᕤస≀⾲㠃ࡣ㸪๓ฎ⌮ࡋ࡚⢏ᗘ#2000 ࡢ⥳ⰍⅣ⌛⣲㸦GC㸧◒ ⢏ࢆ⏝࠸ࡓࣛࢵࣆࣥࢢࡼࡾ⾲㠃⢒ࡉࢆ⣙ 0.4 mRa ຍᕤࡋࡓ㸬◊☻ࣃࢵࢻࡢ⾲㠃ࡣ㸪ࣀ࣮ࢬ༙ᚄ 0.5 mm ࡢࢲ ࣖࣔࣥࢻࣂࢺࢆ⏝࠸࡚㸪ษ㎸ࡳ㔞 150 m㸪ࣂࢺ㏦ࡾ㏿ᗘ 0.5 mm/s㸪ࣃࢵࢻᅇ㌿㏿ᗘ 100 rpm ࡢ᮲௳࡛ษ๐ 㸦ࣇ࢙ࢩࣥࢢ㸧ࢆ⾜ࡗࡓ㸬ࡑࡢᚋ㸪⢏ᗘ#100 ࡢࢲࣖࣔࣥࢻ㟁╔◒▼ࢆ⏝࠸࡚㸪ࢻࣞࢵࢧ/ࣃࢵࢻᅇ㌿㏿ᗘ 90 rpm ࡢ᮲௳࡛ࢻࣞࢵࢩࣥࢢࢆ 10 ศ㛫⾜ࡗࡓ㸬◊☻⬟⋡ࡣຍᕤ๓ᚋࡢᕤస≀ࡢ㉁㔞ᕪࡼࡗ࡚⟬ฟࡋࡓ㸬◊☻ᚋᕤస≀ ࡢ⾲㠃⢒ࡉࡣ㸪┦ࢩࣇࢺᖸ΅㢧ᚤ㙾㸦Zygo, NewView 7300㸧ࡼࡾ 0.70 × 0.52 mm ࡢ㡿ᇦࢆ ᐃࡋ㸪࢝ࢵࢺ࢜ ࣇ್ 0.08 mm ࡢ㧗ᇦࣇࣝࢱࢆ㐺⏝ࡋ࡚㸪⟬⾡ᖹᆒ⢒ࡉ Ra ࢆ⟬ฟࡋࡓ㸬 ᅗ 2 ◊☻ࣃࢵࢻࡢ◳ᗘ◊☻≉ᛶࡢ㛵ಀࢆ♧ࡍ㸬࢚࣏࢟ࢩࣃࢵࢻࡼࡿ◊☻⬟⋡ࡣ㸪ࣃࢵࢻ◳ᗘ㛵ࢃࡽࡎ ࡰ୍ᐃࡢ್ࢆ♧ࡋ㸪࠸ࡎࢀࡶᚑ᮶ࡢ࢘ࣞࢱࣥࣃࢵࢻẚ㍑ࡋ࡚ 70 %⛬ᗘ㧗࠸್ࢆ♧ࡍࡇࡀศࡗࡓ㸬୍᪉㸪 ୖࡆ㠃⢒ࡉࡣ࢚࣏࢟ࢩࣃࢵࢻࡢ◳ᗘ౫Ꮡࡋ࡚࠾ࡾ㸪◳ᗘࡀᑠࡉࡃ࡞ࡿࡘࢀ࡚ࡼࡾඃࢀࡓୖࡆ㠃⢒ࡉࡀᚓ ࡽࢀࡓ㸬ࡇࢀࡣ㌾㉁࡞◊☻ࣃࢵࢻ࡛ࡣ◒⢏ࡀࣃࢵࢻỿࡳ㎸ࡴࡓࡵ㸪◊☻ࣃࢵࢻࡢ◒⢏ಖᣢᛶࡀྥୖࡋ㸪స⏝◒ ⢏ᩘࡀቑຍࡋࡓࡇࡼࡿ⪃࠼ࡽࢀࡿ㸬ࡲࡓ㸪ࣃࢵࢻ◳ᗘࡀపࡃ࡞ࡿ◒⢏ษࡾ㎸ࡳ῝ࡉࡣᑠࡉࡃ࡞ࡿࡓࡵ㸪 ࡇࢀࡼࡗ࡚ࡶ⾲㠃⢒ࡉࡣᨵၿࡉࢀࡿ㸬୍᪉㸪◊☻⬟⋡ࡣస⏝◒⢏ᩘࡢቑຍษࡾ㎸ࡳ῝ࡉࡢపୗࡀ┦ẅࡉࢀࡿ ࡇࡼࡾ㸪ࣃࢵࢻ◳ᗘࡼࡽࡎࡰ୍ᐃ࡞ࡗࡓ⪃࠼ࡽࢀࡿ㸬 ௨ୖࡼࡾ㸪࢚࣏࢟ࢩࣃࢵࢻࡢ◳ᗘࡣ◊☻⬟⋡ᙳ㡪ࢆ࠼࡞࠸ࡇࢃࡗࡓ㸬ࡋࡋ㸪ᮏᐇ㦂࡛⏝ࡋࡓ◊☻ ࣃࢵࢻࡣ㸪ᶞ⬡ཎᩱ࠾ࡼࡧࡑࡢ㓄ྜẚ㸪ẼᏍ⋡࡞㸪」ᩘࡢࣃ࣓࣮ࣛࢱࡀ␗࡞ࡗ࡚࠸ࡿࡓࡵ㸪᭱ࡶ◊☻≉ᛶᐤ ࡍࡿせ⣲ࢆᢳฟࡍࡿࡇࡣᅔ㞴࡛࠶ࡿ㸬ࡑࡇ࡛㸪ᶞ⬡ࡢ㓄ྜẚࡢࡳࢆኚࡉࡏࡓ࢚࣏࢟ࢩࣃࢵࢻࢆస〇ࡋ㸪ࡑ Fig. 2 Material removal rate and surface roughness by the urethane and epoxy resin pads as a function of pad hardness Table 2 Composition and hardness of epoxy resin polishing pads Pad resin type Epoxy Urethane Product code A B C D E KSP66A Prepolymer (wt%) Curing agent-X (wt%) Curing agent-Y (wt%) Hardness (type D durometer) 60.4 12.6 27.0 77.5 57.0 11.2 31.8 72.0 54.8 10.2 35.0 64.5 52.1 9.1 38.8 57.5 50.5 8.4 41.1 48.5 30.0 −7− 谷 泰弘・張 宇・村田 順二 ࡢᶵᲔⓗ≉ᛶࢆ DMA ࢆ⏝࠸࡚ホ౯ࡋ㸪◊☻≉ᛶࡢ㛵ಀࢆホ౯ࡍࡿࡇࡋࡓ㸬 ࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ⢓ᙎᛶࡢホ౯ ࢚࣏࢟ࢩᶞ⬡ࡣ◳ࡢ✀㢮ࡸ㓄ྜẚࢆኚࡉࡏࡿࡇ࡛㸪✀ࠎࡢᶵᲔⓗ≉ᛶࢆ᭷ࡍࡿ◳≀ࢆస〇ࡍ ࡿࡇࡀ࡛ࡁࡿ㸬ࡑࡇ࡛㸪࠾ࡼࡧ◳ࡢ✀㢮ࡣྠ୍ࡋ㸪㓄ྜẚࢆኚࡉࡏࡓ࢚࣏࢟ࢩࣃࢵࢻࢆస〇ࡋ㸪 DMA ࠾ࡼࡧ◊☻≉ᛶࡢホ౯ࢆᐇࡋࡓ㸬స〇ࡋࡓ࢚࣏࢟ࢩࣃࢵࢻࡢ◳ࡢ㓄ྜẚ㸪࡞ࡽࡧ◳ᗘࢆ⾲ 2 ♧ࡍ㸬⏝ࡋࡓ࢚࣏࢟ࢩᶞ⬡ࡣࣅࢫࣇ࢙ࣀ࣮ࣝ A ᆺࡢᾮ≧ᶞ⬡㸦୕⳻Ꮫ㸦ᰴ㸧 㸪jer834㸧࡛࠶ࡾ㸪࢚࣏࢟ ࢩᙜ㔞ࡣ 230 g/eq ࡛࠶ࡿ㸬◳ࡣ࣑ࣥ⣔࡛࠶ࡾ㸪άᛶỈ⣲ᙜ㔞ࡀ 60 g/eq㸦X ࡍࡿ㸬JEFFAMINE D-230㸪 Huntsman corp.㸧࠾ࡼࡧ 514 g/eq㸦Y ࡍࡿ㸬JEFFAMINE D-2000㸧ࡢ✀㢮࡛࠶ࡿ㸬࢚࣏࢟ࢩᶞ⬡㸪◳ ࢆΰྜ㸦࠸ࡎࢀࡶᙜ㔞㓄ྜ㸧ࡋ㸪150 °C ࡛ 3 㛫ຍ⇕ࢆ⾜࠺ࡇ࡛㸪┤ᚄ 200 mm㸪ཌࡉ⣙ 5mm ࡢ┙≧◳≀ ࢆᚓࡓ㸬ᮏ◊✲࡛ࡣ㸪࢚࣏࢟ࢩࣃࢵࢻࡢᶞ⬡⤌ᡂࡼࡿᙳ㡪ࡢࡳࢆホ౯ᑐ㇟ࡍࡿࡓࡵ㸪ẼᏍࡣῧຍࡏࡎ↓Ẽ Ꮝࡢࣃࢵࢻࢆస〇ࡋࡓ㸬㛤Ⓨࡋࡓ࢚࣏࢟ࢩࣃࢵࢻࡣ◳ Y ࡢቑຍక࠸㸪◳ᗘࡀపୗࡍࡿࡇࡀศࡿ㸬 ḟ㸪㛤Ⓨࡋࡓ࢚࣏࢟ࢩࣃࢵࢻࡢ DMA ホ౯ࢆ࣓࣮ࣞ࢜ࢱ 㸦HR-2㸪TA Instruments - Waters LLC㸧ࢆ⏝࠸࡚⾜ࡗ ࡓ㸬 ᐃ᮲௳ࡣ㸪ᘬᙇࡾ࣮ࣔࢻ࡛᪼ ㏿ᗘࡣ 5 °C /min ࡋ㸪࿘Ἴᩘ 1 Hz㸪ධຊṍ 0.05 %ࡋࡓ㸬ࡲࡓ㸪ヨ㦂∦ ࡋ࡚ 10 × 50 mm㸪ཌࡉ 1.5 mm ษࡾฟࡋࡓ࢚࣏࢟ࢩࣃࢵࢻࢆ⏝࠸ࡓ㸬ᐇ㦂⨨㸪 ᐃཎ⌮ࢆᅗ 3 ♧ࡍ㸬 ࢚࣏࢟ࢩᶞ⬡ࡸ࢘ࣞࢱࣥᶞ⬡⤌ᡂ≀ࡢࡼ࠺࡞㧗ศᏊయࡣ㸪⢓ᙎᛶ࠸ࢃࢀࡿᙎᛶᅛయ⢓ᛶᾮయࡢ୧᪉ࡢᛶ㉁ ࢆ♧ࡍ㸬ࡑࡇ࡛ᘬᙇࡾไᚚࡉࢀ࡚࠸ࡿヨ㦂∦ࢧࣥἼࡢࡡࡌࡾṍࡳࢆධຊࡋ㸪 ᐃࡉࢀࡿᛂຊධຊṍࡳࡢ ┦ᕪ į ࢆ⏝࠸࡚⢓ᙎᛶࢆホ౯ࡍࡿ㸬ᙎᛶయࡢ┦ᕪ į ࡣ 0 °࡞ࡾ㸪⢓ᛶయࡢ┦ᕪ į ࡣ 90 °࡞ࡿ㸬㧗 ศᏊࡢࡼ࠺࡞⢓ᙎᛶయࡢ┦ᕪ į ࡣ 0 ࡽ 90 °ࡢ㛫࡞ࡿ㸬ࡲࡎ㸪㛫ⓗ࡞㐜ࢀࢆᣢࡗࡓṍࡳᛂຊࡣᘧ㸦1㸧 ♧ࡉࢀࡿࡼ࠺」⣲ᙎᛶ⋡ G*࡛⾲ࡉࢀࡿ㸬 G* = ı0 / İ0 (1) ḟ㸪⢓ᙎᛶయධຊࡉࢀࡓṍࡳྠ┦ࡢᛂຊᡂศ࡛࠶ࡿ㈓ⶶᙎᛶ⋡ G’࠾ࡼࡧ㸪ṍࡳࡼࡾ ʌ/2 ࡔࡅ┦ࡀ㐍ࢇ ࡔᛂຊᡂศ࡛࠶ࡿᦆኻᙎᛶ⋡ G”ࡣࡑࢀࡒࢀᘧ㸦2㸧 㸪 㸦3㸧ࡢࡼ࠺♧ࡉࢀࡿ㸬 (a) Appearance of DMA apparatus (b) Measurement principle of DMA Fig. 3 Experimental setup of dynamic mechanical analysis (DMA) −8− エポキシ樹脂研磨パッドの粘弾性と研磨特性 G’ = G* cos į (2) G’’ = G* sin į (3) ࡲࡓ㸪ᦆኻṇ᥋ tan į ࡣᦆኻᙎᛶ⋡㈓ⶶᙎᛶ⋡ࡢẚ࡛࠶ࡾ㸪ᘧ㸦4㸧♧ࡉࢀࡿ㸬 tan į = G’’ / G’ (4) ᦆኻṇ᥋ tan į ࡢ್ࡀࡁ࠸≀㉁ࡣṍࡳᛂຊࡢ┦ᕪࡀࡁ࠸ࡓࡵ㸪ᛂ⟅ࡀ㐜ࢀࡿࡇ࡞ࡿ㸬୍᪉㸪tan į ࡢ್ࡀప࠸≀㉁ࡣ┦ᕪࡀᑠࡉ࠸ࡓࡵᛂ⟅ࡀ᪩࠸ࡇࢆពࡋ࡚࠸ࡿ㸬ࡲࡓ㸪tan į ࡀ᭱࡞ࡿ ᗘࡣ࢞ࣛࢫ 㸬 ㌿⛣ ᗘ Tg ᐃ⩏ࡉࢀࡿ㸦Charns, et al., 2005㸧 స〇ࡋࡓ࢚࣏࢟ࢩࣃࢵࢻࡢ DMA ホ౯⤖ᯝࢆᅗ 4 ♧ࡍ㸬࢚࣏࢟ࢩࣃࢵࢻࡣ࢘ࣞࢱࣥࣃࢵࢻẚ㍑ࡋ࡚ DMA ≉ᛶࡀࡁࡃ␗࡞ࡿࡇࡀศࡿ㸬ලయⓗࡣ㸪࢚࣏࢟ࢩࣃࢵࢻࡣᚑ᮶ࡢ࢘ࣞࢱࣥࣃࢵࢻẚ㍑ࡋ࡚㞺ᅖẼ ᗘ 㸦TDMA㸧ࡢୖ᪼క࠸㸪㈓ⶶᙎᛶ⋡ᦆኻᙎᛶ⋡ࡀࡁࡃపୗࡍࡿ㸦ᅗ 4㸦a㸧 㸪 㸦b㸧 㸧 㸬ࡲࡓ㸪ᅗ 4㸦c㸧♧ࡍࡼ ࠺㸪࢚࣏࢟ࢩࣃࢵࢻࡢ tan į ࡣᖖ ㏆࡛࢘ࣞࢱࣥࣃࢵࢻࡼࡾࡶࡁ࡞್ࢆ♧ࡍࡇࡶศࡿ㸬ྛ࢚࣏࢟ࢩࣃࢵ ࢻ╔┠ࡍࡿ㸪࢚࣏࢟ࢩᶞ⬡ࡢ◳ Y ࡢቑຍ㸦AЍCЍE ࡢ㡰㸧ඹ Tg ࡀప ഃ⛣ືࡋ࡚࠸ࡿ㸬ࡇࢀࡣ㸪 άᛶỈ⣲ᙜ㔞ࡢࡁ࠸◳ Y ࡢቑຍࡼࡾ㸪ᶞ⬡◳≀ෆࡢᯫᶫᐦᗘࡀపୗࡋ㸪ศᏊ㙐ࡢὶືᛶࡀࡁࡃ࡞ࡗ ࡓࡓࡵ࡛࠶ࡿ㸬 ୍᪉㸪 ࢘ࣞࢱࣥࣃࢵࢻࡣ ᗘࡼࡗ࡚㈓ⶶᙎᛶ⋡ࡸᦆኻᙎᛶ⋡ࡀࡰኚࡋ࡞࠸ࡇࡀศࡗࡓ㸬 4. ࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ⢓ᙎᛶ◊☻⬟⋡ ๓❶࡛㏙ࡓࡼ࠺㸪࢚࣏࢟ࢩࣃࢵࢻࡣᚑ᮶ࡢ࢘ࣞࢱࣥࣃࢵࢻẚ㍑ࡋ࡚⢓ᙎᛶࡀࡁࡃ␗࡞ࡿࡇࡀศࡗ ࡓ㸬ࡑࡇ࡛㸪࢚࣏࢟ࢩࣃࢵࢻࡢ⢓ᙎᛶ◊☻≉ᛶࡢ㛵ಀࢆㄪᰝࡍࡿࡃ㸪࢚࣏࢟ࢩࣃࢵࢻࡢ◊☻⬟⋡ࡢホ౯ࢆ⾜ ࡗࡓ㸬ᐇ㦂᮲௳ࡣ⾲ 1 ྠᵝ࡛࠶ࡿ㸬⏝ࡋࡓ◊☻ࣃࢵࢻࡣ⾲ 2 ♧ࡋࡓ࢚࣏࢟ࢩࣃࢵࢻ C ࠾ࡼࡧ E ࡛࠶ࡿ㸬࢚ ࣏࢟ࢩࣃࢵࢻࡢ⢓ᙎᛶࡣ ᗘࡼࡗ࡚ࡁࡃኚࡋࡓࡀ㸪ࡑࡢ◊☻≉ᛶࡢᙳ㡪ࢆㄪࡿࡓࡵ㸪◊☻ ᗘࢆ 11㸪 22㸪33 °C ࡋ࡚◊☻≉ᛶࢆホ౯ࡋࡓ㸬ᅗ 5 ♧ࡍࡼ࠺㸪ᐃ┙ࢫ࣮ࣛࣜࢆᜏ Ỉ࡛෭༷㸪ࡲࡓࡣࣄ࣮ࢱࡼ ࡗ࡚ຍ⇕ࢆ⾜࠸࡞ࡀࡽ◊☻ࢆ⾜ࡗࡓ㸬ࡲࡓ㸪◊☻ࣃࢵࢻࡢ⾲㠃 ᗘ Tps㸦°C㸧ࢆ㉥እ⥺ᨺᑕ ᗘィ㸦 㸦ᰴ㸧ᇼሙ〇 సᡤ㸪IT-540E㸧ࡼࡾ ᐃࡋࡓ㸬ࣃࢵࢻ⾲㠃ᕤస≀ࡀ᥋ゐࡋ࡚࠸ࡿⅬ࠾࠸࡚ࡣ㸪ᦶ᧿⇕ࡀⓎ⏕ࡋࣃࢵࢻ⾲㠃 ࡢ ᗘࡀቑࡋ࡚࠸ࡿ⪃࠼ࡽࢀࡿ㸦ᮡᮏ㸪1994㸧 㸬ࣃࢵࢻ⾲㠃ࡢ ᐃⅬ࠾ࡅࡿ ᗘ Tps ᑐࡋ㸪◊☻Ⅼ࡛ࡢ ᗘୖ᪼ࢆ Į㸦°C㸧ᐃ⩏ࡋࡓ㸬 ᅗ 6 ྛ◊☻ ᗘࡼࡿ◊☻≉ᛶࡢホ౯⤖ᯝࢆ♧ࡍ㸬࢘ࣞࢱࣥࣃࢵࢻࡣ◊☻ ᗘ Tps ᑐࡋ࡚㸪◊☻⬟⋡ࡢኚ (a) Storage modulus (b) Loss modulus (c) tan į Fig. 4 Dynamic viscoelastic properties of the urethane and epoxy resin pads as a function of temperature −9− 谷 泰弘・張 宇・村田 順二 ࡣᑡ࡞ࡃࡰ୍ᐃ࡛࠶ࡗࡓ㸬ࡇࢀࡣ㸪๓❶࡛♧ࡋࡓࡼ࠺㸪࢘ࣞࢱࣥࣃࢵࢻࡢ⢓ᙎᛶࡀ ᗘࡼࡗ࡚ࢇ ኚࡋ࡞࠸ࡓࡵ࡛࠶ࢁ࠺㸬ࡲࡓ㸪࢞ࣛࢫࡢ◊☻≉ᛶᙳ㡪ࢆ࠼ࡿせᅉࡋ࡚ࢫ࣮ࣛࣜࡢ ᗘࡶᣲࡆࡽࢀࡿ㸦Kim, et al., 2005㸧ࡀ㸪ᮏᐇ㦂࡛ࡢ ᗘࡢ⠊ᅖ࡛ࡣ㸪ࡑࡢᙳ㡪ࡣࢃࡎ࡛࠶ࡿࡇࡀࢃࡗࡓ㸬ࡑࢀᑐࡋ㸪࢚࣏࢟ࢩࣃ ࢵࢻࡣ㸪◊☻⬟⋡ࡀ◊☻ ᗘ Tps ࡼࡗ࡚ࡁࡃኚࡋࡓ㸬ࡲࡓ㸪࠸ࡎࢀࡢ◊☻ ᗘ࠾࠸࡚ࡶ㸪࢚࣏࢟ࢩࣃࢵ ࢻࡣ࢘ࣞࢱࣥࣃࢵࢻẚ㍑ࡋ࡚㧗࠸◊☻⬟⋡㸪ඃࢀࡓୖࡆ㠃⢒ࡉࡀᚓࡽࢀࡿࡇࡀศࡿ㸬࢚࣏࢟ࢩࣃࢵࢻ C ࡣ 22 °C㸪࢚࣏࢟ࢩࣃࢵࢻ E ࡣ 11 °C ࠾࠸࡚᭱ࡢ◊☻⬟⋡ࢆ♧ࡋࡓ㸬ࡇࡢࡼ࠺㸪ᶞ⬡ࡢ⤌ᡂࡼࡗ࡚࢚࣏࢟ ࢩࣃࢵࢻࡢ◊☻⬟⋡ࡁ࡞ᕪࡀ⌧ࢀࡿࡇࡀศࡗࡓ㸬 ࡑࡇ࡛㸪DMA ࡼࡾᚓࡽࢀࡿࣃ࣓࣮ࣛࢱࡢ 1 ࡘ࡛࠶ࡿ tan į ╔┠ࡋ◊☻⬟⋡ࡢ㛵ಀࢆホ౯ࡋࡓ⤖ᯝ㸪ᅗ 7 㸦a㸧♧ࡍࡼ࠺㸪◊☻⬟⋡ tan į ྜ⮴ࡣࡳࡽࢀ࡞ࡗࡓ㸬ࡋࡋ㸪㉥እ⥺ᨺᑕ ᗘィ࡛ ᐃࡉࢀࡓ ᗘ ຍᕤⅬ࡛ࡢ ᗘࡣ␗࡞ࡿࡓࡵ㸪ࡑࡢᙳ㡪ࢆ⪃៖ࡍࡿᚲせࡀ࠶ࡿ㸬ࡑࡇ࡛㸪◊☻⬟⋡ tan į ࡀྜ⮴ࡍࡿ௬ᐃࡋ㸪 ୧⪅ࡢṧᕪᖹ᪉ࢆィ⟬ࡋࡓ⤖ᯝ㸪Į ࡀ 20 °C ࡢ᭱ᑠ࡞ࡗࡓ㸦ᅗ 7㸦b㸧 㸧 㸬ࡼࡗ࡚㸪 ᐃ ᗘᑐࡋ࡚ຍᕤ Ⅼࡣ 20 °C ୖ᪼ࡋ࡚࠸ࡿ᥎ᐃࡋࡓ㸬᥎ᐃࡉࢀࡓ ᗘࢆ⏝࠸࡚㸪ᗘ㸪◊☻⬟⋡ tan į ࡢ㛵ಀࢆᥥ⏬ࡋ࡚ࡳࡿ㸪 ᅗ 7㸦a㸧♧ࡍࡼ࠺㸪Į ࡀ 0 ࡲࡓࡣ 40 °C ࡢ㝿ẚ࡚୧⪅ྜ⮴ࡀࡳࡽࢀࡿࡇࡀࢃࡿ㸬 ḟ㸪◊☻ ᗘࢆ 22 °C ୍ᐃࡋ㸪స〇ࡋࡓ✀ࠎࡢ࢚࣏࢟ࢩࣃࢵࢻࡢ◊☻≉ᛶ tan į ࡢ㛵ಀࢆホ౯ࡋࡓ㸬ᅗ 8 ♧ࡉࢀࡿࡼ࠺㸪࢚࣏࢟ࢩࣃࢵࢻࡣ࡚ᚑ᮶ࡢ࢘ࣞࢱࣥࣃࢵࢻẚ㍑ࡋ࡚㧗࠸◊☻⬟⋡ࢆ♧ࡋࡓࡀ㸪 ◳ࡢ㓄ྜẚࡼࡗ࡚㸪◊☻≉ᛶࡀࡁࡃ␗࡞ࡿࡇࡀࢃࡗࡓ㸬ࡑࡇ࡛㸪ྛ࢚࣏࢟ࢩࣃࢵࢻࡢ◊☻⬟⋡ tan Fig. 5 Schematic view of the polishing experiment Fig. 6 Comparison of the material removal rate and surface roughness by the urethane and epoxy pads under the different temperature conditions −10− エポキシ樹脂研磨パッドの粘弾性と研磨特性 į ࢆࣉࣟࢵࢺࡋࡓࡶࡢࡀᅗ 9 ࡛࠶ࡿ㸬ࡇࡢ㸪Į ࡣ 20 °C ࡋ࡚࠸ࡿ㸬ᅗ♧ࡉࢀࡿࡼ࠺㸪✀㢮ࡢ␗࡞ࡿ◊☻ࣃ ࢵࢻࢆ⏝ࡋ࡚ࡶ◊☻⬟⋡ tan į ࡣࡸࡣࡾᙉ࠸ṇࡢ┦㛵ࢆ♧ࡍࡇࡀࢃࡗࡓ㸬ᅗ 7 ࡛ࡣ㸪◊☻⬟⋡ࡀ tan į ౫Ꮡࡍࡿࡢ௬ᐃࡢࡶ㸪◊☻Ⅼ࡛ࡢୖ᪼ ᗘ Į ࢆぢ✚ࡶࡗࡓࡀ㸪ᅗ 9 ࡢ⤖ᯝࡽ㸪◊☻ ᗘࢆ୍ᐃࡋ㸪␗ ࡞ࡿ✀㢮ࡢ࢚࣏࢟ࢩࣃࢵࢻ࡛ホ౯ࡋࡓሙྜࡶྠᵝࡢ⤖ᯝࡀᚓࡽࢀࡓࡓࡵ㸪ࡇࡢ௬ᐃࡣጇᙜ࡛࠶ࡗࡓ⤖ㄽࡅ ࡽࢀࡿ㸬 ୖグࡢࡼ࠺࡞㸪◊☻ࣃࢵࢻࡢ⢓ᙎᛶ◊☻≉ᛶࡢ㛵ಀࡘ࠸࡚⪃ᐹࢆ⾜ࡗࡓ㸬ᅗ 10㸦a㸧♧ࡉࢀࡿࡼ࠺㐟 㞳◒⢏◊☻࡛ࡣ㸪ࣃࢵࢻୖಖᣢࡉࢀࡓ◒⢏ࡀ㸪ᕤస≀⾲㠃ࢆᘬࡗࡁ㸪ࡑࡢᚤᑠ࡞ษ๐స⏝࡛ᕤస≀⾲㠃ࡢ㝖 ཤࡀ㐍⾜ࡍࡿ㸬ຍᕤᇦධࡋࣃࢵࢻୖಖᣢࡉࢀࡓ◒⢏ࡣ㸪ᕤస≀ࡽࡢᅽຊࡼࡗ࡚◊☻ࣃࢵࢻỿࡳ㎸ࡳ ࡞ࡀࡽᕤస≀ࢆ㝖ཤࡍࡿ㸬ࡲࡓࡇࡢ㸪◊☻ࣃࢵࢻࡣᕤస≀ࡸ◒⢏ࡽ㈇Ⲵࢆཷࡅᅽ⦰ࡉࢀࡿ㸬ᅗ 10㸦b㸧♧ ࡍࡼ࠺㸪ᕤస≀ࡀ⛣ືࡋࡓᚋ㸪◊☻ࣃࢵࢻࡣᕤస≀ࡽཷࡅ࡚࠸ࡓⲴ㔜ࡽゎᨺࡉࢀࡿࡓࡵ㸪◊☻ࣃࢵࢻࡢ ኚࡀᅇࡍࡿ㸬ࡇࡢ tan į ࡢ್ࡀᑠࡉ࠸◊☻ࣃࢵࢻࡣ㸪◊☻ࣃࢵࢻࡢኚࡢᅇࡀ᪩ࡃ◒⢏ࡀࣃࢵࢻ⾲㠃ୖ ࡽ㞳ࢀࢫ࣮ࣛࣜ୰ᾋ㐟ࡍࡿ㸬୍᪉㸪tan į ࡢ್ࡀࡁ࠸◊☻ࣃࢵࢻࡣࣃࢵࢻࡢኚࡢᅇࡀ㐜࠸ࡓࡵ㸪ከࡃࡢ ◒⢏ࡀಖᣢࡉࢀࡓ≧ែ࡛ࣃࢵࢻ⾲㠃ୖṧ␃ࡍࡿ⪃࠼ࡽࢀࡿ㸬ࡇ࠺ࡋ࡚ಖᣢࡉࢀࡓ◒⢏ࡣ㸪ḟᕤస≀◊☻ ࣃࢵࢻࡀ᥋ゐࡍࡿ㝿ࡶࣃࢵࢻୖಖᣢࡉࢀࡓࡲࡲ࡛࠶ࡾ㸪ࡇࡢ◒⢏ࡀᕤస≀⾲㠃ࢆ㝖ཤࡍࡿࡇ࡞ࡿ㸬ᅗ 10 ࡛ࡣ㸪ᕤస≀⾲㠃ࡢพฝࡀ◒⢏ࡼࡾࡶᑠࡉࡃᥥ࠸࡚࠸ࡿࡀ㸪ᐇ㝿ࡢᕤస≀⾲㠃ࡣ◒⢏ࡼࡾࡶࡁ࡞พฝࡀ࠶ࡾ㸪 Fig. 7 (a) Temperature dependence of the material removal rate and tan į of the epoxy resin pad (C). (b) Residual sum of squares (RSS) between the material removal rate and tan į of the epoxy resin pad (C) as a function of the increased temperature Į. Fig. 8 Comparison of the material removal rate and the surface roughness by the different type of epoxy resin pads −11− 谷 泰弘・張 宇・村田 順二 ◊☻ࣃࢵࢻࡢᅽ⦰ࡑࡢ㛤ᨺࡣ 1 ࡘࡢᕤస≀ෆ࠾࠸࡚㸪▷࠸࿘ᮇ࡛⧞ࡾ㏉ࡉࢀ࡚࠸ࡿ㸬tan į ࡢ್ࡀ㧗࠸◊☻ࣃ ࢵࢻࡣ◒⢏ࡢಖᣢᛶࡀ㧗ࡃ㸪 ຍᕤᇦከࡃࡢ◒⢏ࡀᏑᅾࡍࡿࡇ࡞ࡾ㸪 㧗࠸◊☻⬟⋡ࡀᚓࡽࢀࡓ⪃࠼ࡽࢀࡿ㸬 5. ࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ◊☻≉ᛶࡢຍᕤ᮲௳౫Ꮡᛶ ␗࡞ࡿ⢓ᙎᛶࢆ᭷ࡍࡿ✀㢮ࡢ࢚࣏࢟ࢩࣃࢵࢻ㸦C㸪E㸧ࢆ⏝࠸࡚㸪◊☻≉ᛶࡢຍᕤ᮲௳౫Ꮡᛶࢆホ౯ࡋࡓ㸬ᮏ ᐇ㦂࡛ࡣ㸪ᐃ┙ᚄ 380 mm ࡢ∦㠃◊☻⨨㸦SPL-15F㸪 㸦ᰴ㸧ᒸᮏᕤసᶵᲔ〇సᡤ㸧 㸪ᐃ┙/ᕤస≀ᅇ㌿ᩘࡣ 60 rpm ኚ᭦ࡋ㸪ࡑࡢࡢᐇ㦂᮲௳ࡣ⾲ 2 ྠᵝ࡛࠶ࡿ㸬 ࡲࡎ㸪◊☻㛫ᕤస≀⾲㠃⢒ࡉࡢ㛵ಀࢆホ౯ࡋࡓࡶࡢࡀᅗ 11 ࡛࠶ࡿ㸬࢘ࣞࢱࣥࣃࢵࢻࡣ 15 ศ⛬ᗘ࡛⾲㠃⢒ ࡉࡀ㣬ࡋࡓࡢᑐࡋ㸪࢚࣏࢟ࢩࣃࢵࢻ C㸪E ࡣ 5 ศ⛬ᗘࡼࡾ▷࠸◊☻㛫࡛฿㐩⢒ࡉ㐩ࡋࡓ㸬ࡲࡓ㸪◊☻ 㛫 5 ศᚋὀ┠ࡍࡿ࢚࣏࢟ࢩࣃࢵࢻ C ࡣࡢ◊☻ࣃࢵࢻࡼࡾࡶඃࢀࡓୖࡆ㠃⢒ࡉࡀᚓࡽࢀࡿࡇࡀศࡿ㸬 ࡇࡢࡼ࠺㸪tan į ࡢ್ࡀ㧗࠸◊☻ࣃࢵࢻࡣ◒⢏ࡢಖᣢᛶඃࢀ࡚࠸ࡿࡓࡵ㸪ከࡃࡢస⏝◒⢏ᩘࡀᚓࡽࢀ◊☻ 㛫ࡢ▷⦰ࡸ▷㛫࡛ඃࢀࡓୖࡆ㠃⢒ࡉࡀᚓࡽࢀࡿ㸬⤖ᯝࡋ࡚㸪࢘ࣞࢱࣥࣃࢵࢻࡢ 15 ศ◊☻ᚋ㸪࢚࣏࢟ࢩࣃ ࢵࢻ C ࡢ 5 ศ◊☻ᚋࡢ࢞ࣛࢫ⾲㠃ࡢୖࡆ㠃⢒ࡉࡀࡰྠ➼࡞ࡇࡽ㸪࢚࣏࢟ࢩࣃࢵࢻ C ࢆ⏝ࡍࡿࡇ࡛◊ ☻㛫ࢆ⣙ 3 ศࡢ 1 ࡍࡿࡇࡀྍ⬟࡛࠶ࡿࡇࡀ☜ㄆࡉࢀࡓ㸬 ḟ㸪 ◒⢏⃰ᗘ࠾ࡼࡧᅇ㌿㏿ᗘࡀ࢚࣏࢟ࢩࣃࢵࢻࡢ◊☻≉ᛶ࠼ࡿᙳ㡪ࡘ࠸࡚ホ౯ࡋࡓ㸬 ᐇ㦂᮲௳ࡋ࡚㸪 ᐃ┙ᅇ㌿ᩘ 60 rpm㸪◒⢏⃰ᗘ 3 wt%ࢆᇶᮏ᮲௳ࡋ㸪ࡑࢀࡒࢀࢆ⊂❧ኚࡉࡏ◊☻≉ᛶࢆホ౯ࡋࡓ㸬ᅗ 12㸦a㸧 ࢫ࣮ࣛࣜ୰ࡢ㓟ࢭ࣒ࣜ࢘◒⢏⃰ᗘ◊☻⬟⋡ࡢ㛵ಀࢆ♧ࡍ㸬㛤Ⓨࡋࡓ࢚࣏࢟ࢩࣃࢵࢻࡣ࢘ࣞࢱࣥࣃࢵࢻẚ ㍑ࡋ࡚࡚ࡢ◒⢏⃰ᗘ࠾࠸࡚㧗࠸◊☻⬟⋡ࡀᚓࡽࢀࡿࡇࡀศࡗࡓ㸬࢚࣏࢟ࢩࣃࢵࢻࡣࡸࡣࡾ tan į ࡀࡁ࠸ Fig. 9 Relationship between the material removal rate and tan į of the polishing pads Fig. 10 Schematic drawing of the loose abrasive polishing −12− エポキシ樹脂研磨パッドの粘弾性と研磨特性 ࡓࡵ◒⢏ࡢಖᣢᛶࡀ㧗ࡃ㸪ప◒⢏⃰ᗘࡢࢫ࣮ࣛࣜ࠾࠸࡚ࡶከࡃࡢస⏝◒⢏ᩘࡀᚓࡽࢀࡿࡓࡵ࡛࠶ࡿ⪃࠼ࡽࢀ ࡿ㸬࢚࣏࢟ࢩࣃࢵࢻ C ࡣ E ẚ㍑ࡋ࡚㧗࠸◊☻⬟⋡ࡀᚓࡽࢀࡓࡀ㸪9 wt%ࡢ㧗◒⢏⃰ᗘ࡛ࡣࡰྠ➼ࡢ◊☻⬟⋡ ࡛࠶ࡗࡓ㸬◒⢏⃰ᗘࡀቑຍࡍࡿࢫ࣮ࣛࣜ୰ࡢ◒⢏㛫㝸ࡀᑠࡉࡃ࡞ࡾ㸪◒⢏ྠኈࡀ࠸ࡢືࡁࢆጉࡆࡿࡓࡵ㸪ࣃ ࢵࢻࡢ tan į ࡼࡽࡎ◒⢏ࡢ␃ᛶࡀ㧗ࡃ࡞ࡿࡇࡀせᅉ࡛࠶ࡿ㸬࢘ࣞࢱࣥࣃࢵࢻࡣ㸪ࢫ࣮ࣛࣜぶᛶஈࡋ࠸ࡇ ࡽ㸪㧗࠸◒⢏⃰ᗘ࡛ࡶຍᕤᇦ༑ศ࡞ࢫ࣮ࣛࣜࡀ౪⤥ࡉࢀ࡞࠸ࡓࡵ㸪࢚࣏࢟ࢩࣃࢵࢻẚ࡚ప࠸◊☻⬟⋡ ࢆ♧ࡋࡓ⪃࠼ࡽࢀࡿ㸬⤖ᯝࡋ࡚࢚࣏࢟ࢩࣃࢵࢻ C ࡢ◒⢏⃰ᗘ 0.5 wt%ࡢ◊☻⬟⋡࢘ࣞࢱࣥࣃࢵࢻࡢ◒⢏⃰ ᗘ 9 wt%ࡢ◊☻⬟⋡ࡀࡰྠ➼ࡢࡇࡽ㸪࢚࣏࢟ࢩࣃࢵࢻ C ࢆ⏝ࡍࡿࡇ࡛⏝◒⢏ࢆ⣙ 94%పῶ࡛ࡁࡿࡇ ࡀྍ⬟࡛࠶ࡿࡇࡀศࡗࡓ㸬 ᅇ㌿㏿ᗘࡀ◊☻⬟⋡࠼ࡿᙳ㡪ࢆ♧ࡋࡓࡶࡢࡀᅗ 12㸦b㸧࡛࠶ࡿ㸬ప࠸ᐃ┙ᅇ㌿㏿ᗘ࡛ࡣ◒⢏ࡲࡓࡣࢫࣛࣜ ࣮స⏝ࡍࡿ㐲ᚰຊࡀᑠࡉࡃ㸪◊☻ࣃࢵࢻࡢ✀㢮ࡼࡽࡎ༑ศ࡞స⏝◒⢏ᩘࡀᚓࡽࢀࡿࡓࡵ㸪࢘ࣞࢱࣥࣃࢵࢻ ࢚࣏࢟ࢩࣃࢵࢻ࡛ࡣ◊☻≉ᛶࡁ࡞ᕪ␗ࡀ⌧ࢀ࡞࠸㸬ᐃ┙ᅇ㌿㏿ᗘࢆ㧗ࡃࡍࡿ㸪◒⢏ᕤస≀ࡢ┦ᑐ㏿ᗘࡀ ୖࡀࡾ◊☻⬟⋡ࡣྥୖࡍࡿ㸬୍᪉㸪ᐃ┙ᅇ㌿㏿ᗘࡢቑຍక࠸◒⢏స⏝ࡍࡿ㐲ᚰຊࡀࡁࡃ࡞ࡿࡓࡵ㸪◒⢏ࡢ ␃ᛶࡀపୗࡍࡿ㸬◒⢏ࡢಖᣢᛶࡢᝏ࠸࢘ࣞࢱࣥࣃࢵࢻࡣ 30 rpm ௨ୖࡢᅇ㌿㏿ᗘ࡛ࡣ㸪◊☻⬟⋡ࡀࡰ㣬ࡋ࡚ ࠸ࡿࡇࡀࢃࡿ㸬୍᪉㸪࢚࣏࢟ࢩࣃࢵࢻ C ࡣ◒⢏ࡢಖᣢᛶࡀ㧗࠸ࡓࡵ㸪㧗ᅇ㌿㏿ᗘ᮲௳࠾࠸࡚ࡶ༑ศ࡞స ⏝◒⢏ᩘࡀᚓࡽࢀ㸪 ㏻ᖖࡢ࢘ࣞࢱࣥࣃࢵࢻࡸ࢚࣏࢟ࢩࣃࢵࢻ E ẚ㍑ࡋ࡚㧗࠸◊☻⬟⋡ࡀᚓࡽࢀࡓ⪃࠼ࡽࢀࡿ㸬 Fig. 11 The surface roughness of workpieces as a function of polishing time (a) Effect of abrasive concentration (b) Effect of Rotation rate Fig. 12 Relationship between the material removal rate and polishing conditions −13− 谷 泰弘・張 宇・村田 順二 6. ⤖ ㄒ ᮏ◊✲࡛ࡣ㸪࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢᶵᲔⓗ≀ᛶ್࡛࠶ࡿ⢓ᙎᛶ╔┠ࡋ◊☻≉ᛶࡢ㛵ಀࢆㄪᰝࡋࡓ㸬ࡲ ࡓ㸪◊☻≉ᛶࡢຍᕤ᮲௳౫Ꮡᛶࢆホ౯ࡋࡓ㸬௨ୗ㸪ᮏ◊✲࡛ᚓࡽࢀࡓ⤖ᯝࡘ࠸࡚ࡲࡵࡿ㸬 㸦1㸧ᶞ⬡ࡢཎᩱ㓄ྜẚࢆኚࡉࡏࡓ࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࢆస〇ࡋ㸪ືⓗ⢓ᙎᛶホ౯ࢆ⾜ࡗࡓ⤖ᯝ㸪ᚑ᮶ࡢ࢘ ࣞࢱࣥࣃࢵࢻẚ㍑ࡋ࡚㸪ࡁ࡞ tan į ࢆ♧ࡍࡇࡀࢃࡗࡓ㸬 㸦2㸧࢚࣏࢟ࢩࣃࢵࢻࡢ◊☻⬟⋡ tan ࡀྜ⮴ࡍࡿࡢ௬ᐃࡋ㸪ຍᕤⅬ࠾ࡅࡿ◊☻ࣃࢵࢻࡢ ᗘࢆぢ✚ࡶࡗࡓ⤖ ᯝ㸪 ᐃ ᗘᑐࡍࡿຍᕤⅬ࡛ࡢ ᗘୖ᪼ࡣ 20 ºC ᥎ᐃࡉࢀࡓ㸬 㸦3㸧␗࡞ࡿᶞ⬡⤌ᡂࡢ࢚࣏࢟ࢩࣃࢵࢻࡢ◊☻≉ᛶࢆホ౯ࡋ㸪᥎ᐃࡉࢀࡓୖ᪼ ᗘ࠾࠸࡚◊☻⬟⋡ tan į ࡢ㛵 ಀࢆㄪࡓ⤖ᯝ㸪୧⪅ࡢ㛫ṇࡢ┦㛵㛵ಀࡀㄆࡵࡽࢀࡓ㸬 㸦4㸧࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡣ࢘ࣞࢱࣥᶞ⬡◊☻ࣃࢵࢻẚ㍑ࡋ࡚▷࠸◊☻㛫࡛฿㐩⢒ࡉ㐩ࡋ㸪ࡘඃࢀࡓ ୖࡆ㠃⢒ࡉࡀᚓࡽࢀࡿࡇࡀศࡗࡓ㸬 㸦5㸧࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡣప◒⢏⃰ᗘ㸪㧗ᅇ㌿㏿ᗘࡢ᮲௳࠾࠸࡚ࡶඃࢀࡓ◊☻⬟⋡ࡀᚓࡽࢀࡿࡇࡀศ ࡗࡓ㸬ࡲࡓ㸪ᚑ᮶ࡢ࢘ࣞࢱࣥࣃࢵࢻẚ㍑ࡋ࡚◒⢏⏝㔞ࢆ⣙ 94 %పῶ࡛ࡁࡿࡇࡀศࡗࡓ㸬 ᩥ ⊩ Charns, L., Sugiyama, M. and Philipossian, A., Mechanical properties of chemical mechanical polishing pads containing water-soluble particles, thin solid film, Vol. 485 (2005) , pp. 188-193. ୍ᘕ✑ ┤⪽㸪ᒣཱྀ㞝ஓ㸪Ḉ⾜㸪㇂ Ὀᘯ㸪㔠 Ὀඖ㸪Ὑίᛶࢆ⪃៖ࡋࡓ」ྜ◒⢏ࡢ㛤Ⓨࡑࡢ◊☻≉ᛶ㸪 ᪥ᮏᶵᲔᏛㄽᩥ㞟 C ⦅㸪Vol. 75㸪No. 757 (2009)㸪pp. 2429-2434㸬 ụ⏣ ὒ㸪㉥ୖ㝧୍㸪␇⏣㐨㞝㸪す ಟ㸪㯮Ἑ࿘ᖹ㸪ᅵ⫧ಇ㑻㸪㟁⏺◒⢏ไᚚᢏ⾡ࢆ㐺⏝ࡋࡓ࢞ࣛࢫᇶᯈࡢ㧗 ຠ⋡◊☻ᢏ⾡ࡢ㛤Ⓨ̾㟁⏺ࡀࢫ࣮ࣛࣜᣲື࢞ࣛࢫࡢ◊☻≉ᛶཬࡰࡍᙳ㡪̾㸪⢭ᐦᕤᏛㄅ㸪Vol. 77, No. 10 (2011)㸪pp. 960-965. Kim, N-H., Seo, Y-J. and Lee, W-S., Effects of Silica Slurry Temperature on Chemical Mechanical Polishing for Tetraethyl Orthosilicate Film, Japanese Journal of Applied Physics, Vol. 44, No. 40 (2005) , pp. L1256-L1258. ᮧ⏣㡰㸪㇂ Ὀᘯ㸪ᗈᕝⰋ୍㸪㔝ᮧಙᖾ㸪ᙇ Ᏹ㸪Ᏹ㔝⣧ᇶ㸪࢞ࣛࢫ◊☻⏝ከᏍ㉁࢚࣏࢟ࢩᶞ⬡◊☻ࣃࢵࢻࡢ 㛤Ⓨ㸪᪥ᮏᶵᲔᏛㄽᩥ㞟 C ⦅㸪Vol. 77, No. 777 (2011)㸪pp. 2153-2161. 㡲⏣⪷୍㸪ࢼࣀศᩓࡼࡿ࢞ࣛࢫ◊☻ᮦࡢ㛤Ⓨ㸪࣐ࢸࣜࣝࣥࢸࢢ࣮ࣞࢩࣙࣥ㸪Vol. 25, No. 6㸦2012㸧, pp. 45-50. ᮡᮏᩥ㸪㖝 ᏹ┿㸪᭷ᮏྜྷᘯ㸪ఀ⸨㝯ྖ㸪㓟⭷ CMP ࠾ࡅࡿ࢚࢘ࣁ ᗘࡢ in situ ࣔࢽࢱࣜࣥࢢ㸪㟁Ꮚሗ ㏻ಙᏛᢏ⾡◊✲ሗ࿌㸪Vol. 94, No.194 (1994)㸪pp.1-6 ᒣᓮ ດ㸪ᅵ⫧ಇ㑻㸪㯮Ἑ࿘ᖹ㸪す ಟ㸪␇⏣㐨㞝㸪ᱵᓮὒ㸪ᒣཱྀ㟹ⱥ㸪ᓊ㈆ᾈ㸪㓟ࢭ࣒ࣜ࢘ࡑࡢ௦ ᭰ࢆ┠ᣦࡍ㓟࣐ࣥ࢞ࣥ⣔ࢫ࣮ࣛࣜࡼࡿ࢞ࣛࢫᇶᯈࡢ◊☻≉ᛶࡑࡢຍᕤ࣓࢝ࢽࢬ࣒㸪⢭ᐦᕤᏛㄅ㸪Vol. 77, No. 12 (2011)㸪pp. 1146-1150. −14− 立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年 Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014 㟁╔ᕤල⏝ࡢ㒊ศ 1L ⿕そࢲࣖࣔࣥࢻ◒⢏ࡢ㛤Ⓨ ᙇ Ᏹ 1)㸪㇂ Ὀᘯ 1)㸪 ᮧ⏣㡰 2) ᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹ Development of partially Ni-coated diamond abrasives for electroplated tools Yu ZHANG 1), Yasuhiro TANI1) and Junji MURATA 2) Electroplated diamond tools are developed for grinding hard and brittle materials because of its low wear resistance. To improve the grinding performance of diamond tools, a single layer of diamond abrasives is electroplated on the tool body. The electroplating process delivers a homogeneous layer with diamonds embedded in nickel alloy at high speed. In order to facilitate the adhesion of diamond abrasives, the diamond abrasives are coated by nickel membrane. Therefore, the cutting edges of diamond abrasives are hidden and the grinding performance of diamond tools decreases. Moreover, a phenomenon of abrasive aggregation generates and leads to bad abrasive distribution. In this paper, in order to solve those problems, authors developed partially Ni-coated diamond abrasives, which were produced from the commercially available full Ni-coated diamond abrasives. The adhesion characteristics of partially Ni-coated diamond abrasives were discussed, too. The grind-abilities of diamond tools, which are fabricated with using non-coated diamond abrasives, Ni-coated diamond abrasives and partially Ni-coated diamond abrasives, have been evaluated. As the results, the problems when using non-coated diamond abrasives or Ni-coated diamond abrasives could be solved and the grind-abilities of electroplated tools were improved with using partially Ni-coated diamond abrasives. Key Words : Diamond tool, Abrasive grain, Electroplating, Grinding force, Abrasive distribution, Tool life E-mail㸸[email protected] (Y. Zhang) ᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹ ❧㤋Ꮫ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉ ㏆␥Ꮫ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉ 1) Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan 2) Department of Mechanical Engineering, Kinki University, Higashiosaka, Osaka, 577-8502, Japan 1) 2) −15− 張 宇・谷 泰弘・村田 順二 ⥴ ゝ ୡ⏺ࡢ࢚ࢿࣝࢠ࣮ᨻ⟇࠾ࡅࡿኴ㝧ගⓎ㟁ࡢ㔜せᛶࡣ㏆ᖺࡲࡍࡲࡍ㧗ࡲࡗ࡚࠸ࡿ㸬⤖ᬗ⣔ࢩࣜࢥࣥኴ㝧㟁ụ ࢃࢀࡿࢩࣜࢥ࢙࣮ࣥ࢘ࣁࡣ࣐ࣝࢳ࣡ࣖࢯ࣮࡛ࢩࣜࢥࣥࣥࢦࢵࢺࢆࢫࣛࢩࣥࢢຍᕤࡍࡿࡇࡼࡾ〇㐀ࡉ ࢀࡿ㸬ࢫࣛࢩࣥࢢຍᕤᕤ⛬࠾࠸࡚ࡣ㸪ࣆࣀ⥺ࢆ㧗㏿㉮⾜ࡉࡏ࡞ࡀࡽຍᕤᾮ GC ◒⢏ࢆᠱ⃮ࡉࡏࡓࢫࣛࣜ ࣮ࢆࡅࡿ◊☻ษ᩿ἲࢲࣖࣔࣥࢻ◒⢏ࢆࣆࣀ⥺㟁╔ࡋࡓࢲࣖࣔࣥࢻ࣡ࣖᕤලࢆ㉮⾜ࡉࡏ࡚Ỉ⁐ᛶ◊ ๐ᾮࡢࡳࢆࡅࡿ◊๐ษ᩿ἲࡀ࠶ࡿ㸦Webster and Tricard, 2004㸧 㸬◊๐ษ᩿᪉ᘧࡣ◊☻ษ᩿᪉ᘧẚ࡚ 2㹼3 ಸ ⛬ᗘࡢษ᩿⬟ຊࢆ᭷ࡍࡿࡓࡵ㸪⌧ᅾࢩࣜࢥࣥ㸪ࢧࣇ㸪SiC ࡞ࡢ◳⬤ᮦᩱࡢษ᩿◊๐ษ᩿᪉ᘧࡢᬑཬࡀ 㐍ࢇ࡛࠸ࡿ㸬㟁╔ࢲࣖࣔࣥࢻ࣡ࣖᕤලࡢ〇㐀ᕤ⛬࡛ࡣ㸪◒⢏ࡢᯒฟ㏿ᗘ◒⢏ࡢಖᣢຊࢆྥୖࡍࡿࡓࡵ୍ ⯡ⓗࢽࢵࢣࣝ࡞ࡢ㔠ᒓ⓶⭷ࡀ⿕そࡉࢀࡓᑟ㟁ᛶࢆ᭷ࡍࡿࢲࣖࣔࣥࢻ◒⢏ࡀ⏝ࡉࢀ࡚࠸ࡿ 㸦༓ⴥ㸪 2003㸧 㸬 ୍᪉㸪࢞ࣛࢫ㸪ࢭ࣑ࣛࢵࢡࢫ➼ࡢ◳⬤ᮦᩱࡢ◊๐ࡣᙧ≧⢭ᗘ㸪⪏ᦶ⪖ᛶඃࢀࡓ㟁╔ࢲࣖࣔࣥࢻ࣮࣍ࣝࡀ ࡼࡃ⏝ࡉࢀ࡚࠸ࡿ㸦๓⏣㸪2013㸧 㸬㟁╔ࢲࣖࣔࣥࢻ࣮࣍ࣝࡘ࠸࡚ࡣ୍⯡ⓗ◒⢏ࢆࡵࡗࡁᾮ୰ᠱ⃮ࡋඹ ᯒࡉࡏࡿࡵࡗࡁἲࡸ◒⢏ࢆỿ㝆ࡉࡏ࡚ᯒฟ㔠ᒓࡼࡾ⢏Ꮚࢆᇙࡵ㎸ࢇ࡛࠸ࡃỿ㝆ඹᯒἲ࡞ࡢ᪉ἲ 㸦ᴮᮏ㸪 1989㸧 ࡛〇㐀ࡉࢀ㸪◒▼ࡢษࢀࢆ㧗ࡵࡿࡓࡵ㔠ᒓ⿕そࡢ࡞࠸ࢲࣖࣔࣥࢻ◒⢏ࡀ⏝ࡉࢀ࡚࠸ࡿ㸬୍⯡㟁╔ᕤලࡢ ┠❧࡚ࢆ⾜࠺ࢻࣞࢵࢩࣥࢢసᴗ࠾࠸࡚ࡣ㸪◳࠸㔠ᒓ⤖ྜࡀ⏝ࡉࢀ࡚࠸ࡿࡓࡵࢻࣞࢵࢩࣥࢢసᴗࡀᅔ㞴࡛࠶ ࡿ㸬㟁╔ࢲࣖࣔࣥࢻ࣡ࣖᕤලࡢࢻࣞࢵࢩࣥࢢࡣ⣽࠸࣡ࣖࡢ࿘࠾ࡅࡿ࡚ࡢ⟠ᡤࢆࢻࣞࢵࢩࣥࢢࡍࡿᚲ せࡀ࠶ࡾ㸪ࡼࡾ୍ᒙ㞴ࡋࡃ࡞ࡿ㸬ࡑࡢࡓࡵ㸪ࢻࣞࢵࢩࣥࢢࢆᚲせࡋ࡞࠸㟁╔ࢲࣖࣔࣥࢻ࣡ࣖᕤලࡢ㛤Ⓨࡀ ᮇᚅࡉࢀ࡚࠸ࡿ㸬 ࡑࢀࢆᐇ⌧ࡍࡿࡓࡵⴭ⪅ࡽࡣࢲࣖࣔࣥࢻ◒⢏ࡢ⾲㠃≧ែ◒⢏ࡢᕤලྎ㔠ࡢᯒฟ≧ែࡢ㛵㐃ᛶὀ┠ ࡋ࡚࠸ࡿ㸬ᮏ◊✲࡛ࡣࢲࣖࣔࣥࢻ◒⢏ࡢ୍㒊ศࡢࡳࡀ Ni ⓶⭷࡛そࢃࢀࡓ㒊ศ Ni ⿕そࢲࣖࣔࣥࢻ◒⢏ࢆᥦ ࡍࡿ㸬ࡇࡢ◒⢏ࢆᚋ㒊ศ Ni ⿕そ◒⢏⛠ࡍࡿ㸬ࡇࢀᑐࡋ࡚㏻ᖖࡢ㠃ࡀ Ni ࡛⿕そࡉࢀࡓ◒⢏ࢆ㠃 Ni ⿕そ ◒⢏⛠ࡍࡿ㸬ࡑࡢ㒊ศ Ni ⿕そࢲࣖࣔࣥࢻ◒⢏ࡢ㟁╔ᕤලẕᮦࡢᯒฟ≧ែࡘ࠸᳨࡚ウࡋࡓ㸬ࡑࡋ࡚㸪㠃 Ni ⿕そࢲࣖࣔࣥࢻ◒⢏࠾ࡼࡧ㠀㔠ᒓ⿕そࢲࣖࣔࣥࢻ◒⢏ẚ㍑ࡋ࡞ࡀࡽ㸪ヨసࡋࡓ㒊ศ Ni ⿕そࢲࣖࣔࣥ ࢻ◒⢏ࢆ⏝࠸ࡓ㝿ࡢ㟁╔ᕤලࡢ〇㐀᮲௳ࢆ᳨ウࡋࡓ㸬⿕そ≧ែࢆኚ࠼ࡓྛ✀◒⢏ࢆ⏝࠸࡚స〇ࡋࡓ㟁╔ᕤලࢆ ⏝ࡋ㸪◳⬤ᮦᩱࢆ௦⾲ࡍࡿࢩࣜࢥࣥ࢞ࣛࢫࡢ◊๐ᐇ㦂ࢆ⾜࠸㸪◊๐ᢠࡼࡾ㟁╔ᕤලࡢษࢀࢆホ౯ࡋࡓ㸬 ࡑࡢ⤖ᯝ㸪㛤Ⓨࡋࡓ㒊ศ Ni ⿕そࢲࣖࣔࣥࢻ◒⢏ࢆ⏝ࡋࡓሙྜ㸪㠀㔠ᒓ⿕そࢲࣖࣔࣥࢻ◒⢏ࡼࡾ㟁╔ᕤලୖ ࡢ◒⢏ಖᣢຊࡀ㧗ࡃ㸪㠃 Ni ⿕そࢲࣖࣔࣥࢻ◒⢏ࡼࡾษࢀࡀඃࢀࡿࡇࡀ☜ㄆ࡛ࡁࡓࡢ࡛ሗ࿌ࡍࡿ㸬 㒊ศ㔠ᒓ⿕そࢲࣖࣔࣥࢻ◒⢏ࡢᥦ ⌧ᅾ㸪㟁╔ࢲࣖࣔࣥࢻᕤලࡢ〇㐀࠾࠸࡚ࡣࡵࡗࡁᾮࢲࣖࣔࣥࢻ◒⢏ࢆᠱ⃮ࡉࡏࡓ㟁Ẽࢽࢵࢣࣝ」ྜࡵ ࡗࡁἲࡀ⏕⏘⌧ሙ࡛ࡼࡃ⏝ࡉࢀ࡚࠸ࡿ㸬㟁╔ᕤලࢆ〇㐀ࡍࡿሙྜࡣ㸪◒⢏ࡢษࢀࢆ⪃៖ࡋ࡚㠀㔠ᒓ⿕そࡢ ࢲࣖࣔࣥࢻ◒⢏ࡀከ⏝ࡉࢀ࡚࠸ࡿ㸬ࡵࡗࡁᒙࡢ↝ࡅࢆ⏕ࡌࡉࡏ࡞࠸ࡓࡵࡇࡢ」ྜࡵࡗࡁᕤ⛬࡛ࡣ㟁ὶᐦᗘࢆ 1 kA/m2 ௨ୗపࡃタᐃࡉࢀ࡚࠾ࡾ㸪㟁╔㏿ᗘࡀ㐜࠸㸬ࡉࡽ㸪ᑟ㟁ᛶࡢ࡞࠸ࢲࣖࣔࣥࢻ◒⢏ࡀ⏝ࡉࢀ࡚࠸ ࡿࡓࡵ㸪◒⢏ࡵࡗࡁᒙࡢᐦ╔ᛶࡀపࡃ࡞ࡿ㸬ࡑࡇ࡛㸪㟁╔ࢲࣖࣔࣥࢻ࣡ࣖᕤල࡛ࡣ㸪◒⢏ࡵࡗࡁᒙࡢ ᐦ╔ᛶࡸඹᯒ⋡ࢆྥୖࡍࡿࡓࡵ㸪㔠ᒓ⿕そࢲࣖࣔࣥࢻ◒⢏ࡀ⏝࠸ࡽࢀ࡚࠸ࡿ㸬㔠ᒓ⿕そࢲࣖࣔࣥࢻ◒⢏ࢆ ⏝ࡍࡿࡇࡼࡾ㸪ࢲࣖࣔࣥࢻ◒⢏ࢆᕤලྎ㔠ᯒฟࡍࡿ」ྜࡵࡗࡁᕤ⛬ࡢ㛫ࡀ▷⦰࡛ࡁ㸪㟁╔ᕤලࡢ〇㐀 ㏿ᗘࢆⴭࡋࡃྥୖࡉࡏࡿࡇࡀ࡛ࡁࡿ㸬ࡋࡋ㸪㔠ᒓ⿕そ◒⢏ࢆ⏝ࡍࡿ✺ฟࡋࡓ◒⢏ඛ➃ࡵࡗࡁࡀከࡃᯒ ฟࡍࡿࡓࡵ㟁╔ᕤලࡢษࢀࡀపୗࡋ࡚ࡋࡲ࠺㸬ࡲࡓ㸪」ྜࡵࡗࡁࢆ⾜࠺㝿◒⢏ࡢจ㞟ඹᯒࡀ㢧ⴭ࡞ࡿ㸬ࡑ ࡇ࡛㸪ⴭ⪅ࡽࡣ㔠ᒓ⿕そࢲࣖࣔࣥࢻ◒⢏㠀㔠ᒓ⿕そࢲࣖࣔࣥࢻ◒⢏ࡢ࣓ࣜࢵࢺࢆάࡍࡇࡀ࡛ࡁ㸪」ྜ ࡵࡗࡁᾮ୰࡛ప࠸◒⢏⃰ᗘ࡛ࡶ◒⢏ࡢᯒฟࡀ㏿ࡃ㸪ษࢀࡀඃࢀࡿᕤලࡢᐇ⌧ࡢࡓࡵ㸪ࢲࣖࣔࣥࢻ◒⢏ࡢ୍㒊 ศࡢࡳࡀ㔠ᒓ࡛そࢃࢀࡿ㒊ศ㔠ᒓ⿕そࢲࣖࣔࣥࢻ◒⢏ࢆᥦࡍࡿ㸬 ◒⢏ࡢᑟ㟁ᛶ㛵ࡋ࡚◒⢏㏆ഐࡢࡵࡗࡁᒙࡢᡂ㛗ࡘ࠸࡚ヲࡋࡃㄽ㏙ࡉࢀ࡚࠸ࡿ㸦బ⸨㸪㕥ᮌ㸪1982㸪1987㸧 㸬 」ྜ㟁Ẽࡵࡗࡁࢆ⾜࠺㝿ᑟ㟁ᛶࡢ࠶ࡿ◒⢏ࢆ⏝ࡋࡓሙྜࡣ㸪ᅗ 1(a)♧ࡍࡼ࠺◒⢏ࡢ㠃ࡀᑟ㟁ᛶ⓶⭷ そࢃࢀࡿࡓࡵྎ㔠ᯒฟࡋࡓ◒⢏ࡀ㝜ᴟࡢ୍㒊ศ࡞ࡾ㸪 ✺ฟࡋࡓ◒⢏ࡢୖ㔠ᒓ⓶⭷ࡸ◒⢏ࡀከࡃᯒฟࡍࡿ㸬 −16− 電着工具用の部分Ni 被覆ダイヤモンド砥粒の開発 ࡑࡢ⤖ᯝ㸪 ◒⢏ࡢᯒฟࡀ㏿ࡃ◒⢏ࡢಖᣢຊࡀ㧗ࡃ࡞ࡿࡀ㸪 ◒⢏ࡢจ㞟ࡀ㉳ࡁ࡚ᕤලୖࡢ◒⢏ศᕸࡀᆒ୍࡞ࡿ㸬 ࡑࢀᑐࡋ࡚㸪ᑟ㟁ᛶࡢ࡞࠸◒⢏ࢆ⏝ࡋࡓሙྜࡣᅗ 1(b)♧ࡍࡼ࠺㟁╔ᕤලୖࡢ◒⢏ྎ㔠ࡢ᥋ゐ㠃✚ࡀ ᑡ࡞࠸ࡓࡵ㸪◒⢏ࡢಖᣢຊࡀపࡃ࡞ࡿ㸬ࡲࡓ㸪◒⢏ࡢ⾲㠃ࡣᑟ㟁ᛶࡀ࡞࠸ࡓࡵ㸪ᯒฟࡋࡓ◒⢏ࡢ⾲㠃ࡢୖࡉ ࡽ◒⢏ࡸ㔠ᒓ⓶⭷ࡢᯒฟࡀ⏕ࡌࡎ◒⢏ࡢจ㞟ࡀࢇ⏕ࡌ࡞࠸ࡓࡵษࢀࡀⰋ࠸ࡀ㸪ᯒฟ㏿ᗘࡀ㐜ࡃ࡞ࡿ㸬 ࡇࢀࡽࡢၥ㢟ࢆゎỴࡍࡿࡓࡵᅗ 1(c)♧ࡍࡼ࠺ษࢀลࡢ୍㒊ศ㔠ᒓ⓶⭷ࡀ࡞࠸◒⢏ࢆసࢀࡤᕤලᯒฟࡋ ࡓ◒⢏ࡢศᩓᛶࡀⰋࡃಖᣢຊࡢ㧗࠸㟁╔ᕤලࡢస〇ࡀྍ⬟࡞ࡿࡶࡢᛮࢃࢀࡿ㸬ࡑࡇ࡛㸪ⴭ⪅ࡽࡣ㸪๓㏙ࡋࡓ ࡼ࠺㟁╔ᕤලࡢၥ㢟Ⅼࢆඞ᭹ࡍࡿࡓࡵ◒⢏⾲㠃ࡢ୍㒊ศࡔࡅᑟ㟁ᛶࢆᣢࡘ Ni ⓶⭷࡛⿕そࡉࢀࡓ㒊ศ Ni ⿕そ ࢲࣖࣔࣥࢻ◒⢏ࢆ㛤Ⓨࡋࡓ㸬㒊ศ Ni ⿕そ◒⢏ࡢୖ㒊ࡣ㔠ᒓ⓶⭷ࡀ࡞࠸ࡓࡵ㸪ᚲࡎ◒⢏ࡢᑟ㟁ᛶࡢ࠶ࡿ㒊ศࡀ ୗ࡞ࡗ࡚ྎ㔠ᯒฟࡋࡵࡗࡁᒙࡀᡂ㛗ࡍࡿ㸬◒⢏ࡢ㠃ࡀࡵࡗࡁᒙそࢃࢀ࡞࠸ࡓࡵ㸪ಖᣢຊࡀ㧗ࡃษࢀࡢ Ⰻ࠸㟁╔ᕤලࡢస〇ࡀྍ⬟࡞ࡿ㸬 㒊ศ Ni ⿕そ◒⢏ࡢస〇᪉ἲ㛵ࡋ࡚ࡣ㸪 㠀⿕そ◒⢏⾲㠃ࡢ୍㒊ศ↓㟁ゎ Ni ࡵࡗࡁࡼࡾ Ni ⓶⭷ࢆᙧᡂࡉࡏ ࡿ㒊ศࡵࡗࡁἲ㠃 Ni ⿕そࡉࢀࡓ◒⢏⾲㠃ࡢ୍㒊ศࡢ Ni ⓶⭷ࢆ㞳ࡉࡏࡿ㒊ศ㞳ἲࡀ࠶ࡿ㸬㒊ศࡵࡗࡁἲ Fig. 1 Effect of nickel membrane coated on abrasives on growth of electrodeposited layer along the surface of abrasives Fig. 2 Production method of partially Ni-coated abrasives −17− 張 宇・谷 泰弘・村田 順二 ⏝ࡉࢀࡿࢲࣖࣔࣥࢻ◒⢏ࡢ๓ฎ⌮ࡼࡾ◒⢏ Ni ⓶⭷ࡢᐦ╔ᛶࡀࡁࡃ␗࡞ࡿࡓࡵ㸪 ᮏ◊✲࡛ࡣ㒊ศ㞳 ἲࡼࡾ㒊ศ Ni ⿕そ◒⢏ࢆస〇ࡋࡓ㸬࡞࠾㸪㒊ศ㞳ἲ࡛సᡂࡋ࡚ࡶ㸪㒊ศࡵࡗࡁἲ࡛సᡂࡋ࡚ࡶ㸪㟁╔ᕤලࡢ ◊๐ᛶ⬟ࡣࢇኚࡀ࡞࠸ࡇࡀ☜ㄆࡉࢀ࡚࠸ࡿ㸦୰ᕝ㸪2008㸧 㸬ᅗ 2(a)ࡣ㸪㒊ศ㞳ἲࡼࡿ㒊ศ Ni ⿕そ◒⢏ࡢస〇ࣉࣟࢭࢫࢆ♧ࡍ㸬 ࡲࡎ㸪 ཌࡳ 2 mm ࡢ⪏⸆ရᛶࡀඃࢀࡿࢫࢸࣥࣞࢫ㗰ᯈ 㸦SUS430㸪 ڧ150150 mm㸧 ୖ࣍ࢵࢺࣉ࣮ࣞࢺࡼࡾ 120 Υຍ⇕ࡍࡿࡇ࡛࣡ࢵࢡࢫ㸦KPW-A㸪㔜㟁Ẽ㸦ᰴ㸧♫〇㸧ࢆ 20 ȝm ⛬ᗘሬ ᕸࡋࡓ㸬ᕷ㈍ࡢ㠃 Ni ⿕そࢲࣖࣔࣥࢻ◒⢏㸦⢏ᚄ㸸30~40 ȝm㸪55 wt%Ni㸧ࢆ࣡ࢵࢡࢫୖᆒ୍ᩓᕸࡋ㸪ୖ 㒊ࡼࡾࢫ࣏ࣥࢪࢆᢲࡋᙜ࡚ຍ⇕ࡼࡾ㌾ࡉࡏࡓ࣡ࢵࢡࢫෆ◒⢏ࢆᢲࡋ㎸ࢇࡔ㸬ࡇࡢ≧ែ࡛ࡣ㸪ᅗ 2(b)♧ࡉ ࢀࡿࡼ࠺◒⢏ࡀ࣡ࢵࢡࢫࡢ⾲㠃ࡽ༙ศ⛬ᗘ㟢ฟࡋ࡚࠸ࡿ㸬ࡇࡢ◒⢏ࢆᩓᕸࡋࡓ㗰ᯈࢆ⾲ 1 ♧ࡋࡓࢽࢵࢣࣝ 㞳ᾎᾐₕࡋ㸪࣡ࢵࢡࢫそࢃࢀ࡚࠸࡞࠸㒊ศࡢ Ni ⓶⭷ࢆ㞳ࡉࡏࡓ㸬ࡑࡢ⤖ᯝ㸪ᅗ 2(c)♧ࡉࢀࡿࡼ࠺ 㞳⤊ᚋඖ⣲ศᯒࢆ⾜ࡗࡓ⤖ᯝ㸪◒⢏⾲㠃ࢽࢵࢣࣝࡀ᳨ฟࡉࢀࡎ㸪◒⢏⾲㠃ࡣⅣ⣲㸦ࢲࣖࣔࣥࢻ㸧ࡀ㟢 ฟࡍࡿࡇࡀ☜ㄆ࡛ࡁࡓ㸬ࡑࡢᚋ㸪ࢫࢸࣥࣞࢫ㗰ᯈࢆࢺ࢚ࣝࣥࡢ୰ᾐࡋ㸪࣡ࢵࢡࢫࢆ⁐ࡋ㸪⬺ⴠࡋࡓ ◒⢏ࢆྵࢇࡔ⁐ᾮࢆ⣬ࣇࣝࢱ࡛ࢁ㐣ࡍࡿࡇࡼࡾ㒊ศ Ni ⿕そ◒⢏ࢆྲྀࡾฟࡋࡓ㸬 ᅗ 3 ࡣ࢚ࢿࣝࢠ࣮ศᩓᆺ X ⥺ศගჾ㸦EDX㸪INCA x-act㸪Oxford Instruments ♫〇㸧ࢆ⏝࠸࡚㸪స〇ࡋࡓ㒊ศ Ni ⿕そ◒⢏ࡢ⾲㠃ඖ⣲ศᯒࢆ⾜ࡗࡓ⤖ᯝࢆ♧ࡍ㸬◒⢏⾲㠃ࡢ୍㒊ศࡢ Ni ⓶⭷ࡀ࡞ࡃ࡞ࡾࢲࣖࣔࣥࢻ㸦Ⅳ⣲㸧 Fig. 3 Elemental analysis of partially Ni-coated abrasives Table 1 Conditions of stripping nickel membrane Fig. 4 Ratio of carbon and nickel atoms on the surface of partially Ni-coated abrasives −18− 電着工具用の部分Ni 被覆ダイヤモンド砥粒の開発 ࡀ㟢ฟࡋ࡚࠸ࡿࡇࡀ☜ㄆ࡛ࡁࡿ㸬㞳ᾮࡢᾐₕ㛫ࢆ 30 min㸪40 min㸪50 min ኚࡉࡏ࡚ᚓࡽࢀࡓ◒⢏ࢆ ୍᪉ྥࡽ EDX ศᯒࡍࡿࡇࡼࡾ C Ni ࡢཎᏊᩘࡢྜࢆồࡵࡓ㸬ࡑࡢ⤖ᯝ㸪ᅗ 4 ♧ࡍࡼ࠺㞳㛫 ࡀ㛗ࡃ࡞ࡿࡘࢀ࡚Ⅳ⣲ࡢྜࡀቑ࠼ࡿࡇࡀศࡗࡓ㸬㞳㛫ࡀ 50 min ࡢሙྜࡣ◒⢏࣡ࢵࢡࢫࡢ㝽㛫 㞳ᾮࡀධࡋ㸪◒⢏㠃ࡢ Ni ⓶⭷ࡀࢇ㞳ࡉࢀࡓࡶࡢ⪃࠼ࡽࢀࡿ㸬ᅗ 5 ࡣస〇ࡋࡓ㒊ศ Ni ⿕そ◒⢏ ࡢ SEM ┿ࢆ♧ࡍ㸬30 min ࡢሙྜ࡛ࡣ࣡ࢵࢡࢫࡢ⾲㠃㟢ฟࡋࡓ Ni ⓶⭷ࡀ㞳ࡉࢀ࡚࠸࡞࠸ࡀ㸪40 min ࡢሙྜࡣ◒⢏ࡢ⣙༙ศࡢ㒊ศࡀ㞳ࡉࢀ࡚࠸ࡿࡇࡀ☜ㄆ࡛ࡁࡿ㸬50 min ࡢሙྜ࡛ࡣ㸪◒⢏ࡢ⾲㠃ࢃࡎ࡞ Ni ⓶⭷ࡋṧࡗ࡚࠸࡞࠸㸬ᮏ◊✲࡛ࡣ㞳㛫ࡀ 30 min㸪40 min㸪50 min ࡢ㒊ศ Ni ⿕そ◒⢏㸦ࡑࢀࡒࢀࡀᚋ 㒊ศ Ni ⿕そ◒⢏ 30 min㸪40 min㸪50 min ⛠ࡍࡿ㸧ࢆ⏝࠸࡚㟁╔ᕤලࢆస〇ࡋ㸪ࡑࢀࡽࡢຍᕤ≉ᛶࢆホ౯ࡋࡓ㸬 㟁╔ᕤලࡢస〇 㟁╔ᕤලࡢ〇㐀⨨࠾ࡼࡧ〇㐀᮲௳ ࣭ ⣽⥺࡛࠶ࡿ࡛࣡ࣖࡣ◒⢏ࡢจ㞟≧ែほᐹࡀᅔ㞴࡛࠶ࡿࡓࡵ㸪 ᮏ◊✲࡛ࡣ〇సࡋࡓ㒊ศ Ni ⿕そ◒⢏ᕷ㈍ࡢ 㠃 Ni ⿕そ◒⢏࠾ࡼࡧ㠀⿕そ◒⢏ࢆ」ྜ㟁Ẽࡵࡗࡁἲࡼࡾ㸪࠶ࡽࡌࡵࣝ࢝ࣜ⬺⬡ฎ⌮࠾ࡼࡧ㓟Ὑฎ⌮㸦㰻⸨ 㸪2011㸧ࢆࡋࡓ┤ᚄ 10 mm ࡢᲬ㸦S45C㸧㟁╔ࡋࡓ㸬ᅗ 6 ࡣ㟁Ẽࢽࢵࢣࣝࡵࡗࡁᐇ㦂⨨ࡢ࣓࣮ࢪ ᅗࢆ♧ࡍ㸬㝧ᴟࡋࡓ⣧ࢽࢵࢣࣝᲬࢆࣅ࣮࢝ࡢෆቨᅛᐃࡋࡓ㸬ᕤලẕᮦ࡞ࡿ S45C Წࢆᅇ㌿⨨ࡢ㍈ࡢ ୗ㒊ྲྀࡾࡅ㸪Წࡢ࿘ᅖᆒ୍࡞ࡵࡗࡁࡀ࡛ࡁࡿࡼ࠺Წࢆࡺࡗࡃࡾᅇ㌿ࡉࡏ࡞ࡀࡽࡵࡗࡁࢆ⾜ࡗࡓ㸬 㟁╔ࢲࣖࣔࣥࢻ࣡ࣖᕤලࡢ〇㐀㏿ᗘࡣ 10 m/min ௨ୖࢆ┠ᶆࡋ࡚࠸ࡿࡓࡵ㸪Წࡢᅇ㌿㏿ᗘࡀ㟁╔ࢲࣖࣔ ࣥࢻ࣡ࣖᕤලࡢ〇㐀㏿ᗘྠࡌ⛬ᗘ࡞ࡿࡼ࠺ 300 rpm ᅛᐃࡋࡓ㸬ᅇ㌿⨨ࡢ㍈ࡢ㔠ᒓⰺࡢୖ➃┤ὶ㟁 ※ࡢ㝜ᴟࢆ᥋⥆ࡋ㔠ᒓⰺࢆ㏻ࡋ࡚Წ㏻㟁ࡋࡓ㸬ࣅ࣮࢝ࡣຍ⇕ᨩᢾࡢᶵ⬟ࢆࡶࡘ࣐ࢢࢿࢸࢵࢡࢫࢱ࣮ࣛࡢ ୖ㍕ࡏ㸪ࡵࡗࡁᾎࢆຍ⇕ࡋ࡞ࡀࡽࡵࡗࡁᾎࢆᨩᢾࡋࡓ㸬๓㏙ࡋࡓࢲࣖࣔࣥࢻ◒⢏㸦⢏ᚄ㸸30~40 ȝm㸧ࢆࡵࡗ ࡁᾎศᩓࡉࡏࡿࡓࡵ㸪ࢫࢱ࣮ࣛࡢᅇ㌿ᩘࡣ 1000 rpm ᅛᐃࡋࡓ㸬㟁╔ࢲࣖࣔࣥࢻᕤලࡢస〇࠾ࡅࡿࡵࡗࡁ ᕤ⛬ࡣ୍⯡ⓗࢫࢺࣛࢡࡵࡗࡁ㸪」ྜࡵࡗࡁ㸪ᚋࡵࡗࡁࡢ 3 ࢫࢸࢵࣉ࡛⾜ࢃࢀࡿ㸬࢘ࢵࢻᾎࡣ㸪ᙉ㓟ᾎ࡛㝜ᴟ ㏆㔞ࡢỈ⣲࢞ࢫࢆⓎ⏕ࡋ㸪㝜ᴟ㏆࠾࠸࡚㑏ඖ㞺ᅖẼ࡛ᕤලẕᮦࡢ⾲㠃㓟≀ࢆ㑏ඖࡋ࡞ࡀࡽࡵࡗࡁࡍ Fig. 5 Surface state of partially Ni-coated abrasives stripped in 30 min, 40 min and 50 min Fig. 6 Schematic diagram of plating setup for manufacturing diamond tools −19− 張 宇・谷 泰弘・村田 順二 ࡿࡇࡀྍ⬟࡛ẕᮦࡵࡗࡁᒙࡢᐦ╔ᛶࡀⰋࡃ࡞ࡿ㸬ࡑࡢࡓࡵ㸪ࢫࢺࣛࢡࡵࡗࡁࡣ࢘ࢵࢻᾎࢆ㑅ᢥࡋࡓ㸬 ◒⢏ࢆᯒฟࡍࡿ」ྜࡵࡗࡁᾎ◒⢏ࡢಖᣢຊࢆ㧗ࡵࡿᚋࡵࡗࡁᾎࡣ㸪㟁╔ᛂຊࡀᑠࡉࡃᡂ⭷㏿ᗘࡀ㏿࠸ࢫࣝࣇ ࣑ࣥ㓟ࢽࢵࢣࣝᾎࢆ㑅ᢥࡋࡓ㸬ලయⓗ࡞ࡵࡗࡁᾎࡢ⤌ᡂ࠾ࡼࡧࡵࡗࡁ᮲௳ࢆ⾲ 2 ࡲࡵࡓ㸬ࢫࢺࣛࢡࡵࡗ ࡁࡢ⭷ཌࡣ 0.5 ȝm ࡞ࡿࡼ࠺ࢫࢺࣛࢡࡵࡗࡁࡢ㛫ࢆ 150 s ࡋࡓ㸬ᚋࡵࡗࡁࡢ᮲௳࡛ࡣ㸪ࡵࡗࡁࡢᡂ⭷㏿ ᗘࡀ 3 ȝm/min ࡛࠶ࡿࡓࡵ㸪◒⢏ᚄࡢ 1/3 ⛬ᗘ㸦10 ȝm㸧ࡀᇙࡵ㎸ࡲࢀࡿࡼ࠺ᚋࡵࡗࡁࡢ㛫ࢆ 200 s ࡋࡓ㸬」 ྜࡵࡗࡁࡢ㛫ࡣ◒⢏ࡢᯒฟ㔞ᙳ㡪ࢆ࠼ࡿࡓࡵ㸪 ◒⢏ࡢᯒฟ㔞ࢆ⪃៖ࡋ࡞ࡀࡽ」ྜࡵࡗࡁࡢ㛫ࢆㄪᩚࡋࡓ㸬 ࡲࡓ㸪㧗ᡂ⭷㏿ᗘࡢ⥔ᣢࡢࡓࡵሷᇶᛶⅣ㓟ࢽࢵࢣ࣑ࣝࢻ◲㓟ࢆ⏝࠸࡚」ྜࡵࡗࡁᾎᚋࡵࡗࡁᾎࡀ pH4 ࡞ ࡿࡼ࠺⟶⌮ࡋࡓ㸬 ࣭ 」ྜࡵࡗࡁ᮲௳ࡼࡿ㟁╔ᕤල⾲㠃ࡢ◒⢏ࡢᯒฟ㔞ศᕸ ๓❶㏙ࡓࡼ࠺◒⢏⾲㠃ࡢ㔠ᒓ⿕そ⋡ࡣᕤලᯒฟࡋࡓ◒⢏㔞ᙳ㡪ࢆ࠼㸪 㒊ศ Ni ⿕そ◒⢏ࡢᯒฟ㔞ࡀ 㠃 Ni ⿕そ◒⢏㠀⿕そ◒⢏ࡢ୰㛫࡞ࡿ⪃࠼ࡽࢀࡿ㸬స〇ࡋࡓ㒊ศ Ni ⿕そ◒⢏ᕷ㈍ࡢ㠀⿕そ◒⢏࠾ࡼࡧ 㠃 Ni ⿕そ◒⢏ࢆ⏝࠸࡚ྠ୍᮲௳࡛㟁╔ࡋࡓᕤලࡢ⾲㠃ᯒฟࡋࡓ◒⢏ࡢศᕸ≧ែࡣᅗ 7 ♧ࡉࢀࡿ㸬 㠀⿕そ◒ ⢏ࡢሙྜࡣ◒⢏ࡀࢇᯒฟࡋ࡚࠸࡞࠸㸬 㠃 Ni ⿕そ◒⢏ࢆ⏝ࡋࡓሙྜࡣᕤලᯒฟࡋࡓ◒⢏ࡀ᭱ࡶከ ࠸ࡀ㸪◒⢏ྠኈࡀจ㞟ࡋ࡚ᯒฟࡍࡿഴྥࡀぢࡽࢀࡿ㸬ࡑࢀᑐࡋ࡚㸪㒊ศ Ni ⿕そ◒⢏ࢆ⏝ࡋࡓሙྜࡣ㠃 Ni ⿕そ◒⢏ẚ࡚ᯒฟ◒⢏ᩘࡣࡸࡸᑡ࡞࠸ࡀ㸪◒⢏ࡢศᩓᛶࡀࡼࡃ࡞ࡗ࡚࠸ࡿ㸬ࡲࡓ㸪◒⢏ࡢ Ni ⓶⭷㞳 㛫ࡀ㛗࠸ᯒฟࡋࡓ◒⢏ࡢ㔞ࡀᑡ࡞࠸ࡇࡀ☜ㄆ࡛ࡁࡿ㸬༓ⴥࡽࡣ㸪㔠ᒓᮦ㉁ࡀ␗࡞ࡿ⿕そ◒⢏ࢆ⏝࠸㸪◒⢏ ࡢᯒฟ㔞ࡀ◒⢏ᑟ㟁ᛶᐦ᥋㛵ಀࡋ㸪ᑟ㟁ᛶࡀ㧗࠸◒⢏ࡀᯒฟࡋࡸࡍ࠸ㄽࡌࡓ㸦༓ⴥ㸪2003㸧 㸬ࡑࡢ⤖ ᯝ㏻ࡾ㸪ᮏ◊✲⏝ࡉࢀࡓ◒⢏ࡣ㠃 Ni ⿕そ◒⢏㸪㒊ศ Ni ⿕そ◒⢏ 30 min㸪40 min㸪50 min㸪㠀⿕そ◒⢏ࡢ 㡰◒⢏⾲㠃ࡢ㔠ᒓ⓶⭷ࡀᑡ࡞ࡃᑟ㟁ᛶࡀᝏࡃ࡞ࡗࡓࡓࡵ㸪◒⢏ࡢᯒฟ㔞ࡀపࡃ࡞ࡗࡓ⪃࠼ࡽࢀࡿ㸬 Table 2 Compositions of plating baths and plating conditions Fig. 7 Distribution states of various abrasives deposited on tools −20− 電着工具用の部分Ni 被覆ダイヤモンド砥粒の開発 ୍⯡ⓗ࡞㟁╔ࢲࣖࣔࣥࢻ࣡ࣖᕤලࡣ◒⢏ᐦᗘࡀ 150 mm-2 ⛬ᗘ࡛࠶ࡿࡓࡵ㸪㠃 Ni ⿕そ◒⢏㸪㒊ศ Ni ⿕そ ◒⢏࠾ࡼࡧ㠀⿕そ◒⢏ࢆ⏝࠸࡚」ྜࡵࡗࡁࡢ᮲௳ࢆኚࡉࡏ㸪ᯒฟࡋࡓ◒⢏ࡢ㔞ࢆㄪࡓ㸬ᅗ 8 ࡣ」ྜࡵࡗࡁ ᾎ୰ࡢ◒⢏⃰ᗘ㸪」ྜࡵࡗࡁ㛫➼ࢆኚࡉࡏࡓ㝿㸪ᕤල⾲㠃ࡢ༢㠃✚࠶ࡓࡾᯒฟࡋࡓ◒⢏ಶᩘ㸦◒⢏ᐦᗘ㸧 ࢆ♧ࡍ㸬࠸ࡎࢀࡢ◒⢏࠾࠸࡚ࡶ」ྜࡵࡗࡁᾎ୰ࡢ◒⢏⃰ᗘࡸ」ྜࡵࡗࡁ㛫ࡀቑ࠼ࡿᯒฟࡋࡓ◒⢏ࡢ㔞ࡀ ቑຍࡍࡿࡇࡀࢃࡗࡓ㸬㠀⿕そ◒⢏ࡢሙྜࡣ㸪ᯒฟࡋࡓ◒⢏ᐦᗘࡀ 150 mm-2 㐩ࡍࡿࡓࡵࡣᾎ୰ࡢ◒⢏⃰ ᗘࢆ 40 g/L㸪」ྜࡵࡗࡁ㛫ࢆ 60 s ࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸㸬㠃 Ni ⿕そ◒⢏ࢆ⏝ࡍࡿሙྜࡣ㸪0.5 g/L ࡢప ◒⢏⃰ᗘ㸪」ྜࡵࡗࡁࡢ㛫ࢆ 5 s ࡋ࡚┠ᶆࡢᯒฟ㔞ࡀᚓࡽࢀࡿ㸬ࡑࢀᑐࡋ࡚ࡣ㸪㒊ศ Ni ⿕そ◒⢏ 30 min ࡢሙྜࡣ㸪ᾎ୰ࡢ◒⢏⃰ᗘࢆ 1 g/L㸪」ྜࡵࡗࡁ㛫ࢆ 5 s ࡍࢀࡤ 150 mm-2 ࡢ◒⢏ᐦᗘࡀᚓࡽࢀ㸪㠃 Ni ⿕ そ◒⢏ࡼࡾ◒⢏ࡢᯒฟࡀࡸࡸ㐜ࢀࡿࡀ㠀⿕そ◒⢏ẚ࡚ⴭࡋࡃ㏿࠸ࡇࡀศࡗࡓ㸬㞳㛫ࡀ㛗࠸㒊ศ Ni ⿕そ◒⢏ 50 min ࡛ࡣ㸪◒⢏⃰ᗘࢆ 10 g/L㸪」ྜࡵࡗࡁ㛫ࢆ 60 s ࡍࡿᚲせࡀ࠶ࡿ㸬㒊ศ Ni ⿕そ◒⢏ࢆ⏝ࡍ ࡿࡇࡼࡾ㸪」ྜࡵࡗࡁ㛫ࡸ」ྜࡵࡗࡁᾎ୰ࡢ◒⢏⃰ᗘࡀ㠃 Ni ⿕そ◒⢏ࡼࡾࡸࡸ㧗࠸ࡀ㸪㠀⿕そ◒⢏ࡼࡾ ࡞ࡾప࠸ࡇࡀ☜ࡵࡽࢀࡓ㸬 Fig. 8 Effect of complex plating conditions on density of abrasives on tool surface Fig. 9 Relationship between grain distribution on tools and kinds of abrasives −21− 張 宇・谷 泰弘・村田 順二 㟁╔ᕤල⾲㠃ࡢ◒⢏ᐦᗘ◒⢏ศᕸ≧ែࡣᕤලࡢ◊๐≉ᛶࡁࡃᙳ㡪ࢆ࠼ࡿ⪃࠼ࡽࢀࡿ㸬ࡑࡢࡓࡵ㸪㟁 ╔ࢲࣖࣔࣥࢻ࣡ࣖᕤලྠࡌࡃ㸪◒⢏ᐦᗘࡀ 150 mm-2 ⛬ᗘࡢ㟁╔ᕤලࢆసᡂࡋ㸪ᕤල⾲㠃ࡢ◒⢏ศᕸ≧ែࢆ ㄪࡓ㸬◒⢏ࡢศᕸ≧ែࢆᩘ್ⓗホ౯ࡍࡿࡓࡵ㸪୍㎶ 150 ȝm ᅄ᪉ᙧࡢ㡿ᇦᯒฟࡋࡓ◒⢏ࡢಶᩘࢆ 200 ⟠ᡤ ᩘ࠼㸪◒⢏ࡢಶᩘࢆ⤫ィⓗศ㢮ࡋࡓ㸬◒⢏ࡢจ㞟㛵ࡋ࡚ࡣ㸪◒⢏㛫ࡢ୰ᚰ㊥㞳ࡀ 40 ȝm ௨ෆࡢ◒⢏ಶᩘࢆᩘ ࠼㸪యࡢ◒⢏ᩘࡢྜ࡛◒⢏จ㞟⋡ࢆᐃ⩏ࡋࡓ㸬ᅗ 9 ࡣᕤල⾲㠃ᯒฟࡋࡓྛ✀◒⢏ࡢจ㞟⋡ಶᩘศᕸ 㢖ᗘࢆ♧ࡍ㸬㠃 Ni ⿕そ◒⢏ࢆ⏝ࡋࡓᕤලࡣ㸪จ㞟ࡋࡓ◒⢏ࡀ࡞ࡾከࡃ⣙ 70 %㐩ࡋ㸪◒⢏ࡀᏑᅾࡋ࡞ ࠸㡿ᇦ 7 ಶ௨ୖࡢ㡿ᇦࡀ 30 %⛬ᗘ༨ࡵࡿ㸬㠀⿕そ◒⢏ࡢሙྜࡣ㸪ᯒฟࡋࡓ◒⢏ࡢ୰จ㞟⋡ࡀ᭱ࡶపࡃ 40 % ௨ୗ࡞ࡗ࡚࠸ࡿ㸬ࡑࢀࡽࡢ◒⢏ᑐࡋ࡚ࡣ㸪㛤Ⓨࡋࡓ㒊ศ Ni ⿕そ◒⢏ࡣ㸪㠀⿕そ◒⢏ࡼࡾ◒⢏ࡢจ㞟⋡ࡀࡸࡸ 㧗࠸ࡀ㸪㠃 Ni ⿕そ◒⢏ࡼࡾࡁࡃపῶࡍࡿࡇࡀ࡛ࡁࡓ㸬㒊ศ Ni ⿕そ◒⢏ 30 min 40 min ࡢሙྜࡣศᕸ ≧ែࡢᕪ␗ࡀࢇぢࡽࢀࡎ㠃 Ni ⿕そ◒⢏ẚ࡚จ㞟ࡋࡓ◒⢏ࡢ㔞ࡀ 15 %⛬ᗘᑡ࡞ࡃ࡞ࡿࡇࡀ☜ㄆࡉ ࢀࡓ㸬◒⢏ࡀᏑᅾࡋ࡞࠸㡿ᇦ 7 ಶ௨ୖࡢ㡿ᇦ࠾࠸࡚ࡶ㸪㒊ศ Ni ⿕そ◒⢏ࡀ㠃 Ni ⿕そ◒⢏ẚ࡚༙ศ⛬ ᗘపῶࡍࡿࡇࡀࢃࡗࡓ㸬㒊ศ Ni ⿕そ◒⢏ 50 min ࡣ㠀⿕そ◒⢏ኚࢃࡽ࡞࠸◒⢏ศᕸ≧ែࡀࡼ࠸ࡇࡀ ☜ㄆ࡛ࡁࡿ㸬⾲㠃ᑟ㟁ᛶࡀ࠶ࡿ◒⢏ࡢ㏆ࡣ㟁ࡀ㧗ࡃ◒⢏ࡀᯒฟࡋࡸࡍ࠸ࡓࡵࡔ⪃࠼ࡽࢀࡿ㸬㒊ศ Ni ⿕そ◒⢏ࢆ⏝ࡍࡿ㠃 Ni ⿕そ◒⢏ࡢሙྜࡼࡾ◒⢏ࡢจ㞟ඹᯒࡀᢚไ࡛ࡁ㸪 㟁╔ᕤලୖࡢ◒⢏ࡢศᩓᛶࢆᨵ ၿࡍࡿຠᯝࡀ࠶ࡿࡇࡀ☜ࡵࡽࢀࡓ㸬 㒊ศ Ni ⿕そ◒⢏࠾࠸࡚ࡣ Ni ⓶⭷ࡢ࡞࠸㒊ศࡀ◊๐ᕤලୖ࡛ྎ㔠ᑐࡋ࡚እྥࡁ࡞ࡽ࡞ࡅࢀࡤ㟁╔ᕤලࡢ ษࢀࡢྥୖࢆᐇ⌧ࡍࡿࡇࡀ࡛ࡁ࡞࠸ࡓࡵ㸪ᕤලᯒฟࡋࡓ㒊ศ Ni ⿕そ◒⢏ࡢྥࡁࢆほᐹࡋࡓ㸬ᅗ 10 ࡣᕤල ⾲㠃㟁╔ࡉࢀࡓ㒊ศ Ni ⿕そ◒⢏ 50 min ࡢ SEM ⏬ീⅣ⣲ศᕸᅗ㸦EDX㸧ࢆ♧ࡍ㸬◒⢏ࡢ࠶ࡿࡇࢁࡣⅣ⣲ ࡀࢇほᐹࡉࢀࡿࡓࡵ Ni ⓶⭷ࡢ࡞࠸㒊ศࡀእྥࡁ࡞ࡗ࡚࠸ࡿࡇࡀ☜ㄆ࡛ࡁࡿ㸬 ᑟ㟁ᛶࡢ࡞࠸㠀⿕そ◒⢏ ࡀኚᯒฟࡋࡃ࠸ࡇ㸪ᑟ㟁ᛶࡢ࠶ࡿ㠃 Ni ⿕そ◒⢏ࡀᯒฟࡋࡸࡍ࠸ࡇࢆ๓㏙ࡉࢀࡓ㸬◒⢏ࡀᾮ୰ࣛࣥ ࢲ࣒㐠ືࡋ㒊ศ Ni ⿕そ◒⢏ࡢࡍ࡚ࡢ㠃ࡀྎ㔠᥋ゐࡍࡿ㢖ᗘࡀྠࡌ⪃࠼ࡽࢀࡿࡀ㸪 ◒⢏ࡢࢲࣖࣔࣥࢻ㒊 ศࡣᑟ㟁ᛶࡀ࡞ࡃྎ㔠᥋ゐࡋ࡚ࡶᅛ╔ࡉࢀ࡞࠸ࡲࡓࡣᅛ╔ࡉࢀࡃ࠸᥎ ࡛ࡁࡿ㸬ࡑࢀᑐࡋ㸪Ni ⓶⭷ࡢ 㒊ศࡀྎ㔠᥋ゐࡍࡿ᥋ゐ㒊ศ㟁Ẽࡀὶࢀࡵࡗࡁᒙࡀ㧗㏿ᡂ㛗ࡋ◒⢏ࡀᅛ╔ࡉࢀࡸࡍ࠸⪃࠼ࡽࢀࡿ㸬࡞ ࠾㸪㒊ศ Ni ⿕そ◒⢏⾲㠃 Ni ⭷ࡢࡢ㒊ศࡀྎ㔠ᅛ╔ࡉࢀࡿࡢࡀุ᩿ࡍࡿࡇࡀ࡛ࡁ࡞ࡗࡓ㸬ࡋࡓࡀࡗ࡚㸪 ᯒฟࡋࡓ㒊ศ Ni ⿕そ◒⢏ࡀⰍࠎ࡞᪉ྥྥࡎࢲࣖࣔࣥࢻࡀ㟢ฟࡋࡓ㒊ศࡀྎ㔠ᑐࡋ࡚እྥࡁ࡞ࡾࡸࡍ ࠸ᐃᛶⓗ⪃ᐹࡋࡓ㸬ࡲࡓ㸪ᅗ 5 ♧ࡉࢀࡓࡼ࠺㒊ศ Ni ⿕そ◒⢏ࡢ Ni ⓶⭷◒⢏ࡢ㛫㞳ᾮࡀከᑡධ ࡋ㝽㛫ࡀ⏕ࡌ◒⢏ࡢಖᣢຊࡀపୗࡍࡿࡇࡀᠱᛕࡉࢀࡓࡀ㸪ᅗ 1(c)ᅗ 10(a)♧ࡉࢀࡿࡼ࠺◒⢏ Ni ⓶⭷ࡢ ⏺㠃ࡣࡑࡢ㝽㛫ࡀ☜ㄆࡉࢀ࡚࠾ࡽࡎ㸪㟁╔୰ࡵࡗࡁᾮࡀධࡋᯒฟࡋࡓࢽࢵࢣࣝࡼࡾᇙࡵࡽࢀࡓ᥎ᐹࡉࢀ ࡿ㸬௨ୖࡢ⌮⏤ࡼࡾ㸪㒊ศ Ni ⿕そ◒⢏ࢆ⏝࠸࡚స〇ࡋࡓ◊๐ᕤලࡣ㠃 Ni ⿕そ◒⢏㠀⿕そ◒⢏ࡢ㛗ᡤࢆ᭷ ࡋ㸪◒⢏ࡢಖᣢຊࡀ㧗࠸ࡲࡲษࢀࡀࡼ࠸ࡶࡢ⪃࠼ࡽࢀࡿ㸬 ᅗ 12 ࡣస〇ࡋࡓ㟁╔ᕤලࢆ⏝࠸࡚࢞ࣛࢫࢩࣜࢥࣥࢆ◊๐ࡋࡓ㝿ࡢ༢ᖜᙜࡾࡢ◊๐ᢠ࠾ࡼࡧᕤస≀ࡢ ⾲㠃⢒ࡉࢆ♧ࡍ㸬ࡇࡢ⤖ᯝࡽ◒⢏⾲㠃ࡢ Ni ⓶⭷ࡢ⿕そ⋡ࡼࡾ㟁╔ᕤලࡢ◊๐≉ᛶࡀ␗࡞ࡿࡇࡀศࡿ㸬㒊 Fig. 10 Orientation of partially Ni-coated abrasives (50 min) and EDX analysis of carbon on tool −22− 電着工具用の部分Ni 被覆ダイヤモンド砥粒の開発 ศ Ni ⿕そ◒⢏ࢆ⏝࠸ࡓᕤලࡢሙྜࡣ㸪㠃 Ni ⿕そ◒⢏ࡢᕤලẚ◊๐ᢠࡀపࡃ࡞ࡗ࡚࠸ࡿ㸬㠀⿕そ◒⢏ ࢆ⏝ࡋࡓሙྜ㸪◊๐ᢠࡀ᭱ࡶᑠࡉࡃ࡞ࡗࡓ㸬ࡇࢀࡣ㸪ᅗ 1 ♧ࡉࢀࡿࡼ࠺㟁╔ᕤලࡢ⾲㠃ᯒฟࡋࡓ㠀 ⿕そ◒⢏ࡲࡓࡣ㒊ศ Ni ⿕そ◒⢏ࡢ⾲㠃ࡣ Ni ⓶⭷ࡀ࡞ࡃ㸪ᮏ᮶ࡢࢲࣖࣔࣥࢻ◒⢏ࡢ㗦࠸ษࢀลࢆᣢࡘࡓࡵ㸪 ◊๐ᢠࡀᑠࡉࡃ࡞ࡗࡓ⪃࠼ࡽࢀࡿ㸬 㒊ศ Ni ⿕そ◒⢏ࢆస〇ࡍࡿ㝿ࡢ㞳㛫ࡀ㛗ࡃ࡞ࡿࡘࢀ࡚◊๐ᢠࡀ ᑠࡉࡃ࡞ࡗ࡚࠸ࡿ㸬ᅗ 4 ♧ࡉࢀࡿࡼ࠺㞳㛫ࡀ㛗࠸◒⢏⾲㠃ࡢ Ni ⓶⭷ࡀᑡ࡞ࡃ㸪ࢲࣖࣔࣥࢻ◒⢏ࡢ 㟢ฟ㒊ศࡀቑ࠼ࡓࡓࡵ⪃࠼ࡽࢀࡿ㸬ࡲࡓ㸪ᕤస≀ࡢᮦ㉁ࡼࡗ࡚◊๐ືຊࡀ␗࡞ࡾ㸪࢞ࣛࢫࡢሙྜࡣࢩࣜࢥ ࣥࡼࡾ◊๐ᢠࡀಸ⛬ᗘ㧗ࡃ࡞ࡗ࡚࠸ࡿ㸬࢞ࣛࢫࡣ㠀ᬗ㉁࡛⢓ࡾᙉ࠸㞴◊๐ᮦᩱ▱ࡽࢀ࡚࠾ࡾ㸪ࢩࣜࢥࣥẚ ࡚◳ࡃ࡚ᕤලࡀࡾࡸࡍ࠸ࡓࡵ◊๐ᢠࡀቑࡋࡓ⪃࠼ࡽࢀࡿ㸬 ᕤస≀◊๐㠃ࡢ⾲㠃⢒ࡉࡘ࠸࡚ࡣ㸪ᅗ 12 ♧ࡉࢀࡿࡼ࠺㒊ศ Ni ⿕そ◒⢏ࢆ⏝ࡋࡓᕤලࡢሙྜࡣ㠃 Ni ⿕そ◒⢏ࡢᕤලࡢሙྜࡼࡾ⾲㠃⢒ࡉࡀࡸࡸపࡃ࡞ࡿࡇࡀࢃࡗࡓ㸬 㠃 Ni ⿕そ◒⢏ࡢᕤලࡢሙྜࡣจ㞟ࡋࡓ ◒⢏ࡢ㔞ࡀከࡃ◒⢏ࡢศᩓᛶࡀᝏ࠸ࡓࡵ◒⢏㛫㝸ࡢࡤࡽࡘࡁࡀࡁ࠸㸬ࡉࡽ㸪ᅗ 1 ♧ࡉࢀࡿࡼ࠺㠃 Ni ⿕そ◒⢏ࡀྎ㔠ࡢ༙ᚄ᪉ྥࡶจ㞟ࡋ㸪ษࢀลࡢ㧗ࡉࡀ䬘ࡗ࡚࠸࡞࠸ࡓࡵ㸪⾲㠃⢒ࡉࡢ್ࡀࡁࡃ࡞ࡗࡓ࡛ࡣ࡞ ࠸⪃ᐹࡋࡓ㸬ࡇࢀᑐࡋ㸪㒊ศ Ni ⿕そ◒⢏ࡲࡓࡣ㠀⿕そ◒⢏ࡢᕤලࡢሙྜࡣ㸪ᯒฟࡋࡓ◒⢏ࡢศᩓᛶࡀࡼ ࠸ࡔࡅ࡛ࡣ࡞ࡃ㸪◒⢏ࡢඛ➃ᑟ㟁ࡋ࡞࠸ࢲࣖࣔࣥࢻ࡞ࡗ࡚࠾ࡾ◒⢏ࡀ⦪จ㞟ࡍࡿࡇࡀᑡ࡞ࡃ࡚◒⢏ࡢ ඛ➃㧗ࡉࡀ䬘ࡗ࡚࠸ࡓࡓࡵ㸪◊๐㠃ࡢ⾲㠃⢒ࡉࡀࡼࡃ࡞ࡗࡓ⪃࠼ࡽࢀࡿ㸬ࡇࢀࡽࡢ⤖ᯝࢆᅗ 9 ࡢ⤖ᯝྜࢃࡏ ࡚⪃៖ࡍࢀࡤ㸪㟁╔ᕤලᯒฟࡋࡓ◒⢏ࡢศᕸ≧ែࡀࡼ࠸◊๐㠃ࡢᛶ≧ࡀⰋࡃ࡞ࡿࡇࡀ᫂ࡽ࡞ࡿ㸬 Fig. 11 Schematic diagram of grinding tests Fig. 12 Influence of kinds of abrasives on grinding force and surface roughness −23− 張 宇・谷 泰弘・村田 順二 㟁╔ࢲࣖࣔࣥࢻ࣡ࣖᕤලࡣ◒⢏ᒙࡀ༢ᒙ࡛࠶ࡾ㸪◒⢏ࡢಖᣢຊࡣᕤලᑑࡁࡃᙳ㡪ࡍࡿ㸬ྛ✀ࡢ◒⢏ ࡢಖᣢຊࢆホ౯ࡍࡿࡓࡵ㸪◊๐᮲௳ࡢษ㎸ࡳ㔞ࢆ 150 ȝm ቑຍࡋ࢞ࣛࢫࡢ㔜◊๐ࢆ⾜ࡗࡓ㸬ᅗ 13 ࡣ㸪ྛ✀ࡢ ◒⢏ࢆ⏝ࡋࡓ㟁╔ᕤලࢆ⏝࠸࡚◊๐ᅇᩘࢆቑຍࡋ࡞ࡀࡽ◊๐ຍᕤࢆ⾜ࡗࡓ㝿ࡢ◊๐ᢠࡢኚࢆ♧ࡍ㸬㒊ศ Ni ⿕そ◒⢏ࢆ⏝࠸ࡓᕤලࡣ㸪 㠃 Ni ⿕そ◒⢏ࡢᕤලࡼࡾᕤල◚ቯ⮳ࡿࡲ࡛ࡢ◊๐ᢠࡀᏳᐃࡍࡿࡇࡀ☜ㄆࡉ ࢀࡿ㸬㠃 Ni ⿕そ◒⢏ࡢሙྜ㸪◊๐ึᮇ࡛ࡣ◒⢏ඛ➃そࢃࢀࡓ Ni ⓶⭷ࡀᦶ⪖ࡉࢀࢲࣖࣔࣥࢻࡀ㟢ฟࡋ◊๐ ᢠࡀῶᑡࡍࡿഴྥࡀࡳࡽࢀࡿ㸬㒊ศ Ni ⿕そ◒⢏ࡢሙྜ࡛ࡣ㸪◒⢏ࡢඛ➃ Ni ⓶⭷ࡀᑡ࡞࠸ࡓࡵ㸪◊๐ᢠࡀ Ᏻᐃࡋ࡚ప࠸್ࢆ♧ࡋࡓ⪃ᐹࡋࡓ㸬ᕤලᑑ㸦◊๐ᅇᩘ㸧ࡣ◒⢏࿘ᅖࡢ Ni ⓶⭷ศᕸ≧ែ࠾ࡼࡧ◒⢏ศᕸࡢᆒ୍ ᛶࡁࡃᙳ㡪ࡉࢀࡿ㸬 ᙉᅛ࡞ Ni ⭷࡛ᅖࡲࢀࡿ◒⢏ࡀᆒ୍ᕤලୖศᕸࡋࡓ◊๐ᕤලࡣᕤලᑑࡀ㛗࠸⪃࠼ ࡽࢀࡿ㸬㠀⿕そ◒⢏ࢆ⏝ࡋࡓሙྜࡣ㸪ࢃࡎ 7 ᅇ┠ࡢ◊๐࡛ᕤලࡀ◚ቯࡋࡓ㸬ᅗ 1 ♧ࡉࢀࡿࡼ࠺㸪㠀⿕ そ◒⢏ࡀẕᮦࡢ᥋ゐࡍࡿ㒊ศ࡛ࡵࡗࡁ⭷ࡀพࢇ࡛࠸ࡓࡓࡵ㸪◒⢏ࡢಖᣢຊࡀᙅࡃ࡞ࡾ㸪ᕤලᑑࡀ᭱ࡶ▷ࡗ ࡓ⪃࠼ࡽࢀࡿ㸬ࡇࢀᑐࡋ࡚㸪㠃 Ni ⿕そ◒⢏ࢆ⏝ࡋࡓᕤලࡢሙྜࡣ㸪㠀⿕そ◒⢏ࢆ⏝ࡍࡿሙྜࡼࡾࡶ ᕤලᑑࡣఙࡧ࡚࠸ࡿࡀ㸪12 ᅇ◊๐௨ᚋࡣ◊๐ᢠࡀᛴ⃭ቑࡋᕤලࡢࡵࡗࡁᒙࡀࡀࡉࢀᕤල◚ᦆ⮳ࡗ ࡓ㸬ࡑࢀࡣ㸪୍㒊ࡢಖᣢຊࡀᙅ࠸◒⢏ࡀඛᕤලࡽ⬺ⴠࡋ㸪ṧࡗࡓ◒⢏ࡣࡁ࡞◊๐ຊࡀཷࡅࡽࢀつᶍࡢ ◒⢏⬺ⴠࡀ⏕ࡌ㸪◊๐⬟ຊࡢ࡞࠸ࡵࡗࡁᒙࡀᕤస≀┤᥋ᙜࡓࡗ࡚ࡀࡉࢀࡿࡇࡼࡾᕤලࡢ◚ቯ⮳ࡗࡓ ᥎ᐹࡋࡓ㸬 㒊ศ Ni ⿕そ◒⢏ 30 min 40 min ࢆ⏝࠸ࡓᕤලࡢሙྜ㸪 13 ᅇ◊๐ࡲ࡛ᕤලࡀ◚ᦆࡏࡎ◊๐࡛ࡁࡓ㸬 㒊ศ Ni ⿕そ◒⢏ 30 min 40 min ࡢᕤලࡣ㠃 Ni ⿕そ◒⢏ࡢᕤලࡼࡾᕤලᑑࡀࡸࡸ㛗࠸ࡇࡀศࡗࡓ㸬◒ ⢏⾲㠃ࡢ Ni ⓶⭷ࡢ㞳㛫ࢆ㐺ษㄪᩚࡋࡓ㒊ศ Ni ⿕そ◒⢏ࢆ⏝࠸ࡿࡇࡼࡾ㸪 㠃 Ni ⿕そ◒⢏ࡼࡾ㧗࠸ᑑ ࢆ᭷ࡍࡿ㟁╔ᕤලࡀస〇࡛ࡁࡿࡇࡀࢃࡗࡓ㸬㒊ศ Ni ⿕そ◒⢏ 30 min 40 min ࢆ⏝࠸ࡓ㟁╔ᕤලࡢᕤලᑑ ࡀ㛗ࡃ࡞ࡿཎᅉࡋ࡚ࡣ㸪 ◒⢏ࡀᕤලᯒฟࡋࡓ≧ែࡀ␗࡞ࡿࡓࡵ⪃࠼ࡽࢀࡿ㸬 㠃 Ni ⿕そ◒⢏ࡢሙྜࡣ㸪 ᅗ 1 ♧ࡉࢀࡿࡼ࠺㒊ศ Ni ⿕そ◒⢏ẚ◒⢏ᑟ㟁ᛶࡢ Ni ⓶⭷ࡀ࠶ࡿࡓࡵࡵࡗࡁᒙࡢᡂ㛗ᙧែࡣఝ࡚࠾ࡾ ◒⢏ࡢಖᣢຊࡀ㧗࠸⪃࠼ࡽࢀࡿࡀ㸪จ㞟ࡋࡓ◒⢏ࡢሢࡿ◊๐ຊࡀࡁࡃࡑࡢ◒⢏ࡀᕤලࡽ㞳ࡋࡸࡍ ࠸ࡓࡵ㸪㒊ศ Ni ⿕そ◒⢏ 30 min 40 min ࡢᕤලࡼࡾᑑࡀ▷ࡃ࡞ࡗࡓ࡛ࡣ࡞࠸⪃ᐹࡋࡓ㸬࡞࠾㸪㒊ศ Ni ⿕そ◒⢏ 50 min ࡢᕤලࡣ 10 ᅇ┠ࡢ◊๐ࢆ⾜ࡗࡓ㝿ᕤලࡀቯࢀ㸪ࡢ㒊ศ Ni ⿕そ◒⢏ࡢᕤලࡼࡾᕤලᑑࡀ▷ ࡗࡓ㸬㞳㛫ࡀ 50 min ࡞ࡿ◒⢏ࡢ⾲㠃ࡢ Ni ⓶⭷ࡀࢇ࡞࠸ࡓࡵ㸪◒⢏ࡢಖᣢຊࡀᙅࡃ㠀⿕そ◒⢏ ࡼࡾࢃࡎ㧗࠸⛬ᗘ࡞ࡗࡓ⪃࠼ࡽࢀࡿ㸬ࡋࡓࡀࡗ࡚㸪㒊ศ Ni ⿕そ◒⢏⾲㠃ࡢ Ni ⓶⭷ࡢ㔞ࡣᕤලࡢ◊๐≉ ᛶࡁࡃᙳ㡪ࡋ㸪㐺ษ࡞ Ni ⓶⭷ࢆ᭷ࡍࡿ㒊ศ Ni ⿕そ◒⢏ࢆ⏝ࡍࡿࡇࡼࡾ㸪◒⢏ࡢಖᣢຊࡀ㧗ࡃ࡚ษࢀ ࡢඃࢀࡿ㟁╔ᕤලࡀస〇࡛ࡁࡿࡇࡀศࡗࡓ㸬 Fig. 13 Variations of grinding force using various tools according to the number of grinding pass −24− 電着工具用の部分Ni 被覆ダイヤモンド砥粒の開発 5. ⤖ ㄒ ᮏ◊✲࡛ࡣ㸪㟁╔ᕤලࡢษࢀ◒⢏ಖᣢຊࡢࢺ࣮ࣞࢻ࢜ࣇࢆゎỴࡋ㧗ᛶ⬟㟁╔ᕤලࢆ㛤Ⓨࡍࡿࡓࡵ㸪㒊ศ Ni ⿕そ◒⢏ࢆᥦࡋࡓ㸬㠃 Ni ⿕そ◒⢏⾲㠃ࡢ୍㒊ศࡢ Ni ⓶⭷ࢆ㞳ࡍࡿࡇࡼࡾ㒊ศ Ni ⿕そ◒⢏ࡢస〇 ࢆヨࡳࡓ㸬㛤Ⓨࡋࡓ㒊ศ Ni ⿕そ◒⢏ࢆᕷ㈍ࡢ㠃 Ni ⿕そ◒⢏࠾ࡼࡧ㠀⿕そ◒⢏ẚ㍑ࡋ࡞ࡀࡽ㸪㟁╔᮲௳ࡼ ࡿ◒⢏ࡢ㟁╔ᕤලࡢᯒฟ≉ᛶࡸศᕸ≧ែࡢ┦㐪ࢆ᳨ウࡋࡓ㸬㒊ศ Ni ⿕そ◒⢏㠃 Ni ⿕そ◒⢏㸪㠀⿕そ◒⢏ ࢆ⏝࠸࡚ྠࡌ◒⢏ᐦᗘࡢ㟁╔ᕤලࢆస〇ࡋ㸪ࢩࣜࢥࣥ࢞ࣛࢫࡢ◊๐ᐇ㦂ࢆ⾜࠸㸪◊๐ᢠࡸ◊๐㠃ࡢ≧ែࢆホ ౯ࡋࡓ㸬ᚓࡽࢀࡓ⤖ᯝࡣ㸪௨ୗࡢ㏻ࡾ࡛࠶ࡿ㸬 (1) 㠃 Ni ⿕そ◒⢏⾲㠃ࡢ Ni ⓶⭷ࢆ㞳ࡍࡿࡇࡼࡾ Ni ⓶⭷ࡢ㔞ࡀ␗࡞ࡿ㒊ศ Ni ⿕そ◒⢏ࡢస〇ࡀ࡛ࡁࡓ㸬 (2) 」ྜ㟁Ẽࡵࡗࡁἲࡼࡿ㟁╔ࢲࣖࣔࣥࢻᕤලࡢస〇࠾࠸࡚ࡣ㸪㒊ศ Ni ⿕そ◒⢏ࡀ㠃 Ni ⿕そ◒⢏ẚ ࡚ᯒฟ㔞ࡀࡸࡸຎࡿࡀ◒⢏ࡢจ㞟㔞ࡀᑡ࡞ࡃ㸪ศᩓᛶࡀࡼࡃ࡞ࡿ㸬㠀⿕そ◒⢏ࡼࡾ㒊ศ Ni ⿕そ◒⢏ࡢจ 㞟⋡ࡣࡸࡸ㧗࠸ࡀ㸪◒⢏ࡢᯒฟ㔞ࡀከࡃ࡞ࡿࡇࡀศࡗࡓ㸬 (3) 㒊ศ Ni ⿕そ◒⢏ࢆ⏝ࡍࡿࡇࡼࡾࢲࣖࣔࣥࢻ◒⢏ࡢ㗦࠸ษࢀลࡀእྥࡁ࡞ࡾ㸪◊๐ᢠࡀపࡃ࡞ ࡿࡇࡀࢃࡗࡓ㸬◒⢏ࡢಖᣢຊࡀຎࡿࡇ࡞ࡃඃࢀࡓ◊๐≉ᛶࡀ⥔ᣢ࡛ࡁࡿࡇࡀࢃࡗࡓ㸬 (4) 㒊ศ Ni ⿕そ◒⢏ࢆ⏝࠸ࡓ㟁╔ᕤලࡣ㠃 Ni ⿕そ◒⢏ẚ࡚◒⢏ࡢจ㞟ࡀᑡ࡞ࡃ࡚ศᩓᛶࡀࡼ࠸ࡓࡵ㸪◊ ๐㠃⢒ࡉࡀⰋዲ࡛࠶ࡿࡇࡀࢃࡗࡓ㸬Ni ⓶⭷ࡢ㞳㛫ࢆ 40 min ࡋࡓ◒⢏ࢆ⏝ࡋࡓᕤලࡢ◊๐≉ᛶ ࡀ᭱ࡶඃࢀࡿࡇࡀࢃࡗࡓ㸬 ᭱ᚋ㸪ᮏ◊✲ࢆ⾜࠺ᙜࡓࡗ࡚ᐇ㦂༠ຊࡉࢀࡓ❧㤋ᏛඖᏛ⏕࣭ᐆ⏣┿࿃Ặ㸪୰ᕝᏹẶ㸪ᶫ∎㞝 Ặ㸪㔠೧Ặᚰࡼࡾឤㅰ࠸ࡓࡋࡲࡍ㸬 ᩥ ⊩ ༓ⴥᗣ㞞, ㇂Ὀᘯ, ᴮᮏಇஅ, 㟁╔ࢲࣖࣔࣥࢻ࣡ࣖᕤලࡢ㧗㏿〇㐀ἲࡢ㛤Ⓨ, ᪥ᮏᶵᲔᏛㄽᩥ㞟 C ⦅, Vol.69, No.680 (2003), pp.303-309. ᴮᮏⱥᙪ, ྂᕝ┤, ᯇᮧ᐀㡰, 」ྜ ࡵࡗ ࡁ, ᪥หᕤᴗ᪂⪺♫ (1989), p.4. ๓⏣▱ὒ, ◊๐⏝㟁╔࣮࣍ࣝࡢ⤂, ◒⢏ຍᕤᏛㄅ, Vol.57, No.8 (2013), pp.502-505. ୰ᕝᏹ, ᐆ⏣┿࿃, ㇂Ὀᘯ, 㟁╔ᕤල⏝㒊ศࢥ࣮ࢸࣥࢢࢲࣖࣔࣥࢻ◒⢏ࡢ㛤Ⓨ, 2008 ᖺᗘ⢭ᐦᕤᏛ⛅Ꮨ Ꮫ⾡ㅮ₇ㅮ₇ㄽᩥ㞟 (2008), pp.467-468. ᩪ⸨ᅖ, ᮏ㛫ⱥኵ, ᒣୗႹே, ᪂ࡵࡗࡁᢏ⾡ (2011), p.75 బ⸨㔠ྖ, 㕥ᮌᩘኵ, 㟁╔ࢲࣖࣔࣥࢻ◒▼ࡢసᡂࡑࡢ◊๐ᣲື, 㔠ᒓ⾲㠃ᢏ⾡, Vol.33, No.6 (1982), pp.285-290. బ⸨㔠ྖ, 㕥ᮌᩘኵ, 㟁╔ࢲࣖࣔࣥࢻ◒▼ࡢᛶ⬟ᑐࡍࡿ◒⢏≀ᛶࡢຠᯝ, 㔠ᒓ⾲㠃ᢏ⾡, Vol.38, No.3 (1987), pp.92-96. Webster, J. and Tricard, M., Innovations in abrasive products for precision grinding, CIRP Annals - Manufacturing Technology, Vol.53, No.2 (2004), pp.597-617. −25− 立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年 Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014 ࣡ࣖ᧿㐣⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࡼࡿࢩࣜࢥࣥࣥࢦࢵࢺࡢ ษ᩿ࡢᇶ♏ⓗ᳨ウ ㇂ Ὀᘯ 1)㸪ᙇ Ᏹ 1)㸪ᮧ⏣㡰 2) ᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹ A feasibility study for the application for slicing Si ingots using a wet etching assisted by wire-friction Yasuhiro TANI1), Yu ZHANG1) and Junji MURATA 2) Silicon (Si) wafers for electronic or photovoltaic devices are fabricated by slicing a Si ingot using mechanical slicing with a diamond wire. Recently, the slicing method without generating damage on Si surface has been strongly required because of the increasing demand of ultra-thin Si wafers. In this study, we have developed a novel machining method for Si grooving based on a wet chemical etching. In this method, Si was processed by the chemical etching in HNO3 and HF mixture combined with an abrasion effect of metallic wires that contains no abrasives. The extremely low kerf loss with approx. 100 ȝm was achieved by optimizing the composition of etchant. SEM observation showed that Si surfaces processed by the proposed method had no crack and tool mark contrary to the mechanical slicing. Furthermore, Raman microscopy exhibited that the proposed method generated no disordered layer on Si surfaces, whereas the mechanical slicing caused amorphous layers. Surface roughness was improved by adding CH3COOH to the etchant. Key Words : Silicon, Etching, Slicing, Mixed acid, Kerf loss E-mail㸸[email protected] (Y. Zhang) ᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹ ❧㤋Ꮫ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉ ㏆␥Ꮫ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉ 1) Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan 2) Department of Mechanical Engineering, Kinki University, Higashiosaka, Osaka, 577-8502, Japan 1) 2) −27− 谷 泰弘・張 宇・村田 順二 ⥴ ゝ ࢚ࢿࣝࢠ࣮ࡸᆅ⌫⎔ቃᑐࡍࡿ㛵ᚰࡀ㧗ࡲࡿ࡞㸪ኴ㝧㟁ụࡣ⏕ྍ⬟࡞ࢡ࣮࢚ࣜࣥࢿࣝࢠ࣮ࡢ୍ࡘࡋ࡚㟂 せࡀቑຍࡋ࡚࠸ࡿ㸬ኴ㝧㟁ụࡢࡉࡽ࡞ࡿᬑཬ⋡ࡢቑຍࡣ㸪ኴ㝧㟁ụࣃࢿࣝࡢࢥࢫࢺࡢపῶࡀ㔜せ࡞ࡿ㸬ኴ㝧 㟁ụࣃࢿࣝࡣࢩࣜࢥࣥ㸦Si㸧࢙࣮࢘ࣁࢆ⏝࠸࡚〇㐀ࡉࢀࡿ㸬ኴ㝧㟁ụࣃࢿࣝయࡢࢥࢫࢺࡢ࠺ࡕ㸪Si ࢙࣮࢘ࣁࡢ ᮦᩱࢥࢫࢺࡸ〇㐀ࢥࢫࢺࡀ༨ࡵࡿྜࡣᑡ࡞ࡃ࡞࠸㸬Si ࢙࣮࢘ࣁࡣࣥࢦࢵࢺ㸦⤖ᬗሢ㸧ࡽⷧࡃษฟࡋ࡚〇㐀 ࡉࢀࡿࡓࡵ㸪ࣥࢦࢵࢺࡽᮦᩱࡢ↓㥏ࢆᑡ࡞ࡃ㸪ࡼࡾከࡃࡢᇶᯈࢆษࡾฟࡍࡇࡀపࢥࢫࢺࡢ㘽࡞ࡿ㸬Si ࣥࢦࢵࢺࡢษ᩿ࡣ㸪࣡ࣖᕤලࢆ⏝࠸ࡓ࣐ࣝࢳ࣡ࣖࡼࡿຍᕤࡀ⏝࠸ࡽࢀ࡚࠸ࡿ㸬ᚑ᮶࡛ࡣ㸪◒⢏ࢆᠱ⃮ ࡋࡓࢫ࣮ࣛࣜࢆࣆࣀ⥺ᕤල౪⤥ࡋษ᩿ࢆ⾜࠺㐟㞳◒⢏ษ᩿᪉ᘧ (ㄶゼ㒊㸪2008) ࡀ⏝࠸ࡽࢀ࡚࠸ࡓࡀ㸪ษ ᩿⬟⋡ࡢྥୖࡸసᴗ⎔ቃࡢᨵၿ➼ࡢࡓࡵ㸪ࢲࣖࣔࣥࢻ◒⢏ࢆ࣡ࣖ╔ࡉࡏࡓࢲࣖࣔࣥࢻ࣡ࣖࡼࡿᅛ ᐃ◒⢏ษ᩿ (༓ⴥ㸪2003) ࡀᛴ㏿ᬑཬࢆఙࡤࡋ࡚࠸ࡿ㸬ࡋࡋ㸪ࢲࣖࣔࣥࢻ࣡ࣖࡼࡿษ᩿࡛ࡣ㸪ษฟ ࡋࡓ Si ࢙࣮࢘ࣁ⾲㠃ࢲ࣓࣮ࢪࡀⓎ⏕ࡍࡿࡇࡸ㸪ษ᩿⁁ᖜ㸦࣮࢝ࣇࣟࢫ㸧ࡢపῶ㝈⏺ࡀ࠶ࡿ࡞ࡢၥ㢟ࡀ࠶ ࡿ㸬 ࡇࡢࡼ࠺࡞⫼ᬒࡢࡶ㸪ᶵᲔຍᕤࡼࡽ࡞࠸᪂ࡋ࠸ Si ࡢษ᩿ᢏ⾡ࡋ࡚㸪ᨺ㟁ຍᕤ (Ᏹ㔝㸪2009) ࡸ㟁ゎຍ ᕤ (Lee, et al., 2011) 㸪ࣉࣛࢬ࣐࢚ࢵࢳࣥࢢ (᳃㸪2001) ࡞ࡢຍᕤᢏ⾡ࡢ㐺⏝ࡀ᳨ウࡉࢀ࡚࠸ࡿ㸬ࡇࢀࡽࡢ᪉ ἲ࡛ࡣ㸪Si ࢙࣮࢘ࣁᶵᲔⓗࢲ࣓࣮ࢪࢆⓎ⏕ࡉࡏࡎษ᩿ࡀྍ⬟࡛࠶ࡿࡀ㸪ຍᕤ㏿ᗘࡸ࣮࢝ࣇࣟࢫ㸪ຍᕤࢥࢫࢺ ➼ၥ㢟ࡀ࠶ࡾ㸪ᚑ᮶ࡢ◒⢏ຍᕤࡼࡿษ᩿ࢆ௦᭰ࡍࡿࡣ⮳ࡗ࡚࠸࡞࠸㸬ࡑࡇ࡛㸪➹⪅ࡽࡣ㸪࢙࢘ࢵࢺ࢚ࢵࢳ ࣥࢢࢆ⏝ࡋࡓ᪂ࡋ࠸ษ᩿ᢏ⾡࡛࠶ࡿࠕ࣡ࣖ᧿㐣⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࠖࡢ㛤Ⓨࢆ⾜ࡗ࡚࠸ࡿ㸬ࡇࡢຍᕤᢏ ⾡ࡣ㸪࢚ࢵࢳࣥࢢᾮ㸦࢚ࢵࢳࣕࣥࢺ㸧୰࡛㉮⾜ࡍࡿ㔠ᒓ࣡ࣖࡼࡾ㸪Si ࢆ᧿㐣ࡍࡿࡇ࡛Ꮫⓗ࡞స⏝ࢆయ ࡋ࡚ຍᕤࢆ⾜࠺ࡇࢆ≉ᚩࡍࡿ㸬ᮏሗ࡛ࡣ㸪㛤Ⓨࡋࡓຍᕤᢏ⾡ࡼࡾ Si ᑐࡋ࡚῝⁁ຍᕤࢆࡋ㸪ຍᕤᶵᵓ ࡸ࢚ࢵࢳࣕࣥࢺ⤌ᡂ㸪ຍᕤ᮲௳ࡀຍᕤ≉ᛶ࠼ࡿᙳ㡪ࡸษ᩿㠃ရ㉁ࡘ࠸࡚ㄪᰝࢆ⾜࠸㸪Si ࣥࢦࢵࢺษ᩿ ࡢ㐺⏝ྍ⬟ᛶࡘ࠸᳨࡚ウࢆ⾜ࡗࡓ㸬 ᪂つຍᕤᢏ⾡ࡢᴫせຍᕤせ⣲ࡢ㑅ᐃ ࣭ ࣡ࣖ᧿㐣⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࡢᴫせ ࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࡣ㏻ᖖ➼᪉ᛶ࢚ࢵࢳࣥࢢ࡞ࡿࡓࡵ㸪Si ⾲㠃࣐ࢫࢡࢆࡋ࡚ࡶࢧࢻ࢚ࢵࢳࡀ⏕ࡌࡿ㸬 ࡑࡢࡓࡵ㸪Si ࢙࣮࢘ࣁࡢษฟࡋ࡛ᚲせ࡞ࡿࢫ࣌ࢡࢺẚࡢ㧗࠸ᚤ⣽⁁ࢆຍᕤࡍࡿࡇࡣ㏻ᖖ࡛ࡣᅔ㞴࡛࠶ࡿ㸬 Fig. 1 Schematic diagram of the slicing method Fig. 2 Schematic diagram of experimental apparatus −28− ワイヤ擦過援用ウェットエッチングによるシリコンインゴットの切断の基礎的検討 ⴭ⪅ࡽࡣ㸪⁁ࡢᖜ᪉ྥࡢ࢚ࢵࢳࣥࢢ㏿ᗘࢆᢚไࡋ㸪῝ࡉ᪉ྥࡢ࢚ࢵࢳࣥࢢࢆಁ㐍ࡍࡿࡇࡀ࡛ࡁࢀࡤ␗᪉ᛶࡢຍ ᕤࡀᐇ⌧࡛ࡁࡿ⪃࠼ࡓ㸬ࡑࡇ࡛㸪ᅗ 1 ♧ࡍࡼ࠺㸪Si ࣥࢦࢵࢺ࢚ࢵࢳࣕࣥࢺࢆ౪⤥ࡋ㸪㉮⾜ࡍࡿ㔠ᒓ࣡ ࣖࡼࡾࣥࢦࢵࢺࢆ᧿㐣ࡍࡿຍᕤ᪉ἲࢆ╔ࡋࡓ㸬Si ࣥࢦࢵࢺ㔠ᒓ࣡ࣖࡢ᧿㐣Ⅼ࠾࠸࡚㸪ᦶ᧿⇕ࡢ Ⓨ⏕ࡸ᪂㩭࡞࢚ࢵࢳࣕࣥࢺࡢᘬࡁ㎸ࡳ࡞ࡼࡗ࡚῝ࡉ᪉ྥࡢ࢚ࢵࢳࣥࢢ㏿ᗘࡢྥୖࢆᅗࡗࡓ㸬୍᪉㸪࢚ࢵࢳ ࣕࣥࢺ⤌ᡂࡢ᭱㐺ࡼࡾ㸪⁁ᖜ᪉ྥࡢ࢚ࢵࢳࣥࢢࡢᢚไࢆ᳨ウࡋࡓ㸬ࡇࡢࡼ࠺࡞ຍᕤ᪉ἲࡀᐇ⌧࡛ࡁࢀࡤ㸪 Ꮫⓗస⏝ᇶ࡙ࡃᮦᩱ㝖ཤ࡛࠶ࡿࡓࡵ㸪ࢲࣖࣔࣥࢻ࣡ࣖษ᩿࡛ၥ㢟࡞ࡿษ᩿㠃ࡢᶵᲔⓗࢲ࣓࣮ࢪࢆⓎ⏕ ࡉࡏࡎຍᕤࡀ࡛ࡁࡿ㸬ᶵᲔⓗࢲ࣓࣮ࢪࡣ࢙࣮࢘ࣁࡢᢠᢡᙉᗘࡢపୗ⧅ࡀࡿࡓࡵ㸪ⷧ⫗࢙࣮࢘ࣁࡢษฟࡋ࠾ ࠸࡚Ṍ␃ࡲࡾࡀᝏࡍࡿ㸬୍᪉㸪࣡ࣖ᧿㐣⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡛ࡣ࢙࣮࢘ࣁࡢࢲ࣓࣮ࢪࡢⓎ⏕ࡀ࡞ࡃᴟ ࢙࣮ⷧ࢘ࣁࡢษฟࡋࡶぢ㎸ࡵࡿ㸬ࡉࡽ㸪ࢲࣖࣔࣥࢻ࣡ࣖษ᩿ẚ㍑ࡋ࡚㸪ᕤල࣡ࣖࡢ㈇Ⲵࢆపῶ࡛ࡁ ࡿࡓࡵ㸪⣽⥺࣡ࣖࡢ⏝ࡼࡿ࣮࢝ࣇࣟࢫࡢపῶࡀྍ⬟࡞ࡿ࡞ࡢⅬࡀᣲࡆࡽࢀࡿ㸬 ࣭ ࢚ࢵࢳࣕࣥࢺ࣭ຍᕤ⨨࣭ᕤල࣡ࣖࡢ㑅ᐃ Si ࡢ࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡛ࡣ㸪KOH ࡸ TMAH ࡞ࡢࣝ࢝ࣜ⁐ᾮ (Sato, et al., 2000) ࡸ㸪◪㓟ࣇࢵỈ⣲㓟 㸦ࣇࢵ㓟㸧ࡢΰ㓟࡛࠶ࡿࣇࢵ◪㓟 (Steinner, et al., 2005) ࡀከ⏝ࡉࢀ࡚࠸ࡿ㸬ࣝ࢝ࣜ⁐ᾮࡼࡿ࢚ࢵࢳࣥࢢ࡛ࡣ㸪 ࢚ࢵࢳࣥࢢ㏿ᗘࡢ⤖ᬗ᪉౫Ꮡᛶࡀ㧗ࡃ㸪࢚ࢵࢳࣥࢢ㏿ᗘࡶప࠸㸬ࡑࢀᑐࡋ㸪ࣇࢵ◪㓟ࡣ⤖ᬗ᪉౫Ꮡᛶࡀᑠ ࡉࡃ㸪ᐇ⏝ⓗ࡞࢚ࢵࢳࣥࢢ㏿ᗘ㸦᭱ 800 m/min (Yoshikawa, et al., 2010) 㸧ࡀᚓࡽࢀࡿ㸬ࡲࡓ㸪ኴ㝧㟁ụ〇㐀ᕤ ⛬࠾ࡅࡿࢲ࣓࣮ࢪ㝖ཤࡢ࢚ࢵࢳࣕࣥࢺࡋ࡚ᐇ⦼ࡀ࠶ࡿࡇ࡞ࡽ㸪ᮏຍᕤᢏ⾡࠾ࡅࡿ࢚ࢵࢳࣕࣥࢺࡋ ࡚㑅ᢥࡋࡓ㸬ୖグࡢ᪂ࡋ࠸ຍᕤᢏ⾡ࡼࡿ Si ࡢษ᩿ຍᕤࡢྍ⬟ᛶࢆ᳨ドࡍࡿࡓࡵ㸪ᅗ 2 ♧ࡍࢩࣥࢢࣝ࣡ࣖຍ ᕤ⨨ࢆ㛤Ⓨࡋࡓ㸬ᕤල࣡ࣖࢆᕳࡁࡘࡅࡓ࣎ࣅࣥࢆ࣮ࣔࢱࡼࡾᅇ㌿ࡍࡿࡇ࡛࣡ࣖࢆ㉮⾜ࡉࡏ㸪ࣉ࣮࣮ࣜ ࢆࡋ࡚ᕤస≀⾲㠃ࢆ࣡ࣖࡀ᧿㐣ࡍࡿᶵᵓ࡛࠶ࡿ㸬ࣇࢵ◪㓟ࡢ⪏⸆ရᛶࢆ⪃៖ࡋ࡚㸪᥋ᾮ㒊ࡣᇶᮏⓗ PVC 㸦Polyvinyl chloride㸧ࡲࡓࡣ PEEK㸦poly ether ether ketone㸧࡛ᵓᡂࡉࢀ࡚࠸ࡿ㸬࢚ࢵࢳࣕࣥࢺࡣᕤస≀ୖ᪉ࡽ ୗࡍࡿࡇ࡛౪⤥ࡋ࡚࠸ࡿ㸬ᕤල࣡ࣖࡣ㸪⭉㣗ᛶࡢᴟࡵ࡚㧗࠸ࣇࢵ◪㓟⪏㣗ᛶࢆ᭷ࡍࡿࡇࡀせồࡉࢀࡿ㸬 ࡲࡓ㸪㧗㏿࡛㉮⾜ࡋ࡞ࡀࡽ Si ࣥࢦࢵࢺࢆ᧿㐣ࡍࡿࡇࡽ㸪㧗࠸ᘬᙇᙉᗘࡀᚲせ࡞ࡿ㸬ᵝࠎ࡞㸪ྜ㔠࣡ࣖ ࡽ⪏㣗ᛶࡢ㧗࠸ᮦᩱࢆ㑅ᢥࡋ㸪 ࣇࢵ◪㓟ᑐࡍࡿ⭉㣗㔞ࢆホ౯ࡋࡓ㸬 ⾲ 1 ♧ࡍࡼ࠺㸪 ࣇࢵ◪㓟 㸦◪㓟 40wt%㸪 ࣇࢵ㓟 4wt%㸧ᾐₕᚋࡢ࣡ࣖࡢ┤ᚄῶᑡ㔞ࢆィ ࡋࡓ⤖ᯝ㸪ࢽࢡ࣒ࣟ㸦NCHW1㸧୪ࡧࢫࢸࣥࣞࢫ㸦SUS316L㸧 ࣡ࣖࡀ㧗࠸⪏㣗ᛶࢆ♧ࡋࡓࡇࡽ㸪ࡇࢀࡽࢆ࣡ࣖᕤලࡋ࡚㑅ᢥࡋࡓ㸬 Table 1 Corrosive and mechanical properties of wire Material Reduction of diameter (mm)ͤ Tensile strength ×102 (N/mm2) 80Ni-20Cr 0 0.7 Inconel 0.04 0.6 HASTELLOY® 0.04 0.9 Austenitic stainless steel 0 2.7 ® ͤ after 2h immersion of HNO3 (40 wt%) and HF(4wt%) solution Table 2 Experimental conditions Workpiece Mono- and Poly-Si ingot (10 × 10 × 10 mm3) Wire Ni-Cr (ࢥ160 m), Stainless steel (ࢥ100 m) Wire running speed, V Max. 200 m/min Wire tension, T 5N Etchant HNO3/HF mixed solution, room temperature −29− 谷 泰弘・張 宇・村田 順二 ຍᕤ㏿ᗘ࠾ࡼࡧ࣮࢝ࣇࣟࢫࡢホ౯ ࣭ ຍᕤ᮲௳ࡀຍᕤ≉ᛶ࠼ࡿᙳ㡪 ⾲ 2 ♧ࡍຍᕤ᮲௳ࢆᇶᮏࡋ㸪ຍᕤ᮲௳ࡀຍᕤ≉ᛶ࠼ࡿᙳ㡪ࢆホ౯ࡋࡓ㸬࡞࠾㸪ຍᕤᐇ㦂ࡣ࡚ᐊ ୗ࡛ ⾜ࡗࡓ㸬ࡲࡎ㸪࢚ࢵࢳࣕࣥࢺ⤌ᡂࡀຍᕤ≉ᛶ࠼ࡿᙳ㡪ࢆㄪࡓࡶࡢࡀᅗ 3 ࡛࠶ࡿ㸬ᅗ 3(a)ࡣࣇࢵ㓟⃰ᗘࢆᅛ ᐃࡋ㸪◪㓟⃰ᗘࡢࡳࢆኚࡉࡏࡓ㝿ࡢຍᕤ≉ᛶ࡛࠶ࡾ㸪ᅗ 3(b)ࡣ◪㓟⃰ᗘࢆᅛᐃࡋ㸪ࣇࢵ㓟⃰ᗘࡢࡳࢆኚࡉࡏ ࡓ㝿ࡢຍᕤ≉ᛶࢆ♧ࡋ࡚࠸ࡿ㸬ᅗ 3(a)♧ࡍࡼ࠺㸪◪㓟⃰ᗘࢆቑຍࡉࡏࡿຍᕤ㏿ᗘࡀྥୖࡋࡓࡀ㸪࣮࢝ࣇ ࣟࢫࡣ◪㓟⃰ᗘᑐࡋ࡚ኚࡏࡎࡰ୍ᐃࡢ⣙ 170 m ࡛࠶ࡗࡓ㸬୍᪉㸪ᅗ 3(b)♧ࡍࡼ࠺㸪ࣇࢵ㓟⃰ᗘࢆቑ ຍࡉࡏࡿ㸪ຍᕤ㏿ᗘࡔࡅ࡛࡞ࡃ࣮࢝ࣇࣟࢫࡶቑຍࡍࡿࡇࡀࢃࡗࡓ㸬 ḟ㸪࣡ࣖࡢ㉮⾜㏿ᗘࡀຍᕤ㏿ᗘ࠼ࡿᙳ㡪ࢆㄪࡓࡶࡢࡀᅗ 4 ࡛࠶ࡿ㸬࣡ࣖ㉮⾜㏿ᗘࡢቑຍඹ㸪 ຍᕤ㏿ᗘࡶࡰẚⓗቑຍࡍࡿࡇࡀࢃࡿ㸬࣡ࣖࡢ㉮⾜㏿ᗘࢆቑຍࡉࡏࡿ㸪Si ࡢ᧿㐣Ⅼ࠾ࡅࡿᦶ᧿⇕ ࡀቑຍࡍࡿ⪃࠼ࡽࢀࡿ㸬ᅗ 5 ♧ࡍࡼ࠺㸪Si ࢙࣮࢘ࣁࢆࣇࢵ◪㓟ᾐₕࡉࡏࡓ㝿ࡢ࢚ࢵࢳࣥࢢ㏿ᗘࡣ࢚ࢵࢳ ࣕࣥࢺࡢຍ⇕ࡼࡗ࡚ಁ㐍ࡉࢀࡿ㸬ᚑࡗ࡚㸪࣡ࣖ㉮⾜㏿ᗘࡢቑຍక࠺ᦶ᧿⇕ࡢቑຍࡀ㸪ຍᕤ㏿ᗘྥୖࡢ୍ࡘ ࡢせᅉ࡛࠶ࢁ࠺㸬ࡲࡓ㸪࣡ࣖ㉮⾜㏿ᗘࡢቑຍࡀ᧿㐣Ⅼ࠾ࡅࡿᛂ⏕ᡂ≀ࡸ Si ⾲㠃ࡢാែ⭷ࡢ㝖ཤࢆಁ㐍ࡉ ࡏࡓࡇ࡞ࡶせᅉࡋ࡚⪃࠼ࡽࢀࡿ㸬 Fig. 3 Material removal rate and kerf loss of Si as a function of (a) HNO3 and (b) HF concentration Fig. 4 Material removal rate and kerf loss of Si Fig. 5 Dependence of etchant temperature on etching as a function of wire running speed rate of Si (100) wafer surface −30− ワイヤ擦過援用ウェットエッチングによるシリコンインゴットの切断の基礎的検討 ࣭ ␗᪉ᛶ࢚ࢵࢳࣥࢢࡢ࣓࢝ࢽࢬ࣒㛵ࡍࡿ⪃ᐹ ୖグࡢ⤖ᯝࡽ㸪࢚ࢵࢳࣕࣥࢺ⤌ᡂࢆ◪㓟⃰ᗘ 40 wt%㸪ࣇࢵ㓟⃰ᗘ 4 wt%Ỵᐃࡋ㸪⁁ຍᕤࢆࡋࡓ Si ࡢຍᕤ ගᏛ㢧ᚤ㙾ീࢆᅗ 6 ♧ࡍ㸬ᅗ 6(a)ࡣ┤ᚄ 160 m ࡢࢽࢡ࣒ࣟ࣡ࣖࢆ⏝࠸ࡓຍᕤ⁁࡛࠶ࡾ㸪࣮࢝ࣇࣟࢫࡣ⣙ 175 m ࡛࠶ࡗࡓ㸬࣮࢝ࣇࣟࢫࡣຍᕤ⁁యࢃࡓࡗ࡚ࡰ୍ᐃ࡛࠶ࡾ㸪⁁ࡢධཱྀ㒊࠾࠸࡚ࡶᗈࡀࡿࡇ࡞ࡃ㸪㧗 ࠸ࢫ࣌ࢡࢺẚࢆ᭷ࡍࡿࡇࡀࢃࡿ㸬┤ᚄ 100 m ࡢࢽࢡ࣒ࣟ⥺ࢆ⏝࠸ࡓሙྜ㸪ຍᕤ୰᩿⥺ࡀ⏕ࡌࡓࡓࡵ㸪 ࡼࡾᘬᙇᙉᗘࡢ㧗࠸ࢫࢸࣥࣞࢫ࣡ࣖࢆ⏝࠸࡚ຍᕤࢆ⾜ࡗࡓ㸬ᅗ 6(b)♧ࡍࡼ࠺㸪ࡇࡕࡽࡢሙྜࡶ࣮࢝ࣇࣟࢫ ࡣ 109 m ࡞ࡾ㸪࣡ࣖ┤ᚄࡼࡾ 10 m ⛬ᗘࡁ࠸࣮࢝ࣇࣟࢫࡢຍᕤ⁁ࡀᚓࡽࢀࡓ㸬ୖグࡢࡼ࠺㸪୍⯡ⓗ ࡣ➼᪉ᛶ࢚ࢵࢳࣥࢢ࡞ࡿࣇࢵ◪㓟ࢆ⏝࠸ࡓࡶ㛵ࢃࡽࡎ㸪㛤Ⓨࡋࡓຍᕤᢏ⾡࠾࠸࡚ࡣ␗᪉ᛶ࢚ࢵࢳࣥࢢ࡞ ࡾ㸪㧗࠸ࢫ࣌ࢡࢺẚࡢຍᕤࡀᐇ⌧ࡋࡓ㸬ࡇࡢせᅉࡘ࠸࡚௨ୗ⪃ᐹࡍࡿ㸬ࣇࢵ◪㓟ࡼࡿ Si ࡢ࢚ࢵࢳࣥࢢࡣ㸪 ୗᘧ♧ࡍࡼ࠺㸪◪㓟ࡼࡿ Si ⾲㠃ࡢ㓟㸦ᘧ(1)㸧ࣇࢵ㓟ࡼࡿ㓟⭷ࡢ⁐ゎ㸦ᘧ(2)㸧ࡼࡾᛂࡀ㐍 ⾜ࡍࡿ (Steinnert, et al., 2005) 㸬 Si + 4HNO3 Ѝ 3SiO2 + 4NO + 2H2O (1) SiO2 + 6HF Ѝ H2SiF6 + 2H2O (2) ◪㓟⃰ᗘࡀ㧗ࡃ㸪ࣇࢵ㓟⃰ᗘࡀప࠸࢚ࢵࢳࣕࣥࢺ㸦ᅗ 3(a)㸧࡛ࡣ㸪Si ࡢ㓟㏿ᗘࡣ༑ศࡁ࠸ࡀ㸪ࣇࢵ㓟ࡼ ࡿ㓟⭷ࡢ⁐ゎ㏿ᗘࡀᑠࡉࡃ㸪ࡇࢀࡀᚊ㏿㐣⛬࡞ࡿ㸬ࡑࡢࡓࡵ㸪࣡ࣖ᧿㐣㒊௨እࡢ࢚ࢵࢳࣥࢢ㏿ᗘ㸦ࡘࡲࡾ ⁁ᖜ᪉ྥࡢ࢚ࢵࢳࣥࢢ㏿ᗘ㸧ࡣᑠࡉࡃ࡞ࡿ㸬୍᪉㸪࣡ࣖ Si ࡢ᧿㐣Ⅼ࠾࠸࡚ࡣ㸪Si ⾲㠃⏕ᡂࡋࡓ㓟⭷ࡀ ࣡ࣖࡢ᧿㐣స⏝ࡼࡾ㝖ཤࡉࢀࡿࡇࡀணࡉࢀࡿ㸬ࡲࡓ㸪๓㏙ࡋࡓࡼ࠺࣡ࣖࡢ᧿㐣Ⅼ࡛ࡣᦶ᧿⇕ࡀⓎ⏕ ࡋ㸪㓟⭷ࡢ⁐ゎ㏿ᗘࡀቑຍࡍࡿ⪃࠼ࡽࢀࡿ㸬ࡉࡽ㸪ຍᕤⅬ࡛ࡣ࢚ࢵࢳࣕࣥࢺࡢᘬࡁ㎸ࡳࡀಁࡉࢀࡿ㸬ᅗ 5 ࡛ࡣᾮ ࢆᆒ୍ࡍࡿࡓࡵ࢚ࢵࢳࣕࣥࢺࢆ᧠ᢾࡋ㸪࢚ࢵࢳࣥࢢ࣮ࣞࢺࡢホ౯ࢆ⾜ࡗࡓࡀ㸪ྠࡌ⸆ᾮ⤌ᡂ࡛ᐊ ࡘ᧠ᢾࢆ⾜ࢃ࡞࠸᮲௳࡛ࡣ㸪ࢩࣜࢥࣥ⾲㠃ࡢ࢚ࢵࢳࣥࢢࡀ☜ㄆࡉࢀ࡞ࡗࡓ㸬ࡇࢀࡣ㸪ࢩࣜࢥࣥ⾲㠃࡛⏕ᡂࡍࡿ NO ࢞ࢫࡸ H2SiF6 ࡞ࡢᛂ⏕ᡂ≀ࡀ࢚ࢵࢳࣥࢢࢆጉࡆࡿࡓࡵ࡛࠶ࡿ (ぢ㸪2012) 㸬࣡ࣖࡢ㏆ഐ࡛ࡣ㸪࣡ ࣖࡢ㐠ືࡼࡾ࢚ࢵࢳࣕࣥࢺࡀ᧠ᢾࡉࢀࡿࡢᑐࡋ㸪࣡ࣖࡽ㐲ࡊࡗࡓ㒊ศ࡛ࡣ࢚ࢵࢳࣕࣥࢺࡀ␃ࡍࡿ ࡓࡵ㸪ᛂ⏕ᡂ≀ࡀ㝖ཤࡉࢀࡎ࢚ࢵࢳࣥࢢ㏿ᗘࡀⴭࡋࡃపୗࡋ࡚࠸ࡿࡶࡢ⪃࠼ࡽࢀࡿ㸬ࡇࡢࡓࡵ㸪ᮏᢏ⾡࠾ ࠸࡚ࡣ㸪ຍᕤ⁁ࡢᖜ᪉ྥᑐࡍࡿ࢚ࢵࢳࣥࢢ㏿ᗘࡣ↓ど࡛ࡁࡿᑠࡉࡃ㸪ࡑࢀᑐࡋ࡚῝ࡉ᪉ྥ࢚ࢵࢳࣥࢢ㏿ ᗘࡀ༑ศࡁ࠸ࡓࡵ㸪␗᪉ⓗ࡞࢚ࢵࢳࣥࢢࡀᐇ⌧ࡋࡓᛮࢃࢀࡿ㸬ࢩࣜࢥࣥࣥࢦࢵࢺࡢࢧࢬࡀࡁࡃ࡞ࡗ ࡓሙྜ㸪ຍᕤ㛫ࡶ㛗㛫࡞ࡿࡀ㸪ୖグࡢ⌮⏤ࡽຍᕤ㛫ࡢቑຍక࠺⁁ᖜࡢቑࡣᴟࡵ࡚ᑠࡉ࠸⪃࠼ࡽ ࢀࡿ㸬୍᪉㸪ࣇࢵ㓟⃰ᗘࢆ㧗ࡵࡿ㸪㓟⭷ࡢ㝖ཤ㏿ᗘࡀ㧗ࡲࡾ㸪࣡ࣖ᧿㐣Ⅼ௨እࡢ࢚ࢵࢳࣥࢢ㏿ᗘࡶࡁࡃ ࡞ࡗࡓ⤖ᯝ㸪࣮࢝ࣇࣟࢫࡢቑ⧅ࡀࡗࡓ⪃࠼ࡽࢀࡿ㸦ᅗ 3(b)㸧 㸬 Fig. 6 Optical microscope images of Si kerf processed by proposed method −31− 谷 泰弘・張 宇・村田 順二 ࣭ ከ⤖ᬗ 6L ࡢຍᕤ≉ᛶ ኴ㝧㟁ụࣃࢿࣝࡣ㸪༢⤖ᬗ Si ࡼࡾࡶᏳ౯࡛࠶ࡿࡇࡽ㸪ከ⤖ᬗ Si ࢙࣮࢘ࣁࡶ⏝ࡉࢀ࡚࠸ࡿ㸬༢⤖ᬗ Si ࡣ␗࡞ࡾ㸪ከ⤖ᬗ Si ࡣࣥࢦࢵࢺ୰␗࡞ࡿ⤖ᬗ᪉ࢆᣢࡘ⤖ᬗ⢏ࡀᏑᅾࡍࡿࡇࡽ㸪Ꮫⓗ࡞ຍᕤ࡛ࡣ⤖ ᬗ⢏ẖຍᕤ≉ᛶࡀ␗࡞ࡿྍ⬟ᛶࡀ࠶ࡿ㸬ࡑࡇ࡛㸪ᮏຍᕤᢏ⾡࠾࠸࡚ከ⤖ᬗ Si ࡢຍᕤ≉ᛶࢆㄪࡓ㸬ᅗ 7 ♧ ࡍࡼ࠺㸪༢⤖ᬗከ⤖ᬗ Si ࢆྠ᮲௳࡛ຍᕤࡋࡓ⤖ᯝ㸪ࡰྠ➼ࡢຍᕤ㏿ᗘ࣮࢝ࣇࣟࢫࡀᚓࡽࢀࡓ㸬࢚ࢵࢳࣥ ࢢ㏿ᗘࡢ⤖ᬗ᪉౫Ꮡᛶࢆㄪࡿࡓࡵ㸪(111)㠃(100)㠃ࡢ Si ࢙࣮࢘ࣁࢆᾐₕࡉࡏࡓ㝿ࡢ࢚ࢵࢳࣥࢢ㏿ᗘࢆ ᐃ ࡋࡓ㸬ᅗ 8 ♧ࡍࡼ࠺㸪Ỉ㓟࣒࢝ࣜ࢘Ỉ⁐ᾮࡼࡿ࢚ࢵࢳࣥࢢ࡛ࡣ(111)㠃ẚ㍑ࡋ㸪(100)㠃࠾࠸࡚㠀ᖖ ࡁ࡞࢚ࢵࢳࣥࢢ㏿ᗘ࡛࠶ࡗࡓ㸬ࡑࢀᑐࡋࣇࢵ◪㓟࡛ࡣ(111)㠃(100)㠃࠾࠸࡚ࡰྠ➼ࡢ࢚ࢵࢳࣥࢢ㏿ᗘ࡛ ࠶ࡗࡓ㸬ࡑࡢࡓࡵ㸪ᮏຍᕤᢏ⾡࡛ࡣከ⤖ᬗ Si ࡢຍᕤ࠾࠸࡚ࡶ㸪༢⤖ᬗ Si ྠ➼ࡢຍᕤ≉ᛶࡀᚓࡿࡇࡀ࡛ࡁ ࡓ⪃࠼ࡽࢀࡿ㸬 ຍᕤ㠃ရ㉁ࡢホ౯ ࣭ ຍᕤࢲ࣓࣮ࢪ ࣡ࣖ᧿㐣⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࡼࡾຍᕤࡋࡓ Si ࡢࢲ࣓࣮ࢪࢆホ౯ࡋ㸪ࢲࣖࣔࣥࢻ࣡ࣖຍᕤࡢẚ㍑ ࢆ⾜ࡗࡓ㸬ᅗ 9 ࡣࢲࣖࣔࣥࢻ࣡ࣖ࡞ࡽࡧᮏຍᕤᢏ⾡ࡼࡿ Si ࣥࢦࢵࢺࡢຍᕤ㠃ࢆほᐹࡋࡓ SEM ീ࡛࠶ ࡿ㸬ࢲࣖࣔࣥࢻ࣡ࣖࡼࡿຍᕤ㠃ࡣከᩘࡢࢡࣛࢵࢡࡀⓎ⏕ࡋ࡚࠸ࡿ㸪࣡ࣖ㉮⾜᪉ྥᖹ⾜ࢯ࣮࣐࣮ ࢡ㸦◊๐㸧ࡀぢࡽࢀࡿ㸬ࡑࢀᑐࡋ㸪ᮏᢏ⾡ࡼࡿຍᕤ㠃ࡣࢡࣛࢵࢡࡸࢯ࣮࣐࣮ࢡࡀᏑᅾࡋ࡞࠸➼᪉ⓗ࡞⾲㠃 ࡛࠶ࡿࡇࡀࢃࡿ㸬ࡼࡾヲ⣽ຍᕤ㠃ࡢࢲ࣓࣮ࢪࢆㄪᰝࡍࡿࡓࡵ㸪㉮ᰝᆺ࣐ࢡ࣐ࣟࣛࣥ㢧ᚤ㙾㸦RENISHAW㸪 Raman microscope Invia Reflex 532㸧ࡼࡿຍᕤ㠃ホ౯ࢆ⾜ࡗࡓ㸬Si ࡢ࣐ࣛࣥศග࠾࠸࡚ࡣ㸪Ἴᩘ 520 cm-1 ㏆ Fig. 7 Comparison of slicing characteristics between mono-Si and poly-Si Fig. 8 Comparison of the etching rate of Si (111) and (100) wafer surface immersed in HF-HNO3 mixture and KOH solution Fig. 9 SEM micrograph of Si surfaces processed by (a) diamond wire slicing and (b) proposed method −32− ワイヤ擦過援用ウェットエッチングによるシリコンインゴットの切断の基礎的検討 ⤖ᬗᛶ Si㸦c-Si㸧ࡢࢩ࣮ࣕࣉ࡞ࣆ࣮ࢡࡀ⌧ࢀ㸪㠀ᬗ㉁㸦ࣔࣝࣇࢫ㸧Si㸦a-Si㸧ࡣἼᩘ 400-500 cm-1 ࣈ࣮ࣟ ࢻ࡞ࣆ࣮ࢡࡋ࡚⌧ࢀࡿ (Zwick and Carles, 1993) 㸬ᅗ 10 ࡣຍᕤᚋࡢ Si ⾲㠃ࢆ࣐ࣛࣥ㢧ᚤ㙾ࡼࡾほᐹࡋ㸪⤖ᬗ ᛶ Si ࡢࣆ࣮ࢡ㸦Ἴᩘ 520 cm-1㸧ᙉᗘࢆ࣐ࢵࣆࣥࢢࡋࡓࡶࡢ࡛࠶ࡿ㸬ධᑕගࡣἼ㛗 532 nm ࡢ࣮ࣞࢨࢆᑐ≀ࣞࣥࢬ ࡼࡾ┤ᚄ⣙ 1 m 㞟ගࡋࡓࡶࡢ࡛࠶ࡾ㸪ࢧࣥࣉࣝࢫࢸ࣮ࢪࢆ 1 m ࣆࢵࢳ࡛㉮ᰝࡉࡏ㸪ࡑࢀࡒࢀࡢ⨨࡛ࡢࣛ ࣐ࣥࢫ࣌ࢡࢺࣝࢆྲྀᚓࡋࡓ㸬࡞࠾㸪ᅗ୰ࡢᤄධᅗࡣຍᕤ㠃ࡢྠ୍⟠ᡤࢆྍどග࡛ほᐹࡋࡓගᏛ㢧ᚤ㙾ീ࡛࠶ࡿ㸬 ᅗ 10(a)♧ࡍࢲࣖࣔࣥࢻ࣡ࣖຍᕤ㠃࡛ࡣ㸪ᙉᗘࡢࡤࡽࡘࡁࡀࡁࡃ㸪⤖ᬗᛶ Si ࡢࣆ࣮ࢡᙉᗘࡀప࠸㒊ศࡀ Ꮡᅾࡍࡿ㸬ྍどග㢧ᚤ㙾ീẚ㍑ࡍࡿ㸪ࢯ࣮࣐࣮ࢡ㒊ࡢᙉᗘࡀపࡃ㸪ࢡࣛࢵࢡ㒊ࡢᙉᗘࡀࡁ࠸ࡇࡀࢃࡿ㸬 ୍᪉㸪ᮏຍᕤᢏ⾡ࡼࡾຍᕤࡋࡓ⾲㠃㸦ᅗ 10(b)㸧ࡣ㸪⾲㠃ࡢพฝᑐᛂࡋ࡚ⱝᖸࡢᙉᗘࡤࡽࡘࡁࡀぢࡽࢀࡿࡶࡢ ࡢ㸪య㧗࠸⤖ᬗᛶ Si ࡢࣆ࣮ࢡᙉᗘࢆ♧ࡋࡓ㸬ᅗ 10 ࡢ࣐ࣛࣥ㢧ᚤ㙾ീ♧ࡋࡓ A Ⅼ㸪B Ⅼ㸦ࢲࣖࣔࣥࢻ࣡ ࣖຍᕤ㠃㸧 㸪C Ⅼ㸦ᮏᢏ⾡ࡼࡿຍᕤ㠃㸧࠾ࡅࡿ࣐ࣛࣥࢫ࣌ࢡࢺࣝࢆ♧ࡋࡓࡶࡢࡀᅗ 11 ࡛࠶ࡿ㸬ࢲࣖࣔࣥ ࢻ࣡ࣖࡼࡿຍᕤ㠃ࡢࢡࣛࢵࢡ㒊㸦A Ⅼ㸧ࡣ㸪⤖ᬗᛶ Si ࡢࣆ࣮ࢡࡢࡳࡀ☜ㄆࡉࢀࡓࡀ㸪ࢯ࣮࣐࣮ࢡ㒊㸦B Ⅼ㸧 ࡛ࡣ⤖ᬗᛶ Si ຍ࠼㸪ࣔࣝࣇࢫ Si ࡢࣈ࣮ࣟࢻ࡞ࣆ࣮ࢡ࡛ᵓᡂࡉࢀ࡚࠸ࡿࡇࡀࢃࡗࡓ㸬ࢯ࣮࣐࣮ࢡࡢᏑ ᅾࡍࡿ Si ⾲㠃ࡢ┤ୗ࡛ࡣ㸪ࢲࣖࣔࣥࢻ◒⢏ࡢษ๐స⏝ࡼࡾ㸪⤖ᬗᵓ㐀ࡀ◚ቯࡉࢀ㸪ࣔࣝࣇࢫᒙࡀᙧᡂࡉ ࢀࡓ⪃࠼ࡽࢀࡿ㸬ࢡࣛࢵࢡ㒊࠾࠸࡚ࡣ㸪ࣔࣝࣇࢫᒙࡀࡂྲྀࡽࢀࡓࡓࡵ㸪⣲ᆅࡢ⤖ᬗᛶ Si ࡀ㟢ฟࡋࡓࡶ ࡢᛮࢃࢀࡿ㸬ࡇࡢࡼ࠺࡞ഴྥࡣࢲࣖࣔࣥࢻษ๐ࡋࡓ Si ⾲㠃ࡢ࣐ࣛࣥศᯒ࠾࠸࡚ࡶሗ࿌ࡉࢀ࡚࠸ࡿ (Yan, 2004) 㸬ࡑࢀᑐࡋ㸪ᮏᢏ⾡ࡼࡿຍᕤ㠃㸦C Ⅼ㸧ࡢ࣐ࣛࣥࢫ࣌ࢡࢺࣝࡣ⤖ᬗᛶ Si ࡢࣆ࣮ࢡࡢࡳࡀほᐹࡉࢀ࡚࠾ ࡾ㸪ࡘࡑࡢࣆ࣮ࢡ್༙ᖜࡶࢲࣖࣔࣥࢻ࣡ࣖࡼࡿຍᕤ㸦B Ⅼ㸧ẚ㍑ࡋ࡚ᑠࡉ࠸ࡇࡀࢃࡗࡓ㸬ୖグࡢ ࣐ࣛࣥศගࡼࡿホ౯ࡢ⤖ᯝ㸪ᮏຍᕤᢏ⾡ࡼࡿຍᕤ㠃ࡣࣔࣝࣇࢫᒙࡀᙧᡂࡉࢀ࡚࠾ࡽࡎ㧗࠸⤖ᬗᛶࢆ᭷ ࡍࡿࡇࡀ᫂ࡽ࡞ࡗࡓ㸬ษ᩿ᚋࡢ࢙࣮࢘ࣁⓎ⏕ࡋࡓຍᕤࢲ࣓࣮ࢪࡣ㸪ࣃࢿࣝࡢⓎ㟁ᛶ⬟ᝏᙳ㡪ࢆཬࡰࡍ ࡇࡽ㸪ᚋᕤ⛬ࡢ➼᪉ᛶ࢚ࢵࢳࣥࢢ࠾࠸࡚㝖ཤࡍࡿᚲせࡀ࠶ࡿ㸬ࡋࡋ㸪ࢲ࣓࣮ࢪᒙࡢ㝖ཤࡣ Si ཎᩱࡢࣟࢫ Fig. 10 Micro-Raman mapping of Si surfaces processed by (a) diamond wire slicing and (b) proposed method Fig. 11 Raman spectra of Si surface at positions A, B and C in the Fig.10. −33− 谷 泰弘・張 宇・村田 順二 ࡞ࡿ㸪ᕤ⛬ᩘࡢቑຍక࠺㧗ࢥࢫࢺࡢせᅉ࡞ࡿ㸬ᮏຍᕤᢏ⾡ࡼࡾࢲ࣓࣮ࢪࡢ࡞࠸ Si ⾲㠃ࡀᚓࡽࢀࡓࡇ ࡣ㸪 ኴ㝧㟁ụࣃࢿࣝ〇㐀ࢥࢫࢺపῶࡢほⅬࡽࢲࣖࣔࣥࢻ࣡ࣖษ᩿ᑐࡋ࡚ࡁ࡞ඃᛶࡀ࠶ࡿゝ࠼ࡿ㸬 ࣭ ຍᕤᚋ⾲㠃⢒ࡉ ኴ㝧㟁ụ⏝ Si ࢙࣮࢘ࣁࡣ㸪⾲㠃ࡢᑕ⋡ࢆపῶࡍࡿࡓࡵ㸪␗᪉ᛶ࢚ࢵࢳࣥࢢࡼࡾ࿘ᮇᵓ㐀ࢆᙧᡂࡍࡿࢸࢡࢫ ࢳࣕࣜࣥࢢฎ⌮ࡀࡉࢀࡿ㸬ษ᩿ᚋࡢ࢙࣮࢘ࣁ⾲㠃ࡢ⢒ࡉࡣ㸪ࢸࢡࢫࢳࣕࣜࣥࢢᕤ⛬ᙳ㡪ࢆ࠼ࡿྍ⬟ᛶࡀ࠶ ࡾ㸪࣡ࣖ᧿㐣⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࡼࡾຍᕤࡋࡓ Si ࡢࢲ࣓࣮ࢪࢆホ౯ࡋ㸪ࢲࣖࣔࣥࢻ࣡ࣖຍᕤࡢẚ ㍑ࢆ⾜ࡗࡓ㸬ᅗ 9 ࡣࢲࣖࣔࣥࢻ࣡ࣖ࠾࠸࡚ࡶ㸪᪤Ꮡᢏ⾡࡛࠶ࡿࢲࣖࣔࣥࢻ࣡ࣖษ᩿㠃ྠ➼ࡢ⾲㠃⢒ ࡉࡀせồࡉࢀࡿ㸬ࢲࣖࣔࣥࢻ࣡ࣖᮏᢏ⾡ࡼࡿຍᕤᚋ⾲㠃ࢆ┦ࢩࣇࢺᖸ΅㢧ᚤ㙾㸦Zygo, Newview5032㸧 ࡼࡾホ౯ࡋࡓࡶࡢࡀᅗ 12 ࡛࠶ࡿ㸬ᮏᢏ⾡ࡼࡿຍᕤ㠃ࡣ⾲㠃ࡢพฝࡀࡁࡃ㸪ࡲࡓ⾲㠃⢒ࡉࡶ 1.33 mRa ࡛࠶ ࡾ㸪ࢲࣖࣔࣥࢻ࣡ࣖຍᕤ㠃㸦0.34 mRa㸧ࡼࡾࡶࡁ࡞⾲㠃⢒ࡉ࡛࠶ࡗࡓ㸬ࡑࡇ࡛㸪ᮏᢏ⾡࠾࠸࡚⾲㠃⢒ࡉ ࢆᨵၿࡍࡿࡓࡵ㸪࢚ࢵࢳࣕࣥࢺ⤌ᡂࡢ᳨ウࢆ⾜ࡗࡓ㸬Si ࡢࣇࢵ◪㓟࢚ࢵࢳࣥࢢ࡛ࡣ㸪ᕼ㔘㸦ࣇࢵ㓟◪㓟௨እ ࡢᡂศ㸧㓑㓟ࢆῧຍࡍࡿࡇ࡛⾲㠃⢒ࡉࢆᨵၿ࡛ࡁࡿࡇࡀሗ࿌ࡉࢀ࡚࠸ࡿ (℈ཱྀ㸪1985) 㸬ᅗ 13 ࡣᮏᢏ⾡ ࠾ࡅࡿ㸪࢚ࢵࢳࣕࣥࢺ୰ࡢ㓑㓟⃰ᗘຍᕤ㠃⢒ࡉࡢ㛵ಀࢆ♧ࡋ࡚࠸ࡿ㸬࡞࠾㸪ࣇࢵ㓟࡞ࡽࡧ◪㓟⃰ᗘࡣࡑࢀࡒ ࢀ 4 wt%㸪40 wt%࡛ᅛᐃࡋ࡚࠸ࡿ㸬࢚ࢵࢳࣕࣥࢺ୰ࡢ㓑㓟⃰ᗘࡀቑຍࡍࡿక࠸㸪ຍᕤ㠃ࡢ⾲㠃⢒ࡉࡀᨵၿࡉࢀ ࡚࠸ࡿࡇࡀࢃࡿ㸬ࡑࢀࡒࢀࡢຍᕤ㠃ࢆගᏛ㢧ᚤ㙾ࡼࡾほᐹࡍࡿ㸪㓑㓟ࢆῧຍࡋ࡞࠸ሙྜࡣࡁࡉᩘ༑ m ࡢᴃᙧᵓ㐀ࡀほᐹࡉࢀࡓ㸬ࡇࢀࡣࣇࢵ◪㓟ࡼࡿ Si ࢚ࢵࢳࣥࢢࢆ⾜ࡗࡓ㝿ぢࡽࢀࡿᆺⓗ࡞ᵓ㐀࡛࠶ࡾ㸪 ࢚ࢵࢳࣕࣥࢺ୰ࡢάᛶᛂ✀㸦ࢽࢺࣟࢯࢽ࣒࢘࢜ࣥ㸪NO+㸧ࡀ Si ⾲㠃೫ᅾࡍࡿࡇ㉳ᅉࡍࡿሗ࿌ࡉࢀ࡚ ࠸ࡿ (Patzig-Klein, et al., 2010) 㸬㓑㓟⃰ᗘࡢቑຍᚑ࠸ࡇࡢᴃᙧᵓ㐀ࡢࡁࡉࡀᑠࡉࡃ࡞ࡾ㸪᭱ࡶ㧗࠸㓑㓟⃰ Fig. 12 3D images of silicon surface processed by (a) diamond wire slicing and (b) proposed method Fig. 13 Surface roughness of processed Si surfaces as a function of CH3COOH concentration in etchant Fig. 14 Material removal rate and kerf loss of Si as a function of CH3COOH concentration in etchant −34− ワイヤ擦過援用ウェットエッチングによるシリコンインゴットの切断の基礎的検討 ᗘࡢ࢚ࢵࢳࣕࣥࢺ࡛ࡣࢇほᐹࡉࢀ࡞ࡃ࡞ࡗࡓ㸬ࡇࢀࡣ㓑㓟ࡢῧຍࡼࡾ࢚ࢵࢳࣕࣥࢺ୰ࡢᛂ✀ࡢ೫ᅾࡀ ᢚไࡉࢀࡓࡓࡵ࡛࠶ࡿᛮࢃࢀࡿ㸬ࡲࡓ㸪࢚ࢵࢳࣕࣥࢺࡢ㓑㓟ῧຍࡀຍᕤ≉ᛶ࠼ࡿᙳ㡪ࢆホ౯ࡋࡓ㸬ᅗ 14 ♧ࡍࡼ࠺㸪ຍᕤ㏿ᗘ࡞ࡽࡧ࣮࢝ࣇࣟࢫࢆ㓑㓟⃰ᗘࡼࡽࡎࡰ୍ᐃࡢ್ࢆ♧ࡋ࡚࠾ࡾ㸪㓑㓟ࡢῧຍࡀຍᕤ ≉ᛶᝏᙳ㡪ࢆ࠼࡞࠸ࡇࡀ☜ㄆࡉࢀࡓ㸬ୖグࡢࡼ࠺㸪࢚ࢵࢳࣕࣥࢺࡢᕼ㔘ᾮ㓑㓟ࢆ⏝࠸ࡿࡇ࡛㸪ຍᕤ ≉ᛶࢆᝏࡉࡏࡎ㸪ຍᕤ㠃⢒ࡉࢆᨵၿࡍࡿࡇࡀ࡛ࡁ㸪ࢲࣖࣔࣥࢻ࣡ࣖຍᕤ㠃ࡰྠ➼ࡢ⾲㠃⢒ࡉࡀᚓࡽ ࢀࡓ㸬 ⤖ ゝ ᮏㄽᩥ࡛ࡣ㸪࣡ࣖ᧿㐣ࡼࡾಁ㐍ࡉࢀࡓ࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࢆ⏝࠸ࡓ᪂つຍᕤᢏ⾡ࡢ㛤Ⓨࢆ⾜࠸㸪ࢩࣜࢥࣥ ࣥࢦࢵࢺࡢࢫࣛࢩࣥࢢྥࡅࡓᇶᮏⓗ࡞ຍᕤ≉ᛶࡋ࡚㸪ຍᕤ㏿ᗘ㸪࣮࢝ࣇࣟࢫ㸪ຍᕤ㠃ရ㉁ࡘ࠸࡚ホ౯ ࢆ⾜ࡗࡓ㸬௨ୗ㸪ᮏㄽᩥ࡛ᚓࡽࢀࡓ⤖ᯝࢆࡲࡵࡿ㸬 㸦㸯㸧◪㓟࡞ࡽࡧࣇࢵ㓟⃰ᗘࢆቑຍࡉࡏࡿຍᕤ㏿ᗘࡀྥୖࡋࡓࡀ㸪ࣇࢵ㓟⃰ᗘࡢቑຍࡣ࣮࢝ࣇࣟࢫࡢቑ ⧅ࡀࡿࡇࡀࢃࡗࡓ㸬◪㓟⃰ᗘᑐࡋ࡚࣮࢝ࣇࣟࢫࡣኚࡏࡎ୍ᐃ࡞ࡗࡓ㸬ࡲࡓ㸪࣡ࣖ㉮⾜㏿ᗘࡢ ቑຍࡶ࡞࠸ຍᕤ㏿ᗘࡀྥୖࡋࡓ㸬 㸦㸰㸧࣡ࣖ᧿㐣⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࡼࡾ㸪࣡ࣖ┤ᚄࡼࡾ 10 m ⛬ᗘࡁ࠸࣮࢝ࣇࣟࢫࡀᚓࡽࢀࡓ㸬◪ 㓟⃰ᗘࡢ㧗࠸࢚ࢵࢳࣕࣥࢺࡢ⏝ࡼࡾ㸪⁁ᖜ᪉ྥࡢ࢚ࢵࢳࣥࢢ㏿ᗘࢆపῶࡋ㸪῝ࡉ᪉ྥࡢ࢚ࢵࢳࣥࢢࢆ ಁ㐍ࡉࡏࡿࡇ࡛㸪␗᪉ᛶࡢ㧗࠸ຍᕤࡀᐇ⌧࡛ࡁࡿࡇࡀࢃࡗࡓ㸬ࡲࡓ㸪ከ⤖ᬗ Si ࡢຍᕤ≉ᛶࡣ༢⤖ ᬗ Si ྠ➼࡛࠶ࡿࡇࡀࢃࡗࡓ㸬 㸦㸱㸧ຍᕤᚋ⾲㠃ࢆගᏛ㢧ᚤ㙾ࡼࡾほᐹࡋࡓ⤖ᯝ㸪ࢲࣖࣔࣥࢻ࣡ࣖຍᕤ㠃ࡣࢡࣛࢵࢡࡸࢯ࣮࣐࣮ࢡࡀⓎ⏕ ࡋ࡚࠾ࡾ㸪ຍᕤࢲ࣓࣮ࢪࡀほᐹࡉࢀࡓࡢᑐࡋ㸪㛤Ⓨᢏ⾡ࡼࡿຍᕤ㠃ࡣࡇࢀࡽࡢḞ㝗ࡢ࡞࠸⾲㠃࡛࠶ࡿ ࡇࡀࢃࡗࡓ㸬 㸦㸲㸧࣐ࣛࣥศගࡼࡿຍᕤ㠃ホ౯ࡢ⤖ᯝ㸪ࢲࣖࣔࣥࢻ࣡ࣖຍᕤ㠃ࡣࣔࣝࣇࢫᒙࡢࣆ࣮ࢡࡀᏑᅾࡋࡓ ࡀ㸪㛤Ⓨᢏ⾡ࡼࡿຍᕤ㠃ࡣ⤖ᬗᛶ Si ࡢࣆ࣮ࢡࡢࡳࡀほᐹࡉࢀࡓ㸬 㸦㸳㸧࢚ࢵࢳࣕࣥࢺࡢᕼ㔘ᾮᑐࡋ㸪㓑㓟ࢆῧຍࡍࡿࡇ࡛ຍᕤ㏿ᗘࡸ࣮࢝ࣇࣟࢫᙳ㡪ࢆ࠼ࡿࡇ࡞ࡃษຍ ᕤᚋ⾲㠃⢒ࡉࢆᨵၿ࡛ࡁࡿࡇࡀ࡛ࡁ㸪ࢲࣖࣔࣥࢻ࣡ࣖຍᕤ㠃ྠ➼ࡢ⾲㠃⢒ࡉࡀᚓࡽࢀࡓ㸬 ୖグࡢ⤖ᯝࡽ㸪ᮏຍᕤᢏ⾡ࡣప࣮࢝ࣇࣟࢫ㸪ⷧ⫗࢙࣮࢘ࣁࡀせồࡉࢀࡿኴ㝧㟁ụ⏝ࢩࣜࢥࣥࣥࢦࢵࢺࡢษ ᩿ἲࡋ࡚㸪ᚑ᮶ࡢᶵᲔຍᕤἲࢆ௦᭰ࡋ࠺ࡿᮇᚅࡉࢀࡿ㸬ࡋࡋ㸪ᮏᢏ⾡ࡀᐇ⏝⮳ࡿࡣ㸪⌧≧࡛ࡣຍᕤ ㏿ᗘࡸࣥࢦࢵࢺࡢᆺㄢ㢟ࡀ࠶ࡾ㸪ᚋຍᕤ᮲௳ࡸ࢚ࢵࢳࣕࣥࢺ⤌ᡂ➼ࢆぢ┤ࡍࡇࡼࡿຍᕤࡢ㧗ᗘ ࡀᚲせ࡛࠶ࡿ⪃࠼ࡽࢀࡿ㸬 ㅰ ㎡ ᮏ◊✲ࡢ୍㒊ࡣ㸪NEDO ᪂࢚ࢿࣝࢠ࣮࣋ࣥࢳ࣮ࣕᢏ⾡㠉᪂ᴗ㸪୕㇏⛉Ꮫᢏ⾡⯆༠㸪ඛ➃ຍᕤᶵᲔᢏ⾡ ⯆༠ࡢຓࢆཷࡅ࡚⾜ࢃࢀࡲࡋࡓ㸬ࡇࡇ῝ࡃㅰពࢆ⾲ࡋࡲࡍ㸬 ᩥ ⊩ ༓ⴥᗣ㞞, ㇂Ὀᘯ, ᴮᮏಇஅ, 㟁╔ࢲࣖࣔࣥࢻ࣡ࣖᕤලࡢ㧗㏿〇㐀ἲࡢ㛤Ⓨ, ᪥ᮏᶵᲔᏛㄽᩥ㞟 C ⦅, Vol. 69, No. 680 (2003), pp. 1139-1144. ℈ཱྀᜏ㞝, ࢩࣜࢥ࢙ࣥ࢘ࣁࡢᏛ࢚ࢵࢳࣥࢢ, ⢭ᐦᶵᲔ, Vol. 51, No. 5 (1985), pp. 1013-1018. Lee, C. L., Kanda, Y., Ikeda, S. and Matsumura, M., Electrochemical method for slicing Si blocks into wafers using platinum wire electrodes, Solar Energy Materials and Solar Cells, Vol. 95, No. 2(2011), pp. 716-720. ᳃ຬ⸝, ᒣෆே, ᒣᮧஓ, బ㔝Ὀஂ, ࣉࣛࢬ࣐ CVM ࡼࡿᶵ⬟ᮦᩱࡢษ᩿ຍᕤ㸫ෆ࿘ลᆺษ᩿ຍᕤ⨨ࡢヨ సࡑࡢษ᩿ຍᕤ≉ᛶ㸫, ⢭ᐦᕤᏛㄅ, Vol. 67, No. 2 (2001), pp. 295-299. −35− 谷 泰弘・張 宇・村田 順二 ぢᛅᘯ, 㛗㇂㒊㢮, ྜྷ⏣㐩㑻, ෆᮧᚭᖹ, ῧ⏣୍႐, ᖹሯு㍜, ྜྷᕝ༤, 㡲ᕝᡂ, ᮧᕝ㡰அ, ࢩࣜࢥࣥ⾲㠃ࡢ ᐊ ୕ᕤ⛬Ὑίᢏ⾡㉸㧗㏿࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࡼࡿ࢙࣮࢘ࣁⷧᢏ⾡, ⾲㠃ᢏ⾡◊✲2012 ㅮ₇ண✏㞟 (2012), pp.1-27. Patzig-Klein, S., Roewer, G. and Kroke, E., New insights into acidic wet chemical silicon etching by HF/H2ONOHSO4-H2SO4 solutions, Materials Science in Semiconductor Processing, Vol. 13, No. 2 (2010), pp. 71-79. Sato, K., Shikida, M., Yamashiro, T., Tsunekawa, M. and Ito, S., Differences in anisotropic etching properties of KOH and TMAH solutions, Sensors and Actuator A, Vol. 80, No. 2 (2000), pp. 179-188. Steinert, M., Acker, J., Henȕge, A. and Wetzig, K., Experimental studies on the mechanism of wet chemical etching of silicon in HF/HNO3 mixtures, Journal of The Electrochemical Society, Vol. 152, No. 12 (2005), C843-C850. ㄶゼ㒊ோ, 㜿㒊⩏⣖, 㡞ἑ㈼ኴᮁ, ▼ᕝ᠇୍, ࣐ࣝࢳ࣡ࣖࢯ࣮࠾ࡅࡿࢫ࣮ࣛࣜ౪⤥᪉ἲࢫ࣮ࣛࣜᣲືࡢ㛵 ಀ, ◒⢏ຍᕤᏛㄅ, Vol. 52, No. 8 (2008) , pp. 472-477. Ᏹ㔝⩏ᖾ, ᒸᮏᗣᐶ, ᒸ⏣, ࢩࣜࢥࣥࣥࢦࢵࢺࡢ࣐ࣝࢳ࣡ࣖᨺ㟁ࢫࣛࢩࣥࢢᢏ⾡, ◒⢏ຍᕤᏛㄅ, Vol. 53, No. 11 (2009), pp. 663-666. Yan, J., Laser-mirco-Raman spectroscopy of single-point diamond machined silicon substrates, Journal of Applied Physics, Vol. 95, No. 4 (2004), pp. 2094-2101. Yoshikawa, K., Yoshida, T., Soeda, K., Uchimura, T., Nemoto T. and Ohmi, T., High speed and precision silicon wafer thinning technology for three-dimensional integrated circuit by wet etching, Proceedings of 22nd International Microelectronics conference, (2010), pp. 14-19. Zwick, A. and Carles, R., Multiple-order Raman scattering in crystalline and amorphous silicon, PHYSICAL REVIEW B, Vol. 48, No. 9 (1993), pp. 6024-6032. −36− ⌮ᕤᏛ◊✲ᡤ⣖せ 立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年 Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014 ゝㄒࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥㄽ࠾ࡅࡿࠕᕼᮃᏛࠖ—ࠕศࡾྜ࠺ࠖ ࡇࡣྍ⬟: W.V.O. Quine, D. Davidson, R. Rortyࡢ㆟ㄽࢆฟⓎⅬ ᒣ ୰ ྖ ======================================================================= Social Sciences of Hope in the Theory of Langauge Communication and Language Philosophy - Is it possible for us to fully understand each other? : From discussions of W.V.O. Quine, D. Davidson & R. Rorty Tsukasa Yamanaka Are people able to “understand each other fully” in the ultimate manner? Differences of languages and cultures make them differentiate their final epistemology and philosophy? Since individual distinction could be decisive, is it impossible for people to “understand each other fully?” We should appreciate the profoundness of philosophical significance in that the Sapir-Whorf hypothesis was ever proposed, suggesting a renewed focus on two extreme frame of mind; “relativism” and “universalism”, both of which might surely have a valid point. This paper reconsiders the discussion between “relativism” and “universalism” based on reviewing theories of W.V.O. Quine, D. Davidson and R. Rorty who made a commitment to pragmatism. The paper sides with universalism conclusively. Suggesting remediation of Rorty’s argument by converging “social sciences of hope” with pragmatism, it deals with theoretical new horizons of communication focused on “hope”. Keywords; Pragmatism, Quine, Davidson, Rorty, Social sciences of hope E-mail: [email protected] (T. Yamanaka) ================================================================================= ❧㤋Ꮫ⏕⛉Ꮫ㒊 College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan −37− 1 山中 司 ⌮ᕤᏛ◊✲ᡤ⣖せ 㸯 ࡣࡌࡵ: ࠕゝㄒ┦ᑐㄽࠖࡢၥ㢟ᥦ㉳ ゝㄒࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡢ㛵ಀࢆㄽ⪃ࡍࡿ࠶ࡓࡾࠊࡘ࡚⫹࡞୍⌮ㄽࡋ࡚ࠕࢧࣆ㸻࢛࢘ ࣮ࣇࡢ௬ㄝࠖࡀ࠶ࡗࡓࠋࡇࡢ⌮ㄽࡣ≉ᚋ༙ࠊ࢛࣮࢘ࣇࡼࡾࠕゝㄒࡀ␗࡞ࡿࡇ࡛ࠊே㛫ࡢㄆ㆑ࡲ࡛ ࡶ␗࡞ࡿࠖᣑᙇࡉࢀࡿࡢ࡛࠶ࡿࡀࠊ⌧ᅾ࡛ࡣ┦ᑐ⩏ࡢᴟㄽⓗ࡞⪃࠼ぢࡉࢀࠊᵝࠎ࡞ほⅬࡽᐇ ドᛶࢆྵࡵᡭཝࡋࡃᢈุࡉࢀ࡚࠸ࡿ(Deutscher 2010)ࠋ௨㝆࡛ࡣࠕࢧࣆ࣭࢛࣮࢘ࣇࡢ௬ㄝࠖࡑࡢࡶ ࡢࡣ῝ධࡾࡏࡎࠊࡇࡢ௬ㄝࡢၥ㢟ᥦ㉳ࡋ࡚ࡢព⩏ࢆ㏣ồࡋ࡚ࡳࡓ࠸ࠋ ࠕゝㄒࡀ㐪࠼ࡤㄆ㆑ࡀ␗࡞ࡿࠖࠊࡉࡽゝ࠼ࡤࠕゝㄒࡀ㐪࠼ࡤศࡾྜ࠼࡞࠸ࠖࡣࠊࡇࡢࠕゝㄒࠖ ࢆ࠺ᤊ࠼ࡿࡼࡗ࡚᰿ᮏⓗ࡞ဴᏛၥ㢟࡞ࡿࠋࡍ࡞ࢃࡕࠊࣃ࣮ࣟࣝࡋ࡚ࡢಶࠎேࡢゝㄒࡀ⛬ᗘࡢ ၥ㢟࡛␗࡞ࡗ࡚࠸ࡿࡍࡿ࡞ࡽࡤࠊᡃࠎே㢮ࡣྠࡌࠕ᪥ᮏㄒ࡛ࠖ࠶ࡗ࡚ࡶ✲ᴟⓗศࡾྜ࠺ࡇࡀ࡛ ࡁࡿࡢ࠸࠺ၥ㢟ࡍࡾ᭰ࢃࡿࡢ࡛࠶ࡿࠋ௬ྠࡌゝㄒෆ࡛ࡍࡽ┦ᑐ⩏ࡀ㐺⏝ࡉࢀࡿࡢ࡛࠶ࢀࡤࠊ ␗࡞ࡗࡓゝㄒ㛫࡛࠶ࢀࡤᑦ᭦࡛࠶ࡿࠋᡃࠎࡣ࠸ࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࢆࡋࠊ」ᩘࡢゝㄒࢆ᧯ࡾ⩻ ヂࡋ࡞ࡀࡽࠕࡸࡾྲྀࡾ࡛ࡁ࡚࠸ࡿࠖᛮࡗ࡚࠸ࡿࡇࡣᗁ࡞ࡢࡔࢁ࠺ࠋ ┦ᑐ⩏⤯ᑐ(ᬑ㐢)⩏ࡢ୧ᴟ➃ࡢ㍈ࢆ௬ᐃࡋࠊᡃࠎࡢㄆ㆑ࡸ⌮ゎࡀࡑࡢࡕࡽ䬦ࡳࡋ࡚࠸ࡿࡢ ࢆ㆟ㄽࡍࡿࡇࡣព⩏ࡀ࠶ࡿࠋࡶࡕࢁࢇ⌧ᐇࡢ᪥ᖖ♫࠾࠸࡚ࡣࠊ୧➃ࢆ⤖ࡪࢢࣛࢹ࣮ࢩࣙࣥࡢ ୰ࡢࠕ㐺ษ࡞ΰྜලྜࠖ⨨ࡋ࡚࠸ࡿࡇࡣ༑ศண࡛ࡁࡿࡇ࡛࠶ࡾࠊࡑࡢࡕࡽ೫ࡗ࡚࠸ࡓ ࡋ࡚ࡶ⏕ά㔜࡞ᨭ㞀ࢆཬࡰࡍࡶࡢ࡛ࡣ࡞࠸ࠋྠࠊࡇࡢၥ㢟ࡣᐜ᫆ࡃᅇ⟅࡛ࡁࡿ㢮ࡢࡶࡢ࡛ࡣ ࡞ࡃࠊࡲࡉ࣮࢜ࣉ࣭࢚ࣥࣥࢻ࣭ࢡ࢚ࢫࢳ࡛ࣙࣥ࠶ࡿ࠸࠼ࡿࠋࡋࡋ࡞ࡀࡽࠊࡓ࠼ࠕ⛬ᗘࡢၥ㢟ࠖ ࡛࠶ࡗࡓࡋ࡚ࡶࠊᡃࠎࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡀࠕ┦ᑐ⩏࡛ࠖ࠶ࡿ࡞ࡽࡤࠊேࠎࡣ✲ᴟⓗ࣭᰿ᮏⓗ ࠕศࡾྜ࠺ࠖࡇࡣྍ⬟࡛࠶ࡾࠊࡑ࠺࡛࠶ࡿ࡞ࡽࡤࠊ࠼ࡤࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥᩍ⫱ࡸⱥㄒᩍ⫱ࢆ ࡣࡌࡵࡍࡿእᅜㄒᩍ⫱ࡣࡸࡵ࡚ࡋࡲࡗࡓ᪉ࡀⰋ࠸ࠋእᅜㄒᩍ⫱ࢆᩍ⫱ᶵ㛵࡛ᩍ࠼ࡿṇᙜᛶࡣ࡞ࡃࠊ⏕ ᚐࡸᏛ⏕ࡀࡑࡢฟ᮶ࢆホ౯ࡉࢀࡿ࠶ࡾ᪉ࡣㄽ⌮ⓗ࡞▩┪ࡀ⏕ࡌࡿࡽ࡛࠶ࡿࠋእᅜㄒᩍ⫱ࡣࠊᇶᮏⓗ AゝㄒBゝㄒࡀ⩻ヂ(⨨ࡁ࠼)ྍ⬟࡛࠶ࡿࡢㄆ㆑❧ࡘࡶࡢ࡛࠶ࡾࠊ┦ᑐ⩏ࡣࡑࡢ᰿ᮏⓗ࡞㊊ሙ ࢆྰᐃࡍࡿࠋ࠼ࡤQuine(1960)ࡣࠕ⩻ヂࡢ☜ᐃᛶࠖࢆᥦ㆟ࡋ࡚࠾ࡾࠊ␗࡞ࡗࡓゝㄒ࠾ࡅࡿゎ㔘ࡣ ᚲ↛ⓗ☜ᐃᛶࡀṧࡿࡇࢆㄽࡌ࡚࠸ࡿࠋ ㏫ᡃࠎࡢㄆ㆑ࡸ⌮ゎᬑ㐢ᛶࡀㄆࡵࡽࢀࡿ࡞ࡽࡤࠊேࠎࡣ᰿ᮏⓗࠕศࡾྜ࠼ࡿࠖࡣࡎ࡛࠶ࡾࠊ ࡋࡓࡀࡗ࡚ே㢮ࡣࡲ࡛௨ୖ✚ᴟⓗࠕඹ㏻ࡢㄒᙡࠖࠕඹ㏻ࡢㄆ㆑ࠖࠕඹ㏻ࡢ౯್ほࠖࢆồࡵ࡚࠸ ᡭࢆᦠ࠼ࠊ㐃ᖏࡍࡁ࡛࠶ࡿࠋࢢ࣮ࣟࣂࣝ௦࠸ࢃࢀࡿࠊᮍࡔୡ⏺୰த࠸ࡀ⤯࠼ࡎࠊ⓶⫗ ࡶ┦ᑐ⩏ᢿ㌴ࡀࡗ࡚࠸ࡿࡉ࠼ᛮ࠼ࡿ㇟ࡶᑡ࡞ࡃ࡞࠸ࠋேࠎࡀᣐࡗ࡚❧ࡘࡇࡀ࡛ࡁࡿ☜ ࡞ᇶ┙ࡀ࠶ࡾᚓࡿ࡞ࡽࡤࠊᡃࠎࡣࡑࢀࡽࢆồࡵࡿࡁ࡛࠶ࡾࠊ᫂ࡽࡍࡿࡁ࡛ࡣ࡞࠸ࡔࢁ࠺ࠋ 㸰 ࠕ┦ᑐ⩏ࠖࡢྍ⬟ᛶ ேࠎࡣ✲ᴟⓗࠕศࡾྜ࠼ࡿࠖࡢࠊࠕศࡾྜ࠼࡞࠸ࠖࡢࠋゝㄒࡸᩥࡢ㐪࠸ࡣࠊㄆ㆑ࡸ౯್ ほࡲ࡛ࢆࡶ㐪࠼ࡿࡢࠋಶࠎேࡢᕪ␗ࡣỴᐃⓗ࡛࠶ࡾࠊேࠎࡀࠕศࡾྜ࠺ࠖࡇࡣྍ⬟࡞ࡢࠋ⧞ ࡾ㏉ࡋ࡞ࡿࡀࠊࠕࢧࣆ㸻࢛࣮࢘ࣇࡢ௬ㄝࠖࡀࡇ࠺ࡋࡓ㆟ㄽᑐࡍࡿၥ㢟ᥦ㉳ࢆᨵࡵ࡚⾜ࡗࡓ⪃࠼ ࢀࡤࠊࡑࡢព⩏ࡣࡁ࠸ࠋ࠸ࢃࡺࡿࠕ┦ᑐ⩏ࠖࠕᬑ㐢⩏ࠖ࠸࠺ࠊ┦ᐜࢀ࡞࠸2ᴟࡢ⪃࠼᪉ࢆ㝿❧ ࡓࡏࡓࢃࡅ࡛࠶ࡿࡀࠊぢ᪉ࡼࡗ࡚ࠊࡑࡢࡕࡽࡶ୍⌮࠶ࡿࡇࡣ࠾ࡑࡽࡃ☜࡛࠶ࡿࠋ௨㝆ࡢ㆟ㄽ ࡛ࡣࠊࡲࡎࠕ┦ᑐ⩏ࠖࡢ❧ሙ䬦ࡳࡍࡿࡇ࡛ࠊࡇ࠺ࡋࡓㄽⅬࢆ᥀ࡾୗࡆ࡚ࡳࡓ࠸ࠋࡇࡇ࡛ࡣゝㄒဴ Ꮫࡢ୰࡛ࡶࠊࣉࣛࢢ࣐ࢸࢬ࣒ഴಽࡋ࡚࠸ࡃ3ேࡢဴᏛ⪅ࠊQuineࠊDavidsonࠊRortyࡢゝཬࢆཧ↷ࡋ࡞ ࡀࡽࠊࠕேࠎࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡀ᰿ᮏⓗ㏻ࡌᚓ࡞࠸ࡇ(㸻┦ᑐ⩏)ࠖࡘ࠸࡚㆟ㄽࡍࡿࠋ࡞࠾ࠊ ࡇࢀࡽ3ேࡀ┦ᑐ⩏ࢆᚲࡎࡋࡶ⫯ᐃࡋ࡚࠸࡞࠸ࡇࡣὀពࡋ࡞ࡅࢀࡤ࠸ࡅ࡞࠸ࠋᮏㄽ⪃ࡣࠊ࠶ࡃࡲ࡛ −38− 2 言語コミュニケーション論における「希望学」̶「分かり合う」ことは可能か ⌮ᕤᏛ◊✲ᡤ⣖せ ㆟ㄽࡢ㐨➽ࢆᥦ♧ࡍࡿㄽⅬࡋ࡚⏝࠸ࡿࠋ ࡲࡎࡣ┦ᑐ⩏ࡢ㛵㐃ࢆㄽࡌࡿ࠶ࡓࡾࠊQuineࡀ⧞ࡾ㏉ࡋᘬ⏝ࡋ⏝࠸ࡓࠕࣀ࣮ࣛࢺࡢ⯪ࠖ(1960)ࢆ ྲྀࡾୖࡆࡓ࠸ࠋࡇࡢ࣓ࢱࣇ࣮ࡀ♧ࡍࡇࢁࡣࠊᡃࠎࡢ୍ษࡢㄆ㆑ࡸ▱㆑ࡀࠊ࠸ࢃࡤࠕ᰿↓ࡋⲡࠖࡢࡼ ࠺ୡ⏺ࢆ⁻ὶࡋ࡚࠸ࡿࡇࢆྵពࡋࠊᡃࠎࢆࣉࣛࢢ࣐ࢸࢬ࣒ᑟࡃᙉຊ࡞⌮ㄽ⨨࡛࠶ࡿࠋࠕ2ࡘ ࡢࢻࢢ࣐ࠖ(1951)ࡢ㆟ㄽࡶ⧅ࡀࡿᙼࡢ❧ሙࡣࠊ⤯ᑐⓗ࣭ᬑ㐢ⓗ┿⌮ࢆ㗦ࡃྰᐃࡍࡿࡶࡢ࡛࠶ࡾࠊ࠸࡞ ࡿ⪃࠼ࡸㄽ⌮࡛࠶ࡗ࡚ࡶࠊࡑࡢᨵゞࢆචࢀࡿࡇࡣỴࡋ࡚࡛ࡁ࡞࠸ࡇࢆᙇࡍࡿࡶࡢ࡛࠶ࡿࠋᾏཎ ࢆ⁻ὶࡋ࡚࠸ࡿᡃࠎே㢮ࡣࠊࡑࡢ㒔ᗘࡢ⌧ᐇⓗᑐฎࢆࡶࡗ࡚ࠊᡃࠎࡢୡ⏺ほࢆ᭦᪂ࡋ࡚࠸ࡊࡿࢆᚓ࡞ ࠸ࠋࡑࡢ᭦᪂ࡢ࣓ࢫࡣࠊᏳᐃࡋࡓࣃࣛࢲ࣒ࢆ⠏࠸࡚ࡁࡓᛮࢃࢀࡿ⛉Ꮫほᑐࡋ࡚ࡶᐜ㉧࡞࠸ࠋQuine ࡣ┤᥋ゝཬࡋ࡚࠸࡞࠸ࡀࠊࡑࡢ࣓ࢫࡣࠕ⮬⏤ࠖ࠸࠺౯್ほࡸࠕẸ⩏ࠖ࠸ࡗࡓ౯್ほᑐࡋ࡚ࡶ ྠᵝྥࡅࡽࢀࡿ࡛࠶ࢁ࠺ࠋKuhn(1962)ࡢṔྐⓗ᳨ドࡀ♧ࡍࡢࡣࠊᡃࠎே㢮ࡀࠊࡲࡉࡇࡢࡼ࠺ࡋ࡚ ᡃࠎࡢୡ⏺ほࡸ▱㆑ࡢయ⣔ࢆ᭦᪂ࡋ࡚ࡁࡓᐇ࡛࠶ࡾࠊRorty(1979)ࡢᣦࡍࡿ㏻ࡾࠊᡃࠎࡢㄆ㆑ࠊ౯್ࠊ ࣃࣛࢲ࣒ࡣṔྐᛶࡀᚲ↛ⓗక࠺ࡇࡣᐇ☜ࡽࡋ࠸ࡢ࡛࠶ࡿࠋ ḟぢࡿࡢࡣࠊDavidson(1986)ࡀㄽᩥ"A Nice Derangement of Epitaphs"࡚ᥦ㉳ࡋࡓゝㄒࢥ࣑ࣗࢽࢣ࣮ࢩ ࣙࣥ࠾ࡅࡿ᰿ᮏၥ㢟࡛࠶ࡿࠋࡇࢀࡣㅝࢃࡤࠕゝㄒࡢṚஸᐉ࿌ࠖ(ᡞ⏣ᒣ 2002)ࡋ࡚ࠕ≀㆟ࢆ㔊ࡋࡓࠖ ㆟ㄽ࡛࠶ࡿࡀࠊᙼࡣဴᏛ⪅ࡸゝㄒᏛ⪅ࡀᐃࡍࡿつ⣙(convention)ᇶ࡙࠸ࡓゝㄒほࢆ⫹ྰᐃࡋࠊゝ ㄒࡢ㠀Ꮡᅾㄝࢆㄽドࡍࡿࠋ௨ୗDavidson(1986)ࡢ୍㒊ࢆᢤ⢋ࡍࡿࠋ ... Ther is no more chance of regularizing, or teaching, this process than there is of regularizing or teaching the process of creating new theories to cope with new data in any field... (p.265, ll10.12) ... I conclude that there is no such thing as a language, nor if a lanugage is anything like what many philosophers and linguists have supposed. ... (p. 265, ll.22-24) ᮏㄽ⪃ࡣDavidson(1986)ࡑࡢࡶࡢࢆㄽホࡍࡿࡶࡢ࡛ࡣ࡞࠸ࡓࡵࠊᙜヱㄽᩥ࡛⏝࠸ࡽࢀࡓ⌮ㄽ⨨ࡢ ࡚ࢆ᳨ドࡍࡿࢃࡅࡣ࠸࡞࠸ࠋࡋࡋ࡞ࡀࡽࠊDavidsonࡀㄽࡌࡿࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡢᐇែࡣࠊ᪥ᖖ ࡢᡃࠎࡢゝㄒࢆࡗࡓࡸࡾྲྀࡾࢆゝ࠸ᚓ࡚࠸ࡿࡇࡶࡲࡓ☜࡛࠶ࡾࠊ✀ࠎࡢㄽᣐࡣ୍ᐃࡢㄝᚓຊࡀ ࠶ࡿࠋDavidson(1986)ࡀㄝࡃࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ⌮ㄽ(ᚋྲྀࡾୖࡆࡿࠕᙜᗙ⌮ㄽࠖ)ࡣࠊඹ᭷ࡉࢀࡓᩥ ἲࡶ↓ࡅࢀࡤつ๎ࡶ↓ࡃࠊᏛ⩦ྍ⬟࡞ඹ㏻ࡢ᰾࠸ࡗࡓࡶࡢࡶ↓࠸ࠋ௵ពࡢⓎヰࡣࡑࡢࠎ࡛ពࢆኚ ࠼ࠊࡑࡢព࡛ࡲࡉࠕ௵ពࠖ࡞ࡢ࡛࠶ࡿ(ᒣ୰ 2015)ࠋࡇࢀࡣඛࡢࠕࣀ࣮ࣛࢺࡢ⯪ࠖࡢዴࡃࠊᡃࠎࢆ ᣐࡗ࡚❧ࡘࡇࢁࡢ࡞࠸ࠊᏳᐃ࡛ᚰチ࡞࠸ࠕ⌮ㄽࠖ㏣࠸㐵ࡿࡶࡢ࡛࠶ࡿࠋᩜ⾝ࡋᴟㄽࡍࢀࡤࠊDavidson ࡢၥ㢟ᥦ㉳ࡣࠊᶆ‽ࡸ୍⯡ࠊయ⣔࠸ࡗࡓࠊᡃࠎࡀ↓ព㆑๓ᥦࡋࠊᮇᚅࡍࡿᐃࢆ࠸ᡴࡕ ○ࡃࡶࡢ࡛࠶ࡾࠊᡃࠎࡣៅ㔜ࡇࡢᛮⓗྵពࣥࣃࢡࢺࡢࡁࡉࢆྫྷࡍࡁ࡛࠶ࡿࠋ ᭱ᚋRorty(1989)ࡢࠕഅ↛ᛶ(contingency)ࠖࡢㄽⅬࢆྲྀࡾୖࡆࡿࠋRortyࡣࡑࡢከࡃࡀQuine, Davidsonࡢ ᛮ⣴ࢆ㋃くࡋࠊࡑࢀᇶ࡙࠸ࡓㄽ⪃ࢆᒎ㛤ࡋ࡚࠸ࡿࠋ≉ඛ㏙ࡋࡓDavidsonࡢ࣓ࢱࣇ࣮ㄽࢆࡣࡌࡵ ࡍࡿㄽ⪃➼࠸ゐⓎࡉࢀࡿࡇ࡛ࠕゝㄒࡢഅ↛ᛶࠖࢆㄽࡌࠊࡑࡢ㐺⏝⠊ᅖࢆࠕ⮬ᕫࡢഅ↛ᛶࠖࠊࠕࣜ ࣋ࣛࣝ࡞ඹྠయࡢഅ↛ᛶࠖࡲ࡛ࡁࡃᩜ⾝ࡋࡓ(⡿Ọ 2002)ࠋᮏㄽ⪃ࡢほⅬࡽࡍࢀࡤࠊ┦ᑐ⩏ࡢࢫ ࢱࣥࢫㅝࢃࡤ㏣࠸ᡴࡕࢆࡅࡓㄽ⪃࡛࠶ࡿࡀࠊRortyࡢࢿ࣭࢜ࣉࣛࢢ࣐ࢸࢬ࣒ࡢ❧ሙࡣᚭᗏࡋ࡚࠸ࡿࠋ ࠕᇶ♏࡙ࡅ⩏ࠖࢆྰᐃࡋࠊ┿⌮ࡸࡑࡢᑻᗘ࠸ࡗࡓᴫᛕࢆᜳࡃྰᐃࡍࡿRortyࡢㄽ⪃ࡣࠊୡ⏺ࡑࡢࡶ ࡢࡀṔྐᛶࢆᖏࡧࡓഅ↛ࡢᡤ⏘࡛࠶ࡾࠊ᪂ࡓ࡞ㄒࡾ᪉(࣓ࢱࣇ࣮)ࡼࡗู࡚ࡢᆅᖹࡀᣅࢀࡿྍ⬟ᛶ ࡀᖖ࠶ࡿࡍࡿࠋRortyࡀ⌮ࡍࡿ(࣭ࣜ࣋ࣛࣝ)ࣟࢽࢫࢺࡣࠊ⮬ᕫࡢࠕ᰿ࡢ↓࠸ࡇ(rootlessness)ࠖ ࢆ⮬ぬࡋ࡚࠾ࡾࠊ⮬ࡽࡢࠕ⤊ᒁࡢㄒᙡ(final vocaburary)ࠖࡢഅ↛ᛶẋࢀࡸࡍࡉࢆ⮬ぬࡋ࡚࠸ࡿ࠸࠺ࠋ ⤊ᒁࡢㄒᙡࡢ༙ࡣ࣮ࣟ࢝ࣛࢬࡉࢀ࡚࠾ࡾࠊᰂ㌾ᛶḞࡅࡿࡶࡢ࡛࠶ࡿࡽࠊᖖࡑࢀࡽࢆ࠸ࠊ᪂ −39− 3 山中 司 ⌮ᕤᏛ◊✲ᡤ⣖せ ᪧࡢㄒᙡࢆ➇ࢃࡏࡿࡇࡀ㔜せ࡛࠶ࡿࠋ ඛྠࡌࡃࠊRortyࡢㄽⅬࡢ࡚ࢆᮏㄽ⪃ࡀᢅ࠺ࡣ࠶ࡲࡾࡶᡭవࡾࠊ㒊ศⓗ࡞ᘬ⏝␃ࡵࡊࡿࢆ ᚓ࡞࠸ࠋࡋࡋࠕไᗘ័⩦ࡣṔྐࢆ㏻ࡌ࡚⯆㝯ࡋࠊᬑ㐢ⓗ࡞ጇᙜᛶࡇࡑཷࡅධࢀ㞴࠸ࠖࡍࡿRortyࡢ ୍㈏ࡋࡓ❧ሙࡣࠊ⤯ᑐⓗ࡞┿⌮࠸࠺ࠕᵓࠖࢆᥐᐃࡍࡿࡇ࡛ࡑࢀ௨ୖㄒࡿࡇࢆṆࡵࠊ᪥ࠎኚࡍ ࡿ౯್ࡸつ⠊ࡢࢲࢼ࣑ࢬ࣒ࢆᤊ࠼ᦆࡡࡿᡃࠎࡢែᗘ㆙㚝ࢆ㬆ࡽࡋ࡚࠸ࡿࡼ࠺ࡶᛮࢃࢀࡿࠋᏳ᫆࡞ ࠕ┦ᑐ⩏ࠖࡶ༴㝤࡛࠶ࡿࡀࠊᏳ᫆࡞ࠕᬑ㐢⩏ࠖࡶࡑࢀྠᵝࠊࡶࡋࡃࡣࡑࢀ௨ୖ༴㝤࡛࠶ࡿࡇ ࢆᡃࠎࡣ⮬ぬࡍࡿࡁ࡞ࡢ࡛࠶ࡿࠋ 㸱 ࠕᬑ㐢⩏ࠖࡢྍ⬟ᛶ ḟᮏ❶࡛ࡣࠊࠕேࠎࡣศࡾྜ࠺ࡇࡀ࡛ࡁࠊࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡣ᰿ᮏⓗᡂ❧ࡋᚓࡿࠖ⪃࠼ ࡿඛ㏙ࡣࡃ㏫ࡢぢᆅࡽ㆟ㄽࡋ࡚ࡳࡓ࠸ࠋࠕ᰿ᮏⓗ࡞࡛ࣞ࣋ࣝศࡾྜ࠼ࡿࠖࡣࠊᡃࠎࡀゝㄒࡸ ౯್ほࡢ┦㐪ࢆࡾ㉺࠼ࡓࠊ࠶ࡿඹ㏻ࡢᯟ⤌ࡳ࡞ࡾᛮ⪃ᵝᘧࢆᣢࡗ࡚࠸ࡿࡇࢆ♧၀ࡍࡿࡶࡢ࡛࠶ࡾ(= ᬑ㐢⩏)ࠊࡇ࠺ࡋࡓⅬࡣᚋࡼࡾ✚ᴟⓗ㏣ཬࡉࢀࡿࡁ࡛࠶ࡿࠋ᰿ᗏࡢ࡛ࣞ࣋ࣝᡃࠎࡀศࡾྜ࠼ࡿ ᇶ┙ࢆ᭷ࡋ࡚࠸ࡿ࡞ࡽࡤࠊࡑ࠺ࡋࡓඹ㏻ࡢᯟ⤌ࡳࢆ᫂ࡽࡋࠊࡑࡇࢆ㉳Ⅼ࠶ࡽࡺࡿேࠎ㐃ᖏࢆᣑ ࡆ࡚࠸ࡃࡇࡀ࡛ࡁࡿࡣࡎ࡛࠶ࡿࠋࡑࡇࡣඹ㏻ࡢ౯್ࡢࡶ࠸ࡀṌࡳᐤࡿྍ⬟ᛶࡀ☜ಖࡉࢀࠊࢥ࣑ ࣗࢽࢣ࣮ࢩࣙࣥࢆ⾜࠺ព⩏ࢆぢฟࡏࡿࠋࡲࡎࡣDavidson(1986)ࡢ࣐ࣛࣉࣟࣆࢬ࣒ㄽࡽぢ࡚ࡳࡼ࠺ࠋ Davidson(1986)ࡣࠊ⌧ᐇୡ⏺ࡢゝㄒࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡀࠕᙜᗙ⌮ㄽ(passing theory)ࠖࡼࡗ࡚㐙⾜ࡉ ࢀࠊ࠶ࡿⓎヰᑐࡋ࡚ࠊゎ㔘⪅ࡣࡑࡢ㒔ᗘᬻᐃⓗពࢆゎ㔘ࡉࡏࡿࡇ࡛ᡂ❧ࡍࡿࡇࢆㄽࡌࡿࠋ Davidsonࡣࠊࠕゝ࠸㛫㐪࠸(malapropism)ࠖࢆྵࡴࡶ㛵ࢃࡽࡎ᪥ᖖࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡀᡂ❧ࡍࡿࡇ ᣊࡾࠊࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥᡂ❧ࡢᒁᡤᛶ╔┠ࡍࡿࠋⓎヰࡢཷࡅᡭࡣࠊࡋ࡚Ⓨヰ⪅ࡢᏐ⩏ⓗព ࠊⓎヰ⪅ࡢࠕ┿ࡢព(Davidsonࡣࡇࢀࢆࠕ➨୍ࡢព(first meaning)ࠖࡪ)ࠖࡀ୍⮴ࡋ࡞࠸ሙྜࠊᚲ せ࠶ࡽࡤⓎヰࡢཷࡅᡭࡣࠊᙜึࡢᏐ⩏ⓗពࢆᨵ❠ࡋ࡚ࡲ࡛ࡶ➨୍ࡢពࢆࠕṇࡋࡃࠖゎ㔘ࡋࡼ࠺ ࡍࡿࠋࡋࡶゝ࠸㛫㐪࠸ࡣ༢⣧ࣃࢱ࣮࡛ࣥࡁࡎࠊᖐⓗ࡞▱㆑ࡋ࡚ᐃ╔ࡉࡏࡿࡇࡣ࡛ࡁ࡞࠸ࠋ ࡶࡕࢁࢇQuineࡀᣦࡍࡿࡼ࠺ࠊ୍ᐃࡢⓎヰࡢಖᏲഴྥࡣぢࡽࢀࡿࡶࡋࢀ࡞࠸ࡀࠊࢥ࣑ࣗࢽࢣ࣮ࢩࣙ ࣥࢆྲྀࡾᕳࡃ≧ἣࡣࠊⓎヰ⪅ಶேෆ࠾࠸࡚࡛ࡉ࠼ࠊᖖືⓗసࡾኚ࠼ࡽࢀࡿࡢ࡛࠶ࡾࠊពࡣࡑ ࡢሙࡑࡢ࠾࠸࡚ࠕᙜᗙ(ᬻᐃ)ⓗࠖᡂ❧ࡍࡿࡢࡳࡔᙇࡍࡿࠋ ࡉࡽDavidson(1986: 261)ࡣࠊࠕゝㄒࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࢆᡂຌࡉࡏࡿࡓࡵඹ᭷ࡉࢀࡿࡁࡣᙜᗙ⌮ ㄽ࡛࠶ࡿࠖࡇࢆṦ᭦ᙉㄪࡋ࡚࠾ࡾࠊࡇࢀࢆࠕ⌮ㄽࠖゝ࠼ࡿ࠺ࡘ࠸࡚ࡣ㆟ㄽࡀ࠶ࡿࡶࡢࡢࠊ ➨ゝㄒࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡢᐇែࡶྵࡵࠊ᪥ᖖࡢࠕ㏻ࡌྜ࠼ࡿࠖ⌧㇟ࢆᙜᗙ⌮ㄽࡣ㗦ࡃㄝ᫂ࡋ࡚࠸ࡿࠋ Haberࡢࡼ࠺ࡑࢀࢆࠕᡓ␎(strategy)ࠖࡪ࠺ࡣูࡋ࡚ࠊ࠸ࡀᣢࡘᙜᗙ⌮ㄽࢆ᭱㝈ᩡࡉ ࡏࠊࡑࡢ㒔ᗘࡢゝㄒⓗ㐵ࡾྲྀࡾࢆ(࠺ࡋ࡚)ᡂ❧ࡉࡏࡿ⬟ຊࡇࡑࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡢᮏ㉁ࡔࡍ ࡿࠋࡑࡋ࡚ᮏㄽ⪃ࡗ࡚㔜せ࡞ࡇࡣࠊᙜᗙ⌮ㄽࡣேࠎࡍ࡛ඹ᭷ࡉࢀ࡚(shared)࠸ࡿ Davidson(1986: 264)ࡀ㏙࡚࠸ࡿࡇ࡛࠶ࡿࠋ ࡲࡓDavidsonࡣࠊ᪥ᖖࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ࠾࠸࡚ࠊᡃࠎࡀࠕᐶᐜࡢཎ๎(principle of charity)ࠖࢆ⏝ ࠸ࡿࡇ࡛ࠊ✀ࠎᵝࠎ࡞▱㆑ࡸᢏ⾡ࢆ᭱㝈ືဨ࣭㥑ࡋࠊ⌧┦ᡭࡢࠕ➨୍ࡢពࠖࢆ䬦ࡳྲྀࡗ࡚࠸ ࡿࡇࢆᣦࡋ࡚࠸ࡿࠋᐶᐜࡢཎ๎ᨭ࠼ࡽࢀࡓDavidsonࡢᙜᗙ⌮ㄽࡣࠊ⚾ࡓࡕࡀࠕ(ゝㄒⓗ㸭Ꮠ⩏ⓗ࡞ ࡸࡾྲྀࡾ࠸࠺ព࡛ࡣ༑ศࡶ㛵ࢃࡽࡎࠊ≉ၥ㢟࡞ࡃ)ศࡾྜ࠼ࡿࠖࡇࢆㄝ᫂ࡍࡿㄽᣐࡋ࡚ࠊ ീ௨ୖᙉຊ࡞࢚ࣥࢪ࡛ࣥ࠶ࡿࡇࡀ❚࠸▱ࢀࡿࡢ࡛࠶ࡿ1ࠋ ゝㄒࡣពᛶࡀ࠶ࡾࠊㄒ⏝ㄽⓗ࡞ほⅬࡽࡶࡑࢀࡒࢀࡢㄒࡸᩥࡢពࡣ୍⩏ⓗࡣᐃࡲࡽ࡞࠸ࠋ༶ࡕࠊⓎヰ⪅ࡣཎ๎ࠕ⮬⏤ࠖ⮬ࡽࡀ ⏘ࡍࡿゝㄒពࢆࡍࡿࡇࡀ࡛ࡁࡿࠋࡇࢀࡣ⌮ㄽୖㄡࡶࡀࠊDavidson(1986)ࡶᣦࡍࡿࣁࣥࣉࢸ࣮࣭ࢲࣥࣉࢸ࣮࡛࠶ࡿࡇࢆᣦ ࡋ♧ࡋ࡚࠸ࡿࠋDavidsonࡣ࣓ࢱࣇ࣮ࡘ࠸࡚ࡶูㄽᩥ(“What Metaphors Mean” 1978)࡛㆟ㄽࡋ࡚࠾ࡾࠊRortyࡶᣦࡍࡿࡼ࠺ࠊリࡸᩥᏛ 1 −40− 4 言語コミュニケーション論における「希望学」̶「分かり合う」ことは可能か ⌮ᕤᏛ◊✲ᡤ⣖せ ࡲࡓRortyࡣJ.Shklarࡢⴭసࢆᘬ⏝ࡋࠊ⮬ࡽࡢࣜ࣋ࣛࣜࢬ࣒ࡢฟⓎⅬࢆࠕṧ㓞ࡉ(cruelty)ࡇࡑ⚾ࡓࡕࡀ࡞ ࡋ࠺ࡿ᭱ᝏࡢࡇࡔࠖ⪃࠼ࡿࡇࠊࡑࡋ࡚ࠕṧ㓞ࡉࠖࠕⱞ③(paiin)ࠖࢆῶᑡࡉࡏࡿࡇࡋ࡚࠸ࡿ( ㈡ 2006)ࠋࡇࢀࡣே㢮ࡢඹ㏻ࡢ౯್ࡢᅵྎࡋ࡚ᥦ♧ࡉࢀࡓㄽⅬ࡛࠶ࡾࠊᙼࡢ㆟ㄽࡢ㊊ሙ࡞ࡗ࡚࠸ࡿࠋ Rortyࡀㄒࡿࠕࣜ࣋ࣛࣝ࡞㐃ᖏࠖࡣࠊᮏ㉁⩏ࡸᇶ♏࡙ࡅ⩏ࡢྰᐃࢆ๓ᥦࡋ࡞ࡀࡽࡶࠊⱞ③ࡸⱞᝎ ࢆឤࡌࡿ⬟ຊࡔࡅࡣ↓๓ᥦࡘᬑ㐢ⓗඹ᭷ࡋᚓࡿ⪃࠼ࠊேࠎࡢ࡞ࡋᚓࡿ᭱ၿࡢࡇࡣ⪅ࡢ 㐀ⓗ࡞ྠ୍࡛࠶ࡿ࠸࠺ᙇ࡛࠶ࡿࠋࡲࡓࠊᐶᐜ࡞⢭⚄ࡢ୰࡛ࠊ┦ࡢከᵝᛶࡸᕪ␗ᛶࢆㄆࡵྜ࠸ࠊ ḟ➨ࠕ⚾ࡓࡕࠖࡢ⠊ᅖࢆᣑࡍࡿ୰࡛ࣜ࣋ࣛࣝ࡞♫ⓗ㐃ᖏࡀᐇ⌧ࡍࡿ⪃࠼ࡿࡢ࡛࠶ࡿ(ᰗ 2002)ࠋ ࡇࡇ࡛Rortyࡢ⣽࡞㆟ㄽ❧ࡕධࡿవ⿱ࡣ࡞࠸ࠋࡋࡋ࡞ࡀࡽࠊဴᏛ࠾ࡅࡿࠕཎ⌮ࠖࡸほᛕㄽࢆ୍㈏ ࡋ࡚ᚭᗏⓗྰᐃࡍࡿRorty࡛࠶ࡿࡀࠊ⓶⫗ࡶࠊᙼࡢ㆟ㄽࡶࠕᣐࡗ࡚❧ࡘࠖࡇࢁࡀ࠶ࡿࠊ༶ࡕࠕṧ 㓞ࡉⱞ③ࡢῶᑡࠖࡘ࠸࡚ࡢᬑ㐢ᛶࢆᙇࡋࠊDavidsonྠࡌࡃᐶᐜ࡞⢭⚄ࡢ㔜せᛶࢆ㏙࡚࠸ࡿࡇ ࡘ࠸࡚ࡣ╔┠ࡋ࡚࠾ࡃព⩏ࡀ࠶ࢁ࠺ࠋ 㸲 ᬑ㐢⩏ⓗ౯್ほࡢッ࠼ ᮏㄽᩥࡣࡇࡇࡲ࡛ࠊேࠎࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ࠾ࡅࡿࠕ┦ᑐ⩏ࠖࠕᬑ㐢⩏ࠖࡢㄽⅬࢆᣲࡆࠊ ㆟ㄽࡢ⣲ᆅࢆ‽ഛࡋࡓࠋࡓࡔࡋゝ࠺ࡲ࡛ࡶ࡞ࡃࠊQuine, Davidson, Rortyࡑࢀࡒࢀࡢᛮࡣ㞴ゎࡘ῝࡛ ࠶ࡾࠊ➹⪅ࡢࡼ࠺࡞⪅ࡀࡑࢀࡽࢆ₃ࢀ࡞ࡃ䬦ࡳྲྀࢀ࡚࠸ࡿࢃࡅ࡛ࡣ࡞࠸ࠋ༑ศ࡞ᩚ⌮࡛࠶ࡿࡇࡣ๓ ᥦࡋࡓୖ࡛ㄽࡌࡿࡀࠊ┦ᑐ⩏ࠊᬑ㐢⩏ࡑࢀࡒࢀጇᙜ࡞ㄽᣐࡀ࠶ࡾࠊ༢⣧⏥எࡘࡅࡽࢀࡿࡶࡢ ࡛ࡣ࡞࠸ࠋࡋࡋ࡞ࡀࡽᮏㄽᩥࡣࠊ⤖ㄽࢆඛ㏙ࡿ࡞ࡽࡤࠊᚋ⪅ࠊ༶ࡕゝㄒㄽⓗࠕᬑ㐢⩏ࠖࡢ❧ሙ 䬦ࡳࡋࡓ࠸ࠋࡘࡲࡾࠊேࠎࡣࡸࡣࡾ✲ᴟⓗࡣࠕศࡾྜ࠼ࡿࠖ⪃࠼ࡓࡃࠊࡑࡢྍ⬟ᛶࢆ᭱ᚋࡲ࡛ ㏣ồࡍࡁ࡛࠶ࡿ⪃࠼ࡓ࠸ࡢ࡛࠶ࡿࠋ ඛ㏙ࡋࡓ㏻ࡾࠊQuine, Davidson, Rortyࡑࢀࡒࢀࡀ⮬㌟ࢆࠕ┦ᑐ⩏ࠖㄽ⪅ࠊࠕᬑ㐢⩏ࠖㄽ⪅ࡢࡕࡽ ࡛࠶ࡿࢆ᫂ゝࡋ࡚࠸ࡿࢃࡅ࡛ࡣ࡞ࡃࠊࡲࡓ⌧ᅾࡇࡢ3ྡࡣࡍ࡛⏺ࡋ࡚࠾ࡾࠊࡇࢀࡽࡢูࡣㄞ⪅ࡀㄞ ࡳྲྀࡿࡋ࡞࠸ࠋ↓⌮ࢆᢎ▱࡛➹⪅ࡀ᥎ ࡍࡿ࡞ࡽࡤࠊQuine, Davidsonࡣ࠶ࡃࡲ࡛ᬑ㐢⩏ࢆ㏣ồࡋ⥆ ࡅࡓࡶࡢ⪃࠼ࡓ࠸ࠋQuineࡀㄽࡌࡓࠕ่⃭ᩥࠖࡸࠊᮏㄽᩥ࡛ࡶྲྀࡾୖࡆࡓDavidsonࡢ࣐ࣛࣉࣟࣆࢬ࣒ㄽ ࡣࠊDavidsonࡀᣦࡍࡿࡼ࠺ubiquitousᏑᅾࡍࡿࡶࡢࢆᥐᐃࡋ࡚ㄽࢆᒎ㛤ࡋ࡚࠾ࡾࠊ࣮ࣟ࢝ࣝᡂ❧ ࡍࡿᴫᛕࢆᥦ♧ࡋࡼ࠺ࡋ࡚࠸࡞ࡗࡓぢࡏࡿࠋࡑࡋ࡚ࡇࢀࡣဴᏛ⪅ࡋ࡚ࠊ࠸ࢃࡤ⮳ᴟᙜ↛ࡢ ࡿ⯙࠸࡛࠶ࡿࡶゝ࠼ࡿࡔࢁ࠺ࠋࡋࡋRortyࡢ❧ሙࢆ᥎ࡋ㔞ࡿࡢࡣ㞴ࡋ࠸ࠋRorty(1979)ࡣࠕᚑ᮶ⓗ࡞ព ࡛ࡢࠖဴᏛ⤊ࢃࡾࢆ࿌ࡆ࡚࠾ࡾࠊ⛉ᏛࡸဴᏛࠊᩥᏛࡢቃ⏺ࢆᾘࡋཤࡿ࡞ࡾࣛࢹ࢝ࣝ࡞㆟ㄽ ࢆᒎ㛤ࡋࡓࠋ୍᪉࡛ඛ㏙ࡢࠕṧ㓞ࡉⱞ③ࡢῶᑡࠖ࠸ࡗࡓேඹ㏻ࡍࡿ౯್ឤッ࠼ࠊࡲࡓ᪉࡛ ᇽࠎRortyࡢពࡍࡿࠕ⮬ᩥ୰ᚰ⩏ࠖ(1991)ࢆㄽࡌ࡚࠾ࡾࠊ୍ᴫ┦ᑐㄽ⪅ࡶᬑ㐢⩏⪅ࡔࡶ ┳ࡋ㞴࠸ࠋࡓࡔࡋᮏㄽᩥࡢ❧ሙࡽࡍࡿ࡞ࡽࡤࠊࡸࡣࡾRortyࡶྠࡌࡃࠊே㢮ࡢᩥࡸ౯್ࢆ㏙ࡿୖ ࡛ࠊ᰿※ⓗᣐࡗ࡚❧ࡘࡇࡀ࡛ࡁࡿࡇࢁࢆ㏣ồࡋࡓࡋ࡚ࠊᬑ㐢⩏⪅࡛࠶ࡿ⪃࠼ࡓ࠸ࠋ↓ㄽࡇ ࡲ࡛⠊ᅖࢆᣑࡆࡿ࡞ࡽࡤࠊゝㄒࡢពᛶࡣ㝿㝈ࡀ࡞࠸ࠋࡋࡋᡃࠎࡣࠊ᪥ᖖࡢゝㄒࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ࠾࠸࡚ࠊࣁࣥࣉࢸ࣮࣭ࢲࣥࣉ ࢸ࣮ࡢࡼ࠺ゝㄒࡢ⊂ᡃㄽࡢࡳࢆᙇࡋࠊࣜࢫࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡀᡂࡾ❧ࡓ࡞࠸ࡼ࠺࡞ࢣ࣮ࢫ㐼㐝ࡍࡿࡇࡣࡲࡎ࠶ࡾᚓ࡞ ࠸ࠋゝ࠸㛫㐪࠸ࡸᩥἲୖࡢഛࠊࡑࡢࡢ㜼ᐖせᅉࢆከศྵࡴࡶ㛵ࢃࡽࡎࠊヰࡋᡭࡀᐃࡍࡿࠕ➨୍ࡢពࠖࡣཷࡅᡭ୍⯡ⓗࡣఏ ࢃࡗ࡚࠸ࡿࡢ࡛࠶ࡿࠋࡑࡢ⌮⏤ࡣDavidsonࡼࡿ࡞ࡽヰࡋᡭཷࡅᡭࡢᙜᗙ⌮ㄽࡢᩡᡂຌࡋ࡚࠸ࡿࡽ࡛࠶ࡾࠊᐶᐜࡢཎ๎ࡀാࡃࡇ ࡛Ꮠ⩏ⓗ࡞ព࠾ࡅࡿࠕഛࠖࡣゎᾘࡉࢀ࡚࠸ࡿࡽ࡛࠶ࡿࠋ࡞࠾ᐶᐜࡢཎ๎ࡘ࠸࡚ࡣࠊࡑࢀ⮬యࡀ⣬㠃ࢆᨵࡵ࡚ㄽࡎࡿࡁෆᐜ࡛࠶ ࡾࠊࡇࡇ࡛ࡣᣦࡢࡳ␃ࡵࡊࡿࢆᚓ࡞࠸ࡀࠊ୍ぢࡍࡿࠊ⪺ࡁᡭࡢࠕၿពࠖࡸࠕ࣎ࣛࣥࢱ࣮ࣜ⢭⚄ࠖጤࡡࡿࡔࡅࡢࡼ࠺࡞ࠊ⬤ᙅ࡞ࡶࡢ ぢ࠼ࡿࡶࡋࢀ࡞࠸ࠋࡋࡋ࡞ࡀࡽࠊࡇࢀࡇࡑࡀ᪥ᖖࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡢᐇែ࡛࠶ࡾࠊࡾࢃࡅᏐ⩏ୖࡢഛࡀΰධࡋ᫆࠸➨ゝㄒ ࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ࠾࠸࡚ࡣࠊᐶᐜࡢཎ๎ࡁࡃ౫Ꮡࡍࡿࡇࡣࡴࡋࢁᡓ␎ⓗṇࡋ࠸ࠋࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ࠾ࡅࡿࡸࡾྲྀࡾ࠾࠸ ࡚ࠊࡑࡇఱࡢពᅗࡶ࡞࠸ᐃࡍࡿࡢࡣࡲࡎ⪃࠼ࡽࢀ࡞࠸ࡇ࡛࠶ࡾࠊヰࡋᡭࡣࠕఱࠖࢆఏ࠼ࡓ࠸ࡢࡔࢁ࠺⪺ࡁᡭࡀᐃࡍࡿࡇࡣ ᐇ⮬↛࡞ࡇ࡛࠶ࡾࠊࡑࡢពᅗࢆࠕఱࡋ࡚ࠖ䬦ࡳྲྀࡗ࡚࠶ࡆࡓ࠸⪃࠼ࡿࡇࡶࡲࡓ⮬↛࡞ឤ࡛ࡣ࡞ࢁ࠺ࠋࡇࢀࡣྛಶேࡢᛶ ᱁ୖࡢၥ㢟࡛ࡣ࡞ࡃࠊࡼࡾᇶᗏ㒊࠾ࡅࡿࠊ࡚ࡢື≀ᇶᮏⓗഛࢃࡿࠕ⩦ᛶࠖࡋ࡚ᐃࡋ࡚ࡼ࠸ྍ⬟ᛶࡀ࠶ࡿࠋ −41− 5 山中 司 ⌮ᕤᏛ◊✲ᡤ⣖せ ࢀࡣࠊᇶ♏࡙ࡅ⩏ࢆᚭᗏⓗ᎘࠺Rortyࡀ㐍ࢇ࡛ཷࡅᐜࢀࡿࡶࡢ࡛ࡣ࡞࠸ࡶࡋࢀ࡞࠸ࡀ2ࠊᮏㄽᩥࡣࠊ ⌮ㄽⓗ࡞ᇶ♏࡙ࡅࡋ࡚ᬑ㐢⩏ࢆᥐᐃࡋࡓ࠸ࡢ࡛ࡣ࡞ࡃࠊࡉࡽࡑࡢ๓ẁ㝵ࡋ࡚ࡢࠊࡍ࡞ࢃࡕࠕ ヰࠖࢆ⥅⥆ࡉࡏࡿࡓࡵࡢᅵተࡋ࡚ࡢࠕඹ㏻⌮ゎࠖ࠸࠺ព࡛ࡢᬑ㐢⩏ࢆᐃࡋ࡚࠸ࡿࠋ ࡋࡋఱࡼࡾࡶࠊᮏㄽᩥࡀᬑ㐢⩏ࡢഃ䬦ࡳࡋࡓ࠸᭱ࡢ⌮⏤ࡣࠊㄗゎࢆᢎ▱࡛㏙ࡿ࡞ࡽࡤࠊࡑ ࡢ᪉ࡀ⌮ㄽୖࠕ㒔ྜࡀⰋ࠸ࡽࠖ࡞ࡽ࡞࠸ࠋ࡞࠾ࡇࢀࡣࠊᚋ㆟ㄽࡍࡿࠊࣉࣛࢢ࣐ࢸࢬ࣒ࡢ⪃࠼ ἢࡗࡓゝ࠸᪉ࢆ࠶࠼࡚ࡋ࡚࠸ࡿࡢ࡛࠶ࡾࠊࡇࡢ⾲⌧ࡣពᅗࡀ࠶ࡿࠋ┦ᑐ⩏ࠊࡶࡋࡃࡣᬑ㐢⩏ ࠸࠺ࡢࡣࠊ࠶ࡃࡲ࡛ᴫᛕ㛫ࡢၥ㢟࡛࠶ࡾࠊ⌮ㄽⓗ࡞Ỵ╔ࡀ┤ࡕఱ㔜࡞ኚࢆ⌧ᐇୡ⏺ᘬࡁ ㉳ࡇࡍࢃࡅ࡛ࡣ࡞࠸ࠋࡑ࠺࡛࠶ࡿ࡞ࡽࡤࠊ⚾ࡓࡕࡢ⏕άࡗ࡚ࠊࡼࡾⰋ࠸⤖ᯝࢆᑟࡃࡼ࠺࡞⪃࠼ࡸゎ 㔘䬦ࡳࡋࠊࡑࢀࡼࡿࠕዲࡲࡋ࠸ࠖᙳ㡪ࢆாཷࡋࡓ᪉ࡀࠊ⏕άᡓ␎ୖᚓ⟇࡛ࡣ࡞࠸ࡢࠋࣉࣛࢢ࣐ࢸ ࢬ࣒ࡢⅬࡣࠊࡑࢀࡀᢳ㇟ⓗ࡞ᴫᛕࢆ᧯సࡍࡿࡇ⤊ጞࡋࡓࡾࠊ⌧≧ࢆჃ࠸ࡓࡾ႐ࢇࡔࡾࡍࡿࡔࡅ Ṇࡲࡽ࡞࠸Ⅼ࠶ࡿࠋ⌧ᐇࡑࡢࠕ⪃࠼ࠖࡀᙺ❧ࡘ࠺ࠊࡑࡢ᭷⏝ᛶࡢዴఱ࡛ホ౯ࡋࠊ㏫ゝ ࠼ࡤࡑࡢⅬࡢࡳ౯್ࢆ⨨ࡃࡢࡀࣉࣛࢢ࣐ࢸࢬ࣒࡞ࡢ࡛࠶ࡿࠋᮏㄽᩥࡢ⌮ㄽⓗᨭᰕࡣࡇࡢࣉࣛࢢ࣐ࢸ ࢬ࣒࠶ࡾࠊࡑࡢⅬ❧⬮ࡋࡓୖ࡛ࠕᬑ㐢⩏ࠖࢆᙇࡋࡓ࠸3ࠋᬑ㐢⩏ࡢ᪉ࡀࠊᡃࠎࡢ⏕άࡸ᪥ᖖ ࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࠊࡑࡋ࡚➹⪅ࡢᑓ㛛㡿ᇦ࡛࠶ࡿእᅜㄒᩍ⫱ࡗ࡚ࠕ(ࡼࡾ)ዲࡲࡋ࠸ࠖᙳ㡪ࢆࡶࡓ ࡽࡍࡇࡀᮇᚅ࡛ࡁࡿࡽࠊࡇࢀࡀ᭱ࡢ⌮⏤࡛࠶ࡿࠋ⌮ㄽⓗࠊ┦ᑐ⩏ࡢ⪃࠼ࡼࡾࡶᬑ㐢⩏ࡢ⪃ ࠼᪉ࡀඃࢀ࡚࠸ࡿุ᩿࡛ࡁࡓࡽ࡛ࡣ࡞࠸ࠋ 4.1 ࠕṧ㓞ࡉⱞ③ࡢῶᑡࠖࡽࠕᕼᮃࠖ ゝㄒㄽⓗࠕᬑ㐢⩏ࠖࡢྍ⬟ᛶࠊ༶ࡕேࠎࡀศࡾྜ࠺ࡍࡿࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡢྍ⬟ᛶࢆ㏣ồࡍ ࡿ࠶ࡓࡾࠊࡇࡢ㆟ㄽᴟࡵ࡚㛵㐃ᛶࢆᣢࡘ࡛࠶ࢁ࠺ᛮࢃࢀࡿㄽⅬࡀRortyࡢࠕṧ㓞ࡉⱞ③ࡢῶᑡࠖ ࡛࠶ࡾࠊDavidsonࡢࠕᐶᐜࡢཎ๎࡛ࠖ࠶ࡿࠋࠕᐶᐜࡢཎ๎ࠖࡘ࠸࡚ࡣᣦࡢࡳࡵࠊ⣬㠃ࢆᨵࡵ࡚ ㄽࡌࡿࡇࡋࠊ௨㝆࡛ࡣࠕṧ㓞ࡉⱞ③ࡢῶᑡࠖࡘ࠸࡚ྲྀࡾୖࡆㄽࡌࡿࡇࡋࡓ࠸ࠋ Rortyࡣ⮬㌟ࡀ⌮ࡍࡿࠕ࣭࣮ࣜ࣋ࣛࣝࣘࢺࣆࠖ࠾࠸࡚ࠊṧ㓞ࡉⱞ③ࡀ᭱ᑠࡉࢀࡿࡇࢆᮃ ࢇ࡛࠸ࡿࠋࡇࢀࡣRortyࡀㄽࡎࡿࠕබࠖࠕ⚾ࠖࡢ༊ู࠾ࡅࡿࠕබࠖࡢ⠊࡛ࡢ㆟ㄽ࡛࠶ࡾࠊேࠎࡀඹ ㏻ࡋ࡚┠ᣦࡍࡶࡢࡋ࡚ᥖࡆࡓ┠ᶆ࡛࠶ࡿࠋ㈡(2006)ࡀ⧳ࡵࡿࡼ࠺ࠊࠕ≀ㄒࠖࡢࢪࣕࣥࣝࡼࡿ⾲⌧ ᡭẁࡀᥥࡁฟࡋࠊ࿌Ⓨࡍࡿࡢࡣࡲࡉேࡀࠕṧ㓞ࡉࠖࠕⱞ③ࠖࢆཷࡅ࡚࠸ࡿᵝᏊ࡛࠶ࡾࠊࡇࢀࡽ ࡢឤཷᛶࡇࡑࡀࠕ㐃ᖏࠖࡢ⠊ᅖࢆᣑࡆࡿࡓࡵࡢ㘽࡞ࡿRortyࡣ⪃࠼ࡿࡢ࡛࠶ࡿࠋ ↓ㄽࡇࡢᣦࡣጇᙜ࡛࠶ࡾࠊㄽࡍࡁෆᐜ࡛ࡶ࡞࠸ࠋࡋࡋ࡞ࡀࡽࠊ➹⪅ࢆྵࡴ᪥ᮏே࡛࠶ࡿᡃࠎ 2 Rorty⮬㌟ࠊ┦ᑐ⩏ࡸ㠀ྜ⌮⩏ࡘ࠸࡚᎘ࡋ࡚࠾ࡾࠊࠕࡑࢀ⮬యࡢ༊ูࡀ௦㐜ࢀ࡛Ẽࡢ࡞࠸㐨ල❧࡚ࠖ㏙࡚࠸ࡿࠋᮏㄽᩥ ࡣࡇ࠺ࡋࡓᢈุࡶᢎ▱ࡋࡘࡘࡶࠊ࠶ࡃࡲ࡛ࠕᬑ㐢⩏ࠖࠕ┦ᑐ⩏ࠖࢆᑐ❧ⓗㄽࡌࡿࡇ࡛ࠊࡑࡇࡽぢ࠼ࡿࡶࡢࢆㄽࡌ࡚ࡳࡓ࠸⪃ ࠼ࡿࠋ 3 ࠕࣉࣛࢢ࣐ࢸࢬ࣒ࡣࠊࡘ࡚Peirce([1878] 1992: 132)ࡼࡗ࡚ࡑࡢཎᆺࡀ♧ࡉࢀࡓࡶࡢ࡛࠶ࡾࠊࡲࡓJames(1907)ࡼࡗ୍࡚ࡘࡢ᪉ἲㄽ ࡋ࡚ᐃ⩏ࡉࢀࡓࡶࡢ࡛࠶ࡿࠋ20ୡ⣖ࡢ࣓ࣜ࢝ဴᏛࡢ᰿ᖿࢆ࡞ࡍࡼ࠺࡞ࡗࡓࣉࣛࢢ࣐ࢸࢬ࣒ࡣࠊᚋRortyࡼࡗ࡚ࣛࢹ࢝ࣝ࡞㐍 ᙧࠊࠕࢿ࣭࢜ࣉࣛࢢ࣐ࢸࢬ࣒ࠖࡋ࡚Ⓨᒎࡍࡿࡇ࡞ࡿࡀࠊࡇࡇࡣᚑ᮶ࡢ⛉Ꮫ᪉ἲㄽᑐࡍࡿᚭᗏࡋࡓỴูࡢែᗘࡀぢ࡚ྲྀࢀࡿࠋ ࣉࣛࢢ࣐ࢸࢬ࣒ࡣࠊ࣓ࣜ࢝ࡢṔྐ࣭ᩥࢆ㈏ࡃ୍ࡘࡢᛮయ⣔࡛࠶ࡾࠊဴᏛ࡛࠶ࡿࠋࡇࢀࡣ↓ㄽ⡆༢ㄽࡌࡽࢀࡿ㢮ࡢࡶࡢ࡛ࡣ࡞ ࠸ࠋPierceࡢᐃ⩏ጞࡲࡾࠊJamesࡢၥ㢟ゎỴࡢ╔┠ࠊࡑࡋ࡚Deweyࡢලయⓗ࡞ᩍ⫱ࡢᛂ⏝⮳ࡿࡲ࡛ࠊࡇࢀࡽ୍㈏ࡍࡿࡢࡣࠊࣉࣛࢢ ࣐ࢸࢬ࣒ࡢᚭᗏࡋࡓ⌧ᐇࡸᐇ㊶ࡢ╔┠࡛࠶ࡿࠋDeweyࡸࠊᚋRortyࡶᣦࡍࡿࡼ࠺ࠊすὒဴᏛࡀ⌧ᐇࡸᐇ㊶ࢆ㍍どࡍࡿࡢࡣࠊఱࡶᐈ ほ⛉Ꮫࡀ㝯┒ࢆࡗࡓ㏆௦௨㝆ࡢヰ࡛ࡣ࡞࠸ࠋྂ௦ࢠࣜࢩဴᏛ௨᮶ࠊඖㄽⓗ࡞ୡ⏺ほࡣࠊ⫗యᑐࡍࡿ⢭⚄ࡢඃ㉺ࠊ࠶ࡿ࠸ࡣࡑࡢ≉ᶒ ᛶࢆᬯ㯲ࡢ࠺ࡕࡋ࡚ࡁࡓṔྐࢆᙧᡂࡋࡓࠋࡇ࠺ࡋࡓ౯್ほ␗㆟⏦ࡋ❧࡚ࢆ⾜࠺ࡢࡀᛮࡋ࡚ࡢࣉࣛࢢ࣐ࢸࢬ࣒࡛࠶ࡾࠊᐇ㊶ᐙ ࡋ࡚ࡢࣉࣛࢢ࣐ࢸࢫࢺ㐩࡛࠶ࡿࠋ࡞ࡐࣉࣛࢢ࣐ࢸࢬ࣒ࡀ⌧ᐇୡ⏺ࡸᐇ㊶ࡑࡢព⩏ࢆㄆࡵࡼ࠺ࡍࡿࠊࡑࡢ⌮⏤ࡣ⌧ᐇ♫ࠕᙺ ❧ࡘࠖࡓࡵࡣࠊᐇ㊶άࡉࢀࡿࡇࡇࡑ᭱ࡶពࡀ࠶ࡿ⪃࠼ࡿࡽ࡞ࡽ࡞࠸ࠋᙼࡽࡢၥ㢟ព㆑ࡢ᰿ᗏࡣ⛉Ꮫࡀᣢࡘㄆ㆑ㄽⓗ ࡞⊃ࡉࡀ࠶ࡿࠋᡃࠎࡢ᪥ᖖୡ⏺࡛ࡣࠊ௬࠶ࡿಙᛕ☜ಙࡀᣢ࡚࡞ࡃ࡚ࡶࠊPeirceࡀ࠸࠺ࣈࢲࢡࢩࣙࣥࡼࡿ᥎ㄽ࡛✚ᴟⓗ௬ㄝࢆᵓ⠏ ࡋࠊヨ⾜㘒ㄗࡋ࡞ࡀࡽ⮬ࡽࡢ▱ࢆᣑࡋ࡚࠸ࡿࠋ⌧ᐇୡ⏺ࡼࡾࡼࡃᑐฎࡍࡿࡓࡵࡣࠊࡇ࠺ࡋࡓᶍ⣴ⓗ࡞ᐇ㊶ࢆ⥅⥆ࡋࡼ࠺ࡍࡿࡑࡢែ ᗘࡇࡑࡀఱࡼࡾࡶ㔜せ࡛࠶ࡾࠊṇྰࡢᐃࢆᚅࡘࡇ࡛ࡣ࡞࠸ࠋ⤯ᑐⓗ࡞ࡶࡢࠊ⛉Ꮫⓗ࡞ࡶࡢࡼࡿ୍ぢືࡋࡀࡓࡃᛮ࠼ࡿ┿⌮ࡣࡴࡋࢁ ⚾ࡓࡕࡢ⮬⏤࡞⪃࠼ࡸ⾜ືࢆጉࡆࠊ❓ᒅࡉࡏ࡚ࡋࡲ࠺ࠋࡋࡋ⚾ࡓࡕࡢㄆ㆑ࡸ⾜ືࡣࠊ⛉Ꮫࡢᯟࢆ㉸࠼ฟࡿࡢ࡛࠶ࡿ(James 1956: 509)ࠋࠖᒣ୰(2015) −42− 6 言語コミュニケーション論における「希望学」̶「分かり合う」ことは可能か ⌮ᕤᏛ◊✲ᡤ⣖せ ࡗ࡚ࠊ♫⎔ቃࡸᨻ≧ἣࡶ␗࡞ࡿ୰࡛ࠊࡇ࠺ࡋࡓࠕṧ㓞ࡉⱞ③ࡢῶᑡࠖࡀඹ㏻ࡢฟⓎⅬࡋ࡚ ㄆ㆑ࡋ᫆࠸࠸࠼ࡤ㞴ࡋ࠸ࡢ࡛ࡣ࡞࠸ࡔࢁ࠺ࠋ ࡇࢀࡣ᪥ᮏࡀᖹࢆாཷࡋࠊ ῝้࡞ᑐ❧ࡸடࢆ ࠕබࠖ ࡢ࡛ࣞ࣋ࣝ⏕ࢇ࡛࠸࡞࠸ドᕥ࡞ࡢ࡛࠶ࢁ࠺ࡀࠊࡇ࠺ࡋࡓࢿ࢞ࢸࣈ࡞せ⣲ࢆ㝖ࡍࡿࡇࢁࡽ㆟ㄽࢆ ጞࡵࡿࡇᑐࡋ࡚ࠊ㐪ឤࢆឤࡌࡊࡿࢆᚓ࡞࠸ࠋࡲࡓᩥ⬦ࡣ␗࡞ࡿࡀࠊRorty(1991)ࡀ⮬㌟ࡢ❧ሙࡋ ࡚᫂ゝࡍࡿࡇࢁࡢࠊ”Postmodernist Bourgeois Liberalism”࠸࠺ࢫࢱࣥࢫࡶࠊᑡ࡞ࡃࡶ᪥ᮏ♫࡛ࡣ┤ ࡕཷࡅᐜࢀࡽࢀࡿࡶࡢ࡛ࡣ࡞࠸ࡔࢁ࠺ࠋࡋࡓࡀࡗ࡚ᮏㄽᩥࡣࠊRortyࡀࡇ࠺ࡋࡓேࠎࡢ᰿ᗏ࠶ࡿඹ᭷ ࡛ࡁࡿ౯್ほッ࠼ࠊ㐃ᖏࡢ⠊ᅖࢆᣑᙇࡋࡼ࠺ࡍࡿྲྀࡾ⤌ࡳᑐࡋ࡚♧၀ࢆཷࡅࡿࡶࡢࡋࠊ(࠶ࡿព ࡛ࠕ᥍࠼┠ࠖ࡞)ࠕṧ㓞ࡉⱞ③ࡢῶᑡࠖኚࢃࡿ✚ᴟⓗ࡞㘽ᴫᛕࢆᥦ♧ࡋࡓ࠸ࠋࡑࢀࡀࠕᕼᮃࠖࡢᬑ 㐢ᛶ࡛࠶ࡿ4ࠋ 4.2 ࠕᕼᮃࠖࢆᥖࡆࡿ⌮⏤ ᕼᮃࢆㄽࡌࡿඛ⾜◊✲ࡋ࡚ࠊ⋞⏣(2009)ࡽࡀጞࡋࡓࠕᕼᮃᏛࠖࡀ࠶ࡿࠋᮏㄽᩥࡣࡇࡢᕼᮃᏛࡢ ᪂ࡓ࡞ഃ㠃ࡋ࡚ࠊᕼᮃࣉࣛࢢ࣐ࢸࢬ࣒ࡢ᥋Ⅼࡘ࠸࡚ㄽࡌࡓ࠸ࠋ⋞⏣ࡼࡿᕼᮃᏛ࡛ࡣࠊ ࠕᕼᮃࠖࠕᴦほ⩏ࠖࢆ୪ิㄽࡿ➼ࡢ⌮ㄽⓗ⪃ᐹࡣヨࡳࡽࢀ࡚࠸ࡿࡼ࠺࡛࠶ࡿࡀࠊᮏどⅬࡘ࠸࡚ ࡣྲྀࡾୖࡆࡽࢀ࡚࠸࡞࠸ࡼ࠺࡛࠶ࡾࠊࡴࡋࢁࡇࡢⅬࡀࠊᙼࡽࡀㄽࡌࡿᕼᮃᏛࡢࠕ(ᮇᚅ㸭ほᛕࡋ࡚ࡢ)ᕼ ᮃࠖࠕ(ᕼᮃ㏆࡙ࡃࡓࡵ㸭ᐇ⌧ࡍࡿࡓࡵࡢ)⾜ື㸭⾜Ⅽࠖࢆ⧅ࡄ᰾ᚰ࡛࠶ࡿᮏㄽᩥࡣ⪃࠼ࡿࡢ࡛࠶ ࡿࠋ ᕼᮃᏛࡣࠊ”Hope is a wish for something to come true by action”(2009: xvi)ᐃ⩏ࡋ࡚࠸ࡿࠋࡇࢀࡣࠊᕼᮃ ࡀ༢ࠊῐ࠸ᮇᚅࡸክࡣ␗࡞ࡾࠊᐇ♫᥋Ⅼࢆᣢࡕࠊୡ⏺ࡢኚ㠉ࡸࡑࡢ᪉ྥᛶࢆලయⓗᣦࡋ♧ࡍ ࡶࡢ࡛࠶ࡾࠊࡑࡢࡓࡵࡣࠕ⾜ືࠖࡸࠕᐇ⌧ࡉࡏࡿࡇࠖࡀྠ㔜せ࡛࠶ࡿࡇࢆពࡋ࡚࠸ࡿࠋࡓ ࡔᮇᚅࡍࡿࡔࡅ࡛ࡣࠊࡓࡔჃࡃࡔࡅ⤊Ṇࡋࡓࡉࢀࡿࡘ࡚ࡢࠕ࣏ࢫࢺࣔࢲࣥ(ࣥࢳࣔࢲࣥ)ࠖࡢᢈ ุࡋ࡚ኚࢃࡽ࡞࠸ࠋᕼᮃࡣఱࡽࡢᙧ࡛ࠕ⾜Ⅽࠖࢆక࠺ᚲせࡀ࠶ࡾࠊࡑࢀࡇࡑࡀࠊክࡢỴᐃ ⓗ࡞ᕪ␗࡛࠶ࢁ࠺ࠋࡇࡢⅬࡽぢࡓሙྜࠊ⌧ᐇࡢ⾜Ⅽࡑࡢ⤖ᯝࡀᘬࡁ㉳ࡇࡍ᭷⏝ᛶ᭱ࡢព⩏ࢆぢ ฟࡍࠕࣉࣛࢢ࣐ࢸࢬ࣒ࠖࡢဴᏛᑐࡋࠊᕼᮃᏛࡣ✚ᴟⓗ࡞ඹ㬆ࢆ♧ࡋࠊ⌮ㄽⓗ࡞㔜࡞ࡾ࠸ගࢆ ᙜ࡚ࡿࡁ࡛ࡣ࡞࠸ࡔࢁ࠺ࠋ ࡉࡽᕼᮃࡣࠊேࠎࡢ⾜ືࠕ๓ྥࡁ࡞ࠖࠊ༶ࡕ⫯ᐃⓗ࡛✚ᴟⓗ࡞ពࢆࡍࡿࡇࡣ࠸ࡀ ࡞࠸ࡶࡢᛮࢃࢀࡿࠋࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥ࠾࠸࡚ࡶࡋࡾࠊேࠎࡀ᰿ᮏⓗศࡾྜ࠼ࡿࡋࠊࡑࡢ ᐇ⌧ࡢࡓࡵࠊດຊࢆᝰࡋࡲࡎࠊヰࢆ⥅⥆ࡋࠊ㐃ᖏࡢ⠊ᅖࡢᣑᙇࡍࡿࠕᕼᮃࠖࢆᣢࡘࡇࡇࡑࠊ✲ᴟ ⓗ࡞ព࡛ࡢᬑ㐢⩏ࢆ(࠸ࡘ)ྍ⬟ࡋࠊྠࠊᕼᮃᏛࢆᐇ㊶ࡍࡿࡇࡣ࡞ࡽ࡞࠸ࡔࢁ࠺ࠋ 㸳 ࠾ࢃࡾ: ࣃࣥࢻࣛࡢ⟽ࡢ୰ࡢࠕᕼᮃࠖ ࠕᕼᮃᏛࠖࡢ㆟ㄽࡋ࡚ྲྀࡾୖࡆࠊゎ㔘ࢆヨࡳࡿᚲせࡀ࠶ࡿᛮࢃࢀࡿㄽⅬࠕࣃࣥࢻࣛࡢ⟽ࠖࡢ⚄ ヰࡀ࠶ࡿࠋࣃࣥࢻࣛࡢ⟽᭱ᚋࡲ࡛ṧࡉࢀࠊྲྀࡾฟࡉࢀ࡞ࡗࡓࡉࢀࡿࠕᕼᮃ࡛ࠖ࠶ࡿࡀࠊࡇࡢゎ㔘 ࡘ࠸࡚ࡣ✀ࠎᵝࠎ࡞ぢゎࡀᥦ♧ࡉࢀ࡚࠸ࡿࡼ࠺࡛࠶ࡿࠋࡑࡶࡑࡶ⚄ヰࡸ᫇ヰࡣከ⩏ᛶࡀ࠶ࡾࠊࡑࡇ ᩍカࡸ♧၀ࡀྵࡲࢀ࡚࠸ࡿࡓࡵ୍⩏ⓗ࡞ぢ᪉ࡣࡴࡋࢁ࡛ࡣ࡞࠸ࡶ࠸࠼ࡿࠋࡋࡋࠊ࠸ࡎࢀࡏ ࡼୡ⏺୰⅏⚝ࡀᘏࡋࡓࡉࢀࡿ≀ㄒࡢᩥ⬦࠾࠸࡚ࠊ၏୍ᡃࠎࡢഃṧࡉࢀࡓࡉࢀࡿࠕᕼᮃࠖࠊ ே㢮ࡣఱࢆぢࢀࡤⰋ࠸ࡢࡔࢁ࠺ࠋ ࡞࠾ࠊ5RUW\⮬㌟ࠊ⮬ࡽࢆࠕᕼᮃࡢඪὴ࡛ࠖ࠶ࡿᐉゝࡋ࡚࠾ࡾࠊࠕ࣮ࣘࢺࣆࠖࡸࠕ㐃ᖏࠖ࠸ࡗࡓࣉࣛࢫ㠃ࢆ┠ᣦࡋ࡚࠸ࡓ㈡ ࠋᮏㄽᩥࡣࠊࡴࡋࢁࡇࡢࣉࣛࢫࡢഃ㠃ࢆ㠃ᢲࡋฟࡋࠊᬑ㐢ⓗᴫᛕࡋ࡚ࡢࠕᕼᮃࠖࢆ㏣ồࡋࡓ࠸ࡢ࡛࠶ࡿࠋ −43− 7 山中 司 ⌮ᕤᏛ◊✲ᡤ⣖せ ࡇࡢୡࡢᖾࠊྜ⌮ࠊࣥࣇ࢙ࢿࢫࡘ࠸࡚ࡣࠊྂ௦ࡽ⌧௦ࡲ࡛ࠊ࡚ࡢಶேࡀ⤒㦂ࡋࠊ㎞ⱞ ࢆ✺ࡁࡅࡽࢀ࡚ࡁࡓ࠸࠼ࡼ࠺ࠋฟ⏕ࠊᐙ᪘ࠊぶࡋ࠸⪅ࡢู㞳ࡲ࡛ࠊᡃࠎࡣ㑅ࡪࡇࡀ࡛ࡁ࡞࠸ࡋࠊ ᖾࡏᖾࡏࡢྜࡣỴࡋ࡚ᖹ➼࡛ࡣ࡞࠸ࠋࠕ࠺ࡋ࡚⮬ศࡔࡅ͐ࠖᕫࡢ㐠ࢆჃࡃࡇࡣㄡࡶ⤒ 㦂ࡀ࠶ࡿࡇ࡛ࡣ࡞࠸ࡔࢁ࠺ࠋࡑࡋ࡚ࡇ࠺ࡋࡓ㎞ࡃࠊᝒࡋ࠸ୡࡢ୰ࡣࠊಶࠎࡢே⏕ࡀ⥆ࡃ㝈ࡾࠊṧᛕ ࡞ࡀࡽ⥅⥆ⓗ㉳ࡇࡾ⥆ࡅࡿࠋࡇࢀࡽ㉳ࡇࡿ࡛࠶ࢁ࠺⅏⚝⮬ศࡣ⪏࠼ࡽࢀࡿࡢࡔࢁ࠺ࠋࡇࢇ࡞ୡ ࡢ୰⏕ࡁ࡚࠸ࡿࡃࡽ࠸࡞ࡽࠊ᪩࠸ࡇࢁࢆ⤯ࡗࡓ᪉ࡀྜ⌮ⓗࠕṇࡋ࠸ࠖࡢ࡛ࡣ࡞࠸ࡢࡉ࠼ᛮ ࠼࡚ࡃࡿࠋࣃࣥࢻࣛࡢ⟽ࡢ≀ㄒࡀࠊ⌧௦ࡢ≀ㄒ࡛ࡶ࠶ࡿࡇࡣ࠶ࡲࡾࡶ᫂ࡽ࡛࠶ࡿࠋ ࡋࡋே㢮ࡣࠕᕼᮃࠖࡀ࠶ࡿࠋࡇࢀࡣዲពⓗゎ㔘ࡍࢀࡤࠊࢇ࡞㏫ቃࡶࡵࡆࡎ๓ྥࡁ⏕ࡁ࡚ ࠸ࡃே㢮ࡢ㏾ࡋࡉ࡛࠶ࡾࠊ ⌧ᕼᮃࢆᣢࡕ⥆ࡅࡿࡇ࡛ࡑࢀࡀྔ࠺ࡇࡶ⛥ࡣ㉳ࡇࡿࠋ ࡋࡓࡀࡗ࡚ᡃࠎ ࡣᕼᮃࢆᤞ࡚ࡿࡁ࡛ࡣ࡞࠸ࡍࡿ⪃࠼᪉ࡔࠋࡋࡋࡇࢀࡣูࡢゎ㔘ࡶ࡛ࡁࡿࠋᖾࡶே㢮ࡀࠕᕼ ᮃࠖࢆᣢࡗ࡚ࡋࡲࡗࡓࡀࡓࡵࠊูࡢゝ࠸᪉ࢆࡍࢀࡤࠕᕼᮃࠖࢆᤞ࡚ࡁࢀ࡞࠸ࡓࡵࠊࡇࢇ࡞㎞ࡃᝒࡋ ࠸ୡࡢ୰࡛ࡉ࠼ࡶ⏕ࡁ⥆ࡅ࡚ࡋࡲࡗ࡚࠸ࡿࡍࡿぢ᪉࡛࠶ࡿࠋࡇࡇ࡛ࡇࡢࡕࡽࡢゎ㔘ࡀࡼࡾṇ⤫࡛࠶ ࡿࡢࢆ㆟ㄽࡍࡿࡘࡶࡾࡣ࡞࠸ࡀࠊࣃࣥࢻࣛࡢ⟽ࡢ⚄ヰࡀඹ㏻♧ࡋ࡚࠸ࡿࡇࡣࠊே㢮ࡣ᰿※ⓗࠕࡉ ࡉࡸ࡞ᕼᮃࠖࢆᣢࡕ⥆ࡅࡿᏑᅾ࡛࠶ࡿ࠸࠺ࡇ࡛࠶ࡿࠋࡇࢀࡀᖾᖾࠊྜྷฟࡿปฟࡿ ㄡࡶุ᩿࡛ࡁࡿࡶࡢ࡛ࡣ࡞࠸ࡋࠊ࠺ࡸࡽே㢮ࡣᖖࡑࡢࡼ࠺࡞ຌⓗ࡞ぢᆅࡽࡢࡳ≀ࢆ⪃࠼࡚࠸ ࡿᏑᅾ࡛ࡣ࡞ࡉࡑ࠺࡛࠶ࡿࠋ ࠕᕼᮃࠖࢆࠕᣢࡗ࡚ࡋࡲ࠺ࠖࡇࡀᡃࠎඹ㏻ࡢࠕ⩦ᛶ࡛ࠖ࠶ࡿࡍࡿ࡞ࡽࡤࠊᐇࡣࠕⱞ③ࢆῶᑡࡉࡏ ࡿࡇࠖྠࡌࡼ࠺ࠊே㢮ࡀඹ㏻ᣢࡕࠊ㐃ᖏࢆࡧࡅࡽࢀࡿᣐࡾᡤ࡞ࡿࡢࡶࡋࢀ࡞࠸ࠋ⣲ᮔ ⪃࠼࡚ࠊே㢮ࡀᕼᮃࢆᣢࡘࡇࡣỴࡋ࡚ᝏ࠸ࡇ࡛ࡣ࡞࠸ࠋࠕᕼᮃᏛࠖࡣỴࡋ࡚ᥗࡳᡤࡢ࡞࠸᰿↓ ࡋⲡ➼࡛ࡣ࡞ࡃࠊពእࡶࠊࡢࢇ࡞Ꮫၥࡼࡾࡶ᰿※ⓗ࡞ᇶ┙ࢆᣢࡗࡓࠊே㢮ࡢ᪂ࡓ࡞ࠕ❧ࡕ⨨ࠖ ࡞ࡢࡶࡋࢀ࡞࠸ࠋୡ⏺୰ࡢཿᬛࢆ㞟ࡵࠊ㆟ㄽࡀ⥅⥆ࡉࢀࡿࡇࢆ㢪ࡗ࡚ࡸࡲ࡞࠸ࠋ ཧ⪃ᩥ⊩ Davidson, D. (1984) Inquiries into Truth and Interpretation, Oxford University Press. Davidson, D. (2006) "A Nice Derangement of Epitaphs,” 1986, in The Essential Davidson, edited by Ernie Lepore and Kirk Ludwig, New York: Oxford University Press, pp.251-265. Deutscher, G. (2010) Through the Language Glass: Why the World Looks Different in Other Languages. New York: Metropolitan Books. James, W. (1907) Pragmatism: A new name for some old ways of thinking. New York: Longman Green and Co. Kuhn, T.S. (1962) The Structure of Scientific Revolutions, Chicago: The University of Chicago Press. Peirce, C.S. (1992) “How to Make Our Ideas Clear,” 1878, in The Essential Peirce: Selected Philosophical Writings, Volume 1 (1867-1893). Ed. by Nathan Houser and Christian Kloesel, Bloomington: Indiana University Press. Quine, W.V.O. (1960) Word and Object. Cambridge, MA: MIT Press. Quine, W.V.O. (1951) “Two Dogmas of Empiricism” in The Philosophical Review, Volume 60, No. 1. pp. 20-43. Rorty, R. (1979) Philosophy and the Mirror of Nature, Princeton University Press. Rorty, R. (1991) Objectivity, Relativism, and Truth: Philosophical Papers, volume 1. Cambridge: Cambridge University Press. ㈡♸ᶞ (2006) ࠕṧ㓞ࡉⱞ③ࡢῶᑡࠖࠗ♫Ꮫ◊ㄽ㞟࠘Vol. 7ࠊ᪩✄⏣ᏛᏛ㝔 ♫⛉Ꮫ◊✲⛉ ⋞⏣᭷ྐ⦅ (2009) ࠗᕼᮃᏛ1: ᕼᮃࢆㄒࡿ࠘ᮾிᏛฟ∧ ᡞ⏣ᒣஂ (2002) ࠕ┿⌮᮲௳ⓗពㄽ᳨ド᮲௳ⓗពㄽࠖࠗゝㄒဴᏛࢆᏛࡪேࡢࡓࡵ࠘㔝ᮏᖾ⦅ࠊୡ⏺ᛮ♫ ᰗⰋኴ (2002) ࠗࣉࣛࢢ࣐ࢸࢬ࣒ᩍ⫱: ࢹ࣮ࣗࡽ࣮ࣟࢸ࠘ඵ༓௦ฟ∧ ᒣ୰ྖ (2015) ࠕᏛⱥㄒᩍ⫱࠾ࡅࡿホ౯ࡢࠕ↓ຊࠖࠕᐇ⏝ࠖ㛵ࡍࡿ୍⪃ᐹ: ㄽᩥ͆A Nice Derangement of Epitaphs͇ ࢆၥ㢟ᥦ㉳ࡋ࡚ࠖࠗ❧㤋ゝㄒᩥ◊✲࠘26ᕳ4ྕࠊ❧㤋Ꮫ ⡿Ọᨻᙪ (2002) ࠕഅ↛ᛶࡘ࠸࡚ࡢࣀ࣮ࢺ(3): R.࣮ࣟࢸࠖࠗ㮵ඣᓥᏛἲᩥᏛ㒊⣖せேᩥᏛ⛉ㄽ㞟࠘55ࠊpp.113-137 −44− 8 立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年 Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014 Formation of Forsterite Grains and Direct Observation of The Sublimation of Crystal Formation Grain Chihiro Kaito, Saito Yoshio, Chiyoe Koike Department of Physics, Fuel Cell Center , Ritsumeikan University Kusatsu,Shiga 525-8577,Japan Forsterite crystal fine grains have been produced by flushing SiO powders into the flame during MgO grain formation in mixture gas of Ar (80 %) and 02 (20 %) at 13 kPa. Experimental studies on the sublimation of forsterite grains upon heating at 10-6 Pa have been carried out using a high-resolution transmission electron microscope. The spherical crystalline grains became polyhedral at 973 K, which corresponded to the temperature at which the stall state appeared. Coalescence and sublimation occurred at 1093 K. The sublimation rates of forsterite grains with a size of 40 to 100 nm with the structure of Mg2SiO4 were estimated . The sublimation of grains near the crystallization temperature indicates the reason that no crystal silicates appear in the interstellar medium. 1.Introduction Submicron-sized silicate grains are present in the circumstellar outflows around oxygen-rich stars and within the interstellar medium. These grains may play an important role in the early evolution of the solar nebula, both as the starting material for the accumulation of planetary bodies and as the chief source of infrared opacity in the nebula. Since the estimated pressure of the solar nebula at 2-3 AU is low [ 1 ], experiments on grown metamorphism in vacuum are important for comparison with condensation, evaporation, melting and crystallization process observed in the primitive solar nebula [ 2 and 3 ]. IR spectra of red super giant (RSG), asymptotic giant branch (AGB) stars, post-AGB stars and planetary nebula (PNe) obtained by the infrared space observatory (ISO) project indicated a mixture of amorphous and crystalline silicates [ 4 and 5 ]. Spectroscopic and imaging observations of the structural and compositional properties of brown dwarf disks [ 6 ] showed that crystalline silicates are significantly more abundant in the outer part than in the deeper layers of the disk. In addition to the crystallization of amorphous grains, the reverse transformation from crystalline to amorphous species has become an important point of consideration. We demonstrated that the crystallization of amorphous Mg-bearing silicate grains to crystalline Mg2SiO4 crystal takes place at 1075 K in vacuum [ 7 ]. The crystallization starts from the grain surface. We also found that prenuclation occurs in the 923-1003 K temperature range before the onset of crystallization at 1073 K. The phenomenon of a pre-nucleation state corresponds to the stall state, which was clarified by infrared spectroscopy [ 8 ]. Specific studies on the evaporation of forsterite at 1973 K have been performed recently. It was shown that forsterite evaporated congruently both in equilibrium in H2 gas [ 1 and 3 ] and in vacuum [ 9 ]. The evaporation anisotropy of a synthetic single crystal of forsterite was investigated by high-vacuum experiments [ 10 ]. The intrinsic evaporation rates for the (100), (010) and (001) surfaces are different, and have a ratio of ~17, ~7 and 22 onȣm/hour. The evaporation rate along the c-axis is largest. The evaporation rate along the b axis is smallest due to the cross-packed direction of the MgO tetrahedron. In this paper, we report the direct observation of the sublimation of sub-micron scale, crystalline, Mg2SiO4 grains vacuum at a pressure of 10-6 Pa. The dynamic behavior of the submicron scale, crystalline, grains was recorded on videotape. −45− Chihiro Kaito, Saito Yoshio, Chiyoe Koike Fig.1. Schematic representation of method crystalline forsterite grain formation in magnetism oxidation smokes region by a tantalum boat (a).Temperature distribution daring the appearance of MgO smoke in mixtute gas of O2 and Ar(b). Fig.2. Schematic diagram of heating stages used in the present experiment in transmission electron microscope in vacuum 2. Experimental Procedure The crystalline Mg2SiO4 sample were produced by an advanced gas evaporation smoke method, i.e. ,SiO powder was flashed into a magnesium oxide flame as shown in Fig. 1(a) [ 11 ]. The sample preparation chamber was a glass cylinder of inner diameter 17 cm and height 33 cm. MgO smoke was produced by the oxidation of evaporated magnesium from the evaporation source of tantalum boat in mixture gas of O2 (20 Torr) and Ar (80 Torr) in gas pressure of 13 kPa. SiO powders were sprinkled on the smoke stream rising straight up from the evaporation source. MgO fine grains were produced by evaporating Mg powder at 1000ºC in the mixture gas. During the evaporation of Mg, the temperature in atmosphere becomes higher than the source temperature due to the exothermic reaction of Mg vapor as shown in Fig. 1(b). SiO powder sprinkled from the top of the smoke was evaporated in MgO oxidation region in Fig. 1(b). If the evaporation of Mg powder finished, the temperature becomes the general shape of gas flow temperature at 1000ºC as indicated in Fig. 1(b). The evaporation of SiO powder occurred during the oxidation of Mg. Two heating stages were used, as shown in Fig. 2. Specimen Mg2SiO4 crystal grains were placed on the tungsten heater (Fig. 2 (a)). This holder can be used to heat the specimen to 1773 K, whereas the holder shown in Fig. 2(b) can be used for heating to approximately 1073 K. The specimen was dispersed on the carbon holey film. The specimen holder in Fig. 2(b) can also be used for the method of covering the specimen with a thin carbon film [12]. The sublimation process was observed by high-resolution transmission microscopy (Hitachi H-9000 NAR) using the specimen holder in Fig.2. −46− Formation of Forsterite Grains and Direct Observation of The Sublimation of Crystal Formation Grain 3.Results and Discussion 3-1 Formation of forsterite grain One of experimental methods used to produce ultrafine growth is the gas evaporation technique. If the Mg and SiO is evaporated on the mixture gas of O2 (20 Torr) and Ar (80 Torr) from the evaporation source of tantalum boat at 1000 ºC (Mg) and 1600 ºC (SiO), the typical electron microscopic image of MgO and SiO2 were produced as shown in Fig. 3. MgO particles were cubic shape compound of 8 {100} planes. By the evaporation of SiO powder in the mixture gas, amorphous oxidation of SiO is preferentially produced beta-SiO2 amorphous spherical structure as indicated diffractions pattern. The detail formation of silicon oxide will be published elsewhere. If the SiO powder were introduced into the Mg oxidation region in smoke, the reaction between magnesium oxide and SiO water took place as indicated previous paper [ 11 ]. The heating of Mg at 1000 ºC, the reaction of Mg with oxygen gas becomes at 1600 ºC as indicated in Fig. 1. The produced particles were MgO and Mg2SiO4. The amorphous Mg2SiO4 particles were hardly produced in the present method against another method [ 7 ]. Figure 4 shows a mixture of forsterite particles indicated A (Mg2SiO4, a = 0.47553, b = 1.01978, c = 059817 nm), the same lattice constants as those in the studies on the evaporation anisotropy of single crystal forsterite (Nagahara and Ozawa, 1999) and of periclase particles (MgO indicated B) produced by dropping SiO powder into the MgO smoke flame [ 11 ]. Since the MgO flame due to the oxidation of Mg vapor reaches 1873 K [ 13 ], the SiO powder becomes SiO vapor in the flame. Figure 5 (a), (b) and (c) show the high-resolution transmission electron microscopic images of Mg2SiO4 crystal. Most of the spherical grain had a plate shape, and the crystallographic orientation is shown in the images. The electron diffraction pattern (ED) showed the single-crystal grain growth of forsterite. Fig. 3. Typical produced grains of MgO and amorphous, ș̿ SiO2 by heating in the present system. Fig. 4. Typical electron microscopic images of MgO and Mg2SiO4 crystal grains produced by the present system in Fig. 1. A and B shows Mg2SiO4 and MgO particles. −47− Chihiro Kaito, Saito Yoshio, Chiyoe Koike Fig. 5. High resolution electron microscopic image of (100), (010) and (001) direction images of Mg2SiO4 nano particles. Fig. 6. Typical image after heating using the holed in Fig. 2 (b). Spherical grains became polyhedral upon cooling in vacuum. A and B shows Mg2SiO4 and MgO particles. 3-2 The sublimation of crystal forsterite grains The morphological alteration started at 973 K. The spherical crystal indicated in Fig. 4 became polyhedral shapes as indicated in Fig. 6. This shows that the higher order crystal plane started to sublimation or be remolded. Fig. 7 shows the direct observation on the alteration process of forsterite crystal. The shape of the particle indicated by arrows A and B were altered at 973 K. The alteration of the spherical shape crystal B than the spherical shape crystal A was clearly seen. The black dots and the coagulated cubic particles indicated by arrows suggest the formation of MgO crystallites, i.e., the decomposition of Mg2SiO4 spherical particle into MgO and SiO2 took place as well as prenucleation of amorphous forsterite grains, i. e., surface decomposition is prominent above 973 K. The b and c or a axes of the forsterite crystals are appeared. This shows that the higher order crystal plane started to sublimation or be remolded. From the difference in evaporation along the a. b and c axes of the forsterite crystal [10], the (001) and (100㸧planes, with higher rates of evaporation, both evaporated. When the temperature was increased to 1103 K, which is slightly higher than the crystallization temperature of 1073 K [ 7 ], coalescence growth and sublimation were prominently observed. Figure 8 shows the process of alteration and sublimation. The convevex region indicated by the arrow in Fig.8 was flattered by the sintering process (Kimura,1960). By increasing the temperature by only about 10 K, two polyhedral grains of size 500 nm in contact were observed to coalescence, and alter shape as shown in Fig.8. The particles indicated by the arrow A altered their shapes. The blact dots seen in Fig.7 hardly observed. The sublimation of the Mg2SiO4 crystal took place congruentily, which means that the residue has the same composition as the starting material [ 1 ] . The grain indicated by arrow A sublimated −48− Formation of Forsterite Grains and Direct Observation of The Sublimation of Crystal Formation Grain and disappeared with 430 s as shown inFig.8. If we assumed that the particle size indicated by arrow A at 210 sec is a sphere with a radius of 42 nm, then the mean evaporation rate of the forsterite crystal is 2.04 x 104 molecule/sec. From the coalescence of grains at 1103 K, it was estimated that a spherical grain of 172 nm was absorbed in 810 sec by diffusion to the substrate grain. The alteration in shape suggests that this may be the result of the differences in evaporation rates along the different axes. The sublimation rate before the diffusion process merged the two grains was 3.6 x 104 molecule/sec. Figure 9 shows a grain of 100 nm radius on the top of a MgO crystal sublimated in 380 sec. The mean evaporation rate for the particle in Fig.9 i s 1.5 x 105 molecule / sec. To observe the evaporation along the [ 010 ] direction, the surface of the particles was covered with a thin carbon layer using the heating shape (b) in Fig.2 (b). The specimen grains were dispersed on holey carbon film. A typical grains covered by a thin carbon layer ( 4 nm ) is shown in Fig.10. The carbon layer was also evaporated above 973 K ( Ishikawa et al., 2003 ). The evaporation state of the forsterite along to the ( 010 ) plane was observed using a high resolution transmission electron microscopic image of the ( 101) lattice image in the temperature range between 1033 to 1113 K as shown in Fig.11. The lattice image of ( 101 )lattice image in the temperature range between 1033 to 1113 K as shown in Fig.11. The lattice image of (101) is distorted upon the evaporation of the (010) surface. The thickness alteration causes the lattice image to disappear. Therefore the focus of the grain in the TEM was altered. However all of the (101) lattice images disappeared within 1063 sec. The disappearance of the lattice images left to right suggests that sublimation took place by layer. At about 1113 K, the crystal structure of Mg2SiO4 was destroyed and most of the particles became MgO crystallites. After heat treatment of the sample, the particles dispersed on the carbon holy film had changed in Fig. 7. Morphological alteration of forsterite grains by heating to the prenucleation temperature (stall state) Fig. 8. Coalescence and sublimation at the temperature range of crystallization . shape and MgO crystals were predominately observed as shown in Fig. 6. Figure 12 shows the high resolution electron microscopic image corresponding to the grain in Fig.11, fine stable and dissolved MgO crystallites was predomimately seen . The layer – by layer- alteration along the b-axis was mainly due to the decomposition of Mg2SiO4 and MgO and SiO2. The metamorphism of SiO2 phase [14 ] was clearly took place at 1173 K. More detail based on an experiment using −49− Chihiro Kaito, Saito Yoshio, Chiyoe Koike the same apparatus in Fig.2(a) will be published in near feature for the SiO2 plane. Fig. 9. During the sublimation process, the shape of crystal was altered. Fig. 10. Typical grains covered with amorphous carbon layer of 5 nm thickness. A grains covered with a carbon layer can be easily produced using the heating stage in Fig.2 (b) by heating at 373-673K. 㸲㸬General Discussion The evaporation coefficient for forsterite in vacuum is between 0.09 – 0.16 at temperature of 1900 ~2163 K [ 9, 15 ]. Extrapolation of these to the sublimation temperature at 1093 K is impossible. Evaporation experiments on single crystals have mainly been performed at temperature of 1973 K [ 10 ]. The present result is about 0.51 times lower and suggests that the sublimation temperature of the dust is different these that of the bulk material. The main reason for this is that the surface energy of the grains causes a decrease in sublimation temperature. The surfaces to volume ratio of grains with size of 10,100 and 1000 nm are 2.75, 0.275 and 0.0275 % respectively. The coalescence and growth of particles in the smoke cloud is also a low temperature phenomenon in nanoparticle physics [16, 17]). Spontaneous alloying at room temperature [ 18 ] and the spontaneous mixing of alkali halide crystals [ 19 ] involve atomic diffusion at low temperatures. The alteration of the surface structure and low temperature sublimation become prominent in grains of size less than 500 nm. The present results are in good agreement with the schematical diagram of dust metamorphism in a protostellar disk and the processes involved therein [ 20 ] . The authors thank T .Yamamoto and Joseph A. Nuth III of NASA/GSFC for the reviewers for valuable comments. −50− Formation of Forsterite Grains and Direct Observation of The Sublimation of Crystal Formation Grain Fig. 11. High resolution transmission electron microscopic image slowing the evaporation of (010) forsteraite. Fig. 12. High resolution transmission electron microscopic image after heating Referrences [ 1 ] Nagahara,H.,Kushiro, I.,BouyMyson, B.O., ,H., Huelawo,H., C., Geochem. Cosmochen.㸳㸶㸦㸯㸷㸷 㸲㸧㸯㸷㸳㸯 [ 2] Nuth, J.A., in The Cosmic Dust Connection,ed. J. M. Greenberg ( The Netherlands: Kluwer Academic ), (1996) 205 [ 3 ] Myzsen, B. O., Kushiro, I., Am. Mineral, 73 (1988) 1-19 [4] Waelkens,C., Water,L. B.F.M.,de Graauw, M,S., etal. A and A 315 ( 1996) L245 [ 5 ] Walters. L. B. M. etal., Astrron. Astrophy. 315 (1996) L361 [ 6 ] Bouy, h., Huelawo,H., Pinter, C., etal., A and A 486 (2008) 877-890 [ 7 ] Kamitsuji, K, Sato, T, Suzuki, H., Kaito,C., A and A 436 (2005) 185-169 [ 8 ] Hallenbeck , S. B., Nuth, J .A, III.,Nelson,R. N., Apj 535 (2000) 247 [ 9 ] Hashimoto, A.,Nature 347 (1990 ) 53 [10] Nagahara, H., Ozawa. K ., Proc. Japan Acad.(serB) 75 (1999) 29 −51− Chihiro Kaito, Saito Yoshio, Chiyoe Koike [11 ] [12] [13] [14] [15] [16 ] [ 17 ] [ 18 ] [ 19 ] [20 ] Kaito,C., Saito,Y., Ohtsuka,K,Watanabe,T., J.Geomag. Geoelectr.. 45 (1993) 105Ishikawa, M., Kimura,YY., Suzuki,H.,Kido.O., Tanigaki, T.,Saito,Y., C. Kaito. C., J.Cryst. Growth 254 (2993) 131 Saito,Y., Otsuka,K.,,Watanabe, T., Kaito, C., J.Crystal.Growth 128 (1993) 271 Kamiotsuji,., Ueno,s., Suzuki,H., Kimura, M., Kaito, C.,2003 ( In Grain Formation Workshop 2993 vol. XXIII, ed C. Kaito and O.Hashimoto ) p 101 Wang,J.,Davis,A.M., Clayton, R. N., Hashimoto, A., Geochimica et Cosmochimica Acta 63 (1999) 953 Kaito, C.,Jpn.J.Cryst.Growth 55 ( 1981 ) 273 Kaito,C. Jpn.J. Appl. Phys. 24 (1985 ) 261 Mori,H., Komatsu,M.,Takeda,K.,Fujita,H., Philos. Mag. Lett.,63 (1991) 175 Kimura, Y., Saito,Y.,Nakada, T., Kaito, C., Physica E 13 (2002) 11 Gail,H.P.,(2003) in Astromineralogy,ed., Th.Henning ( Springer-Verlag Berlin Heidelberg 2003) P 100. −52− 立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年 Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014 −53− 奥田 昌男・中根 洋治・可児 幸彦・西村 勝広・早川 清 −54− 敷葉(しきば)工法とその起源 −55− 奥田 昌男・中根 洋治・可児 幸彦・西村 勝広・早川 清 −56− 敷葉(しきば)工法とその起源 −57− 奥田 昌男・中根 洋治・可児 幸彦・西村 勝広・早川 清 −58− 敷葉(しきば)工法とその起源 −59− 奥田 昌男・中根 洋治・可児 幸彦・西村 勝広・早川 清 −60− 敷葉(しきば)工法とその起源 −61− 奥田 昌男・中根 洋治・可児 幸彦・西村 勝広・早川 清 −62− 立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年 Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014 㑇㊧ࡽ▱ࡿษ┒ᅵᕤ すᮧᗈ 1㸧ࠊྍඣᖾᙪ 2㸧ࠊዟ⏣ᫀ⏨ 3㸧ࠊ୰᰿ὒ 4㸧ࠊ᪩ᕝΎ㸳㸧 㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻㸻 History of cut and soil at the ruins Katsuhiro Nishimura,1) Yukihiko Kani,2) Masao Okuda,3) Youji Nakane,4) Kiyoshi Hayakawa5) The origin of civil engineering work in Japan could be found at the pit dwellings built in the Jomon period. Since then tumuli, residential hedge mount, leveling work of mountain castle and defense wall of cantonment had been built by cut and fill of earthwork. In any case, there were advantages as local procurement of materials, effective utilization of local soil and speed up the work operation. Those advantages were noticed by people from the earliest age. Keywords; cut and soil, ruins, moat, bank. E-mail: [email protected](K. Nishimura) ================================================================================= 1)ྛົཎᕷᙺᡤࠊ2)࢚ࢺࣥࠊ3)ዟ⏣ᘓタࠊ4)ࢥࣥࢡ࣮ࣜࢺᕤᴗࠊ5)❧㤋Ꮫ ⌮ᕤᏛ㒊 1) Kakamigahara City: Naka-Sakura, Kakamigahara City, Gifu Pref., Japan 2) Eiton Co. Ltd.: Meieki, Nakamura-Ku, Nagoya City, Japan 3) Okuda Construction Company: Umegaoka, Tenpaku-Ku, Nagoya City, Japan 4) Showa Concrete Industries Co. Ltd.: Meieki, Nakamura-Ku, Nagoya City, Japan 5) Dept. of Science and Engineering, Ritsumeikan University, Noji-Higashi, Kusatsu City, Shiga Pref., Japan −63− 西村 勝広・可児 幸彦・奥田 昌男・中根 洋治・早川 清 1㸬ࡣࡌࡵ ᪥ᮏ࠾ࡅࡿึᮇࡢษ┒ᅵᕤࡣࢇ࡞ࡶࡢ࡛࠶ࢁ࠺ࠋཎጞ௨㝆ࠊྂ௦ࠊ୰ୡࠊ㏆ୡ⾜ࢃࢀࡓᕤ ࡢ㊊㊧ࡣࠊ㑇㊧ࡢ୰ṧࡉࢀ࡚࠸ࡿࠋ 㑇㊧ࡢⓎ᥀ㄪᰝࡼࡗ࡚Ṕྐࢆ◊✲ࡍࡿ⪃ྂᏛ࡛ࡣࠊ㈨ᩱࢆ㑇≀㑇ᵓ༊ศࡋ࡚࠸ࡿࠋ㑇≀ࡣࠊ ᅵჾࠊ▼ჾࠊᮌჾࠊ㔠ᒓჾࠊື᳜≀㑇య࡞ࡢ≀య࡛࠶ࡿࠋ㑇ᵓࡣࠊఫᒃࠊᰕ✰ࠊᆙࠊ⁁ࠊᅵሠ࡞ ᆅ㠃⠏࠸ࡓᅵᮌᵓ㐀≀ࡢ㊧࡛࠶ࡿࠋࡇࡢ㑇ᵓ࠸࠺ᴫᛕࡼࡗ࡚ࠊ㑇㊧ṧࡉࢀࡓᅵᮌ࣭ᘓタᕤ ࡢሗࡀⓎ᥀ㄪᰝࡼࡗ࡚グ㘓ಖᏑࡉࢀࡿࠋᮏ✏࡛ࡣࠊⓎ᥀ㄪᰝࡢ୰ษ┒ᅵᕤࡢ㊊㊧ࢆ㏣࠺ࠋ 2㸬ኳ↛㈨ᮦࡢ⏝ ᪥ᮏ࠾ࡅࡿே㢮ࡢṔྐࡣࠊ3 5 ༓ᖺ๓ࡽጞࡲࡗ ࡓࠋࡇࡢ௦ࡣᚋᮇᪧ▼ჾ௦ࡤࢀࠊịᮇࡀ฿᮶ࡋ ⅆᒣάືࡀάⓎ࡞௦࡛࠶ࡗࡓࠋ ᪧ▼ჾ௦ࡢ㑇㊧ࡽࡣࠊཌࡃሁ✚ࡋࡓⅆᒣ⅊ᒙࡢ୰ ▼ჾ〇సࡸⅆẼ⏝ࡢ㊧ࡀ᳨ฟࡉࢀ࡚࠸ࡿࠋᚋ⪅ࡣ ♟⩌ࡤࢀࡿ㑇ᵓ࡛ࠊ┤ᚄ 10cm ๓ᚋࡢ♟ࢆ 10 ᩘಶ ࡽᩘⓒಶ㞟✚ࡉࡏࡿࠋᅗ-1 ࡣ㟼ᒸ┴☬⏣ᕷᑎ㇂㑇㊧ 1) ࡢ࡛࠶ࡿࠋࡑࡢ⏝㏵ࡣࠊㄪ⌮࣭ᬮᡣ⪃࠼ࡽࢀࡿࠋ ♟⩌ࡣࠊᆅ㠃ࢆ᥀ࡾ㎸ࢇࡔࡾᅵࢆ┒ࡾୖࡆࡓࡾࡋࡓ ㊧ࡣ≉☜ㄆࡉࢀ࡞࠸ࠋ♟࠸࠺ኳ↛㈨ᮦࢆ⏝࠸ࡓⅬ ࡣホ౯࡛ࡁ࡚ࡶࠊษ┒ᅵᕤࡼࡿタഛࡣゝ࠸㞴࠸ࠋ♟ ⩌ࡢ┤㏆ࡣᒃఫࡢሙࡀ࠶ࡗࡓࡣࡎࡔࡀࠊఫᒃ㊧࡞ࡢ ᅗ-1 ᑎ㇂㑇㊧ࡢ♟⩌ 㑇ᵓࡀ☜ㄆࡉࢀࡿࡇࡣ࡞࠸ࠋ 3㸬᭱ึࡢᅵᮌᕤ ịἙᮇࡀ⤊ࢃࡿ㡭ࠊ᪥ᮏࡣ⦖ᩥ௦ࢆ㏄࠼ࡓࠋ Ẽೃࡢ ᬮࡣ㣗⎔ቃࢆ㇏ࡋࠊேࠎࡢᐃఫࢆ ಁ㐍ࡉࡏࡓࠋᐃఫࡼࡗ࡚⪏ஂᛶࡢ࠶ࡿఫᒃࡀᚲ せ࡞ࡾࠊ⪃ࡉࢀࡓࡢࡀ❿✰ఫᒃ࡛࠶ࡿࠋ❿✰ ఫᒃࡣࠊᆅ㠃ࢆᙧࡸ᪉ᙧ᥀ࡾ❑ࡵ࡚ᗋࡋࠊ ᗋࡽࡣᰕࢆᕪࡋ㎸ࡴ✰㸦ᰕ✰㸧ࡀࡉࡽ᥀ࡾ㎸ ࡲࢀࡿࠋࡲࡓࠊᗋࡢ୰ኸࡶ✰ࢆ᥀ࡾࠊ▼࡛ᅖ࠺ ࡞ࡋ࡚⅔ࡀഛ࠼ࡽࢀࡓࠋୖᒇᵓ㐀ࡘ࠸࡚ࡣࠊ ᰕ✰ࡢ㓄ิࡸ↝ኻఫᒃࡢㄪᰝࡽࠊ㗹ᙧࡢⱴ ⵌ࡛࠶ࡗࡓ᥎ᐃࡉࢀ࡚࠾ࡾࠊᅜྛᆅࡢ㑇㊧බ ᅬඖࡉࢀ࡚࠸ࡿࠋᅵࢆ῝ࡃ᥀ࡾୗࡆ࡚ᗋቨ ࢆᵓ࠼ࡿࡇࡼࡾእẼ ࡢᙳ㡪ࢆཷࡅࡃࡃࠊ ✚㞷ࡸ㢼㞵ᑐࡍࡿᙉᗘࡶ☜ಖ࡛ࡁࡓᛮࢃࢀࡿࠋ ࡲࡉࠊ ᪥ᮏࡢ㢼ᅵࡽ⏕ࡲࢀࡓఫᒃᵓ㐀࡛࠶ࡿࠋ ࡇࡢ❿✰ఫᒃࡣࠊ⦖ᩥ௦ࡢࡳ࡛ࡣ࡞ࡃᘺ⏕ ௦ࠊྂቡ௦ࠊࡑࡋ࡚ዉⰋ࣭ᖹᏳ௦ࡢ୍⯡ఫᏯ ࡶ⏝ࡉࢀ⥆ࡅࡓࠋࡓࡔࡋࠊୖᒇᵓ㐀ࡣኚࡋ ࡓྍ⬟ᛶࡀ࠶ࡿࠋ −64− ᅗ-2 ⅔⏿㑇㊧ 1 ྕఫᒃ㊧ 遺跡から知る切盛土工 ࡇࡇ࡛ࠊ❿✰ఫᒃࡢᵓ㐀ࡘ࠸࡚ᒱ㜧┴ྛົཎᕷ⅔⏿ 㑇㊧ 1 ྕఫᒃ㊧ 2)ࡢࢆྲྀࡾୖࡆ࡚ࡳࡿ㸦ᅗ-2㸧 ࠋࡇࡢ㑇 ㊧ࡣࠊࡽ 4,300 ᖺ๓ࡢ⦖ᩥ௦୰ᮇᚋⴥᒓࡍࡿࠋ ┤ᚄ 7m ᆺࡢఫᒃ࡛ࠊ᳨ฟࡢ῝ࡉ㸦ቨ㧗㸧ࡣ 65 ࡛࠶ࡿࠋࡋࡋࠊⓎ᥀ㄪᰝࡼࡗ࡚ᚓࡽࢀࡿ㑇ᵓࡢ῝ ࡉࡣࠊᚲࡎࡋࡶᙜࡢᆅ⾲㠃ࡽࡢᩘ್࡛ࡣ࡞࠸ࠋ༙ ࡢ㑇㊧࡛ࡣᚋୡࡢ㛤ቧ࡞ࡼࡾ㑇ᵓࡢୖ㒊ࡀኻࢃࢀ࡚ ࠸ࡿࡓࡵࠊಶࠎࡢ῝ࡉࡣᐇ㝿ࡼࡾࡶὸࡃ᳨ฟࡉࢀ࡚࠸ࡿࠋ ⅔⏿㑇㊧ 1 ྕఫᒃࡢሙྜࠊቨ㧗ࢆ᥎ᐃ࡛ 1m ⿵ṇࡋ ࡓ࠺࠼࡛᥀๐ᅵ㔞ࢆィ⟬ࡍࡿࠊ3.5m㸦༙ᚄ㸧×3.5㹫㸦༙ ᚄ㸧×3.14×1m㸦ቨ㧗㸧=38.5 ੑ࡞ࡿࠋࡇࢀࡔࡅࡢᅵ㔞 ࡀᡴ〇▼᩼㸦㘵ᙧࡢ▼ჾ㸧࡛᥀๐ࡉࢀࡓࡇ㦫ࡃࡀࠊ ࡇࡇ୍࡛ࡘၥࡀ⏕ࡌࡿࠋࡑࢀࡣࠊᐈᅵࡀఱฎฎ⌮ࡉ ࢀࡓࡢ࠸࠺ၥ㢟࡛࠶ࡿࠋ㛗㊥㞳ࢆ⛣ືࡉࡏࡓࡣ⪃ ࠼㞴࠸ࡢ࡛ࠊఫᒃࡢ࿘ᅖ┒ࡽࢀ࡚࠸ࡓࠊ࠶ࡿ࠸ࡣᒇ ᰿⿕ࡏࡽࢀ࡚࠸ࡓྍ⬟ᛶࢆ⪃࠼࡞ࡃ࡚ࡣ࡞ࡽ࡞࠸ࠋᐩ ┿-1 ୕ෆᒣ㑇㊧ࡢ༡┒ᅵ㑇ᵓ㸦᩿㠃㸧 㸦IPA ሗฎ⌮᥎㐍ᶵᵓᩍ⫱⏝⏬ീ⣲ᮦ㞟ࡼࡾ㸧 ᒣ┴ᐩᒣᕷ௦㑇㊧ࡸ㟷᳃┴㟷᳃ᕷ୕ෆᒣ㑇㊧࡞ࡢ ඖఫᒃࡣࠊᚋ⪅ࡢሙྜࢆ⌧ࡋ࡚࠸ࡿࠋࡲࡓࠊ୕ෆ ᒣ㑇㊧࡛ࡣ❿✰ఫᒃࡢᐈᅵࡸ⅊ࠊ↝ᅵࠊᅵჾ࣭▼ჾ࡞ ࡢ⏕άᗫᲠ≀ࢆྠࡌሙᡤᤞ࡚ࡿ⾜Ⅽࢆ⧞ࡾ㏉ࡋࡓࡇ࡛ࠊ ᑠᒣࡢࡼ࠺࡞ࡗࡓ⠊ᅖࡀ☜ㄆࡉࢀ࡚࠸ࡿࠋ ࡇࡢᑠᒣࡣᩚᆅࡉࢀ࡚࠾ࡾࠊᮧⴠࡢቃ⏺ࢆ♧ࡍ┒ᅵ㑇ᵓࡶ⪃࠼ࡽࢀࡿ≉Ṧ࡞࡛࠶ࡿ㸦┿-1㸧 ࠋ 㸲㸬ഴᩳ㠃࠾ࡅࡿ❿✰ఫᒃࡢᵓ⠏ ᒱ㜧┴㛵ᕷ◁⾜㑇㊧ 3)ࡣࠊᘺ⏕௦ᚋᮇᮎࡽྂቡ௦୰ᮇࡢ㞟ⴠࢆయࡍࡿ㑇㊧࡛࠶ࡿࠋⓎ᥀ㄪ ᰝࡼࡗ࡚ࠊࡑࡢㇺࡀ᫂ࡽ࡞ࡗ࡚࠸ࡿࠋࡇࡢ㑇㊧࡛≉ᚩⓗ࡞ࡢࡣࠊୣ㝠ᩳ㠃❿✰ఫᒃ⩌ࡀᵓ⠏ ࡉࢀ࡚࠸ࡿࡇࢁ࡛࠶ࡿࠋࡇࡢ௦ࠊᖹᆅ㒊࡛Ỉ⏣ࢆᵓ࠼ࡿ㞟ⴠᑐ↷ⓗࠊᒣᆅ㒊࡛ࡣୣ㝠ᩳ㠃㞟 ⴠࡢᒎ㛤ࡍࡿࡇࡀ▱ࡽࢀ ࡚࠸ࡿࠋ◁⾜㑇㊧ࡣࠊᩳ㠃 ᆅ㞟ⴠࡢዲ࡛࠶ࡿࠋ ᩳ㠃ᵓ⠏ࡍࡿሙྜࡶࠊ ❿✰ఫᒃࡢᇶᮏᵝࡣྠࡌ ࡞ࡿࠋᗋ㠃ࡣᰕ✰⅔ ࡀഛ࠼ࡽࢀ࡚࠸ࡿࠋࡋࡋࠊ ᅗ-3 ࡢ࠾ࡾࠊ༙ࡢఫᒃ ㊧ࡣᗋࣉࣛࣥࡢ⣙ 1/2㹼2/3 ࢆḞⴠࡋ࡚࠸ࡿࠋ࠸ࡎࢀࡶࠊ ഴᩳࡢప࠸ഃࡀṧᏑࡋ࡚࠸ ࡞࠸ࠋࡇࡢ≧ἣࡣࠊഴᩳ㠃 ❿✰ఫᒃࢆᵓ࠼ࡿሙྜࠊ 㧗࠸ഃࡢ᥀๐ᅵ࡛ప࠸ഃࢆ ┒ᅵࡋ࡚ᗋ㠃ࢆᘏ㛗ࡍࡿࡀࠊ ࡑࡢ㒊ศࡣᚋୡὶฟࡋࡸ ᅗ-3 ◁⾜㑇㊧ࡢ❿✰ఫᒃ⩌ −65− 西村 勝広・可児 幸彦・奥田 昌男・中根 洋治・早川 清 ࡍ࠸ࡇࢆ♧ࡋ࡚࠸ࡿࠋఫᒃࡢධཱྀ㏻ࡌ ࡿ㊰ࡣṌࡁࡸࡍ࠸ࡼ࠺ᩚᆅࡉࢀࡓࡣࡎࡔ ࡀࠊ⌧ᅾࡢఫᏯᅋᆅࡢࡼ࠺ᒃఫ༊ࢆิ༢ ࡛㐀ᡂࡍࡿࡼ࠺࡞つᶍ࡛ࡣ࡞࠸ࠋ 㸳㸬ྂቡ⠏㐀ࡢ┒ᅵ ྂቡࡣࠊ᭷ຊ⪅ࡢᐩᶒຊࢆ♧ࡍቡ࡛ ࠶ࡿࠋࡑࡢຊẚࡋ࡚ࠊ▼ᐊࡢᵓ㐀ࡸ ⴿရࠊ ቡᙧࡸつᶍ࡞ࡀᕪูࡉࢀ࡚࠸ࡿࠋ ͆ቡ͇ࠕ┒ࡾୖࡀࡗࡓᅵࠖ࠸࠺ពࡀ ࠶ࡿࡼ࠺ࠊᆅ㠃ࢆ┒ࡾୖࡆࡿࡇ࡛ࠊ๓ ᪉ᚋቡࡸቡ࡞ࡀ⠏㐀ࡉࢀࡿࠋ ࡋࡋࠊ ቡୣࡢ 100㸣ࡀ┒ᅵ࡛ᵓᡂࡉࢀ࡚࠸ࡿࢃࡅ ࡛ࡣ࡞࠸ࠋ ᒱ㜧┴ྛົཎᕷᆓࡢሯྂቡࡣࠊቡ㛗 120 㹫ࡢ๓᪉ᚋቡ࡛࠶ࡿࠋྂቡ௦୰ᮇࡢ 5 ୡ⣖௦⠏㐀ࡉࢀࡓ⪃࠼ࡽࢀ࡚࠸ࡿࠋࡇ ࡢྂቡࡣࠊ⌧ἣ࡛ࡣ☜ㄆࡋ㞴࠸ࡀ࿘ᅖ ୍ẁపࡃ࡞ࡗࡓቸ㊧ࡀᏑᅾࡍࡿࠋࡑࡢ⠊ᅖ ࡣ୍⯡࿘ቸࡤࢀࡿࠋ㐣ཤࡢ 㔞 4)ࡸ 㒊ศⓗ࡞Ⓨ᥀ㄪᰝ㸦A࣭B ࢺࣞࣥࢳ㸧5)ࡼ ࡿሗࡽࠊቡୣ࿘ቸࡢつᶍࢆ᥎ᐃࡍࡿ ࡇࡀ࡛ࡁࡿࠋᅗ-4 ࡼࡾ᥀๐ᅵ┒ᅵࡢ ᅵ㔞ࢆヨ⟬ࡋࡓࡇࢁࠊ࿘ቸ᥀๐ᅵ㔞 18,255 ੑࠊቡୣ┒ᅵ㔞 18,385 ੑ࡞ࡾࠊ ࠾ࡼࡑ➼ࡋ࠸ᩘ್ࡀᚓࡽࢀࡓ 6)ࠋ࠼ࡤࠊ ᅗ-4 ᆓࡢሯྂቡࡢཎᅗ ᅗ-5 ᒣ 2 ྕቡࡢቡୣ −66− 遺跡から知る切盛土工 ᚋ㒊ࡢ୰ኸ㸦A-A'㸧࡛ࡣࠊቡୣୗ㒊ࡣ 2m ࡢ῝ࡉ๐ࡾฟࡋࠊୖ㒊 8.5m ࡣ┒ᅵࡼࡾຍ࠼ࡽࢀࠊ⠏ 㐀ࡣ┦ᑐⓗ࡞ぢࡅࡢ㧗ࡉࡋ࡚ 10.5㹫ࢆ♧ࡋ࡚࠸ࡓࡇ࡞ࡿࠋ ቡୣࡢἲ㠃໙㓄ࡣ 1:1.7 ࡛࠶ࡿ 7)ࠋ ୍᪉ࠊᑠᆺࡢቡࡢࢆぢ࡚ࡳࡓ࠸ࠋᒱ㜧┴ྛົཎᕷᒣ 2 ྕቡ 8)ࡣࠊ6 ୡ⣖ᚋ༙ࡢྂቡ௦ᚋᮇ ⠏㐀ࡉࢀࡓ┤ᚄ 16.9m ࡢቡ࡛࠶ࡿࠋࡇࢀࡽࡢᚋᮇྂቡࡣࠊᑠᆺࡋ࡚ୣ㝠ࡢ〈㒊࡞㞟୰ࡋ࡚ྂ ቡ⩌ࢆᙧᡂࡍࡿࡢࡀ୍⯡ⓗ࡛࠶ࡿࠋࡇࡢྂቡࡣᶓ✰ᘧ▼ᐊࢆ᭷ࡋࠊቡୣࡣ 2 ẁ⠏ᡂࠊࡑࡋ࡚┒ᅵࡢᔂⴠ ࢆ㜵ࡄࡓࡵࡢእㆤิ▼ࢆഛ࠼࡚࠸ࡿࠋิ▼ࡢἲ㠃ࡣ 1:2.1 ᛴ໙㓄࡛࠶ࡿࠋ ᒣ 2 ྕቡ࡛ࡣࠊ▼ᐊࡢㄪᰝࡢቡୣ᩿㠃ࡢㄪᰝࡶᐇࡋ࡚࠾ࡾࠊ⮬↛ᆅᙧேᕤᆅᙧࡢ㛵ಀࡀ ࡽ࠼ࡽࢀ࡚࠸ࡿࠋࡇࡢྂቡࡣᒣ㸦ᶆ㧗 308m㸧ࡢ༡ᩳ㠃⠏㐀ࡉࢀ࡚࠸ࡿࡀࠊ࡞࡛ࡶ༡ᮾ㈞ࡾ ฟࡋࡓᑠᑿ᰿ࢆ⏝ࡋ࡚㐀ࡽࢀ࡚࠸ࡿࠋᅗ-5 ࡢ࠾ࡾࠊᑿ᰿ࡢ㧗ࡲࡾࢆ⏝ࡋ࡚࿘ᅖࡢᅵࢆ୰ኸ┒ࡾ ୖࡆࡿࡇ࡛ቡୣࡢ㧗ࡉࢆᚓ࡚࠸ࡿࠋ๐ࡾฟࡋ┒ᅵࡢ༊ศࡣ᫂░࡛ࠊᚋୡ┒ᅵࡀእㆤิ▼ࡢୖ㒊 ඹᔂⴠࡋ࡚࠸ࡿᵝᏊࡀࡼࡃ⌮ゎ࡛ࡁࡿࠋ 㸴㸬୰ୡ㤋ࡢቸᅵሠ 㙊௦ࡢ 13 ୡ⣖௦ᘓ㐀ࡉࢀࡓᒃ㤋ࡢࢆぢ࡚ࡳࡓ࠸ࠋࡋ࡚ྲྀࡾୖࡆࡿࡢࡣࠊᒱ㜧┴ྛົ ཎᕷ㔝ཱྀ㤋㊧ 9)࡛࠶ࡿࠋ࠾ࡑࡽࡃࠊⲮᅬ㡿ࡋ࡚ຊࢆ࠼ࡓ㎰ࡢ㤋⪃࠼ࡽࢀࡿࠋࡇࡢ㤋ࢆྲྀࡾᅖ ࡴ㜵ᚚ⏝ࡢᅵሠቸࡀࠊᇙἐࡍࡿࡇ࡞ࡃ⌧Ꮡࡍࡿ㈗㔜࡞㑇㊧࡛࠶ࡿ㸦ᅗ-6㸧ࠋ ᅵሠቸࢆ┤ゅ᩿ࡕࡗࡓⓎ᥀ㄪᰝࡀሗ࿌ࡉࢀ࡚࠸ࡿࠋࡑࡢ⤖ᯝࠊ㏫ྎᙧࡢ᩿㠃ࢆ࿊ࡍࡿቸࡀᅵሠ ἢ࠺ࡇࡀᨵࡵ࡚☜ㄆࡉࢀࡓࠋቸᅵሠࡢᐜ✚ࡣࡰ➼ࡋࡃࠊቸࡢᐈᅵࢆഃ㏆┒ᅵࡋ࡞ࡀࡽᩜᆅࢆ ୍࿘ࡋ࡚ᩚゅᙧࡢᅖ࠸ࢆᡂࡉࡏ࡚࠸ࡿࠋቸࡢ᥀๐㡰ᅵሠ┒ࡾୖࡆࡿࡓࡵࠊᅵሠഃࡢᅵᒙࡣ⮬ ↛ሁ✚㏫㡰࡞ࡿࠋᅵሠࡣ㍈⥺ࡢ୰ᚰࡽቸࡢᐈᅵࢆ┒ࡾጞࡵࠊࡑࡇࢆ⿕そࡍࡿࡼ࠺ᖜ㧗ࡉࢆቑ ࡍᕤἲࡀ┳࡚ྲྀࢀࡿࠋ๐ࡾฟࡋࡢ῝ࡉࡣ 1.08mࠊᅵሠࡢ┒ᅵࡣ 2.08m㸦ࡓࡔࡋୖ㒊ࡣὶฟࡋ࡚࠸ࡿࡔࢁ ࠺㸧 ࠊ⌧ἣ࡛┦ᑐ㧗ࡣ 3.16cm ࡛࠶ࡿࠋἲ㠃໙㓄ࡣ 1:1.8 ࡛࠶ࡿࠋ ࡞࠾ࠊቸࡣᇙᅵࡢሁ✚㐣⛬ࡸ᩿㠃ᙧࡽࠊ㏵୰࡛῝ࡃ᥀ࡾ┤ࡋࡀ⾜ࢃࢀ࡚࠸ࡿࡇࡀศࡿࠋࡑࡢ㝿 ࠊᅵሠࡢᔂⴠᅵࢆඖᡠࡋࠊࡉࡽ㧗ࡉࢆቑࡋࡓࡇࡀ⪃࠼ࡽࢀࡿࠋ ᅗ-6 㔝ཱྀ㤋ࡢቸᅵሠ −67− 西村 勝広・可児 幸彦・奥田 昌男・中根 洋治・早川 清 㸵㸬୰ୡᒣᇛࡢ᭤㍯ ᡓᅜ௦ࢆ୰ᚰࡋ࡚ࠊᒣᇛࡣぢᬕࡽࡋࡢⰋ࠸ᒣ㡬⠏ࢀࡓࠋᇛ࠸࠺₎Ꮠࡣ͆ᅵ͇ࡽ͆ᡂࡿ͇ ⾲ࡍࠋࡑࡢ࠾ࡾࠊᒣ㡬ࡢᅵࢆษᅵ┒ᅵࡼࡗ࡚⛣ືࡉࡏᕦࡳᩚᆅࡍࡿࡇࡀࠊᇛ㐀ࡾࡢᇶᮏ࡛ ࠶ࡿࠋᇛࡢᵓ㐀᭤㍯㸦ࡃࡿࢃ㸧ࡤࢀࡿࡶࡢࡀ࠶ࡿࠋࡇࢀࡣࠊᇛෆᵝࠎ࡞タࢆᵓ࠼ࡿᖹሙࡢ✵ 㛫༢࡛ࠊᒣᇛ࡛ࡣ」ᩘࡢ᭤㍯ࢆ㞮ቭࡢࡼ࠺㐀ᡂࡋ࡚ᒣ⛸㓄⨨ࡉࢀࡿࠋ ࡇࡇࠊᒱ㜧┴ྛົཎᕷఀᮌᒣᇛᆎ 10)ࡢࢆ♧ࡍࠋఀᮌᒣᇛࡣࠊᶆ㧗 173.1m ࡢఀᮌᒣࡢᒣ㡬⠏ ࢀࡓᇛ࡛࠶ࡿࠋ⠏ᇛᮇࡣᐃ࡛ࡣ࡞࠸ࡀࠊఏグࡼࢀࡤ⧊⏣ಙ㛗ࡢ⨾⃰ᨷࡵ࡛Ọ⚘ 3 ᖺ㸦1560㸧ⴠ ࡉࢀࠊࡑࡢᚋኳṇ 19 ᖺ㸦1591㸧ᗫᇛ࡞ࡗࡓࡉࢀࡿࠋᇛࡢᵝᏊࡘ࠸࡚ࡣ₍↛ࡋࡓグ㘓ࡋ ࡞ࡗࡓࡀࠊⓎ᥀ㄪᰝࡼࡗ࡚ලయⓗ࡞᭤㍯ᵓ㐀ࡀ᫂ࡽ࡞ࡗࡓࠋఀᮌᒣࡢ᭱㧗ᡤᵓ࠼ࡽࢀࡓ᭤㍯ 㸯ࢆ୰ᚰࠊすഃ 2 ẁࠊᮾഃ 2 ẁࠊ༡ഃ 1 ẁࡢྜィ 6 ẁࡢ᭤㍯ࡢᏑᅾࡀ☜ㄆࡉࢀࡓ㸦ᅗ-7㸧 ࠋ ఀᮌᒣࡣࠊࢳ࣮ࣕࢺࢆయࡍࡿ㝯㉳ᒾ┙ࡽᡂࡿࠋⓎ᥀ㄪᰝ࡛ࡣᒣ㡬ࡽᨺᑕ≧ A㹼D ࡢࢺࣞࣥ ࢳࡀ᥀๐ࡉࢀࠊࡑࡢ⤖ᯝࠊᒾ┙ࢆษࡾᔂࡋ࡚┒ᅵࢆ⾜࠸᭤㍯࡞ࡿᖹሙࢆ㐀ᡂࡋࡓᕤࡀ᫂ࡽ࡞ࡗ ࡓࠋࡲࡓࠊ᭤㍯㸯ࡢ୰ኸ㓄ࡍࡿᷳྎ≧㑇ᵓࡣࠊ࡚┒ᅵ࡛ᵓᡂࡉࢀ࡚࠸ࡿࡇࡶุ᫂ࡋࡓࠋࡑࡢࠊ ᭤㍯㛫ࡣ┒ᅵࡢὶฟࢆ㜵ࡄࡓࡵࠊᒾ┙ࡢ○▼ࢆ⏝ࡋࡓ▼✚ࡀᕤࡉࢀ࡚࠸ࡿࡇࡶ☜ㄆࡉࢀ࡚࠸ ࡿࠋ᭤㍯ࡢẚ㧗ᕪࡣࠊୖ㒊ࡀὶฟࡋ࡞ࡀࡽࡶⰋࡃṧᏑࡍࡿ᭤㍯ 1 ࡢ⦕㎶㸦D-4㸧࡛ 2.77m ࢆ ࡿࠋ▼ ᇉࡢ༙ࡣᔂⴠࡋ࡚࠸ࡿࠋ ᅗ-7 ఀᮌᒣᇛᆎࡢ᭤㍯ −68− 遺跡から知る切盛土工 8㸬㏆ୡࡢᮏ㝕ᒇ ᭱ᚋࡢࡋ࡚ࠊỤᡞ௦ࡢᮏᒇᩜࢆྲྀࡾୖ ࡆࡿࠋᒱ㜧┴ྛົཎᕷᮏᆤෆẶ㝕ᒇ㊧ࡣࠊࡑࡢྡ ⛠ࡢ࠾ࡾᮏࡢᒇᩜᆅ࡛࠶ࡿࠋ⌧ᅾࡣࠊᡤᅾᆅ ࡑࡢ㊧ࡣ࡞ࡃࠊ✵ᆅ㸦༊⏬ᩚ⌮῭㸧ࡸᕤሙࡢᩜᆅ ࡞ࡗ࡚࠸ࡿࠋࡋࡋࠊ᫂ᮇධࡗ࡚ࡽ୍᪘ࡢ ᮎ⿰ࡼࡗ࡚⦅⧩ࡉࢀࡓࠗᐩᶔᗢὶᮏᆤෆᐙ୍⤫ ⣔ᅗ୪⏤⥴࠘11)ࡢ⤮ᅗ㸦ᅗ㸧ࡽࠊᒇᩜࡢᵝᏊࢆ ఛ࠸▱ࡿࡇࡀ࡛ࡁࡿࠋ ࡇࡢ⤮ᅗ࡛ࡣࠊᘓ≀ࡢᵝᏊࡣ₍↛ࡋ࡚࠸ࡿࡶࡢ ࡢࠊᩜᆅࡢ⠊ᅖࡘ࠸࡚ࡣ᫂☜⾲⌧ࡉࢀ࡚࠸ࡿࠋ ᩜᆅࢆྲྀࡾᅖࡴ㒊ศࡣ㔜ࡢᖏ࡛♧ࡉࢀ࡚࠾ࡾࠊෆ ഃࡣࠕࢻࠖ ࠊእഃࡣࠕ࣍ࣜࠖὀグࡉࢀ࡚࠸ࡿࠋࡘ ࡲࡾᅵሠቸ࡛࠶ࡿࠋ ᅗ-8 ᆤෆẶ㝕ᒇࡢグ㘓 ቸࡢᐇែࡘ࠸࡚ࡣࠊᖹᡂ 23 ᖺࡢⓎ ᥀ㄪᰝ 12)ࡼࡗ࡚᫂ࡽ࡞ࡗࡓ㸦┿ -2㸧 ࠋቸࡢᖜࡣ 5.2㹫௨ୖ࡛ࠊ᩿㠃ࡣ㏫ྎ ᙧࢆ࿊ࡍࡿࠋ῝ࡉࡣ 2.7㹼3.3㹫ࢆ ࡿࠋ すゅ࡛ᙉࡃᒅᢡࡋ࡚࠾ࡾࠊ⤮ᅗࡢᩚ ྜᛶࡀ☜ㄆࡉࢀࡓࠋቸࡣᇙࡵᡠࡉࢀ࡚ࡋ ࡲࡗ࡚࠸ࡓࡀࠊ⤮ᅗࡽ⪃࠼ࡿᮏ᮶ࡣ ቸࡢᐈᅵࢆᩜᆅࡢෆഃ┒ࡾୖࡆ࡚ᅵሠ ࢆ⠏࠸ࡓࡇ࡞ࡿࠋ༢⣧㧗ࡉ 3㹫๓ ᚋࡢᅵሠࢆᵓ⠏ࡋࡓࡋ࡚ࠊቸᗏࡽᅵ ሠࡢ㡬ࡲ࡛ࡢ㧗ࡉࡣ 6㹫๓ᚋ࡞ࢁ࠺ࠋ ᮏࡢ㝕ᒇࠊᇛ㒌୪ࡳࡢ㜵ᚚタࡀഛ ࠼ࡽࢀ࡚࠸ࡿࡇࡣᚓព࡞࡛࠶ࡿࠋ ┿-2 Ⓨ᥀ࡉࢀࡓ㝕ᒇࡢቸ㸦Ỉἐ㒊ศ㸧 9㸬⤖ㄽ ௨ୖ࡛ࡣࠊỤᡞ௦ࡲ࡛ࡢษ┒ᅵᕤࡘ࠸࡚ࠊ㑇㊧ࡢⓎ᥀ㄪᰝࢆྲྀࡾୖࡆ࡚ᴫほࡋࡓࠋࡑࡢ⤖ᯝࠊ ௨ୗࡢⅬࡀᣦ࡛ࡁࡿࠋ ࣭ษ┒ᅵᕤࡋ࡚᭱ึᐃ╔ࡋࡓࡢࡣ❿✰ఫᒃࡢᵓ⠏ゝ࠼ࡿࠋ❿✰᥀๐ࡢᐈᅵࡘ࠸࡚ࡣ⾜᪉ࡀุ ↛ࡋ࡞࠸ࡀࠊఫᒃ࿘ᅖࡢᅵ┒ࡸᒇ᰿ᮦࡋ࡚⏝ࡉࢀࡓྍ⬟ᛶࢆ⪃࠼࡞ࡃ࡚ࡣ࠸ࡅ࡞࠸ࠋࡲࡓࠊ୕ෆ ᒣ㑇㊧࡞ࡢࡼ࠺┒ᅵ㑇ᵓ⏝࠸ࡽࢀࡓࡀ▱ࡽࢀࡿࠋ ࣭ᩳ㠃ᆅ㞟ⴠࡢ❿✰ఫᒃࡣࠊษᅵࢆᩳ㠃ࡢప࠸ഃ┒ᅵࡋ࡚Ỉᖹ࡞ᗋ㠃ࢆᣑᙇࡋࡓࠋ ࣭๓᪉ᚋቡࡣࠊ࿘ᅖࡢᅵࢆ᥀๐ࡋ୰ኸ┒ࡾୖࡆ࡚㐀ࡽࢀࡓࠋࡑࡢᅵྲྀࡾࡢ㊧ࡀ࿘ቸ࡞ࡗ࡚࠸ࡿࠋ ᇶᮏⓗቡୣࡢୗ㒊ࡣ๐ࡾฟࡋࠊୖ㒊ࡣ┒ᅵ࡞ࡿࠋ ࣭ୣ㝠ࡢ〈㒊㐀ࡽࢀࡓᑠᆺቡࡣࠊᑿ᰿ࡢࡼ࠺ᙇࡾฟࡋࡓ⮬↛ᆅᙧࢆάࡋࠊ࿘ᅖࡢ᥀๐࡛ᚓࡽࢀ ࡿᅵࢆ┒ࡗ࡚⠏㐀ࡉࢀࡓࠋ┒ᅵࡢᅵ␃ࡵ⏝ࡣእㆤิ▼ࡀ⾜ࡉࢀࡓࠋ ࣭୰ୡᒃ㤋ࢆྲྀࡾᕳࡃቸࡸᅵሠࡣࠊ᥀๐ᅵࢆቸࡢ୍᪉ࡢ⬥㸦ᩜᆅࡢෆഃ㸧✚ࡳୖࡆ࡚⠏ࢀࡓࠋࡇࡢ −69− 西村 勝広・可児 幸彦・奥田 昌男・中根 洋治・早川 清 ᕤἲࡣࠊࡑࡢᚋࠊᇛ㤋ࡢ㜵ᚚタࡢᇶᮏᕤἲࡋ࡚ࡶᗈࡃᬑཬࡍࡿࠋ ࣭ᡓᅜ௦ࡢᒣᇛ࡛ࡣࠊ ᒎᮃࡢࡼ࠸ୣ㝠ษᅵ┒ᅵࡼࡗ࡚」ᩘࡢ᭤㍯ࡤࢀࡿᖹሙࡀ㐀ᡂࡉࢀࡓࠋ ┒ᅵࡢᅵ␃ࡵ⏝▼✚ࡳࡀࡉࢀࡓࡶ࠶ࡿࠋࡇࢀࡣࠊ௨ᚋࡢ▼ᇉⓎᒎࡋ࡚࠸ࡃᕤἲ࡛࠶ࡿࠋ ࣭Ụᡞ௦ࡢ㝕ᒇ࠾࠸࡚ࡶࠊᅵሟࡢ௦ࢃࡾᅵሠቸࢆഛ࠼ࡿࡀ࠶ࡿࠋቸࡣᔂⴠࡋ㞴࠸ࡼ࠺ࠊഃ㠃 ໙㓄ࡀࡅࡽࢀ᩿㠃ࡣྎᙧࢆᡂࡍࠋ ษᅵ┒ᅵࡢᕤἲࡣ⦖ᩥ௦ጞࡲࡾࠊᚋୡࡢᘓタᕤዲࢇ࡛ྲྀࡾධࢀࡽࢀࡓࡇࡀศࡗࡓࠋ ᣲࡆࡓఱࢀࡢࡶࠊ㈨ᮦࡢ⌧ሙㄪ㐩ࠊ᥀๐ᅵࡢ᭷ຠ⏝ࠊࡑࡋ࡚ᕤ⛬ࡢྜ⌮࠸࠺Ⅼ࡛ඹ㏻ ࡋࠊࡇࢀࡽࡢⅬࡀ᪩ࡃࡽὀ┠ࡉࢀࡓ⪃࠼ࡽࢀࡿࠋ㈨ᮦࡢ⌧ሙㄪ㐩ࡶࠊṧᅵฎ⌮ࢆ⌧ሙෆ࡛ ࡛ࡁࡿࡓࡵࠊ୧⪅ࡢࣂࣛࣥࢫࡀࢀࡿ⠊ᅖ࡛ᕤࡀタィࡉࢀ࡚࠸ࡓ⪃࠼ࡽࢀࡿࠋ ᮏ✏࡛ࡣษ┒ᅵᕤὀ┠ࡋࡓࡀࠊ୍᪉࡛ᕧ▼㐠ᦙᢏ⾡ࢆ㥑ࡋࡓ㑇㊧ࡀᏑᅾࡍࡿࠋつᶍ࡞㓄▼ࡸ❧ ▼ࢆࡋࡓ⦖ᩥ௦ࡢ⎔≧ิ▼ࠊᕧ▼ࢆ⏝ࡋࡓྂቡࡢᶓ✰ᘧ▼ᐊࠊ㏆ୡᇛ㒌ࡢ▼ᇉ࡞ࢆᣲࡆࡿ ࡇࡀ࡛ࡁࡿࠋ᪥ᮏิᓥࡢ༙ࡣ ᖏẼೃᒓࡋࠊ㇏࡞᳜⏕ᅵተᜨࡲࢀࠊࡲࡓࠊⅆᡂᒾࡸሁ✚ᒾࠊ ࡑࡋ࡚ᛴᓧ࡞Ἑᕝࡀ⏕ࢇࡔ♟ࡀ㇏ᐩ࡛࠶ࡿࠋᮏ✏♧ࡋࡓࡢ࠾ࡾࠊேࠎࡣ✚ᴟⓗᅵാࡁࡅ ࡓࡀࠊ▼ࡸᮌࡶࣂࣛࣥࢫࡼࡃᅵᮌᘓ⠏㈨ᮦࡋ࡚⏝ࡋࡓࠋࡇ࠺ࡋࡓᅾࡾ᪉ࡀ᪥ᮏᅵᮌྐࡢ≉ᚩ࡛࠶ࡿ ணᐹࡍࡿࠋ ཧ⪃ᩥ⊩ 㕥ᮌᛅྖ㸸⪃ྂᏛࢩ࣮ࣜࢬ 㸪ඛᅵჾ௦ࡢ▱㆑㸪ᮾி⨾⾡㸪S㸪㸬 ྛົཎᕷᩍ⫱ጤဨ⦅㸸⅔⏿㑇㊧㸫➨ ḟㄪᰝⓎ᥀ሗ࿌᭩㸫㸪S㸪㸬 ᡂ℩ṇ㸸ᒱ㜧┴ᩥ㈈ಖㆤࢭࣥࢱ࣮ㄪᰝሗ࿌᭩➨ 㞟◁⾜㑇㊧㸪㸬 ྛົཎᕷᩍ⫱ጤဨ⦅㸸ᅗ ᆓࡢሯྂቡ 㔞ᅗྛົཎᕷྐ⪃ྂẸ⦅⪃ྂ㸪 すᮧᗈ㸸ྛົཎᕷᩥ㈈ㄪᰝሗ࿌᭩➨ ྕᆓࡢሯྂቡ࿘⠊ᅖ☜ㄆㄪᰝሗ࿌᭩㸪 すᮧᗈ࣭ྍඣᖾᙪ࣭ዟ⏣ᫀ⏨࣭୰᰿ὒ㸸ྛົཎᕷ㬼⠏㐀ࡉࢀࡓᆓࡢሯྂቡࡢタィࡘ࠸࡚㸪 ➨ ᅇ୰㒊ᆅ┙ᕤᏛࢩ࣏ࣥࢪ࣒࢘ㄽᩥ㞟㸪SS㸪 ୰᰿ὒ࣭ዟ⏣ᫀ⏨࣭ྍඣᖾᙪ࣭すᮧᗈ࣭᪩ᕝΎ㸸ἲ㠃໙㓄ࡢ᥎⛣㸪➨ ᅇㄪᰝ࣭タィ࣭ᕤᢏ ⾡ሗ࿌Ⓨ⾲せ᪨㸪㸬 すᮧᗈ㸸ྛົཎᕷᩥ㈈ㄪᰝሗ࿌᭩➨ ྕ㸪ᒣྂቡ⩌Ⓨ᥀ㄪᰝሗ࿌᭩̺࣭ ྕቡࡢㄪᰝ̺㸪 SS㸪 ྛົཎᕷᩍ⫱ጤဨ⦅㸸ᖹᡂ ࣭ ᖺᗘྛົཎᕷᕷෆ㑇㊧Ⓨ᥀ㄪᰝሗ࿌᭩㸪SS㸪 ᖺ㸬 ྛົཎᕷᇙⶶᩥ㈈ㄪᰝࢭࣥࢱ࣮⦅㸸ྛົཎᕷᩥ㈈ㄪᰝሗ࿌᭩➨ ྕ㸪ఀᮌᒣᇛᆎⓎ᥀ㄪᰝሗ࿌ ᭩㸫㑇ᵓࡢ⠊ᅖ☜ㄆㄪᰝ㸫㸪SS㸪㸬 ྛົཎᕷṔྐẸ㈨ᩱ㤋㸸ᐩᶔᗢὶᮏᆤෆᐙ୍⤫⣔ᅗ୪⏤⥴㸦㸧 㸪㸬 すᮧᗈ㸸ᮏᆤෆ㝕ᒇ㊧Ⓨ᥀ㄪᰝ⌧ᆅㄝ᫂㈨ᩱ㸪㸬 −70− 立 命 館 大 学 理 工 学 研 究 所 紀 要 第73号 2014年 Memoirs of the Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. No. 73, 2014 オペレーションズリサーチ エクセルソルバーで解く線形計画法 1 林 芳樹 ============================================= Operations Research Linear Planning solving with Excel Solver 1 Yoshiki Hayashi As the Beginning of this series we sketch in this article with easy examples the symplex method and will solve then with the help of the excel solver. In next articles we will go more deeply into this method. Keywords; Operations research, Linear planning, Excel solver E-mail: [email protected] [email protected] ============================================= 立命館大学 理工学部 Department of Science and Engineering Ritsumeikan University Kusatsu,Shiga 525-8577, Japan −71− 林 芳樹 線形計画法とは,限られた資源を分配し,利益の最大化・費用の最小化・投資収益率の最大化・時間の最適配 分などを目指す方法であり,この問題を解決するためにシンプレックス法が適用されることはよく知られてい る.また,エクセルのソルバーには最適化を実行する機能が組み込まれている.この論説では,シンプレック ス表を用いて計算された問題を,図形的解法とエクセルソルバーによる解法を比較実行し,さらには輸送問題 に関する例についてもエクセルソルバーを使用して計算したい.例題としては,[3] p.190-,[1] p.15-, p.36を使用し,[2] の解説に従いエクセルのソルバーを利用した解法に言及したい.なお,[4] の図入りの解説も参 考にされたい. 線形計画モデルの構成と例題 線形計画モデルは,目的関数と制約条件からなる.目的関数は主として利益やコストの合計金額を表し,利 益に関しては最大になるように,コストなら最小になるようにする.そのときの変数の値が解となる.制約条 件は,目的関数で適用される変数がどのような値をとるのかを関数の形で表したもので,主として不等式で表 される. 現実の問題を最適化していく際には,現実の問題が置かれた状態の本質を見抜き(モデル化),それを目的 や制約となる条件を数式やグラフを利用して表す(定式化).モデル化では何が問題なのか何が制約条件なの かを明確にする必要がある.このような理念の下にモデル化され定式化された次の例題を考察する. 例1.(以下の標準型は [3] p.190-のもの) 利益が4万円および5万円の商品 A と B の生産計画を考え,それぞれ x1 および x2 個を生産するとき生産ラ イン上での生産情報により,変数 x1 , x2 をもつ目的関数 f と制約条件 gi (i = 1, 2, 3) からなる以下のような標準 型に定式化できるとき,利益の最大値を求めたい. f = 40x1 + 30x2 g1 = 4x1 + 5x2 ≤ 40 g2 = 2x2 ≤ 50 g3 = 6x1 + 3x2 ≤ 210 x1 , x2 ≥ 0 この標準型について目的関数 f の最大値を求めるために,以下のようにスラック変数を導入し正規型に変換す る.そして,制約条件が作る凸多角形の実行可能解集合(シンプレックス)の頂点で最適解が得られるという 性質を利用してある1頂点から出発して他の頂点に次から次へと移動しながら最適解をみつける方法(シンプ レックス法)を適用する.以下の I) では図を用いた解法,II) でソルバーを利用した解法をみる.なお,ソル バーでもアルゴリズムとしてシンプレックス法が採用されている. I) 図形による解法 i) スラック変数の導入および標準型から正規型への変換 ii) 基底変数および非基底変数の分離と辞書 iii) 辞書の変形と,基底解に対する目的関数の値の読み取り 方針 i) スラック変数の導入による標準型から正規型への変換.問題の扱いを容易にするため,新しい非負の変数 (スラック変数) s1 , s2 , s3 を導入し,次の左の連立不等式の形(標準型)の不等式の部分を,右の形(正規型) のようにスラック変数の非負条件の部分にまとめてしまい,不等式を同値な等式の形に表す.したがって,正 −72− オペレーションズリサーチエクセルソルバーで解く線形計画法1 規型では不等式の部分を等式とは別の行(最後の行)におく.目的関数は Z で表す. 標準型 正規型 Z = 40x1 + 30x2 Z = 40x1 + 30x2 4x1 + 5x2 ≤ 200 4x1 + 5x2 + s1 = 200 2x2 ≤ 50 2x2 + s2 = 50 6x1 + 3x2 ≤ 210 6x1 + 3x2 + s3 = 210 x 1 , x2 ≥ 0 x1 , x 2 , s 1 , s 2 , s 3 ≥ 0 ii) 変数を基底変数と非基底変数に分け辞書の形に表す.正規型の制約条件の部分を次のように,左辺に基底 変数,右辺を非基底変数の式で表す.この形を辞書という呼び方で表す. Z= 40x1 + 30x2 s1 = 200 − 4x1 − 5x2 s2 = 50 − 2x2 s3 = 210 − 6x1 − 3x2 辞書の左辺の変数 s1 , s2 , s3 が基底変数,右辺の変数 x1 , x2 が非基底変数であり,条件式での非基底変数 x1 , x2 の値を (0, 0) とするときの s1 , s2 , s3 の値の組 (200, 50, 210) は,この連立方程式の1つの解(基底解) となる. したがって,この辞書に対応する(実行可能)基底解は (x1 , x2 , s1 , s2 , s3 ) = (0, 0, 200, 50, 210) であり,図形的には,これは x1 軸と x2 軸との成す平面の原点での解となる. 注意.辞書がひとつ決まると自動的に基底解がひとつ決まり,辞書の1行目は非基底変数 x1 , x2 と定数項で表 わされた目的関数 Z であり,上記の場合には,Z の定数項の位置に非基底変数の値を (0, 0) とした値 0 が入る. したがって,目的関数は基底解に対するものであるので,辞書の1行目の定数項をみれば基底解の目的関数の 値がわかる.この辞書をさらに変形しても,辞書の1行目の定数項をみることでその辞書の基底解に対する目 的関数の値が読み取ることができる. 以下では,非負の変数 x1 , x2 , s1 , s2 , s3 に関して,非基底変数を増加させ基底変数を減少させて辞書を変形して いくことにより,目的関数の値を求めていく. iii) 辞書の変形 i) の辞書の目的関数 Z = 40x1 + 30x2 について,ふたつの変数のうち係数が「大きい方の正 数」となる x1 を基底変数におきかえて辞書を変形する.i) で求めた解が x1 x2 平面の原点での解であるのに対 し,これは x1 軸上を正方向に移動して,多角形の次の頂点での解を求めることに対応する(ソルバーによる解 法の後の図1参照). この操作は次のようにする.x1 を正方向に増加させていくとき,基底変数 s1 , s2 , s3 のうちで 200, 50, 210 か ら値の減少していくものがある.これら減少していくもののうち最初に 0 となるものを見つけ,それを基底変 数から非基底変数と名前を変える.具体的には x2 = 0 として, s1 = 200 − 4x1 ≥ 0 のときは, x1 ≤ 50 を動く. s2 = 50 ≥ 0 のときは, x1 の値とは関係ない. s3 = 210 − 6x1 ≥ 0 のときは, x1 ≤ 35 を動く. −73− 林 芳樹 を満たしながら x1 を正の方向に動かしていくとき,s1 , s2 , s3 のうち最初に 0 となるものとそのときの x1 を 探す.この場合,前の式から min(50, 35) = 35 となりで x1 = 35 のときすでに s3 が 0 になる.このとき,i) の辞書の s3 の式 s3 = 210 − 6x1 − 3x2 における s3 と x1 の役割を入れ替えて x1 = 35 − 16 s3 − 12 x2 とい う形にして s1 , s2 の式に代入する.この操作(ピボット操作)によって次の新しい辞書と(実行可能)基底解 (x1 , x2 , s1 , s2 , s3 ) = (35, 0, 60, 50, 0) を得る. 20 s3 3 2 − 3x2 + s3 3 − 2x2 1 1 − x 2 − s3 2 6 Z = 1400 + 10x2 − s1 = 60 s2 = 50 x1 = 35 こうして新しく非基底変数となった s3 , x2 について同様のピボット操作を再度実行する.すなわち,s3 = 0 と おいて x2 を正方向に動かし,s1 , s2 のうち最初に 0 となるものと,そのときの x2 を求める.この場合,s1 = 60−3x2 + 23 s3 , s2 = 50−2x2 であるので,min(20, 25) = 20 から s1 が s2 よりも先に 0 になり,s1 = 60−3x2 + 23 s3 での s1 と x2 を軸に再びピボット操作(s1 と x2 の入れ替え)を実行し,s2 と x2 の条件式の x2 の項に第1の 条件式 x2 を代入して次の新しい辞書を得る. 10 58 s1 − s3 3 9 1 2 − s1 + s3 3 9 2 4 + s1 − s3 3 9 1 5 + s1 − s3 6 18 Z = 1600 − x2 = 20 s2 = 10 x1 = 25 この辞書から,基本解は (x1 , x2 , s1 , s2 , s3 ) = (25, 20, 0, 10, 0) であり Z = 1600 となる.すなわち,最大利益が 1600万円で,そのときの商品 A と B の個数はそれぞれ25個および20個となる. II) ソルバーによる方法([2]) 手順 1.定義式係数の入力. 2.変数セルの指定. 3.目的関数の定義式の入力と目的セルの指定. 4.制約条件の定義式の入力. 5.制約式右辺の値の入力. 6. 目的セルのソルバー上への入力. 7.目標値の選択. 8.変数セルの位置の入力. 9.制約条件の入力. 10. 「解決方法の選択」での「シンプレックス LP」を選択. 11.[解決] ボタンをクリック 12. 「ソルバーの解の保持」の確認と [OK]. i) [データ] タブをみてソルバー機能利用可能かを確認. ii) [データ] タブに [ソルバー] ボタンの表示がなければ,[ファイル] → [オプション] を選択,[Excel のオプショ 準備と注意 −74− オペレーションズリサーチエクセルソルバーで解く線形計画法1 ン] ダイアログボックス「アドイン」メニュー選択し,[アクティブでないアドイン] リストで [ソルバーアドイ ン] をクリックしてアクティブの状態にし,[設定] ボタンをクリック.[OK] もクリック.表示された「アドイン」 ダイアログボックスの「有効なアドイン」欄の「ソルバーアドイン」をチェック.[OK] をクリック. iii) リボンの [データ] タブ内の [ソルバー] をクリック. 「ソルバーのパラメータ」ダイアログボックスを入力. 「目的セルの設定」には最大(最小)にしたい数式の入ったワークシート上のセル E7 を指定. 「目標値」として 「変数セル 「目的セル」を「最大値」(「最小値」) に設定.特定の値と一致させたい場合には「特定値」を選択. の変更」には,目的セルの値が最大(最小)値となる変数値を出力するセル C6,D6 を入力. 「制約条件の対象」 では, 「変数セル」で指定した変数(またはそれらを用いた関数)の取る値に条件を設定. 「オプション」ボタン を選択すると,ソルバーの挙動などに関する設定を変更可能. 入力と設定. 1.値の入力.x1 の係数 C7「40」,C8「4」,C10「6」, x2 の係数 D7「30」,D8「5」,D9「2」,D10「3」 2. 「変数セル」を C6,D6 に指定. 3.セル E7 に以下の目的関数の定義式を入力し, 「目的セル」として指定.ここに最大値が出力される. E7:”=C7*C6+D7*D6”または”=SUMPRODUCT(C7:D7,C$6:D$6)” 4. セル E8, E9, E10 に制約条件左辺の定義式を入力.ソルバー機能ではこれらのセルが参照される. E8: ”=C8*C6+D8*D6” または”=SUMPRODUCT(C8:D8,C$6:D$6)” E9: ”=C9*C6+D9*D6” または”=SUMPRODUCT(C9:D9,C$6:D$6)” E10: ”=C10*C6+D10*D6” または”=SUMPRODUCT(C10:D10,C$6:D$6)” 絶対参照 C$6:D$6 の E8:E10 への貼り付ける方法. i) E7:”=SUMPRODUCT(C7:D7,C$6:D$6)”は,”=SUMPRODUCT(C7:D7)”と入力した後にセルの範囲指 定して [F4] キーを2回押し ”C$6:D$6 ”となったら”)”を入力して [Enter] キーを押す. ii) セル E7 を「コピー」([Ctrl]-[C] を同時に押)して [Shift] を押しながら [↓] を3回押して E8 から E10 を範 囲指定.[右クリック]→[形式を選択して貼り付け] を指定してダイアログボックスを出し, 「数式」にチェックし [OK].または [ホーム]→ [貼り付け]→ [数式] ([Alt]→[H]→[V]→[F]) で数式のみがコピーされる. 5.制約式右辺の値の入力. F8: 「200」, F9: 「50」, F10: 「210」を入力. 続いて,目的セル E7 をクリックしてアクティブにし [データ]-[ソルバー] を選択しソルバーを起動して,以下 6から13までソルバー上の入力用ダイアログボックスで操作する. 6. 「目的セル」E7 のソルバー上の入力用ダイアログボックスへの入力.目的関数の式が入ったセル E7 をク リックすると,ダイアログボックス入力欄は自動的に絶対参照「E$7」となる. 7. 「目標値」を選択.総利益を最大にしたいので, 「最大値」をチェック. 8. 「変数セルの変更」欄に変数セルの位置を入力. 「目的セル」の位置を設定したときと同様,右横のボタン をクリックして入力用のダイアログボックスを出しセル C6:D6 を範囲指定.入力後に自動的に絶対参照の形 C$6:D$6 になる. ($の入力は不必要) 9. 「制約条件」を入力. 「制約条件」欄右横にある [追加] ボタンをクリックすると現れる「制約条件追加」ダ イアログボックスに情報を入力. 非負条件 x1 , x2 ≥ 0 を除く3つの条件不等式をまとめて入力する(個々に入力することも可能). 「制約条件の 追加」ダイヤログボックスの「セル参照」に左辺の数式が入ったセル位置 E8:E10 と「制約条件」(右辺の数式 が入ったセル位置)を指定する際に, (単独のセルではなく)対応するセル範囲をドラッグして指定.制約式の 「関係子 <=」を選択して, 「ソルバーのパラメータ」ダイヤログボックスに戻ると3つの不等式制約条件がまと めて表示される.非負制約(x1 , x2 ≥ 0)についてもすべての決定変数に非負制約をもたせる場合, 「制約のな い変数を非負数にする」をチェックして「制約条件の追加」手続きによって同様に指定できる. 10. 「解決方法の選択」には LP では「シンプレックス LP」を選択. −75− 林 芳樹 11.[解決] ボタンをクリックするとソルバーが「シンプレックス法」 (単体法)を実行し,最適解を返し, 「ソ ルバーの結果」ダイアログボックスが表示される. 12. 「ソルバーの解の保持」がチェックされていることを確認して [OK].求めた解がセルに出力され,シー トに戻る.[キャンセル] を選ぶと求めた解は消え,変数セルや目的セルに 0 が表示される. ソルバーによる計算の結果,利益の値 Z が最大になるのは A:25個,B:20個で,その時の最大利益が 1600 万円になる.この結果は図を用いた方法(やシンプレックス表を用いた方法)と一致する. 例1終 わり. (0, 25) (0, 0) (18, 25) Q Q Q Q BM (25, 20) B B 図1 B (35, 0) -B (0, 60) PP 6 PP PP 図2 (0, 0) PP PP qb (120, 30) b b b (144, 0) b b 次に,パン売上げ利益の問題を定式化した例をあげる.この問題では,製パン工場での製造量や小麦粉と砂 糖の制限消費量に関する条件がついている. 例2. ([1]p.15-) I) 図による解法.モデルを定式化したものを例1と同様に標準型と正規型に表すと次のようになる. 標準型 正規型 Z = 40x1 + 60x2 Z= 50x1 + 40x2 ≤ 7200 s1 = 7200 − 50x1 − 40x2 2x1 + 8x2 ≤ 480 s2 = 480 − 2x1 − 8x2 x1 , x 2 ≥ 0 40x1 + 60x2 x1 , x2 , s1 , s2 ≥ 0 この正規型から次の辞書を得る. i) Z = 3600 + 25x1 − 15 s2 2 25 35 s1 − s2 4 8 1 1 x1 = 120 − s1 + s2 40 8 1 5 x2 = 30 + s1 − s2 160 32 x 1 , x 2 , s 1 , s2 ≥ 0 ii) Z = 6600 − s1 = 4800 − 40x1 + 5s2 x2 = 60 1 1 − x1 − s2 4 8 x1 , x 2 ≥ 0 この最後の辞書により,(120,30) で最大値「6600」をとることがわかる. (図2参照) II) エクセルソルバーでは,変数セル C6,D6,目的セル E7,制約条件の定義式 E8,E9 は例1と同じにし,目的 関数および条件式の係数 C7:「40」, C8:「50」, C9:「2」, D7:「60」, D8:「40」, D9:「8」を入力し,制約条 件の右辺の値を F8:「7200」, F9:「480」として例1と同様にソルバーを作動させると,目的セル E7 に 6600, 変数セル C6:D6 にはそれぞれ 120, 30 が出力され,(120, 30) で最大値 6600 を得る. 例2終わり. 他の例として,輸送問題を扱う.この問題に対しては北西隅ルールがあるが,ここでは,ソルバーのみ利用 して最小値をみる. 例3. ([1]p.36-)3ヶ所に工場を持っている企業が,4ヶ所ある販売店からの注文に応じて各販売店への 商品の輸送計画を立てる.各工場の供給能力を第1工場15個,第2工場25個,第3工場8個とし,販売店 −76− オペレーションズリサーチエクセルソルバーで解く線形計画法1 からの注文は,販売店1から5個,販売店2から13個,販売店3から20個,販売店4から10個とする.各 販売店からの注文に応ずるため,各工場からの出荷量を決め輸送する際,総輸送量が最小となる計画を立てる. この問題は次の標準形に定式化できる. Z = 5x11 + 4x12 + x13 + 6x14 + 6x21 + 2x22 + 7x23 + 5x24 + 8x31 + 3x32 + 10x33 + 9x34 g1 = x11 + x12 + x13 + x14 ≤ 15 x21 + x22 + x23 + x24 g2 = x31 + x32 + x33 + x34 g3 = g4 = x11 g5 = g6 = ≤ 25 + x21 x12 + x31 + x22 x13 g7 = ≥5 + x32 + x23 x14 ≤8 ≥ 13 + x33 + x24 ≥ 20 + x34 ≥ 10 x11 , x12 , . . . x34 ≥ 0 これをソルバーにかけるためにセルには例えば次のような設定をする. 1) 変数セルを C6, D6, E6, F 6, . . . , N 6 に指定. 2) セル C16 に目的関数の定義式を入力し「目的セル」(最小値表示) として指定. C16:”=SUMPRODUCT(C7:N7,C$6:N$6)” 3) セル C17, . . . C23 に制約条件左辺の定義式を入力. C17:”=SUMPRODUCT(C8:F8,C$6:F$6)” C18:”=SUMPRODUCT(G9:J9,G$6:J$6)” C19:”=SUMPRODUCT(K10:N10,K$6:N$6)” C20:”=C11*C$6+G11*G$6+K11*K$6” C21:”=D12*D$6+H12*H$6+L12*L$6” C22:”=E13*E$6+I13*I$6+M13*M$6” C23:”=F14*F$6+J14*J$6+N14*N$6” 4) 制約式右辺の数値を入力. D17: 「15」, D18: 「25」, D19: 「10」, D20: 「5」, D21: 「13」, D22: 「20」, D23: 「10」 5) 目的関数の係数および条件式の係数を入力. C7,D7,E7,F7,. . . , N7 には,目的関数の係数「5, 4, 1, 6, 6, 2, 7, 5, 8, 3, 10, 9」を入力. 条件式の係数は,C8:F8,G9:J9,K10:N10 のすべてに「1」を入力し, C11, G11, K11 に「1」,D12, H12, L12 に「1」,E13, I13, M13 に「1」,F14, J14, N14 に「1」を入力. 6) これらのデータをもとに,g1 , g2 , g3 は「<=」,g4 , . . . , g7 は「>=」であることに注意し,最小値を選択し てソルバーを実行させると解は164となり,最適解を得る.すなわち,総輸送費が最小164万円であり,北 西隅ルールで求める初期値よりも良い値となる([1] 参照). 例3終わり. ************** 文献 [1] 宮川公男 経営数学入門 実教出版 1993 年 03 月 [2] 藤澤 克樹・後藤 順哉・安井 雄一郎 Excel で学ぶ OR Ohmsha 2011 年 07 月 [3] 平井裕久 他 経済経営を学ぶための数学入門 ミネルバ書房 2010 年 11 月 [4] Fritz Reinhardt ・Heinrich Soeder 著・Gerd Falk 図作 浪川 幸彦・成木 勇夫・長岡 昇勇・林 芳樹訳 カラー図解 数学事典 共立出版 2012 年 08 月 −77− ᆺ◊✲⨨ᡂᯝሗ࿌᭩ −79− ᆺ◊✲⨨ᡂᯝሗ࿌᭩ ⨨ྡ ◊✲㈐௵⪅ 㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧 ◊✲ࢸ࣮࣐ ☢Ẽඹ㬆᩿ᒙᙳ⨨ ࢫ࣏࣮ࢶᗣ⛉Ꮫ㒊࣭ᩍᤵ࣭ᒸ㝯ᩥ 㐠ືࢺ࣮ࣞࢽࣥࢢࡼࡿ⏕యࡢኚ㛵ࡍࡿ◊✲ ㌟యάືࡼࡿ⏕యኚ㛵ࡍࡿ◊✲ 㧗㱋⪅ࡢࢧࣝࢥ࣌ࢽண㜵ࠊ⬻ᶵ⬟పୗண㜵ࡢࡓࡵࡢ◊✲ ࢧࣉ࣓ࣜࣥࢺᦤྲྀࡀ⏕యཬࡰࡍᙳ㡪㛵ࡍࡿ◊✲ ◊✲ࡢᴫせ ᮏ⨨ࡣࠊ☢Ẽඹ㬆⌧㇟ࢆ⏝ࡋ࡚ࠊ㠀くⓗ⏕యෆ㒊ࡢሗࢆᚓࡿ ᐃ⨨࡛࠶ࡾࠊ ሗࢆ⏬ീࡍࡿ☢Ẽඹ㬆⏬ീἲ㸦MRI㸧ࠊศᏊࡢᵓ㐀ࡸ≧ែ࡞ࡢᛶ㉁ࢆㄪࡿ☢ Ẽඹ㬆ศගἲ㸦MRS㸧ࡢ୧⪅ࢆഛ࠼࡚࠸ࡿࠋලయࡋ࡚ࡣࠊ⏬ീሗࡽ⏕యෆ㒊ࡢ 㦵᱁➽㔞ࠊ⬡⫫㔞⓶ୗ⬡⫫ࠊෆ⮚⬡⫫ࠊ㦵ᐜ㔞ࠊ⬻ⴎ⦰➼ࡢホ౯ࡀྍ⬟࡛࠶ࡾࠊMRS ᐃࡼࡾࠊ⬻ෆ࢚ࢿࣝࢠ࣮௦ㅰ⏘≀ࡢኚࠊ㦵᱁➽ෆ㧗࢚ࢿࣝࢠ࣮ࣜࣥ㓟ྜ≀ࡢኚ ࠊ㦵᱁➽⣽⬊ෆ㸭⣽⬊እ⬡⫫㔞➼ࢆホ౯࡛ࡁࡿࠋ␗࡞ࡿᑐ㇟ᖖⱝᖺ⪅ࠊ㧗㱋⪅ࠊ 㧗ᗘࢺ࣮ࣞࢽࣥࢢࡉࢀࡓ➇ᢏ㑅ᡭ࡞ࡀࠊᵝࠎ࡞㐠ື࠾ࡼࡧྛ✀㐠ືࢺ࣮ࣞࢽࣥࢢ ࢆ⾜ࡗࡓ㝿ࠊ⏕యࡢᙧែ࠾ࡼࡧᶵ⬟ཬࡰࡍᙳ㡪ࡘ࠸᳨࡚ウࢆ⾜ࡗࡓࠋࡲࡓࠊ㐠ື ⾲୍యࢆ࡞ࡍάືࡀ⏕యࡢᙧែ࠾ࡼࡧ㐠ື㦵᱁➽࢚ࢿࣝࢠ࣮௦ㅰཬࡰࡍᙳ 㡪ࢆ᳨ウࡍࡿࡇࡼࡾࠊᗣࢆ⥔ᣢ࣭ቑ㐍ࡍࡿ࠺࠼࡛㔜せ࡞ᙺࢆᯝࡓࡍ㌟యάື࠾ ࡼࡧ㐠ືࡢ⏕య࠾ࡅࡿᙺࡘ࠸࡚◊✲ࢆᐇࡋࡓࠋ ⏝ᡂᯝ ᮏᖺᗘࠊᮏ⨨ࢆ⏝࠸࡚⾜ࡗࡓ◊✲㛵ࡍࡿᏛ⾡ⓗᡂᯝࡣࠊ௨ୗࡢ㏻ࡾ࡛࠶ࡿࠋ ࠐⴭ᭩㸸㸯ሗ ࠐᏛ⾡ㄽᩥ㸸㸯㸮ሗ㸦in press ྵࡴ㸧 ࠐᅜ㝿ᏛⓎ⾲㸸㸯㸱௳ ࠐᅜෆᏛⓎ⾲㸸㸯㸮௳ ࠐ༤ኈㄽᩥ㸸㸰ሗ ࠐಟኈㄽᩥ㸸㸳ሗ ࠐᏛኈㄽᩥ㸸㸯㸳ሗ ヲ⣽ࡣࠊ௨ୗཧ↷ࠋ 1 −80− (ⴭ ᭩) 1 ➽ᶵ⬟࣭ᙧែⓎ㐩ࡢࡓࡵࡢ᪂ࡋ ࠸ࢺ࣮ࣞࢽࣥࢢࢩࢫࢸ࣒ࡢ㛤 Ⓨ (Ꮫ⾡ㄽᩥ) 1 ඹⴭ ᖹᡂ 26 ᖺ 12 ᭶ 㐍ࡍࡿ㐠ື⛉Ꮫ ࡢ◊✲᭱๓⥺ ᢸᙜ㡫㸸322-328 ᮏᇛ㇏அ㸪ሷ⃝ᡂᘯ㸪ᶓ୍ᫍ㸪ᰩཎಇஅ㸪 ఀᆏᛅኵ 28 ᕳ Koji Sato, Motoyuki Iemitsu, Kenji Matsutani, Toshiyuki Kurihara, Takafumi Hamaoka, and Satoshi Fujita Resistance training restores muscle sex steroid hormone steroidogenesis in older men 2 ඹⴭ ᖹᡂ 26 ᖺ 1 ᭶ The Journal Effects of different periods of hypoxic training on glucose metabolism and insulin sensitivity 3 ඹⴭ ᖹᡂ 26 ᖺ 2 ᭶ Clinical Physiology and Functional Imaging Takuma Morishima, Yuta Hasegawa, Hiroto Sasaki, Toshiyuki Kurihara, Takafumi Hamaoka, Kazushige Goto, Establishment of a recording method for surface electromyography in the iliopsoas muscle 4 ඹⴭ ᖹᡂ 26 ᖺ 4 ᭶ Journal of Electromyography and Kinesiology 23 ᕳ 4 ྕ 445-451 㡫 Takumi Jiroumaru, Toshiyuki Tadao Isaka ඹⴭ ᖹᡂ 26 ᖺ 5 ᭶ Journal of Foot and Ankle Research 7 ᕳ 25 㡫 Kurihara T, Yamauchi J, Otsuka M, Tottori N, Hashimoto T and Isaka T ඹⴭ ᖹᡂ 26 ᖺ 7 ᭶ European Journal of Sport Science Toshiaki Ijichi, Yuta Hasegawa, Takuma Morishima, Toshiyuki Kurihara, Takafumi Hamaoka, Kazushige Goto Maximum toe flexor muscle strength and quantitative analysis of human planta instrinsic and extrinsic muscles by a magnetic resonance imaging technique 5 Effect of sprint training: Training once daily versus twice every second day 6 4 weeks of high-intensity interval training does not alter the exercise-induced growth hormone response in sedentary men 7 Measurement of muscle length-related electromyography activity of the hip flexor muscles to determine individual muscle contributions to the hip flexion torque 8 Influence of neglecting the curved path of the Achilles tendon on Achilles tendon length change at various ranges of motion Kurihara, ඹⴭ ᖹᡂ 26 ᖺ 7 ᭶ Springer Plus 3 ᕳ 336 㡫 Hiroto Sasaki, Takuma Morishima, Yuta Hasegawa, Ayaka Mori, Toshiaki Ijichi, Toshiyuki Kurihara, Kazushige Goto ඹⴭ ᖹᡂ 26 ᖺ 10 ᭶ Springer Plus 3 ᕳ 624 㡫 Jiroumaru T, Kurihara T, Isaka T ඹⴭ ᖹᡂ 26 ᖺ 10 ᭶ Physiological Reports 2 ᕳ 10 ྕ e12176 㡫 Atsuki Fukutani, Satoru Hashizume, Kazuki Kusumoto, Toshiyuki Kurihara The Journal in press ᕳ Watanabe, S., Sato, K., Hasegawa, Kurihara, T., Matsutani, K., Sanada, Hamaoka, T., Fujita, S., and Iemitsu, Serum C1q as a novel biomarker sarcopenia in older adults. 9 Serum C1q as a novel biomarker of sarcopenia in older adults FASEB ඹⴭ ᖹᡂ 26 ᖺ 12 ᭶ 2 −81− FASEB N., K., M. of 10 Planned Overreaching and Subsequent Short-Term Detraining Enhance Cycle Sprint Performance. ඹⴭ ᖹᡂ 26 ᖺ 120 ᭶ in press ᕳ Hasegawa Y, Ijichi Hamaoka T, Goto K. Int J Sports Med T, Kurosawa Y, ◊✲Ⓨ⾲ 61st Tendon cross sectional area is not associated with muscle among visceral ඹⴭ 2014 ᖺ 5 ᭶ volume 61st adipose tissue area observed in multiple-slice, syndrome metabolic risks ඹⴭ 2014 ᖺ 5 ᭶ and of College growth ඹⴭ 2014 ᖺ 5 ᭶ hormone response in men Effects of Atsuki Fukutani, Toshiyuki Kurihara, Kazushige Goto fitness level, age, and sex on and 61st ඹⴭ 2014 ᖺ 5 ᭶ College Motoyuki Annual of College Ayumi Koji Sato, Iemitsu, Ido, Toshiyuki Mitsuo Takafumi Otsuka, Hamaoka, Kiyoshi Sanada Hiroto Sasaki, Yoshifumi Tsuchiya, Nobuhiro Shimura, Aya Ishibashi, Kumiko Ebi, Toshiyuki Kurihara, Kazushige Goto Annual Natsuki Hasegawa, Toshiyuki Kurihara, of Shinya Watanabe, Koji Sato, Satoshi Fujita, Meeting American Nakayama, Kurihara, Meeting American Yuki of of Sports Medicine cardiorespiratory intramyocellular American 61st Effects of 3 days of high fat diet exercise-induced Annual Meeting of Sports Medicine cardiorespiratory fitness on American of Sports Medicine Relationships the Annual Meeting College Kiyoshi Sanada, Takafumi Hamaoka, extramyocellular lipid contents of Sports Medicine Motoyuki Iemitsu Ageing-induced 61st Annual Shinya Watanabe, Koji Sato, Satoshi Fujita, of Natsuki Hasegawa, Shumpei Fujie, Kiyoshi reduction in muscle cross-sectional area is associated with serum C1q ඹⴭ 2014 ᖺ 5 ᭶ concentration The American College of Sports Medicine relationship subcutaneous between fat and intramuscular lipid in human ඹⴭ 2014 ᖺ 7 ᭶ limb. 19th Annual Congress of European College the of Sport Science Effects of intramyocellular and extramyocellular lipid contents ඹⴭ 2014 ᖺ 7 ᭶ on arterial stiffness Effect Meeting of intermittent low training on the risk of falls and in ඹⴭ 2014 ᖺ 7 ᭶ japanese Tendon of of European College the the Length Achilles Change Obtained between Direct and 19th Annual Congress of European College the of Sport Science postmenopausal women Comparison Annual Congress of Sport Science intensity and high speed power fractures 19th 7th ඹⴭ 2014 ᖺ 7 ᭶ World Congress of Biomechanics Indirect Measurement Sanada, Toshiyuki Kurihara, Takafumi Hamaoka, Motoyuki Iemitsu YOSHIKAWA, TAGUCHI, M., S., KURIHARA, YAMAUCHI, T., J., HASHIMOTO, T. HASEGAWA, N., KURIHARA, T., SATO, K., FUJITA, S., SANADA, K., OTSUKA, M., HAMAOKA, T., IEMITSU, M. HAMAGUCHI, K., KURIHARA, T., IEMITSU, M., SATO, K., OTSUKA, K., HAMAOKA, T., SANADA, K. A. Fukutani, S. Hashizume, K. Kusumoto, T. Kurihara Error evaluation of the tendon excursion for determining the Achilles tendon moment arm by comparing 7th ඹⴭ 2014 ᖺ 7 ᭶ the World Congress of Biomechanics S. Hashizume, A. Fukutani, K. Kusumoto, T. Kurihara, T. Yanagiya three-dimensional value EMG-angle relationship of hip flexor muscles during maximum 7th ඹⴭ 2014 ᖺ 7 ᭶ isometric hip flexion muscle of T. Kurihara, T. Jiroumaru, T. Isaka Biomechanics The possibilities of recording the iliopsoas World Congress activity by ඹⴭ 2014 ᖺ 7 ᭶ 7th Congress 3 −82− World of T. Jiroumaru, T. Kurihara, T. Isaka surface EMG Biomechanics ▷ᮇ㛫ࡢ㧗⬡⫫㣗ᦤྲྀࡀ୍㐣ᛶࡢ 㐠ືᑐࡍࡿᡂ㛗࣍ࣝࣔࣥࡢศἪ ඹⴭ 2014 ᖺ 9 ᭶ ඹⴭ 2014 ᖺ 9 ᭶ ඹⴭ 2014 ᖺ 9 ᭶ ඹⴭ 2014 ᖺ 9 ᭶ ඹⴭ 2014 ᖺ 9 ᭶ ඹⴭ 2014 ᖺ 9 ᭶ ඹⴭ 2014 ᖺ 9 ᭶ ᛂ⟅ཬࡰࡍᙳ㡪 ⾑୰ C1q ࣞ࣋ࣝࡣ㧗㱋⪅ࡢࣞࢪࢫ ࢱࣥࢫࢺ࣮ࣞࢽࣥࢢࡼࡿ➽⫧ ຠᯝ㛵㐃ࡍࡿ ࣞࢪࢫࢱࣥࢫࢺ࣮ࣞࢽࣥࢢࡀ⓶ୗ ⬡⫫➽⣽⬊ෆ⬡⫫ཬࡰࡍᙳ㡪 ➨ 69 ᅇ᪥ᮏయຊ་ బࠎᮌ⿱ே㸪▼ᶫᙬ㸪ᅵᒇྜྷྐ㸪ᚿᮧಙᘅ㸪ᰩ Ꮫ ཎಇஅ㸪ᾏ⪁ஂ⨾Ꮚ㸪ᚋ⸨୍ᡂ ➨ 69 ᅇ᪥ᮏయຊ་ Ώ㑓┿ஓ㸪బ⸨ᖾ㸪㛗㇂ᕝኟ㍤㸪⸨⏣⪽㸪ᰩ Ꮫ ཎಇஅ㸪ᯇ㇂ྖ㸪ᒸ㝯ᩥ㸪ᐙග⣲⾜ ➨ 69 ᅇ᪥ᮏయຊ་ ᮏ㛫ಇ⾜㸪ᰩཎಇஅ㸪ᱵ㔝ᚨ㸪⸨⏣⪽㸪ᒸ㝯 Ꮫ ᩥ ➨ 69 ᅇ᪥ᮏయຊ་ బ⸨ᖾ㸪ᐙග⣲⾜㸪ᯇ㇂ྖ㸪ᰩཎಇஅ㸪┠ Ꮫ ᓮⓏ㸪ᒸ㝯ᩥ㸪⸨⏣⪽ 㧗㱋⪅ࡢ୍㐣ᛶࣞࢪࢫࢱࣥࢫ㐠ື ࡼࡿ㦵᱁➽ᛶࢫࢸࣟࢻ௦ㅰᛂ ⟅ࡣࢺ࣮ࣞࢽࣥࢢࡼࡿ➽㔞࣭➽ ຊቑ㛵㐃ࡍࡿ 㝣ୖ➇ᢏ▷㊥㞳㑅ᡭ࠾ࡅࡿ 6 ᪥ 㛫㐃⥆ࡢప㓟⣲ࢺ࣮ࣞࢽࣥࢢࡢຠ ᯝ ᭷㓟⣲ࢺ࣮ࣞࢽࣥࢢࡼࡿື⬦◳ ᨵၿ➽⣽⬊ෆ࣭እ⬡⫫ྵ᭷㔞 ࡢ㛵ಀ ㊊ᣦ➽ຊ❧ጼໃㄪᩚᶵ⬟ࡢ㛵 ಀ ▷㊥㞳㉮㑅ᡭࡢ㊊ᣦ➽ຊ㊊ᗏ㒊 ➽᩿㠃✚ ඹⴭ 2014 ᖺ 11 ᭶ ➨ 69 ᅇ᪥ᮏయຊ་ Ꮫ ➨ 69 ᅇ᪥ᮏయຊ་ 㛗㇂ᕝኟ㍤㸪ᰩཎಇஅ㸪బ⸨ᖾ㸪┿⏣ᶞ⩏㸪 Ꮫ ᒸ㝯ᩥ㸪ᐙග⣲⾜ ➨ 69 ᅇ᪥ᮏయຊ་ ᰩཎಇஅࠊ⯚ᮌ୍ୡࠊ㫽ྲྀఙᙯࠊሯග㞝ࠊఀ Ꮫ ᆏᛅኵࠊᒣෆ₶୍㑻 ➨ 35 ᅇ ࣂ࣓࢜ ᰩཎ ಇஅ, ሯ ග㞝, 㫽ྲྀ ఙᙯ, ᶫᮏ ࢝ࢽࢬ࣒Ꮫ⾡ㅮ₇ ᚿ, ఀᆏ ᛅኵ, ᒣෆ ₶୍㑻 American Musclular Lipid is Associated With a Risk Factor of Arterial ඹⴭ 2014 ᖺ 11 ᭶ Stiffness ➟ಙ୍㸪ᰩཎಇஅ㸪㯮⃝⿱Ꮚ㸪ᚋ⸨୍ᡂ Heart Association's 2014 Natsuki Hasegawa; Toshiyuki Kurihara; Koji Scientific Sessions Sato; Satoshi Fujita; Kiyoshi Sanada; Mitsuo and Resuscitation Otsuka; Science Iemitsu Takafumi Hamaoka; Motoyuki Symposium Ꮫࢦࣝࣇ㑅ᡭ࠾ࡅࡿయᖿ➽ᙧ ែࡢᕥྑᕪ ⫪㛵⠇ෆ᪕➽ຊཬࡰࡍ⫪㛵⠇ᅇ ᪕ゅᗘࡢᙳ㡪 ඹⴭ 2014 ᖺ 11 ᭶ ඹⴭ 2014 ᖺ 11 ᭶ ➨ 27 ᅇ᪥ᮏࢺ࣮ࣞ Ἠᮏὒ㤶ࠊᬛ㐨⏕ࠊⳢ၏ᚿࠊᰩཎಇஅࠊఀᆏ ࢽࣥࢢ⛉Ꮫ ᛅኵ ➨ 27 ᅇ᪥ᮏࢺ࣮ࣞ ᑠᔱ㧗ᗈࠊఀ⸨ኴ♸ࠊ䬢ཱྀ㈗ಇࠊᰩཎಇஅࠊఀ ࢽࣥࢢ⛉Ꮫ ᆏᛅኵ 㻌 4 −83− ᆺ◊✲⨨ᡂᯝሗ࿌᭩ ⨨ྡ ◊✲㈐௵⪅ 㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧 ◊✲ࢸ࣮࣐ ༙ᑟయᴟᚤᵓ㐀ホ౯⨨ ⌮ᕤᏛ㒊࣭ᩍᤵ Ⲩᮌ ດ 1. RF-MBE ᡂ㛗 InN ⣔❅≀༙ᑟయࡢᴟᚤᵓ㐀࣭ගᏛⓗ≉ᛶホ౯ 2. ⣸እ LED ⏝ MOCVD ᡂ㛗 GaN ⷧ⭷ࡢᴟᚤᵓ㐀࣭ගᏛⓗ≉ᛶホ౯ 3. ࢝ࣝࢥࢤࢼࢻᮦᩱ࣭ⷧ⭷ࡢᙧᡂኴ㝧㟁ụࡢᛂ⏝ ᭷ᶵኴ㝧㟁ụࡢࢻࢼ࣮ᒙࡢศᏊ㓄ྥไᚚࡼࡿຠ⋡ࡢᨵၿ ⣽⳦ࡢࢭࣞࣥࢼࣀ⢏Ꮚ⏕ᡂᶵᵓࡢゎ᫂ ◊✲ࡢᴫせ ᮏ⨨ࡣ X ⥺ᅇᢡ⨨㸦PANalytical 〇 XPertMRD㸧ࠊ㉮ᰝ㟁Ꮚ㢧ᚤ㙾 㸦HITACHI 〇 S-4300SE㸧ࠊ ࢝ࢯ࣮ࢻ࣑ࣝࢿࢵࢭࣥࢫ 㸦CL㸧 ᐃࢩࢫࢸ࣒ 㸦GATAN 〇 MONO-CL2㸧 ࠊEBIC ᐃࢩࢫࢸ࣒㸦GATAN 〇㸧ࡽᵓᡂࡉࢀ࡚࠾ࡾࠊ༙ᑟ యᮦᩱศ㔝ࢆ୰ᚰᖜᗈ࠸㡿ᇦ࡛◊✲άືά⏝ࡉࢀࡓࠋྛࢸ࣮࣐ࡢ◊✲ᴫせ ࢆ௨ୗ♧ࡍࠋ 1. RF-MBE ἲࢆ⏝࠸࡚ᵝࠎ࡞ᇶᯈୖస〇ࡋࡓ GaNࠊInNࠊGaNࠊInGaN ⷧ ⭷ᑐࡋࠊX ⥺ᅇᢡ⨨ࢆ⏝࠸ࡓ⤖ᬗᛶࠊΰᬗ⤌ᡂࠊ㏫᱁Ꮚ࣐ࢵࣆࣥࢢ ࡼࡿ᱁Ꮚṍࡢ⢭ᐦホ౯ࠊSEM ࢆ⏝࠸ࡓ⾲㠃ࣔࣇ࢛ࣟࢪ࣮ホ౯ࠊCL ࢆ⏝࠸ ࡓᴟᚤᵓ㐀Ⓨග≉ᛶࡢ㛵㐃ᛶホ౯࡞ࢆ⾜࠸ࠊࡇࢀࡽᮦᩱࡢ⤖ᬗ㧗ရ㉁ ࠊ≀ᛶゎ᫂ࡢ▱ぢࢆᚓࡓࠋ 2. ⣸ እ LED ᛂ ⏝ ྥ ࡅ ࡚ ࠊ MOCVD ἲ ࢆ ⏝ ࠸ ࡚ స 〇 ࡋ ࡓ Si ᇶ ᯈ ୖ AlGaN/GaN ከ㔜㔞Ꮚᡞᵓ㐀ࠊAlN ⷧ⭷ᑐࡋ࡚ࠊX ⥺ᅇᢡ⨨ࢆ⏝࠸ ࡓ⤖ᬗᛶࠊ᱁Ꮚᐃᩘࠊΰᬗ⤌ᡂࡢ⢭ᐦ ᐃࠊCL ࢆ⏝࠸ࡓⓎග≉ᛶホ౯ࢆ ⾜࠸ࠊᡂ㛗᮲௳ࡀୖグ≉ᛶཬࡰࡍᙳ㡪ࢆ᳨ウࡋࡓࠋ 3. 㧗ຠ⋡ྜ≀ⷧ⭷ኴ㝧㟁ụࡢග྾ᮦᩱ㸦Ⓨ㟁ᒙ㸧ࡋ࡚ᮇᚅࡉࢀࡿ࢝ࣝ ࢥࢤࢼࢻⷧ⭷ࡢ㧗ရ㉁ࡘ࠸᳨࡚ウࡋࡓࠋ≉ࠊCu(In,Ga)Se2ࠊ Cu2SnSe3ࠊCu2ZnSn(S,Se)4ࠊSnS ࡞ࡢከ⤖ᬗⷧ⭷ࡢ⤖ᬗ⢏ࢧࢬࡸ⾲㠃 ࢆヲ⣽ほᐹࡋࠊኴ㝧㟁ụᛶ⬟ࡢ┦㛵ࢆ᳨ウࡋࡓࠋ 4. ኴ㝧㟁ụᛂ⏝ࢆ┠ᣦࡋࡓ ITO ᇶᯈୖࡢ᭷ᶵⷧ⭷ᮦᩱࡢ㓄ྥᛶホ౯ࢆ X ⥺ ᅇᢡ⨨ࢆ⏝࠸࡚⾜ࡗࡓࠋ 5. Bacillus sp. NTP-1 ᰴ࠾ࡼࡧ Escherichia coli ࡞ࡢ⣽⳦ࡀ⏕⏘ࡍࡿࢭࣞࣥ⢏ Ꮚࢆࢩࣙ⢾ᐦᗘ໙㓄㐲ᚰἲ࡚ᅇࡋࠊSEM ࢆ⏝࠸ࡓほᐹࡼࡾᙧ≧ࠊ ⢏ᚄ࡞ࢆホ౯ࡋࡓࠋࡲࡓࠊࢭࣞࣥ⢏Ꮚ࠾ࡼࡧࢸࣝࣝ⢏Ꮚࡢᙧᡂ㛵ࡍ ࡿࢱࣥࣃࢡ㉁ࡢゎᯒࢆ⾜ࡗࡓࠋ −84− ⏝ᡂᯝ ࠙Ꮫ⾡ㄽᩥࠚ T. Araki, S. Uchimura, J. Sakaguchi, Y. Nanishi, T. Fujishima, A. Hsu, K. Kim, T. Palacios, A. Pesquera, A. Centeno and A. Zurutuza, Radio-Frequency Plasma-Excited Molecular Beam Epitaxy Growth of GaN on Graphene/Si(100) Substrates, Applied Physics Express 7, 071001/1-3 (2014). N. Kurose, K. Shibano, T. Araki, and Y. Aoyagi, Development of substrate removal - free vertical ultraviolet light-emitting diode (RefVLED), AIP Advances 4, 027122 (2014). K. Wang, T. Araki, M. Takeuchi, E. Yoon and Y. Nanishi, Selective Growth of N-polar InN Through an In Situ AlN Mask on a Sapphire Substrate, Appl. Phys. Lett. 104, 032108/1-5 (2014). K. Aoyagi, A. Tamura, H. Takakura, T. Minemoto, Effect of rear-surface buffer layer on performance of lift-off Cu(In,Ga)Se 2 solar cells, Jpn. J. Appl. Phys. 53, 05FW05-1-5 (2014). Z. Tang, Y. Nukui, K. Kosaka, N. Ashida, H. Uegaki, T. Minemoto, Reduction of secondary phases in Cu2SnSe3 absorbers for solar cell application, J. Alloys Compd. 608, 213-219(2014). J. Chantana, T. Watanabe, S. Teraji, K. Kawamura, T. Minemoto, Effect of Crystal Orientation in Cu(In,Ga)Se2 Fabricated by Multi-Layer Precursor Method on Its Cell Performance, Appl. Surf. Sci. 314, 845-849 (2014). J. Chantana, D. Hironiwa, T. Watanabe, S. Teraji, K. Kawamura, T. Minemoto, Investigation of Cu(In,Ga)Se2 Absorber by Time-Resolved Photoluminescence for Improvement of Its Photovoltaic Performance, Sol. Energy Mater. Sol. Cells 130, 567-572 (2014). D. Hironiwa, N. Matsuo, N. Sakai, T. Katou, H. Sugimoto, J. Chantana, Z. Tang, T. Minemoto, Sputtered (Zn,Mg)O buffer layer for band offset control in Cu2ZnSn(S,Se)4 solar cells, Jpn. J. Appl. Phys. 53, 106502-1-6 (2014). Y. Mizumoto, J. Chantana, D. Hironiwa, A. Yamamoto, K. Yabuki, A. Nakaue, T. Minemoto, Junction quality evaluation of buffer-free Zn(O,S):Al/Cu(In,Ga)Se2 thin film solar cells, APEX 7, 125503-1-4 (2014). J. Chantana, D. Hironiwa, T. Watanabe, S. Teraji, K. Kawamura, T. Minemoto, Controlled back slope of Ga/(In+Ga) profile in Cu(In,Ga)Se2 absorber fabricated by multi layer precursor method for improvement of its photovoltaic performance, Sol. Energy Mater. Sol. Cells 133, 223-228 (2015). J. Chantana, D. Hironiwa,T. Watanabe, S. Teraji, K. Kawamura, T. Minemoto, Estimation of open-circuit voltage of Cu(In,Ga)Se2 solar cells before cell fabrication, Renewable Energy 76, 575-581 (2015). −85− K. Harafuji, H. Sato, T. Matsuura, Y. Omoto, T. Kaji, and M. Hiramoto, Degradation in organic solar cells under illumination and electrical stresses in air, Jpn. J. Appl. Phys. 53, 122303/1-9 (2014). R. Hidese, H. Mihara, T. Kurihara, N. Esaki, Global identification of genes affecting iron-sulfur cluster biogenesis and iron homeostasis, J Bacteriol, 196, 1238-1249 (2014). T. Imai, T. Kurihara, N. Esaki, H. Mihara, Glutathione contributes to the efflux of selenium from hepatoma cells, Biosci Biotechnol Biochem, 78, 1376-1380 (2014). H. Mihara, T. Kurihara, N. Esaki, Selenocysteine lyase: Delivering selenium in biosynthetic pathway, Selenium in the Environment and Human Health, CRC Press, London, UK, pp. 181 (2014). Y. Tani, K. Omatsu, S. Saito, R. Miyake, H. Kawabata, M. Ueda, H. Mihara, Heterologous expression of L-lysine -oxidase from Scomber japonicus in Pichia pastoris and functional characterization of the recombinant enzyme, J Biochem, (2015) in press. Y. Tani, R. Miyake, R. Yukami, Y. Dekishima, H. China, S. Saito, H. Kawabata, H. Mihara, Functional expression of L-lysine -oxidase from Scomber japonicus in Escherichia coli for one-pot synthesis of L-pipecolic acid from DL-lysine, Appl Microbiol Biotechnol, (2015) in press. ࠙ᅜ㝿Ꮫࠚ Y. Nanishi, T.Yamaguchi and T. Araki, DERI Method; Possible Approach to Longer Wavelength Light Emitters Based on Nitride Semiconductors, 6th Forum on New Materials (CIMTEC2014), (2014.6), Tuscany Italy. M. Sakamoto, K. Wang, T. Araki, Y. Nanishi and E. Yoon, Study on Thickness Dependence of Composition and Strain Relaxation of RF-MBE Grown In-rich InGaN, 56th Electronic Materials Conference (EMC 2014), (2014. 6) Santa Barbara, California USA Y. Nanishi, T. Yamaguchi, T. Araki, A. Uedono and T. Palacios, Plasma Induced Point Defects in InN During RF-MBE Growth and Those Reduction by DERI Method, Defects in Semiconductors Gordon Research Conference (2014.8) Waltham, MA USA T. Yamaguchi, K. Narutani, T. Onuma, T. Araki, T. Honda, Y. Nanishi,RF-MBE Growth of GaInN Films Using DERI Method and Fabrication of Homojunction-Type LED Structures, 6th International Symposium on Functional Materials (ISFM 2014) (2014.8) Singapore. −86− N. Masuda, T. Kobayashi, T. Araki, Y. Nanishi, M. Oda, T. Hitora, RF-MBE Growth of Nitride Semiconductors on Į-In2O3/Sapphire, International Workshop on Nitride Semiconductor 2014 (2014.8) Wroclaw Poland. T. Araki, T. Yamaguchi and Y. Nanishi, RF-MBE Growth of InN and InGaN Ternary Alloys Using DERI, 19th International Conference on Ternary and Multinary Compounds 㸦ICTMC-19㸧(2014.9) Niigata Japan. K. Harafuji and Y. Omoto, Degradation in Organic Solar Cells with Thin Silver Anode Buffer, XXIII Int. Materials Research Congress 2014 (IMRC23) 2014/08/19 K. Harafuji and K. Arisawa, Organic Solar Cells with Multiple-Layer Donor, Int. Conf. & Exhibition on Advanced & Nano Materials (ICANM2014) 2014/08/12 H. Tajima, T. Nagano, R. Ouchida, K. Okanishi, K. Kim, R. Masui, S. Kuramitsu, Y. Tani, S. Saito, T. Minemoto, N.T. Prakash, H. Mihara, Identification of Proteins Involved in Bacterial Synthesis of Selenium Particles, Institute for Chemical Research International Symposium 2014ICR, Kyoto University, Uji, 2014. Y. Tani, H. Nakamoto, R. Miyake, H. Kawabata, M. Ueda, H. Mihara, D-Lysine catabolic enzymes of Pseudomonas putida, Institute for Chemical Research International Symposium 2014ICR, Kyoto University, Uji, 2014. ࠙ᅜෆᏛࠚ ෆ⏣❳, ⏣ᓥᐶ㝯, ᒣᮏ⣫㈨, ᩪ⸨ⱱᶞ, ㇂Ὀྐ, ᓟඖ㧗ᚿ, N.T. Prakash, ୕ཎஂ᫂, ⣽⳦࠾ࡅࡿࢭࣞࣥᚤ⢏Ꮚ⏕ᡂ㛵ࢃࡿࢱࣥࣃࢡ㉁ࡢ ྠᐃ, ᪥ᮏ㎰ⱁᏛ 2014 ᖺᗘ᫂Ꮫ⏕⏣࢟ࣕࣥࣃࢫࠊ⚄ዉᕝ, 2014. ྡ⏣ࢧࢼ, ⏣ᓥᐶ㝯, ᩪ⸨ⱱᶞ, ㇂Ὀྐ, N.T. Prakash, ୕ཎஂ᫂, Cellulomonas sp. D3a ᰴ࠾ࡅࡿࢸࣝࣝ㓟㑏ඖ㛵ࢃࡿ㑇ఏᏊࡢྠᐃ, ᪥ ᮏ㎰ⱁᏛ 2014 ᖺᗘ᫂Ꮫ⏕⏣࢟ࣕࣥࣃࢫࠊ⚄ዉᕝ, 2014. ྡ⏣ࢧࢼ, ᒣ㝿ᜤᖹ, Ọ㔝▱ဢ, ⏣ᓥᐶ㝯, ᩪ⸨ⱱᶞ, ㇂Ὀྐ, N.T. Prakash, ୕ཎஂ᫂, ࢢ࣒ࣛ㝧ᛶ⣽⳦ࡢࢸࣝࣝ㓟㑏ඖ㛵ࢃࡿ㑇ఏᏊࡢྠᐃ, ᪥ᮏ㎰ⱁᏛ㛵すᨭ㒊➨ 484 ᅇㅮ₇ி㒔ᗓ❧Ꮫ㸦ி㒔ᗓ㸧, 2014. ࠙ಟኈㄽᩥࠚ ෆᮧ ᬛࠕRF-MBE ἲࡼࡿ Si(100)ᇶᯈୖ GaN ⤖ᬗᡂ㛗㛵ࡍࡿ◊✲ࠖ Ύཎ ⪽ࠕKFM ࡼࡿ InGaN ⾲㠃ࡢ In ⤌ᡂᦂࡽࡂཬࡧ GaN ⣔ࢹࣂࢫࡢ᩿ 㠃㟁ศᕸࡢホ౯ࠖ ᆏᮏ ṇὒࠕRF-MBE ἲࢆ⏝࠸ࡓ InGaN ࡢ⭷ཌᑐࡍࡿ In ⤌ᡂኚ㛵ࡍࡿ ◊✲ࠖ −87− ᰘ㔝 ㅬኴᮁࠕSi ᇶᯈୖ⦪ᆺ῝⣸እ LED ࡢ㛤Ⓨࠖ ᶫᮏ 㞝ࠕ㓟࣒࢞ࣜ࢘ࡢ⣸እ⥺᳨ฟჾᛂ⏝ྥࡅࡓ᳨ウࠖ ྜྷᮧ ᏕࠕInN 㟁Ꮚࢹࣂࢫᛂ⏝ྥࡅࡓࢹࣂࢫࣉࣟࢭࢫ㛵ࡍࡿ◊✲ࠖ ᮧ⏣ 㞞ࠕSCAPS ࢆ⏝࠸ࡓྜ≀ኴ㝧㟁ụࡢࣂࣥࢻࣉࣟࣇࣝࡢ᭱㐺ࠖ ᳃ ࠕCu2ZnSn(S,Se)4 ኴ㝧㟁ụ࠾ࡅࡿ NaF ᚋฎ⌮ࡢ᳨ウࠖ Ỉᮏ 㞝ኴࠕZn(O,S):Al/Cu(In,Ga)Se2 ࣂࢵࣇࣇ࣮ࣜኴ㝧㟁ụࡢస〇ホ౯ࠖ ᑠ㜰 ㈗୍ ࠕSnS ⢊ᮎ S ⢊ᮎࢆ⏝࠸ࡓ◲ἲࡼࡿ Cu2SnS3 ኴ㝧㟁ụࡢస〇ࠖ 㧗 ㄹ ࠕCu2ZnSn(S,Se)4 ⷧ⭷ኴ㝧㟁ụࡢ Cd ᣑᩓฎ⌮ࡼࡿ pn ᥋ྜᙧᡂ᮲௳ࠖ ♸႐ࠕ3 ࢰ࣮ࣥ⟶≧⅔ࢆ⏝࠸ࡓ Cu2SnSe3 ග྾ᒙࡢస〇ホ౯ࠖ ㉥ᕊ ྖࠕࢻࢼ࣮ᒙࢆศᏊ㓄ྥไᚚࡋࡓ᭷ᶵኴ㝧㟁ụࡢᛶ⬟㛵ࡍࡿ◊✲ࠖ ✄ᇉ ⩧ࠕ᭷ᶵኴ㝧㟁ụ࠾ࡅࡿࣀ࣮ࢻ⏺㠃ไᚚ↷ᑕຎ㛵ࡍࡿ◊✲ࠖ ዟ㔝 ᘯேࠕ᭷ᶵⷧ⭷ኴ㝧㟁ụ࠾ࡅࡿ᭤⥺ᅉᏊࡢ↷ᑕຎࡢ᳨ウࠖ ᮎᒸ ៅ⟇ࠕ㝧ᴟ⾲㠃ࢆ㹓㹔࢜ࢰࣥฎ⌮ࡋࡓ᭷ᶵኴ㝧㟁ụࡢᛶ⬟㛵ࡍࡿ◊✲ࠖ ఫ ᘯஅࠕ᭷ᶵኴ㝧㟁ụ࠾ࡅࡿ㛤ᨺ➃㟁ᅽࡢ↷ᑕຎ㛵ࡍࡿ◊✲ࠖ ࿋ ಇ൲ࠕPseudomonas sp. F2a ࡢளࢭࣞࣥ㓟㑏ඖ⬟㛵ࡍࡿ◊✲ࠖ −88− ᆺ◊✲⨨ᡂᯝሗ࿌᭩ ⨨ྡ ࣄ࣮࣐࣮࣓࣮ࣗࣥ࢝ࣟࣜࢱ࣮࣭ேᕤ⎔ቃヨ㦂ᐊ㸦ప㓟⣲ࢳࣕࣥࣂ࣮㸧 ◊✲㈐௵⪅ ࢫ࣏࣮ࢶᗣ⛉Ꮫ㒊࣭ᩍᤵ࣭┿⏣ᶞ⩏ 㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧 ◊✲ࢸ࣮࣐ ࣭ప㓟⣲⎔ቃ࡛ࡢ㐠ືࡀᗣቑ㐍ཬࡰࡍࡶࡓࡽࡍຠᯝ㛵ࡍࡿ◊✲㸦◊✲ 㸧 ࣭ࢫ࣏࣮ࢶ➇ᢏ⪅࠾ࡅࡿప㓟⣲⎔ቃ࡛⾜࠺ࢺ࣮ࣞࢽࣥࢢࡀ㐠ື⬟ຊࡸ 㦵᱁➽ෆࡢ࢚ࢿࣝࢠ࣮ᇶ㉁ཬࡰࡍᙳ㡪㛵ࡍࡿ◊✲㸦◊✲ 㸧 ࣭Ᏻ㟼࠾ࡼࡧ㐠ື࠾ࡅࡿ࢚ࢿࣝࢠ࣮ᾘ㈝㔞ࡢ ᐃ㛵ࡍࡿ◊✲㸦◊✲ 㸧 ◊✲ࡢᴫせ ࠙◊✲ ࠚ ㏻ᖖ㓟⣲⎔ቃୗ㸦㓟⣲⃰ᗘ 㸧ࡲࡓࡣప㓟⣲⎔ቃୗ㸦㓟⣲⃰ᗘ 㸧࡛ࡢ 㣗ᚋࡢ⾑୰ࢢࣝࢥ࣮ࢫࡸࣥࢫࣜࣥ⃰ᗘࠊ㣗ḧㄪ⠇㛵ࢃࡿෆศἪᣦᶆࡢ⤒ ᛂ⟅ࢆẚ㍑ࡋࡓࠋࡲࡓࠊ୍㐣ᛶࡢ㐠ືࡀ㐠ື୰࠾ࡼࡧ㐠ື⤊ᚋࡢ௦ㅰ࣭ෆศ Ἢືែཬࡰࡍᙳ㡪ࢆ᳨ウࡋࡓࠋ ࠙◊✲ ࠚ ࢫ࣏࣮ࢶ➇ᢏ⪅ࢆᑐ㇟ࠊ㏻ᖖ㓟⣲⎔ቃୗ㸦㓟⣲⃰ᗘ 㸧ࡲࡓࡣప㓟⣲⎔ ቃୗ㸦㓟⣲⃰ᗘ 㸧࡛⾜࠺㧗ᙉᗘࢺ࣮ࣞࢽࣥࢢࡀ㐠ື㐙⾜⬟ຊࡸ㦵᱁➽ෆ ࡢ࢚ࢿࣝࢠ࣮ᇶ㉁㸦ࢡࣜࢳࣥࣜࣥ㓟㔞㸧ཬࡰࡍᙳ㡪ࢆ᳨ウࡋࡓࠋ ࠙◊✲ ࠚ ▷㛫࣭㧗ᙉᗘ࡛ࡢࢺ࣮ࣞࢽࣥࢢᑐࡍࡿ࢚ࢿࣝࢠ࣮ᾘ㈝㔞ࡢኚࠊᗣ࡙ࡃ ࡾࡸ⫧‶ண㜵ࢆࡡࡽ࠸ࡋࡓᇶ♏௦ㅰ㔞ࡢホ౯࡞ࢆ⾜ࡗࡓࠋ ⏝ᡂᯝ ࠙ㄽᩥࠚ 1. Hasegawa Y, Ijichi T, Kurosawa Y, Hamaoka T, Goto K. Planned overreaching and subsequent short-term detraining enhance sprint performance. Int J Sports Med, 2015 (in press) 2. Ijichi T, Hasegawa Y, Morishima T, Kurihara T, Hamaoka T, Goto K. Effect of sprint training: Training once daily versus twice every second day. Eur J Sport Sci, 15: 143-150, 2014. 3. Takuma Morishima and Kazushige Goto. Successive exposure to moderate hypoxia does not affect glucose metabolism and substrate oxidation in young healthy men. SpringerPlus 3: p. 370, 2014. 4. Takuma Morishima, Ayaka Mori, Hiroto Sasaki and Kazushige Goto.ಯಯImpact of exercise and moderate hypoxia on glycemic regulation and substrate oxidation pattern.” −89− PLOS ONE 9(10): p.e 108629, 2014. ࠙ᏛⓎ⾲㸦ᅜ㝿Ꮫ㸧 ࠚ 1. Nobukazu Kasai, Sahiro Mizuno, Sayuri Ishimoto, Etsuko Sakamoto, Misato Maruta, Kazushige Goto. Effect of 6 days of hypoxic training on repeated pedaling performance in short sprinters. 61st Annual Meeting of American College of Sports Medicine, Orlando, USA. May, 2014. 2. Takuma Morishima, Ayaka Mori, Hiroto Sasaki and Kazushige Goto. “Metabolic Endocrine Responses during Rest and Exercise under Moderate Hypoxic Condition.” 61st Annual Meeting of American College of Sports Medicine, Orlando, USA. May, 2014. ࠙ᏛⓎ⾲㸦ᅜෆᏛ㸧 ࠚ 1. ➟ಙ୍ࠊᚋ⸨୍ᡂ. ప㓟⣲⎔ቃୗ࠾ࡅࡿ▷ᮇ㛫ࡢࢫࣉࣜࣥࢺࢺ࣮ࣞࢽࣥ ࢢࡢຠᯝ. ➨ 22 ᅇ᪥ᮏ㐠ື⏕⌮Ꮫࠊᒸᒣࠊ2014 ᖺ 7 ᭶ 2. ᚋ⸨୍ᡂ. 㧗ᙉᗘࢫࣉࣜࣥࢺࢺ࣮ࣞࢽࣥࢢࡢຠᯝ. ➨ 22 ᅇ᪥ᮏ㐠ື⏕⌮Ꮫ ࠊᒸᒣࠊ2014 ᖺ 7 ᭶㸦ᣍᚅㅮ₇㸧 3. ➟ಙ୍ࠊᚋ⸨୍ᡂ. 㝣ୖ➇ᢏ▷㊥㞳㑅ᡭ࠾ࡅࡿ 6 ᪥㛫㐃⥆ࡢప㓟⣲ࢺࣞ ࣮ࢽࣥࢢࡢຠᯝ. ➨ 69 ᅇ᪥ᮏయຊ་Ꮫࠊ㛗ᓮࠊ2014 ᖺ 9 ᭶ 4. ᳃ᔱ⌶┿ࠊ᳃ᩥ㤶ࠊబࠎᮌ⿱ேࠊᚋ⸨୍ᡂ㸬⫧‶⪅࠾ࡅࡿప㓟⣲⎔ቃ࡛ࡢ Ᏻ㟼ࡸ㐠ືక࠺㣗ḧㄪ⠇ࡢኚࠊ➨ 69 ᅇ᪥ᮏయຊ་Ꮫࠊ㛗ᓮ┴ࠊ2014 ᖺ9᭶ 5. ᚋ⸨୍ᡂ. ప㓟⣲⎔ቃୗ࡛ࡢ㐠ືࡀ⢾௦ㅰࡸෆศἪᛂ⟅ཬࡰࡍᙳ㡪. ➨ 69 ᅇ᪥ᮏయຊ་Ꮫࠊ㛗ᓮࠊ2014 ᖺ 7 ᭶㸦ᣍᚅㅮ₇㸧 6. ᚋ⸨୍ᡂ. ➇ᢏ⪅ࢆᑐ㇟ࡋ࡚ప㓟⣲⎔ቃୗ࡛ࡢ㧗ᙉᗘࢺ࣮ࣞࢽࣥࢢࡢຠ ᯝ. ➨ 18 ᅇ㧗ᡤࢺ࣮ࣞࢽࣥࢢᅜ㝿ࢩ࣏ࣥࢪ࣒࢘ 2014 ᮾிࠊᮾிࠊ2014 ᖺ 10 ᭶㸦ᣍᚅㅮ₇㸧 ࠙༤ኈㄽᩥࠚ 1. ᳃ᔱ⌶┿ࠕᗣቑ㐍ࢆࡡࡽ࠸ࡋࡓప㓟⣲⎔ቃ࡛ࡢ㐠ືࡢຠᯝ㛵ࡍࡿ◊ ✲ࠖ ࠊ2015 ᖺ 3 ᭶ −90− ᆺ◊✲⨨ᡂᯝሗ࿌᭩ ⨨ྡ ◊✲㈐௵⪅ 㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧 ◊✲ࢸ࣮࣐ BKC ኳయほ ࢻ࣮࣒ ⌮ᕤᏛ㒊࣭ᩍᤵ ᳃ ṇᶞ 60cm ගᏛᑕᘧኳయᮃ㐲㙾ࢆ⏝࠸ࡓኳయほ ◊✲ࡢᴫせ 2014 ᖺ 3 ᭶ BKC ࢺࣜࢩࡢᒇୖタ⨨ࡉࢀࡓ 60cm ኳయᮃ㐲㙾ࢆ⏝࠸࡚ࠊ 1) ኴ㝧⣔እᝨᫍࡢࢺࣛࣥࢪࢵࢺἲ㸦ᝨᫍࡀᜏᫍࡢග⌫㠃ࢆ㏻㐣ࡍࡿ㝿 ㉳ࡇࡿῶගࢆ⢭ᐦ ᐃࡍࡿࡇࡼࡗ࡚ᝨᫍࢆ᳨ฟࡍࡿ㸧ࡼࡿほ 2) ⇿Ⓨᚋᩘ᪥࡛ῶගࡍࡿ࣐࢞ࣥ⥺ࣂ࣮ࢫࢺኳయࡢṧගほ 3) ࣇࣞࢆᢡ㉳ࡇࡍάື㖟Ἑࡢ㛫ኚືࡢࣔࢽࢱ࣮ほ ࡞ࢆᐇࡍࡿࠋ࢟ࣕࣥࣃࢫෆ࠸࠺タ⨨᮲௳ࢆάࡋࠊࡇࢀࡽ㛫ኚືࡍࡿ ኳయࡢගᗘࢆ㧗࠸㢖ᗘ࡛⢭ᐦ ᐃࡍࡿࡇࢆ┠ᣦࡍࠋ60cm ཱྀᚄࡢᮃ㐲㙾࡛࠶ ࢀࡤࠊ෭༷ CCD ࣓࢝ࣛࢆ↔Ⅼ㠃ࡢග᳨ฟჾࡋ࡚⏝࠸ࡿࡇࡼࡾ 21 ➼⣭⛬ ᗘࡢᬯ࠸ኳయࡲ࡛ࡢほ ࡀྍ⬟࡞ࡿࠋ ⏝ᡂᯝ 2014 ᖺᗘࡣࡲࡎほ ࢩࢫࢸ࣒ࡢᩚഛࢆ⾜ࡗࡓࠋほ ࡀᐜ᫆⾜࠼ࡿࡼ࠺ࠊᮃ 㐲㙾ࢩࢫࢸ࣒ࡀࡍ࡚㐲㝸᧯స࡛ྍ⬟࡞ࡿࡇࢆ┠ᶆࡋࡓࠋ Virtual Network Computing ࢯࣇࢺ࢙࢘ࢆ⏝࠸࡚ࠊWindows ࡛ືࡃᮃ㐲㙾࠾ࡼࡧࢻ࣮࣒ࡢࢥࣥ ࢺ࣮ࣟࣝ PCࠊ࠾ࡼࡧ 7 ಶࡢࢥ࣐ࣥࢻษࡾ᭰࠼ᘧගᏛࣇࣝࢱ࣮ࢆഛ࠼ࡓ෭༷ CCD ࣓࢝ࣛࡢࢥࣥࢺ࣮ࣟࣝ PC ࢆࠊࢻ࣮࣒⬥ࡢ᥍ᐊ࠾ࡼࡧ࢚ࢡࢭࣝ 1 ࠶ࡿ◊ ✲ᐊࡢ Linux PC ࡽ᧯సࡋࠊྲྀᚓࡋࡓ⏬ീࢹ࣮ࢱࢆࢹ࣮ࢱࢧ࣮ࣂ㌿㏦ࡋ࡚᱁ ⣡࡛ࡁࡿࡼ࠺࡞ࢩࢫࢸ࣒ࢆᩚഛࡋࡓࠋࡲࡓࠊ㐲㝸᧯స୰ࡢኳೃኚࢆࣔࢽࢱ࣮ ࡍࡿࡓࡵࠊィ⟬ᶵࡽࢹ࣮ࢱྲྀᚓྍ⬟࡞Ẽ㇟ほ ᶵჾ࠾ࡼࡧ㞵ࢭࣥࢧ࣮ࠊᮃ 㐲㙾ࢫࣜࢵࢺࡢ㛤㛢≧ែࢆㄪࡿ㊥㞳ࢭࣥࢧ࣮ࠊࢻ࣮࣒ෆ≧ἣࢆ┘どࡍࡿ Web ࣓࢝ࣛࢆタ⨨ࡋ࡚ࠊࡍ࡚ࡢሗࡀ Web Browser ࡽᏛෆᑓ⏝࡛㜀ぴྍ⬟ ࡞ࡼ࠺࡞ࢩࢫࢸ࣒ࡋ࡚ᩚഛࡋࡓࠋࡇࢀࡽࡢᩚഛࡣ≀⌮⛉Ꮫ⛉≉௵ຓᩍࡢዟ⏣ ๛ྖẶࡀᢸᙜࡋࡓࠋࡉࡽࠊ✵ࡢ≧ែࢆࣔࢽࢱ࣮ࡍࡿኳ࣓࢝ࣛࢆタ⨨ࡍ ࡿ‽ഛࡋ࡚ࠊ㨶║ࣞࣥࢬ࡛ᫍ✵ࢆᙳࡋࠊ㞼㔞࡞✵ࡢ≧ែࢆุ᩿ࡍࡿࢩࢫ ࢸ࣒ࢆᵓ⠏୰࡛࠶ࡿ [1]ࠋ ࡲࡓࠊ෭༷ CCD ࣓࢝ࣛࢆ⏝࠸࡚ࡇࡢࢩࢫࢸ࣒࡛ヨ㦂ᙳࢆ⾜ࡗࡓࠋྲྀᚓࡋ ࡓ⏬ീࢹ࣮ࢱࡢရ㉁ࢆホ౯ࡍࡿࡓࡵࠊᫍീࢆ⮬ື᳨ฟࡋ࡚࢝ࢱࣟࢢ್ẚ㍑ࡋࠊ 㝈⏺➼⣭ࡸど㔝ࡢ࿘㎶ῶග࡞ࠊᮃ㐲㙾ࡢගᏛ≉ᛶࢆㄪࡿᚲせࡀ࠶ࡾࠊࡑࡢ ࡓࡵࡢࢯࣇࢺ࢙࢘ࡶ㛤Ⓨ୰࡛࠶ࡿ [2]ࠋ ࡇࢀࡽࡢ‽ഛసᴗࢆ㐍ࡵ࡞ࡀࡽࠊࡲࡶ࡞ࡃᮏ᱁ⓗ࡞ᐃᖖほ ධࡾࠊ┠ⓗࡢ −91− ࢸ࣮࣐ྲྀࡾ⤌ࡴࡇࢆணᐃࡋ࡚࠸ࡿࠋ ࠙༞ᴗㄽᩥࠚ [1] すᒣᘯ୍ࠊࠕBKC ኳᩥྎタ⨨ࡍࡿࢫ࢝ࣔࢽࢱ࣮ࡢ᳨ウࠖ ࠊ≀⌮⛉Ꮫ⛉ ༞ᴗ◊✲㸦2015 ᖺ 2 ᭶㸧 [2] Ṋ㒊⋞ᔞࠊࠕ600mm ᑕᮃ㐲㙾ࡢගᏛ≉ᛶホ౯ࠖ ࠊ≀⌮⛉Ꮫ⛉༞ᴗ◊✲ 㸦2015 ᖺ 2 ᭶㸧 ࠙ࡑࡢࠚ 2014 ᖺ 10 ᭶ࡢⓙ᪤᭶㣗ྜࢃࡏࠊ୍⯡ྥࡅࡢほᮃࢆࠊࡲࡓ 10 ᭶㧗ᰯ⏕ ྥࡅほᮃࠊ6 ᭶ 10 ᭶Ꮫෆྥࡅࡢほᮃࢆ㛤ദࡋࡓࠋᏛࡢ࣮࢜ࣉࣥ࢟ࣕ ࣥࣃࢫࡸᏛྠ❆⥲ࠊBKC ࢧࣥࢡࢫࢹ࣮ࠊᨺᑕගᏛࠊ㈡ኳᩥࡢࡘ ࠸࡞ࡢ࣋ࣥࢺࡢ㝿ࠊኳᩥྎࡢぢᏛᕼᮃࡀከᩘᐤࡏࡽࢀࠊࡇࢀᑐᛂࡋ ࡓࠋࡉࡽࠊᏛ⏕ࢧ࣮ࢡ࡛ࣝ࠶ࡿⲡὠኳᩥ◊✲ࡣぢᏛ࡞ᡭఏ࠸ࢆ౫ 㢗ࡍࡿࡶࠊㅮ⩦ࢆ⾜ࡗ࡚ᮃ㐲㙾ࢆ⏝ࡋ࡚ࡶࡽࡗ࡚࠸ࡿࠋ −92− ⨨ྡ㸹 ㉸㧗ศゎ⬟ศᯒࢩࢫࢸ࣒ ◊✲㈐௵⪅ ᶵᲔᕤᏛ⛉ ᩍᤵ 䭯ᒣ 㸦⟶⌮ጤဨ㛗㸧 㒊㛛ྡ ㄪ⤌⧊ไᚚࡼࡿ㧗ᶵ⬟ᮦᩱࡢ〇 」┦ྜ㔠࠾ࡅࡿ➨ ┦ࡢᙧែ⤖ᬗᏛⓗ≉ᚩ 㧗 ࠾ࡅࡿከ㍈పࢧࢡࣝ⑂ປ࠾ࡼࡧࢡ࣮ࣜࣉ◚᩿ᑑホ౯ἲࡢ◊✲ ◊✲ࢸ࣮࣐ 㟁Ꮚࢹࣂࢫ⏝ᶞ⬡ⷧ⭷ࡢ≀ᛶ್ホ౯ἲࡢ᳨ウ 㟁Ꮚ㢧ᚤ㙾ࡼࡿ㓟≀ᢸᣢࡋࡓ㔠ᒓゐ፹ᮦᩱࡢ⾲㠃ほᐹ ୕ḟඖࣇ࢛ࢺࢽࢵࢡ⤖ᬗࡢᙧᡂ ❅≀༙ᑟయࡢᴟᚤᵓ㐀ホ౯ Cu(InࠊGa)Se2 ⣔ከ⤖ᬗⷧ⭷ኴ㝧㟁ụࡢ⏺㠃ᵓ㐀ไᚚ ㉸㧗ศゎ⬟ศᯒࢩࢫࢸ࣒ࡣࠊຍ㏿㟁ᅽ N9 ࡢ ('6 ศᯒ⨨ᒓᆺ㉮ᰝᆺ㟁 Ꮚ㢧ᚤ㙾㸦6(0㸧 ࠊN9ࠊ87:('6 ศᯒ⨨ᒓ㧗ศゎ⬟ 7(0 ࡽᵓᡂࡉࢀ࡚ ࠾ࡾࠊ≀㉁⛉Ꮫศ㔝ࢆ୰ᚰᗈ࠸㡿ᇦ࡛ά⏝ࡉࢀ࡚࠸ࡿ㸬ά⏝ࡋ࡚ࠊ◊ ✲ࢸ࣮࣐㸯ࢆ௨ୗ⤂ࡍࡿ㸬 㔠ᒓᮦᩱࡣࠊຊᏛ≉ᛶࡢࡳ࡞ࡽࡎຍᕤᛶࡸ⪏㣗ᛶ࡞ࠊඃࢀࡓᛶ㉁ࢆᩘከ ࡃഛ࠼࡚࠾ࡾࠊ᭷⏝࡞⣲ᮦ࡛࠶ࡿࠋࡾࢃࡅࠊᘓ⠏ᵓ㐀యࡸ㍺㏦ᶵჾ࡞ࡢ 㠃ࡽ♫ᇶ┙ࢆᨭ࠼ࡿᵓ㐀⏝ᮦᩱࡾᙉᗘࡣ㔜せ࡞ᛶ㉁࡛࠶ࡾࠊࡇࢀࡲ ࡛ᵝࠎ࡞ᡭἲࡼࡾ㧗ᙉᗘᮦᩱࡢ㛤Ⓨࡀ㐍ࡵࡽࢀ࡚ࡁࡓࠋࡑࡢ୰࡛ࡶ≉ࠊ ⤖ᬗ⢏ᚤ⣽ἲࡣ㧗ᙉᗘᴟࡵ࡚᭷ຠ࡛࠶ࡿࡇࡽࡁ࡞㛵ᚰࢆ㞟ࡵ࡚ ࡁࡓࠋ⤖ᬗ⢏ࡀᚤ⣽ࡍࡿ +DOO3HWFK ࡢ㛵ಀ ࡛▱ࡽࢀࡿࡼ࠺ࠊ⤖ᬗ⢏ ◊✲ࡢᴫせ ᚄࡢᖹ᪉᰿ࡢ㏫ᩘẚࡋ࡚ᙉᗘࡀୖ᪼ࡍࡿࠋࡋࡋࠊ୍᪉࡛ࠊ㧗ᙉᗘᮦᩱ ࡛ࡣ㝆అᚋࠊ᪩ᮇረᛶᏳᐃࡀ⏕ࡌ࡚ࢿࢵ࢟ࣥࢢࢆ㉳ࡇࡋ◚᩿⮳ࡾᘏᛶ ࡀᦆ࡞ࢃࢀࡿ࠸࠺ၥ㢟ࡀ࠶ࡿࠋࡇࡢࠕᙉᗘࠖࠕᘏᛶࠖࡢࢺ࣮ࣞࢻ࢜ࣇࡢ 㛵ಀࡣࠊ㔠ᒓᮦᩱࡢ㧗ᙉᗘ࠾࠸࡚㔜せ࡞ㄢ㢟࡞ࡗ࡚࠸ࡿࠋࡇࢀᑐࡋ ࡚ࠊࡁ࡞ረᛶࡦࡎࡳࢆᚓࡿࡓࡵࠊኚែㄏ㉳ረᛶ㸦7UDQVIRUPDWLRQ,QGXFHG 3ODVWLFLW\75,3㸧ࡸᬗㄏ㉳ረᛶ㸦7ZLQQLQJ,QGXFHG3ODVWLFLW\7:,3㸧 ࡢ⏝ࡀ᳨ウࡉࢀ࡚࠸ࡀࠊࡇࢀࡽࡢ 75,3ࠊ7:,3 ⌧㇟ࡣⓎ⌧ࡍࡿᮦᩱࡀ㝈ᐃࡉ ࢀ࡚࠸ࡿࠋ୍᪉࡛ࠊ⢊ᮎ෬㔠ἲࢆᛂ⏝ࡋࡓㄪ⤌⧊ไᚚἲ㸦+DUPRQLF6WUXFWXUH 'HVLJQ㸧ࡣ⣧㔠ᒓࠊྜ㔠㝈ࡽࡎ㔠ᒓᮦᩱࡢ㧗ᘏᛶ᭷ຠ࡞ᡭἲ࡛࠶ࡾࠊ ㏆ᖺࠊ✀ࠎࡢ㔠ᒓᮦᩱ㐺⏝ࡋࡓ◊✲ࡀሗ࿌ࡉࢀ࡚࠸ࡿࠋᚑ᮶ࡽࡢ࣑ࢡࣟ ࡞ᙉἲᵓ㐀⏤᮶ࡢ࣐ࢡࣟ࡞㧗ᘏᛶࢆ⤌ࡳྜࢃࡏࡓ᪂ࡋ࠸ᮦ㉁タィᡭ ἲ࡛࠶ࡿࠋᮏ◊✲࡛ࡣㄪ⤌⧊ไᚚἲࡘ࠸࡚ヲ⣽࡞᳨ウࡋࡓࠋ −93− ⏝ᡂᯝ 㸺ㄽᩥ㸼 㸦㸯㸧Misaki Katayamaࠊ Koichi Sumiwakaࠊ Ryota Miyaharaࠊ Hisao Yamashigeࠊ Hajime Araiࠊ Yoshiharu Uchimotoࠊ Toshiaki Ohtaࠊ Yasuhiro Inadaࠊ Zempachi Ogumiࠊ “X-ray absorption fine structure imaging of inhomogeneous electrode reaction in LiFePO4 lithium-ion battery cathode”ࠊ J. Power Sourcesࠊ 2014ࠊ 269ࠊ 994-999. 㸦㸰㸧Takayasu Morokiࠊ Hiroyuki Yasuiࠊ Yusuke Adachiࠊ Katsuhiko Yoshizawaࠊ Airo Tsuburaࠊ Kazuhiko Ozutsumiࠊ Misaki Katayamaࠊ and Yutaka Yoshikawaࠊ “New Insulin-Mimetic and Hypoglycemic Hetero-Binuclear Zinc(II)/Oxovanadium(IV) Complex”ࠊ Curr. Inorg. Chem.ࠊ 2014ࠊ 4(1)ࠊ 54-58. 㸦㸱㸧Satoshi Asaokaࠊ Hideo Okamuraࠊ Yusuke Akitaࠊ Katsuyoshi Nakanoࠊ Kenji Nakamotoࠊ Kazutoshi Hinoࠊ Tadashi Saitoࠊ Shinjiro Hayakawaࠊ Misaki Katayamaࠊ Yasuhiro Inadaࠊ “Regeneration of manganese oxide as adsorption sites for hydrogen sulfide on granulated coal ash”ࠊ Chem. Eng. J.ࠊ 2014ࠊ 254ࠊ 531-537. 㸦㸲㸧∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ͆DXAFS ࡼࡿ㛫ศゎ X ⥺྾ศග͇ ࠊ ⾲㠃⛉Ꮫࠊ 2014ࠊ 35(3)ࠊ 141-145. 㸦㸳㸧Zhicong Mengࠊ Aya Fujiiࠊ Takeshi Hashishinࠊ Noriyuki Wadaࠊ Tomoe Sanadaࠊ Jun Tamakiࠊ Kazuo Kojimaࠊ Hitoshi Haneokaࠊ Takeyuki Suzukiࠊ “Morphological and crystal structural control of tungsten trioxide for highly sensitive NO2 gas sensors”ࠊ J. Mater. Chem. Cࠊ 3 (2015) pp. 1134-1141. 㸦㸴㸧Aya Fujiiࠊ Zhicong Mengࠊ Chihiro Yogiࠊ Takeshi Hashishinࠊ Tomoe Sanadaࠊ Kazuo Kojimaࠊ “Preparation of Pt-loaded WO3 with different types of morphology and photocatalytic degradation of methylene blue”ࠊ Surface and Coating Technologyࠊ in press. 㸦㸵㸧T. Arakiࠊ S. Uchimuraࠊ J. Sakaguchiࠊ Y. Nanishiࠊ T. Fujishimaࠊ A. Hsuࠊ K. Kimࠊ T. Palaciosࠊ A. Pesqueraࠊ A. Centeno and A. Zurutuza: “Radio-Frequency Plasma-Excited Molecular Beam Epitaxy Growth of GaN on Graphene/Si(100) Substrates”ࠊ Applied Physics Express 7ࠊ 071001/1-3 (2014). 㸦㸶㸧K. Wangࠊ T. Arakiࠊ M. Takeuchiࠊ E. Yoon and Y. Nanishiࠊ “Selective Growth of N-polar InN Through an In Situ AlN Mask on a Sapphire Substrate”ࠊAppl. Phys. Lett. 104ࠊ032108/1-5 (2014). 㸦㸷㸧"Effect of rear-surface buffer layer on performance of lift-off Cu(InࠊGa)Se 2 solar cells" K. Aoyagiࠊ A. Tamuraࠊ H. Takakuraࠊ T. Minemoto Jpn. J. Appl. Phys. 53 (2014) 05FW05-1-5. 㸦㸯㸮㸧 Z. Tangࠊ Y. Nukuiࠊ K. Kosakaࠊ N. Ashidaࠊ H. Uegaki and T. Minemoto; “Reduction of secondary phases in Cu2SnSe3 absorbers for solar cell application”ࠊ J. Alloys Compd. 608 (2014) 213-219. 㸦㸯㸯㸧 J. Chantanaࠊ T. Watanabeࠊ S. Terajiࠊ K. Kawamura and T. Minemoto; “Effect of Crystal Orientation in Cu(InࠊGa)Se2 Fabricated by Multi-Layer Precursor Method on Its Cell −94− Performance”ࠊ 㸦㸯㸰㸧 Appl. Surf. Sci. 314 (2014) 845-849. J. ChantanaࠊD. HironiwaࠊT. Watanabeࠊ S. TerajiࠊK. Kawamura and T. Minemoto; “Investigation of Cu(InࠊGa)Se2 Absorber by Time-Resolved Photoluminescence for Improvement of Its Photovoltaic Performance”ࠊ Sol. Energy Mater. Sol. Cells 130 (2014) 567-572. 㸦㸯㸱㸧 D. Hironiwaࠊ N. Matsuoࠊ N. Sakaiࠊ T. Katouࠊ H. Sugimotoࠊ J. Chantanaࠊ Z. Tang and T. Minemoto; “Sputtered (ZnࠊMg)O buffer layer for band offset control in Cu2ZnSn(SࠊSe)4 solar cells”ࠊ Jpn. J. Appl. Phys. 53 (2014) 106502-1-6. 㸦㸯㸲㸧 Y. Mizumotoࠊ J. Chantanaࠊ D. Hironiwaࠊ A. Yamamotoࠊ K. Yabukiࠊ A. Nakaueࠊ T. Minemoto; “Junction quality evaluation of buffer-free Zn(OࠊS):Al/Cu(InࠊGa)Se2 thin film solar cells”ࠊ APEX 7 (2014) 125503-1-4. 㸦㸯㸳㸧 J. ChantanaࠊD. HironiwaࠊT. Watanabeࠊ S. TerajiࠊK. Kawamura and T. Minemoto; “Controlled back slope of Ga/(In+Ga) profile in Cu(InࠊGa)Se2 absorber fabricated by multi layer precursor method for improvement of its photovoltaic performance”ࠊ Sol. Energy Mater. Sol. Cells 133 (2015) 223-228. 㸦㸯㸴㸧 J. Chantanaࠊ D. HironiwaࠊT. Watanabeࠊ S. Terajiࠊ K. Kawamura and T. Minemoto; “Estimation of open-circuit voltage of Cu(In ࠊ Ga)Se2 solar cells before cell fabrication” ࠊ Renewable Energyࠊ 76 (2015)ࠊ 575-581. 㸦㸯㸵㸧 Masao Sakaneࠊ Takamoto Itohࠊ Hideyuki Kanayama; “Effect of Multiaxial Stress on Low Cycle Fatigue”ࠊ International Journal of the Japan Society of Mechanical Engineeringࠊ (2014) in printing. 㸦㸯㸶㸧 Naomi Hamadaࠊ Masao Sakaneࠊ Takamoto Itohࠊ Hideyuki Kanayama; “High Temperature Nonproportional Low Cycle Fatigue Using Fifteen Loading Paths”ࠊ Theoretical and Applied Fracture Mechanicsࠊ (2014)ࠊ in printing. 㸦㸯㸷㸧 Takahiro Morishita ࠊ Shuli Liu ࠊ Takamoto Itoh ࠊ Masao Sakane ࠊ Hideyuki Kanayamaࠊ Masahiro Sakabeࠊ Norio Takedaࠊ “Fatigue Failure Life of SS400 Steel under Non-proportional Loading in High Cycle Region”ࠊ Advanced Materials Researchࠊ 11 (2014)ࠊ pp. 1385-1390 㸦㸰㸮㸧 Shuli Liuࠊ Takamoto Itohࠊ Noriyuki Fuji; “Visualization of Multiaxial Stress/Strain State and Evaluation of Failure Life by Developed Analyzing Program under Non-proportional Loading”ࠊ Advanced Materials Researchࠊ 11 (2014)ࠊ pp. 1391-1396 㸦㸰㸯㸧 Hidetoshi Kobayashiࠊ Keitaro Horikawaࠊ Kinya Ogawa and Keiko Watanabe: “Impact Compressive and Bending Behaviour of Rocks Accompanied by Electromagnetic Phenomena”ࠊ Philosophical Transactions of The Royal Society Aࠊ Vol.372 (2014)ࠊ 20130292. 㸦㸰㸰㸧 Keiko Watanabeࠊ Syungo Fukumaࠊ Tadashi Yoshisaka and Hidetoshi Kobayashi: “Penetration Velocity Measurement in Sands Using Magnet-Coil Gagesࠊ Applied Mechanics and Materials”ࠊ Vol. 566 (2014)ࠊ pp.371-376. 㸦㸰㸱㸧 Akifumi Yoshimotoࠊ Hidetoshi Kobayashiࠊ Keitaro Horikawaࠊ Keiko Watanabe and −95− Kinya Ogawa: “Dynamic and Quasi-static Compressive Deformation Behaviour of Polyimide Foam at Various Elevated Temperature”ࠊ Applied Mechanics and Materialsࠊ Vol. 566 (2014)ࠊ pp.158-163. 㸦㸰㸲㸧 Mie Otaࠊ Kiichi Sawaiࠊ Mitsuhiro Kawakuboࠊ Sanjay Kumar Vajpai and Kei Ameyama: “Harmonic structure formation and deformation behavior in a (Į + Ȗ) two phase stainless steel”ࠊ Materials Science and Engineeringࠊ Vol.63 (2014)ࠊ doi:10.1088/1757-899X/63/1/012027 㸦㸰㸳㸧 Sanjay Kumar Vajpaiࠊ Kei Ameyamaࠊ Mie Otaࠊ Tomoyuki Watanabeࠊ Ryo Maedaࠊ Tatsuya Sekiguchiࠊ Guy Dirras and David Tingaud: “High performance Ti-6Al-4V alloy by creation of harmonic structure design”ࠊ Materials Science and Engineeringࠊ Vol.63 (2014)ࠊ doi:10.1088/1757-899X/63/1/012030 㸦㸰㸴㸧 Mie Otaࠊ Keisuke Shimojoࠊ Shun Okadaࠊ Sanjay Kumar Vajpai and Kei Ameyama: “Harmonic Structure Design and Mechanical Properties of Pure Ni Compact”ࠊ Journal of Powder Metallurgy & Miningࠊ vol.3ࠊ No.1 (2014)ࠊ doi:0.4172/2168-9806.1000122 㸦㸰㸵㸧 Mie Otaࠊ Sanjay Kumar Vajpaiࠊ Ryota Imaoࠊ Kazuaki Kurokawa and Kei Ameyama: “Application of High Pressure Gas Jet Mill Process to Fabricate High Performance Harmonic Structure Designed Pure Titanium”ࠊ Journal of Materials Transactionsࠊ vol.56ࠊ No.1 (2015)ࠊ pp.154-159. doi:10.2320/matertrans.M2014280 㸦㸰㸶㸧 Sanjay Kumar Vajpaiࠊ Mie Otaࠊ Tomoyuki Watanabeࠊ Ryo Maedaࠊ Tatsuya Sekiguchiࠊ Takayuki Kusaka and Kei Ameyama:ࠊ “The Development of High Performance Ti-6Al-4V Alloy via a Unique Microstructural Design with Bimodal Grain Size Distribution”ࠊ Metallurgical and Materials Transactions Aࠊ (2014)ࠊ doi:10.1007/s11661-014-2649-7 㸦㸰㸷㸧 Yanbo Sunࠊ Sanjay Kumar Vajpaiࠊ Kei Ameyama and Chaoli Ma: “Fabrication of multilayered Ti–Al intermetallics by spark plasma sintering”ࠊ Journal of Alloys and Compoundsࠊ Vol.585ࠊ No.2 (2014)ࠊ pp.734–740. 㸦㸱㸮㸧 Choncharoen Sawangratࠊ Osamu Yamaguchiࠊ Sanjay Kumar Vajpai and Kei Ameyama: “Application of Harmonic Structure Design to Biomedical Co-Cr-Mo alloy for improved mechanical properties”ࠊ J. Materials Transactionsࠊ Vol.55ࠊ (2014)ࠊ pp.99-105. 㸦㸱㸯㸧 Ruixiao Zhengࠊ Yanbo Sunࠊ Kei Ameyama and Chaoli Ma: “Optimizing the strength and ductility of spark plasma sintered Al2024 alloy by conventional thermo-mechanical treatment”ࠊ Materials Science & Engineering Aࠊ Vol.590ࠊ (2014)ࠊ pp. 147-152. 㸦㸱㸰㸧 Shoichi Kikuchiࠊ Yuta Nakamuraࠊ Akira Ueno and Kei Ameyama: “Development of Low Temperature Nitriding Process and Its Effects on the 4-points Bending Fatigue Properties of Commercially Pure Titanium”ࠊ Advanced Materials Researchࠊ Vols. 891-892ࠊ (2014)ࠊ pp.656-661. 㸦㸱㸱㸧 Lydia Anggrainiࠊ Ryohei Yamamotoࠊ Kazuma Hagiࠊ Hiroshi Fujiwara and Kei Ameyama: “Improving Mechanical Properties of Ceramic Composites by Harmonic Microstructure Control”ࠊ Advanced Materials Researchࠊ Vol. 896ࠊ (2014)ࠊ pp.570-573. −96− 㸦㸱㸲㸧 Zhe Zhangࠊ Sanjay Kumar Vajpaiࠊ Dmitry Orlov and Kei Ameyama: “Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics”ࠊ Materials Science & Engineering Aࠊ Vol. 598ࠊ (2014)ࠊ pp.106-113. 㸦㸱㸳㸧 Choncharoen Sawangratࠊ Shota Katoࠊ Dmitry Orlov and Kei Ameyama: “Harmonic-structured copper: performance and proof of fabrication concept based on severe plastic deformation of powders”ࠊ Journal of Materials Scienceࠊ No.5 (2014)ࠊ DOI 10.1007/s10853-014-8258-4 㸦㸱㸴㸧 Yasuhiro Kanokoࠊ Kei Ameyamaࠊ Shigeo Tanaka and Benjamin Hefler: “PRODUCTION OF ULTRA-THIN POROUS METAL PAPER BY APPLYING THE FIBRE SPACE HOLDER METHOD”ࠊ Powder Metallurgyࠊ Vol.57ࠊ No.3 (2014)ࠊ pp.168-170. 㸦㸱㸵㸧 Y Tsuzukiࠊ H Fujiwaraࠊ H Miyamoto and Kei Ameyama: “Deformation behavior of high speed steel/low Carbon steel composite with harmonic structure by MM/SPS process”ࠊ Materials Science and Engineeringࠊ Vol.63ࠊ (2014)ࠊ doi:10.1088/1757-899X/63/1/012029 㸦㸱㸶㸧 Z. Zhangࠊ D. Orlovࠊ S. K. Vajpaiࠊ B. Tong and Kei Ameyama: “Importance of Bimodal Structure Topology in the Control of Mechanical Properties of a Stainless Steel”ࠊ J. Advanced Engineering Materialsࠊ (2014)ࠊ DOI: 10.1002/adem.201400358 㸦㸱㸷㸧 Choncharoen Sawangratࠊ Osamu Yamaguchiࠊ Sanjay Vajpai and Kei Ameyama: “Harmonic structure design of Co-Cr-Mo alloy with outstanding mechanical properties”ࠊ Advanced Materials Researchࠊ Vol.939ࠊ (2014)ࠊ pp.60-67. 㸦㸲㸮㸧 Nurul Nadia MEHMUDࠊ Sanjay Kumar Vaipai and Kei Ameyama: “Fabrication of Yttria Stabilized Zirconia-Silicon Carbide Composites with High Strength and High Toughness by Spark Plasma Sintering of Mechanically Milled Powders”ࠊ J. Materials Transactionsࠊ Vol. 55ࠊ No.12 (2014)ࠊ pp.1827-1833. 㸦㸲㸯㸧 R Yoshidaࠊ T Tsudaࠊ H Fujiwaraࠊ H Miyamoto and K Ameyama: “Annealing Effect on Mechanical Properties of Ti-Al Alloy/Pure Ti Harmonic-Structured Composite by MM/SPS Process”ࠊ Materials Science and Engineeringࠊ Vol. 63ࠊ (2014)ࠊ doi:10.1088/1757-899X/63/1/012031 㸦㸲㸰㸧 Mie Otaࠊ Sanjay Kumar Vajpaiࠊ Kazuaki Kurokawaࠊ Tomoyuki Watanabeࠊ Kei Ameyama and Guy Dirras: “Creation of High Performance Ti and Ti-6Al-4V via Harmonic Structure Design Approach”ࠊNew Frontiers of NanomaterialsࠊED. By S. FaesterࠊN. HanseࠊD. J. Jensenࠊ B. Ralpf and J. Sun (2014)ࠊ pp.421-427. 㸦㸲㸱㸧 Kusaka, T., Kono, T., Nomura, Y., Wakabayashi, H.: “Dynamic Compression Test of CFRP Laminates Using SHPB Technique”, Applied Mechanics and Materials, 566 (June, 2014), 122-127. 㸦㸲㸲㸧 ᪥ୗ㈗அ, Ἑ㔝Ꮥ, 㔝ᮧὈ⛱, ⱝᯘᏹᶞ: “SHPB ἲࢆ⏝࠸ࡓ CFRP ✚ᒙᮦࡢ⾪ᧁ ᅽ⦰ヨ㦂ἲ", ᮦᩱ, 63-5 (May, 2014), 362-367. −97− 㸺ⴭ᭩㸼 㸦㸯㸧✄⏣ᗣᏹ࣭∦ᒣ┿⚈ࠊ ࠕXAFS/EELS ᒁᡤᵓ㐀ゎᯒࠖࠊሗᶵᵓࠊ59-66 (2014). 㸦㸰㸧᪥ୗ㈗அࠊ ࠕ⾪ᧁ㸦ືⓗ㸧◚ቯࡌࢇᛶࡑࡢホ౯ἲࠖ ࠕ⾪ᧁᕤᏛࡢᇶ♏ᛂ⏝ࠖ ࠊᶓᒣ㝯⦅ࠊ (May, 2014)ࠊ61-74. 㸺ᅜ㝿㆟࣭ㄽᩥ㸼 㸦㸯㸧Aya Fujii ࠊ Shisou Yoshimura (Mou) ࠊ Tsuyoshi Hashishin ࠊ Chihiro Yogiࠊ Tomoe Sanadaࠊ Kazuo Kojima; “Preparation of Pt-loaded WO3 photocatalysts with different types of morphology and degradation of organic compounds”ࠊ The Seventh Tokyo Conference on Advanced Catalytic Science and Technology (TOCAT7)ࠊ Kyoto (Japan)ࠊ 2014 ᖺ 6 ᭶. 㸦㸰㸧Aya Fujiiࠊ Zhicong Mengࠊ Tomoe Sanadaࠊ Takeshi Hashishinࠊ Kazuo Kojima; “Preparation of Pt-loaded WO3 with different types of morphology and photocatalytic degradation of methylene blue” ࠊ NANOSMAT 9th International Conference on Surfacesࠊ Coatings and Nanostructured Materialsࠊ Dublin (Ireland)ࠊ 2014 ᖺ 9 ᭶. 㸦㸱㸧Aya Fujiiࠊ Zhicong Mengࠊ Chihiro Yogiࠊ Takeshi Hashishinࠊ Tomoe Sanadaࠊ Kazuo Kojima; “Preparation of Pt-loaded WO3 and degradation mechanism of methylene blue” ࠊ 3rd International Symposium on Functionalization and Applications of Soft/Hard Materials (Soft/Hard 2014)ࠊ Kusatsu (Japan)ࠊ 2014 ᖺ 11 ᭶. 㸦㸲㸧Y. Nanishiࠊ T.Yamaguchi and T. Araki; “DERI Method; Possible Approach to Longer Wavelength Light Emitters Based on Nitride Semiconductors”ࠊ 6th Forum on New Materials (CIMTEC2014)ࠊ (2014.6)ࠊ Tuscany Italy. 㸦㸳㸧M. Sakamotoࠊ K. Wangࠊ T. Arakiࠊ Y. Nanishi and E. Yoon; “Study on Thickness Dependence of Composition and Strain Relaxation of RF-MBE Grown In-rich InGaN”ࠊ 56th Electronic Materials Conference (EMC 2014)ࠊ (2014. 6) Santa Barbaraࠊ California USA 㸦㸴㸧Y. Nanishiࠊ T. Yamaguchiࠊ T. Arakiࠊ A. Uedono and T. Palacios; “Plasma Induced Point Defects in InN During RF-MBE Growth and Those Reduction by DERI Method” ࠊ Defects in Semiconductors Gordon Research Conference (2014.8) Walthamࠊ MA USA 㸦㸵㸧T. Yamaguchiࠊ K. Narutaniࠊ T. Onumaࠊ T. Arakiࠊ T. Hondaࠊ Y. Nanishi; “RF-MBE Growth of GaInN Films Using DERI Method and Fabrication of Homojunction-Type LED Structures”ࠊ 6th International Symposium on Functional Materials (ISFM 2014) (2014.8) Singapore Singapore. 㸦㸶㸧N. Masudaࠊ T. Kobayashiࠊ T. Arakiࠊ Y. Nanishiࠊ M. Odaࠊ T. Hitora; “RF-MBE Growth of Nitride Semiconductors on Ș-In2O3/Sapphire”ࠊ International Workshop on Nitride Semiconductor 2014 (2014.8) Wroclaw Poland. 㸦㸷㸧T. Arakiࠊ T. Yamaguchi and Y. Nanishi; “RF-MBE Growth of InN and InGaN Ternary Alloys Using DERI”ࠊ 19th International Conference on Ternary and Multinary Compounds 㸦ICTMC-19㸧 −98− (2014.9) Niigata Japan. 㸦㸯㸮㸧 J. Chantanaࠊ D. HironiwaࠊT. Watanabeࠊ S. Terajiࠊ K. Kawamuraࠊ T. Minemotoࠊ “Raman Peak Position of Cu(InࠊGa)Se2 Film for Predication of Ga/(In+Ga) Content near Its Surface and Open-Circuit Voltage”ࠊ 2014 European Material Research Society Spring Meeting (Lilleࠊ Franceࠊ May 2014) 㸦㸯㸯㸧 D. Hironiwaࠊ N. Sakaiࠊ T. Katouࠊ H. Sugimotoࠊ R. Takaiࠊ J. Chantanaࠊ T. Minemoto; “Impact of Annealing Treatment Before Buffer Layer Deposition on Cu2ZnSn(SࠊSe)4 Solar Cell”ࠊ 2014 European Material Research Society Spring Meeting (Lilleࠊ Franceࠊ May 2014) 㸦㸯㸰㸧 Z. Tangࠊ Y. Nukuiࠊ K. Kosakaࠊ N. Ashidaࠊ H. Uegakiࠊ T. Minemoto; “Infuluencing Factors on Carrier Concentration in Cu2SnSe3 Thin Films”ࠊ Grand Renewable Energy 2014 (Tokyoࠊ Japanࠊ July 2014) 㸦㸯㸱㸧 J. Chantanaࠊ D. Hironiwaࠊ T. Watanabeࠊ S. Terajiࠊ K. Kawamuraࠊ T. Minemoto; “Bismuth-doped Cu(InࠊGa)Se2 absorber prepared by multi-layer precursor method and its solar cell”ࠊ 19th International Conference on Ternary and Multinary Compounds (Niigataࠊ Japanࠊ September 1-5) 㸦㸯㸲㸧 T. Minemoto; “Development of chalcogenide compound semiconductors for solar cell applications”ࠊ 19th International Conference on Ternary and Multinary Compounds (Niigataࠊ Japanࠊ September 1-5) 㸦㸯㸳㸧 J. Chantanaࠊ D. Hironiwaࠊ Z. Tangࠊ T. Watanabeࠊ S. Terajiࠊ K. Kawamuraࠊ T. Minemoto; “Importance of Precursor Deposition Temperature of Cu(InࠊGa)Se2 Films under Multi-Layer Precursor Method”ࠊ 6th World Conference on Photovoltaic Energy Conversion (Kyotoࠊ Japanࠊ Nov. 2014). 㸦㸯㸴㸧 Z. Tangࠊ J. Chantanaࠊ Y. Nukuiࠊ K. Kosakaࠊ H. Uegakiࠊ T. Minemotoࠊ “Reaction paths for formation of Cu2SnSe3 films by selenization of Cu-Sn precursors”ࠊ 6th World Conference on Photovoltaic Energy Conversion (Kyotoࠊ Japanࠊ Nov. 2014). 㸦㸯㸵㸧 T. Minemoto; “High efficiency design of chalcogenide solar cells and its application to new material”ࠊ Global Photovoltaic Conference 2014 (Nov. 11ࠊ 2014ࠊ Busan). 㸦㸯㸶㸧 Kazuhisa Andoࠊ Tadashi Yoshisakaࠊ Keiko Watanabe: “Dynamic Behavior under High-Speed Penetration of Projectile into Sand”ࠊ 3rd International Symposium on Functionalization and Applications of Soft/Hard Materials (Soft/Hard 2014)ࠊ Shigaࠊ 2014 ᖺ 11 ᭶. 㸦㸯㸷㸧 Koki Umedaࠊ Kosuke Mizoiࠊ Keiko Watanabeࠊ Hiroyuki Yamadaࠊ Nagahisa Ogasawara: “Experiment and Numerical Analysis of Vibration on Impact Load Cell for Foam Structure”ࠊ 3rd International Symposium on Functionalization and Applications of Soft/Hard Materials (Soft/Hard 2014)ࠊ Shigaࠊ Novemberࠊ 2014. 㸦㸰㸮㸧 Yuya Egawaࠊ Peter Gardinerࠊ Keiko Watanabe: “Development and Performance Evaluation of Diaphragmless Vertical Gas Gun”ࠊ 3rd International Symposium on Functionalization −99− and Applications of Soft/Hard Materials (Soft/Hard 2014)ࠊ Shigaࠊ Novemberࠊ 2014. 㸦㸰㸯㸧 Koki Umedaࠊ Takanari Sakaiࠊ Keiko Watanabe: “Investigation of Crater Formation Mechanism on Aluminum Foam under High-speed Impact”ࠊ 4th International Symposium on Functionalization and Applications of Soft/Hard Materials / 8th German-Japanese / 8th International Symposium on Nanostructuresࠊ Kyotoࠊ Marchࠊ 2015. 㸦㸰㸰㸧 Kazuaki Kurokawaࠊ Hikaru Kawabataࠊ Tomoyuki Watanabeࠊ Mie Otaࠊ Sanjay Kumar Vajpai and Kei Ameyama: “Structure and mechanical properties of pure-Ti with harmonic structure by High Pressure Gas Milling Process”ࠊ Proceedings of the 13th Advances in Materials & Processing Technology Conference (AMPT2014) 㸦㸰㸱㸧 Tomoyuki Watanabeࠊ Ryo Maedaࠊ Kazuaki Kurokawaࠊ Mie Otaࠊ Sanjay Kumar Vajpai and Kei Ameyama: “Harmonic Structure Design of Ti-6Al-4V Alloy by High Pressure Gas Milling Process”ࠊ Proceedings of the 13th Advances in Materials & Processing Technology Conference (AMPT2014) 㸦㸰㸲㸧 Osamu Yamaguchiࠊ Sanjay Kumar Vajpai and Kei Ameyama: ”Deformation Mechanism of Harmonic Structure Designed Co-Cr-Mo Alloy”ࠊ Proceedings of the 13th Advances in Materials & Processing Technology Conference (AMPT2014) 㸦㸰㸳㸧 Han Yuࠊ Ikumu Watanabeࠊ Kei Ameyama: “Deformation Behavior Analysis of Harmonic Structure Materials by Multi-Scale Finite Element Analysis”ࠊ Proceedings of the International Conference on Advances in Materials (ICAM 2014) 㸦㸰㸴㸧 Nurul Nadiah MAHMUDࠊ Mie OTAࠊ Sanjay K. VAJPAIࠊ Kei Ameyama: “Preparation of SiC/YSZ Composites with High Strength and High Toughness”ࠊ The 9th International Materials Technology Conference and Exhibition (IMTCE 2014)ࠊ Kuala Lumpurࠊ Malaysiaࠊ 2014.5.13-16 㸦㸰㸵㸧 Nur Zalikha Binti KHALILࠊ Sanjay K. VAJPAIࠊ Mie OTAࠊ Kei Ameyama: “Microstructure and Mechanical Properties of SiC Compacts Produced by Mechanical Milling and Spark Plasma Sintering”ࠊ The 9th International Materials Technology Conference and Exhibition (IMTCE 2014)ࠊ Kuala Lumpurࠊ Malaysiaࠊ 2014.5.13-16 㸦㸰㸶㸧 Bhupendra Sharmaࠊ Sanjay Kumar VAJPAIࠊ Kei Ameyama: “Development of New Powder Metallurgy route to fabricate a Ti-Nb Beta-Titanium alloy”ࠊ The 4th International Conference on Engineering and Applied Sciences (ICEAS 2014)ࠊ Hokkaidoࠊ JAPANࠊ 2014.7.22-24 㸦㸰㸷㸧 Han Yuࠊ Kei Ameyamaࠊ Mie Otaࠊ Sanjay Kumar Vajpaiࠊ Zhe Zhangࠊ Bo Tongࠊ Tomoyuki Watanabeࠊ Ikumu Watanabe: “Deformation Behavior Analysis of Harmonic Structure Materials by FEM and DIC method”ࠊ The 4th International Conference on Engineering and Applied Sciences (ICEAS 2014)ࠊ Hokkaidoࠊ JAPANࠊ 2014.7.22-24 㸦㸱㸮㸧 Sanjay Kumar Vajpaiࠊ Kei Ameyama: “Synthesis and Evaluation of Structural Biomaterials with Unique Bimodal Harmonic Structure Design”ࠊ 3rd International Symposium on −100− Functionalization and Applications of Soft/Hard materialsࠊ Ritsumeikan Universityࠊ Shigaࠊ 2014.11.7-8 㸦㸱㸯㸧 Bhupendra Sharma ࠊ Sanjay Kumar Vajpaiࠊ Kei Ameyama: “Fabrication of Ti-Nb -Titanium alloy by following an innovative powder metallurgy route”ࠊ 3rd International Symposium on Functionalization and Applications of Soft/Hard materialsࠊ Ritsumeikan Universityࠊ Shigaࠊ 2014.11.7-8 㸦㸱㸰㸧 Han Yuࠊ Kei Ameyamaࠊ Ikumu Watanabe: “Multi-scale Finite Element Analysis of Harmonic Structure Materials”ࠊ 3rd International Symposium on Functionalization and Applications of Soft/Hard materialsࠊ Ritsumeikan Universityࠊ Shigaࠊ 2014.11.7-8 㸦㸱㸱㸧 Nur Zalikha Binti Khalilࠊ Sanjay Kumar VAJPAIࠊ Mie OTAࠊ Kei Ameyama: “Effect of Particle Size Distribution and Particle Morphology on Sinterability of SiC Ceramic”ࠊ 3rd International Symposium on Functionalization and Applications of Soft/Hard materials Ritsumeikan Universityࠊ Shigaࠊ 2014.11.7-8 㸦㸱㸲㸧 Han Yuࠊ Ikumu Watanabeࠊ Kei Ameyama: “Deformation Behavior Analysis of Harmonic Structure Materials by Multi-Scale Finite Element Analysis”ࠊ 2014 International Conference on Advances in Materials (ICAM 2014)ࠊ Shanghaiࠊ CHINAࠊ 2014.12.13-14 㸦㸱㸳㸧 Muhammad, A.B.A.H., Kusaka, T, Miyazaki, T., Arimitsu, K.: “Effect of Loading Rate on Fatigue Crack Growth in Carbon Fiber Reinforced Plastics Adhesive Joint”, 3rd International Symposium on Functionalization and Applications of Soft/Hard Materials, November 6-9, 2014, (Kusatsu, Japan). 㸦㸱㸴㸧 Zailani, S., Kusaka, T., Tanegashima, R., Kawamura, Y., Wakabayashi, H.: “Experimental Method for Evaluating the Energy Absorption Capability of CFRP Laminates”, 3rd International Symposium on Functionalization and Applications of Soft/Hard Materials, November 6-9, 2014, (Kusatsu, Japan). 㸦㸱㸵㸧 Oshima, S., Kusaka, T., Tanegashima, R.: “Improvement of Accuracy of Crack Detection System for Concrete Structures Using Non-contact Displacement Measurement”, 3rd International Symposium on Functionalization and Applications of Soft/Hard Materials, November 6-9, 2014, (Kusatsu, Japan). 㸦㸱㸶㸧 Muhammad, A.B.A.H., Kusaka, T, Tanageshima, R.: “Loading Rate Effects on Fatigue Crack Growth Behaviour of CFRP Adhesive Joints under Mixed Mode Conditions”, 8th International Symposium on Nanostructures, March 1-3, 2015, (Kyoto, Japan). 㸦㸱㸷㸧 Oshima, S., Kusaka, T., Tanegashima, R.: “Development of Crack Detection System Based on DIC Method Using Flexible Nodes Arrangement”, 8th International Symposium on Nanostructures, March 1-3, 2015, (Kyoto, Japan). 㸦㸲㸮㸧 㸺ゎㄝ࣭⥲ㄝㄽᩥ㸼 −101− 㸦㸯㸧 ࡞ࡋ 㸺ᅜෆᏛ㸼 㸦㸯㸧∦ᒣ┿⚈ࠊ ᐑཎⰋኴࠊ Ώ㑔⛱ᶞࠊ ᒣୗ⩧ᖹࠊ ✄⏣ᗣᏹࠊ ࠕ㖄┤᪉ྥἼ㛗ศᩓᆺ XAFS ἲࡢ㛤Ⓨ㛫-✵㛫ศゎゎᯒࡢᛂ⏝ࠖ ࠊ ➨ 17 ᅇ XAFS ウㄽࠊ ᚨᓥࠊ 2014 ᖺ 9 ᭶. 㸦㸰㸧ᐑ⏣ఙᘯࠊ ㇏⏣ࠊ ᪥㔝ୖ㯇Ꮚࠊ Ώ㑔⛱ᶞࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕࢹࣛࣇ࢛ࢧ ࢺᆺ㓟≀࠾ࡅࡿ d 㟁Ꮚࢫࣆࣥ≧ែࠖ ࠊ ➨ 17 ᅇ XAFS ウㄽࠊ ᚨᓥࠊ 2014 ᖺ 9 ᭶. 㸦㸱㸧ᒣୗ⩧ᖹࠊ ᒣᮏᝆ⟇ࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕᢸᣢࢽࢵࢣࣝ⢏Ꮚࡢ⾲㠃㓟ᛂ㛵ࡍ ࡿ㏿ᗘㄽⓗゎᯒࠖ ࠊ ➨ 17 ᅇ XAFS ウㄽࠊ ᚨᓥࠊ 2014 ᖺ 9 ᭶. 㸦㸲㸧ᒣᮏᝆ⟇ࠊ ᒣୗ⩧ᖹࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕIn situ XAFS ἲࡼࡿࢰࣝ-ࢤࣝἲ࡛ࡢ ᢸᣢ Ni ゐ፹ㄪ〇㐣⛬ࡢゎᯒࠖ ࠊ ➨ 17 ᅇ XAFS ウㄽࠊ ᚨᓥࠊ 2014 ᖺ 9 ᭶. 㸦㸳㸧∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊࠕ✵㛫ศゎ࢜࣌ࣛࣥࢻほ ᡭἲࡢ㛤Ⓨ㟁ᴟᛂゎᯒࡢᛂ⏝ࠖࠊ ᨺ ᑕගᏛ➨ 7 ᅇⱝᡭ◊✲͆᭱ඛ➃࢜࣌ࣛࣥࢻほ ࡛᫂ࡽ࡞ࡿ≀ᛶ⛉Ꮫ͇ ࠊ ᯽ࠊ 2014 ᖺ 9 ᭶. 㸦㸴㸧ᓥ⏣ెዉࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕ࣑ࣝࢼᢸᣢࡋࡓ Pd Cu ࡢᅛ┦ྜ㔠࣓࢝ࢽ ࢬ࣒ࠖ ࠊ ➨ 4 ᅇ CSJ Ꮫࣇ࢙ࢫࢱ 2014ࠊ ᮾிࠊ 2014 ᖺ 10 ᭶. 㸦㸵㸧㈏㞝ᘺࠊ ᐑཎⰋኴࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕX ⥺྾ศගἲࡼࡿࣜࣥ㓟ࣂࢼࢪ࣒࢘ ࣜࢳ࣒࢘ṇᴟࡢ㟁ᴟᛂゎᯒࠖ ࠊ ➨ 4 ᅇ CSJ Ꮫࣇ࢙ࢫࢱ 2014ࠊ ᮾிࠊ 2014 ᖺ 10 ᭶. 㸦㸶㸧ᯇᒸဴஓࠊ ᒣୗ⩧ᖹࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕin-situ XAFS ἲࡼࡿࢩࣜ࢝ᢸᣢ Ni ゐ፹ࡢ CO ࡼࡿ㑏ඖᛂࡢゎᯒࠖ ࠊ ➨ 4 ᅇ CSJ Ꮫࣇ࢙ࢫࢱ 2014ࠊ ᮾிࠊ 2014 ᖺ 10 ᭶. 㸦㸷㸧ᐑཎⰋኴࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕ✵㛫ศゎྍ⬟࡞᪂つἼ㛗ศᩓᆺ XAFS ἲࡢ㛤Ⓨࠖ ࠊ ➨ 50 ᅇ X ⥺ศᯒウㄽࠊ ྎࠊ 2014 ᖺ 10 ᭶. 㸦㸯㸮㸧 ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕ❧㤋 SR ࢭࣥࢱ࣮XAFS ࣅ࣮࣒ࣛࣥࢆ⏝࠸ࡓゐ፹ 㟁ụࡢᛂゎᯒࠖ ࠊ ྜྠࢩ࣏ࣥࢪ࣒࢘ 2014㹼ᨺᑕග࣮ࣞࢨ࣮ࡢ༠ാࡼࡿ᪂⏘ᴗᡂ 㹼ࠊ ⚄ᡞࠊ 2014 ᖺ 11 ᭶. 㸦㸯㸯㸧 ᐑཎⰋኴࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕṇᴟᛂࡢ✵㛫ศゎゎᯒྥࡅࡓ᪂ࡋ ࠸Ἴ㛗ศᩓᆺ XAFS ἲࡢ㛤Ⓨࠖ ࠊ ➨ 55 ᅇ㟁ụウㄽࠊ ி㒔ࠊ 2014 ᖺ 11 ᭶. 㸦㸯㸰㸧 ᒣᮏᝆ⟇ࠊ ᒣୗ⩧ᖹࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕᢸᣢ Ni ⢏Ꮚࡢ㓟㑏ඖ≉ᛶ ཬࡰࡍ⢏Ꮚࢧࢬຠᯝࠖ ࠊ ➨ 28 ᅇ᪥ᮏᨺᑕගᏛᖺ࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘ࠊ ⲡὠࠊ 2015 ᖺ 1 ᭶. 㸦㸯㸱㸧 Ώ㑔⛱ᶞࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕ㌿㟁Ꮚ㔞 XAFS ࡼࡿᙧ≧ไᚚࡋࡓ ᢸᣢ Cu2O ⢏Ꮚࡢ⾲㠃㑏ඖᛂࠖࠊ ➨ 28 ᅇ᪥ᮏᨺᑕගᏛᖺ࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ ࣒࢘ࠊ ⲡὠࠊ 2015 ᖺ 1 ᭶. 㸦㸯㸲㸧 ᓥ⏣ెዉࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕࣃࣛࢪ࣒࢘㖡ྜ㔠ゐ፹ࡢ⏕ᡂᑐࡍࡿ๓ 㥑య⤌ᡂࡢຠᯝࠖ ࠊ ➨ 28 ᅇ᪥ᮏᨺᑕගᏛᖺ࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘ࠊ ⲡὠࠊ 2015 ᖺ 1 ᭶. −102− 㸦㸯㸳㸧 ⏣᠇ᖾࠊ ∦ᒣ┿⚈ࠊ ┾⏣ᬛ⾨ࠊ ᑠሐᙪࠊ ᑠᓥ୍⏨ࠊ ✄⏣ᗣᏹࠊ ࠕ㓟 ≀࢞ࣛࢫ୰࠾ࡅࡿ Mn ࢜ࣥࡢᒁᡤᵓ㐀ࠖ ࠊ ➨ 28 ᅇ᪥ᮏᨺᑕගᏛᖺ࣭ᨺᑕග⛉Ꮫྜ ྠࢩ࣏ࣥࢪ࣒࢘ࠊ ⲡὠࠊ 2015 ᖺ 1 ᭶. 㸦㸯㸴㸧 ᆤᐶኴࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕࢮ࢜ࣛࢺᢸᣢࡋࡓ Ni(II)࢜ࣥࡢ྾ ╔≧ែࡢゎᯒࠖ ࠊ ➨ 28 ᅇ᪥ᮏᨺᑕගᏛᖺ࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘ࠊ ⲡὠࠊ 2015 ᖺ 1 ᭶. 㸦㸯㸵㸧 Siwaruk Chotiwan, Hiroki Tomiga, Misaki Katayama, Yasuhiro Inada, ͆ Thermodynamic and kinetic study on redox reaction of silica supported cobalt catalysts͇ ࠊ ➨ 28 ᅇ᪥ᮏᨺᑕගᏛᖺ࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘ࠊ ⲡὠࠊ 2015 ᖺ 1 ᭶. 㸦㸯㸶㸧 䭜Ꮥ♸ࠊ ༓ᑜࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ⸨ᒸẎࠊ ኴ⏣ಇ᫂ࠊ ᑠᓥ୍⏨ࠊ ࠕṇᴟά≀㉁ Li2MnSiO4 ࡢࢰࣝïࢤࣝἲࡼࡿస〇ホ౯ࠖࠊ㟁ẼᏛ➨ 82 ᅇࠊᶓ ࠊ 2015 ᖺ 3 ᭶. 㸦㸯㸷㸧 㕥ᮌ῟ྖࠊ ᒣୗ⩧ᖹࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕᕼⷧ࡞ࢩࣜ࢝ᢸᣢ Ni ゐ፹ࡢ 㓟㑏ඖ≉ᛶࠖ ࠊ ᪥ᮏᏛ➨ 95 Ꮨᖺࠊ ⯪ᶫࠊ 2015 ᖺ 3 ᭶. 㸦㸰㸮㸧 ▼㥴ᖹࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᏹࠊ ࠕ࣓ࢯ࣏࣮ࣛࢫࢩࣜ࢝ᢸᣢࡋࡓ Co ゐ፹ࡢ 㓟㑏ඖ≉ᛶࠖ ࠊ ᪥ᮏᏛ➨ 95 Ꮨᖺࠊ ⯪ᶫࠊ 2015 ᖺ 3 ᭶. 㸦㸰㸯㸧 ⸨ள⪨ࠊ ྜྷᮧᚿ⪽ࠊ ༓ᑜࠊ ⸨ᒸẎࠊ ┾⏣ᬛ⾨ࠊ ᑠᓥ୍⏨ࠊ ͆ᙧ≧ ไᚚࡋࡓ Pt ᢸᣢ WO3 ࡢᾮ┦࣭Ẽ┦࡛ࡢගゐ፹≉ᛶ͇ࠊ ࠗ➨ 4 ᅇ CSJ ࣇ࢙ࢫࢱ࠘ 㸦ࢱ࣮࣡ ࣮࣍ࣝ⯪ᇼ㸧 ࠊ 2014 ᖺ 10 ᭶. 㸦㸰㸰㸧 ⸨ள⪨ࠊ ྜྷᮧ(Ꮧ)ᚿ⪽ࠊ ᶫ᪂๛ࠊ ༓ᑜࠊ ┾⏣ᬛ⾨ࠊ ᑠᓥ୍⏨ࠊ ͆ᙧ ែไᚚࡋࡓ Pt ᢸᣢ WO3 ⢊ᮎࡢస〇࣓ࢳࣞࣥࣈ࣮ࣝศゎάᛶホ౯͇ ࠊࠗ➨ 21 ᅇࢩ࣏ࣥࢪ ࣒࢘ࠕගゐ፹ᛂࡢ᭱㏆ࡢᒎ㛤ࠖ ࠘ 㸦ᮾඛ➃◊㸧 ࠊ 2014 ᖺ 12 ᭶. 㸦㸰㸱㸧 䭜Ꮥ♸ࠊ ༓ᑜࠊ ∦ᒣ┿⚈ࠊ ✄⏣ᗣᘯࠊ ⸨ᒸẎࠊ ኴ⏣ಇ᫂ࠊ ᑠᓥ୍⏨ࠊ ͆ṇᴟά≀㉁ Li2MnSiO4 ࡢࢰࣝ㸫ࢤࣝἲࡼࡿస〇ホ౯͇ࠊ ࠗ㟁ẼᏛ➨ 82 ᅇ࠘ 㸦ᶓᅜ❧Ꮫ㸧 ࠊ 2015 ᖺ 3 ᭶. 㸦㸰㸲㸧 Ỉᮏ㞝ኴࠊᘅᗞ㍜ࠊ-DNDSDQ&KDQWDQDࠊᓟඖ㧗ᚿࠊ͆ࣂࢵࣇࣇ࣮ࣜ&X,Qࠊ *D6H ⷧ⭷ኴ㝧㟁ụࡢ≉ᛶ᥋ྜ⏺㠃͇ ࠊ➨ ᅇࠕḟୡ௦ࡢኴ㝧ගⓎ㟁ࠖࢩ࣏ࣥࢪ࣒࢘ᐑ ᓮࠊ ᖺ ᭶ 㸦㸰㸳㸧 ᪂⿱அࠊᘅᗞ㍜ࠊ᪂⃝㞝㧗ࠊᓟඖ㧗ᚿࠊ ͆=Q2$O&X,Qࠊ*D6H ᥋ྜ ࡢࢫࣃࢵࢱࢲ࣓࣮ࢪ౫Ꮡᛶ͇ ࠊ➨ ᅇࠕḟୡ௦ࡢኴ㝧ගⓎ㟁ࠖࢩ࣏ࣥࢪ࣒࢘ᐑᓮࠊ ᖺ ᭶ 㸦㸰㸴㸧 ᯇᑿᑑࠊᘅᗞ㍜ࠊ▼ᓮ㞝ஓࠊ㓇⣖⾜ࠊຍ⸨ ᣅஓࠊᮡᮏ ᗈ⣖ࠊᓟඖ 㧗 ᚿࠊ ͆ࣇ࢛ࢺ࣑ࣝࢿࢵࢭࣥࢫࢆ⏝࠸ࡓ &X=Q6Q6ࠊ6H ኴ㝧㟁ụࡢࢫࣃࢵࢱࢲ࣓࣮ࢪࡢᐃ㔞 ͇ ࠊ➨ ᅇࠕḟୡ௦ࡢኴ㝧ගⓎ㟁ࠖࢩ࣏ࣥࢪ࣒࢘ᐑᓮࠊ ᖺ ᭶ 㸦㸰㸵㸧 ୖ㔝ᖹࠊᏳ⸨ጁᏊࠊ ࠕࢼࣀࢫࢣ࣮ࣝ༢⤖ᬗ 6L ࡢ⬤ᛶᘏᛶ㑄⛣ ᗘࡢᑍἲ౫Ꮡ ᛶࠖ ࠊᖹᡂ ᖺ㟁ẼᏛᅜࠊ ᖺ ᭶ −103− 㸦㸰㸶㸧 Ᏻ⸨⋪ࠊྜྷᆏṇࠊΏ㎶ᆂᏊࠊࠕ◁ࡢ㧗㏿≀య㈏ධ࠾ࡅࡿຊᏛⓗᣲືࠊ᪥ᮏ ᶵᲔᏛ00 ᮦᩱຊᏛ࢝ࣥࣇࣞࣥࢫࠖ ࠊ⚟ᓥࠊ ᖺ ᭶㸬 㸦㸰㸷㸧 ᱵ⏣ᶞࠊ⁁බுࠊࣔࣁ࣐ࢻ࣭ࢬࣝࣇࠊΏ㎶ᆂᏊࠊᒣ⏣ᾈஅࠊᑠ➟ཎỌஂࠊ ࠕⓎἻᵓ㐀య⏝⾪ᧁⲴ㔜 ᐃ⨨ࡢⲴ㔜ື⌧㇟ࡢᐇ㦂࠾ࡼࡧゎᯒⓗ᳨ウࠖ ࠊ᪥ᮏᶵᲔᏛ 00 ᮦᩱຊᏛ࢝ࣥࣇࣞࣥࢫࠊ⚟ᓥࠊ ᖺ ᭶㸬 㸦㸱㸮㸧 Ụᕝ♸ஓࠊᱵ⏣ᶞࠊΏ㎶ᆂᏊࠊ ࠕ⦪ᆺ↓㝸⭷࢞ࢫ㖠ࡢ㛤Ⓨཬࡧᛶ⬟ホ౯ࠖ ࠊ᪥ᮏ ᶵᲔᏛ00 ᮦᩱຊᏛ࢝ࣥࣇࣞࣥࢫࠊ⚟ᓥࠊ ᖺ ᭶㸬 㸦㸱㸯㸧 ᒣ⏣ᾈஅࠊ❧ᒣ⪔ᖹࠊᑠ➟ཎỌஂࠊΏ㎶ᆂᏊࠊᑠᕝḯஓࠊ ࠕ࣮ࣟࢻࢭࣝᑐྥᘧⴠ 㗽ヨ㦂⨨ࢆ⏝࠸ࡓⓎἻᵓ㐀యࡢືⓗᅽ⦰≉ᛶホ౯ࠖࠊ➨ ᅇ᪥ᮏᏛ⾡㆟ᮦᩱᕤᏛ㐃ྜㅮ ₇ࠊி㒔ࠊ ᖺ ᭶㸬 㸦㸱㸰㸧 ᒣ⏣ᾈஅࠊᑠ➟ཎỌஂࠊ❧ᒣ⪔ᖹࠊᱵ⏣ᶞࠊΏ㎶ᆂᏊࠊ ࠕኚᙧ㏿ᗘᑐᛂᆺࣟ ࣮ࢻࢭࣝࡢ㛤Ⓨ࠾ࡼࡧホ౯ࠖ ࠊ᪥ᮏᶵᲔᏛ➨ ᅇィ⟬ຊᏛㅮ₇㸦&0'㸧 ࠊᒾᡭࠊ ᖺ ᭶㸬 㸦㸱㸱㸧 ࣮࢞ࢹࢼ࣮ࣆ࣮ࢱ࣮ࠊỤᕝ♸ஓࠊΏ㎶ᆂᏊࠊ ࠕ⦪ᆺ↓㝸⭷࢞ࢫ㖠ࡢᛶ⬟ホ౯ࠖࠊ 㛵すᏛ⏕ᖹᡂ ᖺᗘᏛ⏕ဨ༞ᴗ◊✲Ⓨ⾲ㅮ₇ࠊி㒔ࠊ ᖺ ᭶㸬 㸦㸱㸲㸧 㜰Ꮥᡂࠊᱵ⏣ᶞࠊΏ㎶ᆂᏊࠊ ࠕ㉸㧗㏿⾪✺Ⓨ⏕ࡍࡿࣉࣛࢬ࣐ࡢィ ࠖ ࠊ㛵 すᏛ⏕ᖹᡂ ᖺᗘᏛ⏕ဨ༞ᴗ◊✲Ⓨ⾲ㅮ₇ࠊி㒔ࠊ ᖺ ᭶㸬 㸦㸱㸳㸧 ᯇᓥரᚿࠊΏ㎶ᆂᏊࠊ ࠕ㧗㏿ᅽ⦰◚○ࢆཷࡅࡿ◁ᒙᑐࡍࡿࣘࢦࢽ࢜≧ែ᪉⛬ᘧ ࡢᅵ㉁ຊᏛⓗゎ㔘ࠖ ࠊ➨ ᅇᛂ⏝ຊᏛࢩ࣏ࣥࢪ࣒࢘ࠊᛂ⏝ຊᏛㄽᩥ㈹ཷ㈹ㅮ₇ࠊἈ⦖ࠊ ᖺ ᭶㸬 㸦㸱㸴㸧 Ώ㎶ᆂᏊࠊྜྷᆏṇࠊ ࠕ◁୰㈏ධ㏿ᗘ࠾ࡼࡧጼໃィ ࢆ⢭⦓ࡍࡿࡓࡵࡢᇶ♏◊✲ࠖࠊ Ᏹᐂ⛉Ꮫ㛵ࡍࡿᐊෆᐇ㦂ࢩ࣏ࣥࢪ࣒࢘ࠊ⚄ዉᕝࠊ ᖺ ᭶㸬 㸦㸱㸵㸧 Ώ㎶ᆂᏊ㸸 ࠕศ㔝ᶓ᩿ࢆ┠ᣦࡋࡓ⾪ᧁ◊✲ࠖࠊ➨ ᅇ⾪ᧁ㒊㛛ጤဨཬࡧㅮ₇ࠊ ி㒔ࠊ ᖺ ᭶㸬 㸦㸱㸶㸧 <X+$1ࠊ䭯ᒣࠊΏ㑔⫱ክࠊࠕ࣐ࣝࢳࢫࢣ࣮ࣝ᭷㝈せ⣲ἲࡼࡿㄪ⤌⧊ᮦᩱࡢ ຊᏛ≉ᛶࡢゎᯒࠖ ࠊ⢊య⢊ᮎ෬㔠༠ᖹᡂ ᖺᗘᏘࠊ᪩✄⏣Ꮫᅜ㝿㆟ሙࠊᮾிࠊ 㸦㸱㸷㸧 ᒸ⏣㥴ࠊୗᇛၨభࠊኴ⏣⨾⤮ࠊ䭯ᒣࠊ ࠕㄪ⤌⧊ไᚚࡉࢀࡓ⣧ 1L ࡢ⤌⧊ᙧᡂ ኚᙧᣲືࠖࠊ⢊య⢊ᮎ෬㔠༠ᖹᡂ ᖺᗘᏘࠊ᪩✄⏣Ꮫᅜ㝿㆟ሙࠊᮾிࠊ 㸦㸲㸮㸧 బཎ㈗⾜ࠊ℩ᑿ༟ᘯࠊኴ⏣⨾⤮ࠊ䭯ᒣࠊࠕᢲฟᡂᙧࡼࡾస〇ࡋࡓ⣧࣑ࣝࢽ ࣒࢘ㄪ⤌⧊ไᚚᮦᩱࡢ⤌⧊ᶵᲔⓗᛶ㉁ࠖ ࠊ⢊య⢊ᮎ෬㔠༠ᖹᡂ ᖺᗘᏘࠊ᪩✄ ⏣Ꮫᅜ㝿㆟ሙࠊᮾிࠊ 㸦㸲㸯㸧 㡲⸨ࠊ&KRQFKDURHQ6DZDQJUDWࠊຍ⸨⩧ኴࠊኴ⏣⨾⤮ࠊ䭯ᒣࠊ ࠕ⣧㖡ࡢຊᏛ ≉ᛶཬࡰࡍㄪ⤌⧊ࡢᙺࠖ ࠊ⢊య⢊ᮎ෬㔠༠ᖹᡂ ᖺᗘᏘࠊ᪩✄⏣Ꮫᅜ㝿 ㆟ሙࠊᮾிࠊ 㸦㸲㸰㸧 ᕝ⏿ගࠊ㯮ᕝࠊኴ⏣⨾⤮ࠊ䭯ᒣࠊ ࠕ-HW0LOOἲࡼࡿ⣧ࢳࢱࣥㄪ⤌⧊ไ −104− ᚚᮦᩱࡢ〇ࠖ ࠊ⢊య⢊ᮎ෬㔠༠ᖹᡂ ᖺᗘᏘࠊ᪩✄⏣Ꮫᅜ㝿㆟ሙࠊᮾிࠊ 㸦㸲㸱㸧 ๓⏣ுࠊΏ㑔ᬛஅࠊኴ⏣⨾⤮ࠊ䭯ᒣࠊ ࠕㄪ⤌⧊ไᚚࡉࢀࡓ 7L$O9 ྜ㔠ࡢ ᚤどⓗ⤌⧊ᙧᡂኚᙧᣲືࠖ ࠊ⢊య⢊ᮎ෬㔠༠ᖹᡂ ᖺᗘᏘࠊ᪩✄⏣Ꮫᅜ㝿㆟ ሙࠊᮾிࠊ 㸦㸲㸲㸧 ኴ⏣⨾⤮ࠊ⃝㈗୍ࠊᕝஂಖගὒࠊ䭯ᒣࠊࠕㄪ⤌⧊ไᚚࡉࢀࡓ┦ࢫࢸࣥࣞ ࢫ㗰ࡢࢿࢵࢺ࣮࣡ࢡᵓ㐀ࡀᶵᲔⓗ≉ᛶ࠾ࡼࡰࡍᙳ㡪ࠖࠊ⢊య⢊ᮎ෬㔠༠ᖹᡂ ᖺᗘᏘ ࠊ᪩✄⏣Ꮫᅜ㝿㆟ሙࠊᮾிࠊ 㸦㸲㸳㸧 ⃝㈗୍ࠊỈ㇂༡ࠊኴ⏣⨾⤮ࠊ䭯ᒣࠊ ࠕ63'30 ࣉࣟࢭࢫࡼࡾㄪ⤌⧊ไᚚࡉ ࢀࡓ⣧㕲ࡢ≉␗࡞ኚᙧᣲືࠖ ࠊ⢊య⢊ᮎ෬㔠༠ᖹᡂ ᖺᗘᏘࠊ᪩✄⏣Ꮫᅜ㝿㆟ ሙࠊᮾிࠊ 㸦㸲㸴㸧 ᒣཱྀ⌮ࠊ&KRQFKDURHQ6DZDQJUDWࠊ6DQMD\.XPDU9DMSDLࠊ䭯ᒣࠊ ࠕ&R&U0R ㄪ ⤌⧊ᮦᩱࡢᐊ ࡛ࡢኚᙧᣲືࠖ ࠊ᪥ᮏ㕲㗰༠➨ ᅇ⛅Ꮨㅮ₇ࠊྡྂᒇᏛࠊឡ▱ࠊ 㸦㸲㸵㸧 㯮ᕝࠊᕝ⏿ගࠊ๓ἑⱥࠊኴ⏣⨾⤮ࠊ䭯ᒣࠊ ࠕࢪ࢙ࢵࢺ࣑ࣝࣉࣟࢭࢫࡼ ࡾస〇ࡋࡓ⣧ࢳࢱࣥㄪ⤌⧊ᮦࡢ⤌⧊ᶵᲔⓗ≉ᛶࠖࠊ᪥ᮏ㕲㗰༠➨ ᅇ⛅Ꮨㅮ₇ࠊ ྡྂᒇᏛࠊឡ▱ࠊ 㸦㸲㸶㸧 Ώ㑔ᬛஅࠊ๓⏣ுࠊ␇⩧ஓࠊኴ⏣⨾⤮ࠊ6DQMD\9DMSDLࠊ䭯ᒣࠊ ࠕ7L$O9 ྜ 㔠ࡢࢪ࢙ࢵࢺ࣑ࣜࣥࢢࣉࣟࢭࢫࡼࡿㄪ⤌⧊ไᚚࠖࠊ᪥ᮏ㕲㗰༠➨ ᅇ⛅Ꮨㅮ₇ࠊ ྡྂᒇᏛࠊឡ▱ࠊ 㸦㸲㸷㸧 ୰㖊㐩ஓࠊ䭯ᒣࠊ ࠕ‵ᘧ࣑ࣜࣥࢢࡼࡿ 6L&<6= ㄪ⤌⧊」ྜᮦᩱࡢస〇ࠖ ࠊ᪥ ᮏ㕲㗰༠➨ ᅇ⛅Ꮨㅮ₇ Ꮫ⏕࣏ࢫࢱ࣮ࢭࢵࢩࣙࣥࠊྡྂᒇᏛࠊឡ▱ࠊ 㸦㸳㸮㸧 䭯ᒣࠊࠕㄪ⤌⧊ไᚚࡼࡿ㠉᪂ⓗຊᏛ≉ᛶࢆ᭷ࡍࡿ㔠ᒓᮦᩱࡢ〇ࡑࡢ≉ ᛶⓎ⌧ᶵᵓࡢゎ᫂ࠖ ࠊ-67⏘Ꮫඹᇶ♏ᇶ┙◊✲ࣉࣟࢢ࣒ࣛࠕ࣊ࢸࣟᵓ㐀ไᚚࠖබ㛤ࢩ࣏ࣥ ࢪ࣒࢘ࠊ ࠕ࣊ࢸࣟᵓ㐀ไᚚ࡛㉳ࡇࡍࣀ࣮࣋ࢩࣙࣥ㸫ᵓ㐀⏝㔠ᒓᮦᩱࡢ᪂ᣦᑟཎ⌮㸫ࠖ ࠊྡ ྂᒇᏛࠊឡ▱ࠊ 㸦㸳㸯㸧 ኴ⏣⨾⤮ࠊ䭯ᒣࠊࠕㄪ⤌⧊ไᚚࡼࡿ㠉᪂ⓗຊᏛ≉ᛶࢆ᭷ࡍࡿ㔠ᒓᮦᩱࡢ 〇ࡑࡢ≉ᛶⓎ⌧ᶵᵓࡢゎ᫂ࠖ ࠊ-67⏘Ꮫඹᇶ♏ᇶ┙◊✲ࣉࣟࢢ࣒ࣛࠕ࣊ࢸࣟᵓ㐀ไᚚࠖ + ࢟ࢵࢡ࢜ࣇࠊ㕲㗰㤋ࠊᮾிࠊ 㸦㸳㸰㸧 ␇⩧ஓࠊΏ㑔ᬛஅࠊ๓⏣ுࠊኴ⏣⨾⤮ࠊ6DQMD\.XPDU9DMSDLࠊ䭯ᒣࠊ ࠕࢪ࢙ࢵ ࢺ࣑ࣜࣥࢢἲࡼࡾㄪ⤌⧊ไᚚࡉࢀࡓ 7L$O9 ྜ㔠ࡢኚᙧᣲືࠖ➨༑ඵᅇ᪥ᮏᏛ⾡ ㆟ᮦᩱᕤᏛ㐃ྜㅮ₇ࠊி㒔ࢸࣝࢧࠊி㒔ࠊ 㸦㸳㸱㸧 ቑ⏣୍ᶞࠊୗᇛၨభࠊᒸ⏣㥴ࠊኴ⏣⨾⤮ࠊ䭯ᒣࠊ ࠕ⣧ 1L ㄪ⤌⧊ᮦᩱࡢኚᙧᶵ ᵓࠖ ࠊ➨༑ඵᅇ᪥ᮏᏛ⾡㆟ᮦᩱᕤᏛ㐃ྜㅮ₇ࠊி㒔ࢸࣝࢧࠊி㒔ࠊ 㸦㸳㸲㸧 ኴ⏣⨾⤮ࠊ⃝㈗୍ࠊỈ㇂༡ࠊኴ⏣⨾⤮ࠊ䭯ᒣࠊ ࠕㄪ⤌⧊ไᚚࡉࢀࡓ⣧㕲ࡢ ≉␗࡞ኚᙧᣲື⤌⧊ᅉᏊࠖ⢊య⢊ᮎ෬㔠༠ᖹᡂ ᖺᗘ⛅Ꮨࠊ㜰Ꮫࢥࣥ࣋ࣥࢩ −105− ࣙࣥࢭࣥࢱ࣮ࠊ྿⏣ᕷࠊ 㸦㸳㸳㸧 బཎ㈗⾜ࠊኴ⏣⨾⤮ࠊ䭯ᒣࠊࠕ࣑ࣝࢽ࣒࢘ㄪ⤌⧊ᮦᩱࡢ⤌⧊ຊᏛ≉ᛶࠖ ㍍㔠ᒓᏛ➨ ᅇ⛅ᏘࠊᮾிᕤᴗᏛࠊᮾிࠊ 㸦㸳㸴㸧 ᕝ⏿ගࠊ㯮ᕝࠊ๓ἑⱥࠊኴ⏣⨾⤮ࠊ䭯ᒣࠊ ࠕ⣧ࢳࢱࣥㄪ⤌⧊ᮦᩱࡢ -HW 0LOOἲࡼࡿ〇ࠖ ࠊ㍍㔠ᒓᏛ➨ ᅇ⛅ᏘࠊᮾிᕤᴗᏛࠊᮾிࠊ 㸦㸳㸵㸧 ኴ⏣⨾⤮ࠊ⃝㈗୍ࠊỈ㇂༡ࠊୖ⏣グࠊ䭯ᒣࠊ ࠕ)H ㄪ⤌⧊ᮦࡢ≉␗࡞ኚᙧ ᣲືࠖ ࠊ᪥ᮏ㔠ᒓᏛ ᖺᮇ㸦➨ ᅇ㸧ࠊᮾிᏛࠊᮾிࠊ 㸦㸳㸶㸧 %KXSHQGUD6KDUPDࠊ6DQMD\.XPDU9DMSDLࠊ䭯ᒣࠊ ࠕ)DEULFDWLRQRI8OWUD)LQH *UDLQHG%HWD7LWDQLXPDOOR\E\IROORZLQJDQ1RYHO3RZGHU0HWDOOXUJ\DSSURDFKࠖࠊ᪥ ᮏ㔠ᒓᏛ ᖺᮇ㸦➨ ᅇ㸧ࠊᮾிᏛࠊᮾிࠊ 㸦㸳㸷㸧 1XU =DOLNKD %LQWL .KDOLO ࠊ 6DQMD\ .XPDU 9DMSDL ࠊ ኴ ⏣ ⨾ ⤮ ࠊ 䭯 ᒣ ࠊ ࠕ5HODWLRQVKLSEHWZHHQ*UDLQ6L]H&RHILFLHQWRI9DULDWLRQRQ0HFKDQLFDO3URSHUWLHV RI6L&&RPSDFWVࠖ ࠊ᪥ᮏ㔠ᒓᏛ ᖺᮇ㸦➨ ᅇ㸧ࠊᮾிᏛࠊᮾிࠊ 㸦㸴㸮㸧 <X+DQࠊ䭯ᒣ Ώ㑔⫱ክࠊࠕ'HIRUPDWLRQ%HKDYLRU$QDO\VLVRI+DUPRQLFDQG +HWHURJHQHRXV%LPRGDO6WUXFWXUHG&RPSDFWV%DVHGRQ0XOWL6FDOH)(0ࠖ ࠊ᪥ᮏ㔠ᒓᏛ ᖺᮇ㸦➨ ᅇ㸧ࠊᮾிᏛࠊᮾிࠊ 㸦㸴㸯㸧 㔝ᮧὈ⛱ࠊᑎඖ㞝ࠊ᪥ୗ㈗அࠊࠕ⼥ྜ⢏Ꮚࣇࣝࢱᇶ࡙ࡃࢹ࣮ࢱྠᢏ⾡ ࢆ⏝ࡋࡓᵓ㐀ྠᐃᮍほ ࢹ࣮ࢱࡢྲྀᚓࠖ ࠊ ➨ ᮇᏛ⾡ㅮ₇ࠊ⚟ᒸᏛ⚟ᒸᕷࠊ0D\ ࠊ 㸦㸴㸰㸧 ᒸ ┤㍤ࠊὸᔞஅࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴ㸸 ࠕࣛࣥࣉධຊἼࢆ⏝࠸ࡓ &)53 ᥋╔᥋ྜ⥅ᡭࡢΰྜ࣮ࣔࢻ⾪ᧁ◚ቯࡌࢇᛶホ౯ࠖࠊ00 ᮦᩱຊᏛ࢝ࣥࣇࣞࣥࢫࠊ⚟ ᓥᏛ⚟ᓥᕷࠊ-XO\ࠊ 㸦㸴㸱㸧 Ἑᮧ♸㈗ࠊ=DLODQLࠊ6ࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴࠊⱝᯘᏹᶞࠊ ࠕ6+3% ἲࢆ⏝ ࠸ࡓ &)53 ✚ᒙᮦࡢ࢚ࢿࣝࢠ࣮྾≉ᛶホ౯ࠖ ࠊ00 ᮦᩱຊᏛ࢝ࣥࣇࣞࣥࢫࠊ⚟ᓥ Ꮫ⚟ᓥᕷࠊ-XO\ࠊ 㸦㸴㸲㸧 Ἑᮧ♸㈗ࠊ=DLODQLࠊ6ࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴࠊⱝᯘᏹᶞࠊ ࠕ&)53 ✚ᒙᮦ ࡢ⾪ᧁ࢚ࢿࣝࢠ࣮྾≉ᛶࡢᐇ㦂ⓗホ౯ࠖࠊ➨ ᅇ )53&21(; ㅮ₇ࠊி㒔ᕤⱁ⧄⥔ Ꮫி㒔ᕷࠊ2FWREHUࠊ 㸦㸴㸳㸧 =DLODQLࠊ6ࠊἙᮧ♸㈗ࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴࠊⱝᯘᏹᶞࠊ ࠕ⾪ᧁⲴ㔜ୗ ࠾ࡅࡿ &)53 ✚ᒙᮦࡢᅽ⦰ᣲືࡢᐇ㦂ⓗホ౯ࠖࠊ➨ ᅇ᪥ᮏᏛ⾡㆟ᮦᩱᕤᏛ㐃ྜㅮ₇ࠊ ி㒔ࢸࣝࢧி㒔ᕷࠊ2FWREHUࠊ 㸦㸴㸴㸧 ᪥ୗ㈗அࠊ ࠕ&)53 ࡢ⾪ᧁ◚ቯ⌧㇟ࡑࡢホ౯࠾ࡼࡧᑐ⟇ࠖ ࠊ➨ ᅇ」ྜᮦᩱ㒊㛛 ጤဨࠊᮾⰪᶵᲔὠᕷࠊ1RYHPEHUࠊ 㸦㸴㸵㸧 Ἑᮧ♸㈗ࠊ=DLODQLࠊ6ࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴࠊⱝᯘᏹᶞࠊ ࠕ&)53 ✚ᒙᮦ ࡢ㍈ᅽቯ㐣⛬࢚ࢿࣝࢠ࣮྾⬟ࡢᐇ㦂ⓗホ౯ࠖࠊ ➨ ᅇᮦᩱࡢ⾪ᧁၥ㢟ࢩ࣏ࣥࢪ࣒࢘ࠊ㇏ ᶫᢏ⾡⛉ᏛᏛ㇏ᶫᕷࠊ1RYHPEHUࠊࠊ 㸦㸴㸶㸧 ᒸ ┤㍤ࠊὸᔞஅࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴࠊ ࠕ6+3% ἲࢆ⏝࠸ࡓ &)53 ᥋╔᥋ −106− ྜ⥅ᡭࡢΰྜ࣮ࣔࢻ◚ቯࡌࢇᛶホ౯ࠖࠊ➨ ᅇᮦᩱࡢ⾪ᧁၥ㢟ࢩ࣏ࣥࢪ࣒࢘ࠊ㇏ᶫᢏ⾡⛉ ᏛᏛ㇏ᶫᕷࠊ1RYHPEHUࠊࠊ 㸦㸴㸷㸧 ᐑᓮᣅஓࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴࠊࠕ&)53 ᥋╔᥋ྜ㒊ᮦࡢΰྜ࣮ࣔࢻ⑂ປ◚ቯ ≉ᛶཬࡰࡍ⧞ࡾ㏉ࡋ㏿ᗘࡢᙳ㡪ࠖࠊ➨ ᅇ᪥ᮏ」ྜᮦᩱ㆟ࠊᮾி⌮⛉Ꮫᮾி㒔ࠊ 0DUFKࠊ 㸦㸵㸮㸧 =DLODQLࠊ6ࠊἙᮧ♸㈗ࠊ᪥ୗ㈗அࠊ✀Ꮚᓥுኴࠊ㧗ᶫ₶ᖹࠊ ࠕ&)53 ✚ᒙᮦ ࡢ⾪ᧁ࢚ࢿࣝࢠ࣮྾≉ᛶࡢᐇ㦂ⓗホ౯ࠖࠊ➨ ᅇ᪥ᮏ」ྜᮦᩱ㆟᪥ᮏᮦᩱᏛࠊᮾி ⌮⛉Ꮫᮾி㒔ࠊ0DUFKࠊ 㸺༤ኈㄽᩥ㸼 㸦㸯㸧ኴ⏣ ⨾⤮ࠊ ࠕ༢┦࡞ࡽࡧ┦⣔㔠ᒓᮦᩱ࠾ࡅࡿㄪ⤌⧊ไᚚࣉࣟࢭࢫ㛵ࡍࡿ◊✲ࠖ 㸺ಟኈㄽᩥ㸼 㸦㸯㸧ᆤᐶኴࠊ ࠕ✀ࠎࡢࢮ࢜ࣛࢺᑐࡍࡿࢽࢵࢣࣝ(II)࢜ࣥࡢ࢜ࣥ≧ែࡢゎ᫂ࠖ 㸦㸰㸧ᓥ⏣ెዉࠊ ࠕ⤌ᡂࡢ␗࡞ࡿࣃࣛࢪ࣒࢘㖡ྜ㔠ゐ፹ࡢ⏕ᡂ࣓࢝ࢽࢬ࣒ࠖ 㸦㸱㸧䭜 Ꮥ♸ࠊ ࠕࣜࢳ࣒࢘࢜ࣥ㟁ụ㧗ᐜ㔞ṇᴟά≀㉁ Li2MnSiO4 ࡢస〇ホ౯ࠖ 㸦㸲㸧⸨ ள⪨ࠊ ࠕPt ᢸᣢ WO3 ࡢస〇ᾮ┦࣭Ẽ┦࡛ࡢගゐ፹άᛶホ౯ࠖ 㸦㸳㸧ᰗ ኴࠊ ࠕࢰࣝ-ࢤࣝἲ࠾ࡼࡧ W/O ࢚࣐ࣝࢩࣙࣥἲࡼࡿ Eu3+ྵ᭷ Ta2O5 ⌫≧⢏Ꮚ⺯ ගయࡢస〇ホ౯ࠖ 㸦㸴㸧ෆᮧ ᬛࠊ ࠕRF-MBE ἲࡼࡿ Si(100)ᇶᯈୖ GaN ⤖ᬗᡂ㛗㛵ࡍࡿ◊✲ࠖ 㸦㸵㸧Ύཎ ⪽ࠊ ࠕKFM ࡼࡿ InGaN ⾲㠃ࡢ In ⤌ᡂᦂࡽࡂཬࡧ GaN ⣔ࢹࣂࢫࡢ᩿㠃㟁ศ ᕸࡢホ౯ࠖ 㸦㸶㸧ᆏᮏ ṇὒࠊ ࠕRF-MBE ἲࢆ⏝࠸ࡓ InGaN ࡢ⭷ཌᑐࡍࡿ In ⤌ᡂኚ㛵ࡍࡿ◊✲ࠖ 㸦㸷㸧ᰘ㔝 ㅬኴᮁࠊ ࠕSi ᇶᯈୖ⦪ᆺ῝⣸እ LED ࡢ㛤Ⓨࠖ 㸦㸯㸮㸧 ᶫᮏ 㞝ࠊ ࠕ㓟࣒࢞ࣜ࢘ࡢ⣸እ⥺᳨ฟჾᛂ⏝ྥࡅࡓ᳨ウࠖ 㸦㸯㸯㸧 ྜྷᮧ Ꮥࠊ ࠕInN 㟁Ꮚࢹࣂࢫᛂ⏝ྥࡅࡓࢹࣂࢫࣉࣟࢭࢫ㛵ࡍࡿ◊✲ࠖ 㸦㸯㸰㸧 ᮧ⏣㞞ࠊ ࠕ6&$36 ࢆ⏝࠸ࡓྜ≀ኴ㝧㟁ụࡢࣂࣥࢻࣉࣟࣇࣝࡢ᭱㐺ࠖ 㸦㸯㸱㸧 ᳃ࠊ ࠕ&X=Q6Q6ࠊ6H ኴ㝧㟁ụ࠾ࡅࡿ 1D) ᚋฎ⌮ࡢ᳨ウࠖ 㸦㸯㸲㸧 Ỉᮏ㞝ኴࠊ ࠕ=Q2ࠊ6$O&X,Qࠊ*D6H ࣂࢵࣇࣇ࣮ࣜኴ㝧㟁ụࡢస〇ホ౯ࠖ 㸦㸯㸳㸧 ᑠ㜰㈗୍ࠊ ࠕ6Q6 ⢊ᮎ 6 ⢊ᮎࢆ⏝࠸ࡓ◲ἲࡼࡿ &X6Q6 ኴ㝧㟁ụࡢస〇ࠖ 㸦㸯㸴㸧 㧗ㄹࠊ ࠕ&X=Q6Q6ࠊ6H ⷧ⭷ኴ㝧㟁ụࡢ &G ᣑᩓฎ⌮ࡼࡿ SQ ᥋ྜᙧᡂ᮲௳ࠖ 㸦㸯㸵㸧 ♸႐ࠊ ࠕ ࢰ࣮ࣥ⟶≧⅔ࢆ⏝࠸ࡓ &X6Q6H ග྾ᒙࡢస〇ホ౯ࠖ 㸦㸯㸶㸧 ⁁ බுࠕ㉸㧗㏿⾪✺࠾ࡅࡿ⾪ᧁ◚ቯ⌧㇟ゎ᫂ࡢࡓࡵࡢ ᗘኚᶵᵓ㛵 ࡍࡿ◊✲ࠖ 㸦㸯㸷㸧 ྜྷᆏṇࠊ ࠕ◁ࡢ㣕⩧య㧗㏿㈏ධᐇ㦂࠾ࡅࡿᣲືィ ᡭἲࡢ☜❧࣐ࢢࢿࢵࢺ࣭ ࢥࣝἲࡼࡿ㟁ᅽฟຊࡢࣔࢹࣝࠖ 㸦㸰㸮㸧 Ώ㑔ᬛஅࠊ ࠕ7L$O9 ྜ㔠ࡢ㧗ࡦࡎࡳຍᕤࡼࡿㄪ⤌⧊ไᚚࠖ −107− 㸦㸰㸯㸧 㧗ᶫᝆᶞࠊ ࠕ+LJK3UHVVXUH7RUVLRQ+37ຍᕤࡉࢀࡓ686- ┦ࢫࢸࣥࣞࢫ㗰 ࡢ⤌⧊ᙧᡂࠖ 㸦㸰㸰㸧 ᕝஂಖගὒࠊ ࠕ3063' ࣉࣟࢭࢫࡼࡿ┦ࢫࢸࣥࣞࢫ㗰ࡢᚤどⓗ⤌⧊ไᚚࠖ 㸦㸰㸱㸧 1XUXO1DGLDK%LQWL0DKPXGࠊࠕ)DEULFDWLRQRI&HUDPLFV&RPSRVLWHV0DWHULDOVࠖ 㸦㸰㸲㸧 㯮ᕝࠊ ࠕ⣧ࢳࢱࣥࡢㄪ⤌⧊ᙧᡂཬࡰࡍ࣑ࣜࣥࢢࣉࣟࢭࢫࡢᙳ㡪ࠖ 㸦㸰㸳㸧 =KDQJ 0HQJࠊ ࠕ686/ ࠾ࡼࡧ 6866 ࠾ࡅࡿ 636 ᮲௳ᚤ⣽⤌⧊ࡢ㛵ಀࠖ 㸦㸰㸴㸧 ୰ᓥṇἲࠊ ࠕ㧗࢚ࢿࣝࢠ࣮࣮࣑࣎ࣝࣝࡼࡿ 6L7L ࡢ࣓࢝ࢽ࢝ࣝࣟࣥࢢࠖ 㸦㸰㸵㸧 ୗᇛၨ♸ࠊ ࠕ↓㟁ゎ 1L ࡵࡗࡁࢆ⏝࠸ࡓ⣧ 1L ࡢ⤌⧊ไᚚኚᙧᣲືࠖ 㸦㸰㸶㸧 7RQJ%Rࠊ ࠕ686/ ࣮࢜ࢫࢸࢼࢺ⣔ࢫࢸࣥࣞࢫ㗰ࡢຊᏛ≉ᛶཬࡰࡍㄪ⤌⧊ ࡢᙺࠖ 㸦㸰㸷㸧 ᒣཱྀ⌮ࠊ ࠕ&R&U0R ྜ㔠ㄪ⤌⧊ᮦᩱࡢ⤌⧊ᙧᡂ࠾ࡼࡧኚᙧᣲືࠖ 㸦㸱㸮㸧 ㇂⾜ࠊ ࠕ᭷㝈せ⣲ゎᯒࢆ⏝࠸ࡓ &)53 〇㧗ᅽᐜჾࡢᵓ㐀タィࠖ 㸦㸱㸯㸧 ஂᮌ⚈ᖹࠊ ࠕ7L$O9 ྜ㔠ࡢኚᙧᣲືཬࡰࡍㄪ⤌⧊ไᚚࡢᙳ㡪ࠖ 㸦㸱㸰㸧 ᐑᓮᣅஓࠊ ࠕ&)53 ᥋╔᥋ྜ㒊ᮦࡢΰྜ࣮ࣔࢻ⑂ປ◚ቯ≉ᛶཬࡰࡍ㈇Ⲵ㏿ᗘࡢᙳ 㡪ࠖ 㸦㸱㸱㸧 ᒣ⏣㍤᫂ࠊ ࠕ3=7 ࢺࣛࣥࢫࢹ࣮ࣗࢧࡢᅽ㟁≉ᛶཬࡰࡍᚤどⓗᦆയࡢᙳ㡪ࠖ 㸦㸱㸲㸧 ὸᔞஅࠊ ࠕ&)53 ᥋╔᥋ྜ㒊ᮦࡢ◚ቯࡌࢇᛶホ౯ཬࡰࡍ㠀⥺ᙧኚᙧࡢᙳ㡪ࠖ 㸦㸱㸳㸧 ྜྷ⏣ᶞࠊ ࠕ&)53 ᶵᲔ᥋ྜ⥅ᡭࡢᙉᗘ≉ᛶཬࡰࡍ⧄⥔㓄ྥࡢᙳ㡪ࠖ 㸺ᅜ㝿㆟ᇶㄪ࣭ᣍᚅㅮ₇㸼 㸦㸯㸧࡞ࡋ 㸺◊✲࣭ຮᙉ㛤ദ≧ἣ㸼 㸦㸯㸧ྡ⛠㸸QG,QWHUQDWLRQDO6\PSRVLXPRQ)XQFWLRQDOL]DWLRQDQG$SSOLFDWLRQVRI6RIW+DUG 0DWHULDOV6RIW+DUGࠊሙᡤ㸸࣮࣒ࣟグᛕ㤋ࠊ❧㤋Ꮫࡧࢃࡇࡃࡉࡘ࢟ࣕࣥࣃࢫࠊ ㈡┴ⲡὠᕷࠊ᪥㸸 ᖺ ᭶ ᪥ 㸦㸰㸧ྡ⛠㸸WK*HUPDQ-DSDQHVHWK,QWHUQDWLRQDO6\PSRVLXPRQ1DQRVWUXFWXUHVࠊሙᡤ㸸 ᮒ㞛࢟ࣕࣥࣃࢫࠊி㒔ᕷࠊ᪥㸸 ᖺ ᭶ ᪥ 㸦㸱㸧 㸺≉チ㸼 㸦㸯㸧࡞ࡋ −108− ᆺ◊✲⨨ᡂᯝሗ࿌᭩ ⨨ྡ ◊✲㈐௵⪅ 㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧 ᪥❧ప┿✵ศᯒ㉮ᰝ㟁Ꮚ㢧ᚤ㙾 ⌮ᕤᏛ㒊࣭ᩍᤵ࣭ୖ㔝 ᫂ ◊✲ࢸ࣮࣐ ྛ✀ᮦᩱࡢᚤどⓗ⤌⧊࠾ࡼࡧ◚㠃ほᐹ➼ࢆ㏻ࡌࡓᮦᩱᡂ㸤ホ౯◊✲ ◊✲ࡢᴫせ ᙜヱ㢧ᚤ㙾ࡣ㸪ձ᪥❧ࣁࢸࢡࣀࣟࢪ࣮ࢬ〇ప┿✵ศᯒ㉮ᰝ㟁Ꮚ㢧ᚤ 㙾 SU6600㸪ղ࢜ࢵࢡࢫࣇ࢛࣮ࢻ࣭ࣥࢫࢺ࣓ࣝࣥࢶ〇࢚ࢿࣝࢠ࣮ศᩓᆺ㹖⥺ඖ ⣲ศᯒ⨨ EDS㸪ճ࢜ࢵࢡࢫࣇ࢛࣮ࢻ࣭ࣥࢫࢺ࣓ࣝࣥࢶ〇㟁Ꮚ⥺ᚋ᪉ᩓ ᅇᢡ⤖ᬗ᪉ゎᯒ⨨ EBSD ࡽᵓᡂࡉࢀ࡚࠾ࡾ㸪ձࡣྛ✀ᮦᩱࡸ◚㠃ࡢᚤど ⓗほᐹ㸪ղࡣᚤᑠ㡿ᇦࡢඖ⣲ศᯒ㸪ճࡣ⤖ᬗ᪉ゎᯒࡸᚤど㡿ᇦࡢኚᙧ⛬ ᗘศᯒ࡞ࡢ⏝࠸ࡽࢀ࡚࠸ࡿ㸬ྛ⨨㸦ձ㸪ղ㸪ճ㸧ࢆ⏝࠸ࡿࡇ࡛ᚓࡽࢀࡓ ◊✲ᡂᯝࡢᴫせࢆ௨ୗ♧ࡍ㸬 Ϩ㸬SU6600 ࢆ⏝࠸ࡓ◊✲ᡂᯝ㸸 ࣭ྛ✀◚㠃ࡢほᐹ㸪ࡁᑍἲࡢ ᐃ ࣭◚㠃พฝࡢ㸱ḟඖ㸪FRASTA ゎᯒ ࣭ヨᩱ⾲㠃ᛶ≧ࡢほᐹ ࡞ ϩ㸬EDS ࢆ⏝࠸ࡓ◊✲ᡂᯝ㸸 ࣭ྛ✀ᮦᩱࡢᏛᡂศศᯒ ࣭ᮦᩱ୰ࡢඖ⣲ศᕸศᯒ ࡞ Ϫ㸬EBSD ࢆ⏝࠸ࡓ◊✲ᡂᯝ㸸 ࣭⤖ᬗ᪉ゎᯒ ࣭㞟ྜ⤌⧊⏕ᡂ≧ែศᯒ ࣭⤖ᬗ⢏ᚄゎᯒ ࣭ෆ㒊ࡦࡎࡳゎᯒ ࡞ −109− ⏝ᡂᯝ SEM ࢆ⏝࠸ࡓᮦᩱ⤌⧊࣭◚㠃ほᐹ㸪EDS ࢆ⏝࠸ࡓᏛ⤌ᡂศᯒ㸪EBSD ࢆ⏝ ࠸ࡓ⤖ᬗ᪉ゎᯒ➼࡛㈗㔜࡞◊✲ᡂᯝࢆከࡃᚓࡓ㸬⨨⏝㛫ࡀ≉ከ࠸㸰 ◊✲ᐊࡢᙜヱ⨨ࢆ⏝࠸ࡓ⤖ᯝࢆྵࡴ◊✲ᡂᯝࢆ௨ୗ♧ࡍ㸬 䛆ㄽᩥ䛇㻌 1. Benjamin Guennec, Akira Ueno, Tatsuo Sakai, Masahiro Takanashi, Yu Itabashi and Mie Ota, "Dislocation-based Interpretation on the Effect of the Loading Frequency on the Fatigue Properties of JIS S15C Low Carbon Steel", International Journal of Fatigue, Vol.70, pp.328-341, 2015. 2. Shoichi Kikuchi, Yuta Nakamura, Akira Ueno and Kei Ameyama, "Development of Low Temperature Nitriding Process and Its Effects on the 4-points Bending Fatigue Properties of Commercially Pure Titanium", Advanced Materials Research, No.891-892, pp.656-661, 2014. 3. Benjamin Guennec, Akira Ueno, Tatsuo Sakai, Masahiro Takanashi and Yu Itabashi, "Effect of the Loading Frequency on Fatigue Properties of JIS S15C Low Carbon Steel and Some Discussions Based on Micro-plasticity Behavior", International Journal of Fatigue, Vol.66, pp.29-38, 2014. 4. Masahiro Nawa, Naoki Kurizoe, Yasunori Okamoto and Akira Ueno, "Transformation-induced Plastic Deformation in Ce-TZP/alumina Nanocomposite Generated During Fatigue Tests at Room Temperature", Journal of the European Ceramic Society, Vol.34, pp.4337-4345, 2014. 5. ୖ㔝 ᫂㸪す⏣⚽㸪ᐑᕝ㐍㸪ᒣ⏣⪔㸪⳥ụᑗ୍㸪 ࠕ¥area ἲࢆ⏝࠸ࡓ ࣑ࣝࢲ࢝ࢫࢺྜ㔠ࡢ⑂ປ㝈ᗘண ࠖ㸪ᮦᩱ㸪Vol.63, No.12, pp.844-849, 2014. 6. ྥᒣᏕ㸪ⰼᮌᏹಟ㸪ᒸ⏣᠇ྖ㸪ቃ⏣ᙲⰾ㸪୰ᮧ⿱⣖㸪Ⳣ⏣ ῟㸪すᕝ ฟ㸪 ୖ㔝 ᫂㸪㓇㐩㞝㸪 ࠕ㟼ⓗᙉᗘ≉ᛶ್ࡼࡿᶵᲔᵓ㐀⏝Ⅳ⣲㗰ࡢ S-N ᭤⥺ 㛵ࡍࡿ⤫ィⓗ᥎ᐃࠖ㸪ᮦᩱ㸪ᥖ㍕ྍ. 7. ୕ᾆᣅ㸪䬟ཎ㝯அ㸪୕ᮧ┿࿃㸪ஂ㔝㝯⣖㸪⳥ụᑗ୍㸪ୖ㔝᫂㸪㓇㐩㞝㸪 ࠕࣇ ࣛࢡࢺࢢࣛࣇࡼࡿ⇕㛫ᡂᙧࡤࡡ⏝㗰 SUP7 ࡢෆ㒊㉳Ⅼᆺ⑂ປ◚ቯ࣓࢝ ࢽࢬ࣒ࡢ᳨ウࠖ 㸪ᮦᩱ㸪ᥖ㍕ྍ. 8. Sanjay Kumar Vajpai, Mie Ota, Tomoyuki Watanabe, Ryo Maeda, Tatsuya Sekiguchi, Takayuki Kusaka and Kei Ameyama, "The Development of High Performance Ti-6Al-4V Alloy via a Unique Microstructural Design with Bimodal Grain Size Distribution", Metallurgical and Materials Transactions A, Vol.64, No.2, pp.903-914, 2015. 9. Mie Ota, Sanjay Kumar Vajpa, Ryota Imao, Kazuaki Kurokawa and Kei Ameyama, "Application of High Pressure Gas Jet Mill Process to Fabricate High Performance Pure Titanium", J. Materials Transactions, Vol.56, No.1, pp.154-159, 2015. 10. Nurul Nadia MEHMUD, Sanjay Kumar Vaipai and Kei Ameyama, "Fabrication of −110− Yttria Stabilized Zirconia-Silicon Carbide Composites with High Strength and High Toughness by Spark Plasma Sintering of Mechanically Milled Powders", J. Materials Transactions, Vol.55, No.12, pp.1827-1833, 2014. 11. Z. Zhang, D. Orlov, S. K. Vajpai, B. Tong and K. Ameyama, "Importance of Bimodal Structure Topology in the Control of Mechanical Properties of a Stainless Steel", J. Advanced Engineering Materials, DOI: 10.1002/adem.201400358, 2014. 12. R. Yoshida, T. Tsuda, H. Fujiwara, H. Miyamoto and K. Ameyama, "Annealing Effect on Mechanical Properties of Ti-Al Alloy/Pure Ti Harmonic-Structured Composite by MM/SPS Process", Materials Science and Engineering, 63, doi:10.1088/1757-899X/63/1/012031, 2014. 13. Y. Tsuzuki, H. Fujiwara, H. Miyamoto and K. Ameyama, "Deformation behavior of high speed steel/low Carbon steel composite with harmonic structure by MM/SPS process", Materials Science and Engineering, 63, doi:10.1088/1757-899X/63/1/012029, 2014. 14. Sanjay Kumar Vajpai, Kei Ameyama, Mie Ota, Tomoyuki Watanabe, Ryo Maeda, Tatsuya Sekiguchi, Guy Dirras and David Tingaud, "High performance Ti-6Al-4V alloy by creation of harmonic structure design", Materials Science and Engineering, 63, doi:10.1088/1757-899X/63/1/012030, 2014. 15. M. Ota, K. Sawai, M. Kawakubo, S. K. Vajpai and K. Ameyama, "Harmonic structure formation and deformation behavior in a (Į + Ȗ) two phase stainless steel", Materials Science and Engineering, Vol.63, No.1, pp.12-27, 2014. 16. Yasuhiro Kanoko, Kei Ameyama, Shigeo Tanaka and Benjamin Hefler, "Production of ultra-thin porous metal paper by applying the fibre space holder method", Powder Metallurgy, Vol.57, No.3, pp.1-5, 2014. 17. Mie Ota, Keisuke Shimojo, Shun Okada, Sanjay Kumar Vajpai and Kei Ameyama, "Harmonic Structure Design and Mechanical Properties of Pure Ni Compact", Journal of Powder Metallurgy & Mining, Vol.3, No.1, Doi:0.4172/2168-9806. 1000122, 2014. 18. Ruixiao Zheng, Yanbo Sun, Wenlong Xiao, Kei Ameyama and Chaoli Ma, "Nanostructured Al87Ni8.5Ce3Fe1Cu0.5 alloy prepared by mechanical milling spark plasma sintering and hot extrusion", Materials Science & Engineering A, Vol.606, No.3, pp.426-433, 2014. 19. Dmitry Orlov, Daniele Pelliccia, Xiya Fang, Laure Bourgeois, Nigel Kirby, Andrei Y Nikulin, Kei Ameyama and Yuri Estrin, "Particle evolution in Mg-Zn-Zr alloy processed by integrated extrusion and equal channel angular pressing: Evaluation by electron microscopy and synchrotron small-angle X-Ray scattering", Acta Materiala, Vol.3, No.1, Doi:0.4172/2168-9806. 1000122, 2014. −111− 20. Mie Ota, Keisuke Shimojo, Shun Okada, Sanjay Kumar Vajpai and Kei Ameyama, "Harmonic Structure Design and Mechanical Properties of Pure Ni Compact", Journal of Powder Metallurgy & Mining, Vol.72, pp.110-124, 2014. 21. Choncharoen Sawangrat, Shota Kato, Dmitry Orlov and Kei Ameyama, "Harmonic-structured copper: performance and proof of fabrication concept based on severe plastic deformation of powders", Journal of Materials Science, Vol.3, No.1, Doi:0.4172/2168-9806. 1000122, 2014. 22. Mie Ota, Keisuke Shimojo, Shun Okada, Sanjay Kumar Vajpai and Kei Ameyama, "Harmonic Structure Design and Mechanical Properties of Pure Ni Compact", Journal of Powder Metallurgy & Mining, Vol.5, 2014. 23. Choncharoen Sawangrat, Osamu Yamaguchi, Sanjay Vajpai and Kei Ameyama, "Harmonic structure design of Co-Cr-Mo alloy with outstanding mechanical properties", Advanced Materials Research, No.939, pp.60-67, 2014. 䛆ᅜ㝿㆟ 㻼㼞㼛㼏㼑㼑㼐㼕㼚㼓㼟䛇㻌 1. Yiwen Yang, Nobuyuki Fujitsuna, Ryota Yakura, Mariko Matsuda, Taku Miura, Akira Ueno, Shoichi Kikuchi and Tatsuo Sakai, " Effects of Cleanliness and Induction Hardening on Very High Cycle Fatigue Properties of Low Alloy Forged Steel", Proc. of the 6th International Conference on VHCF, USB, No.INS06, October 15–18, 2014, Chengdu, China. 2. Tatsuo Sakai, Noriyasu Oguma, Akinari Morikawa and Akira UENO, "Micro scopic and Nanoscopic Observations of Metallographic Structures around Inclusions at Interior Crack Initiation Site in Very High Cycle Fatigue", Proc. of the 6th International Conference on VHCF, USB, No.MIM02, October 15–18, 2014, Chengdu, China. 3. Taku Miura, Takayuki Sakakibara, Takanori Kuno, Akira Ueno, Shoichi Kikuchi and Tatsuo Sakai, "Interior-induced Fracture Mechanism of Valve Spring Steel (JIS SWOSC-V) with High Cleanliness in Very High Cycle Regime", Proc. of the 6th International Conference on VHCF, USB, No.MIM09, October 15–18, 2014, Chengdu, China. 4. Tatsuo Sakai, Koushu Hanaki, Akiyoshi Sakaida, Kenji Okada, Yuki Nakamura, Kazutaka Mukoyama, Noriyasu Oguma, Takashi Matsumura, Yoshinobu Shimamura and Akira Ueno, "Construction of Electronic Database on Very High Cycle Fatigue Properties for Metallic Materials", Proc. of the 6th International Conference on VHCF, USB, No.MIM10, October 15–18, 2014, Chengdu, China. 5. Akiyoshi Sakaida, Yanbin Zhang, Shoichi Kikuchi, Yoshihiko Yokoyama, Akira Ueno and Tatsuo Sakai, "A Study on Very High Cycle Fatigue Properties of Bulk Amorphous Alloy in Rotating Bending", Proc. of the 6th International Conference −112− on VHCF, USB, No.PSM14, October 15–18, 2014, Chengdu, China. 6. Shoichi Kikuchi, Stefan Heinz, Dietmar Eifler, Yuta Nakamura and Akira Ueno, "Effects of Low Temperature Nitriding Process on the Very High Cycle Fatigue Properties of Ti-6Al-4V Alloy", Proc. of the 6th International Conference on VHCF, USB, No.PSM04, October 15–18, 2014, Chengdu, China. 7. Shoichi Kikuchi, Kotaro Takemura, Yosuke Hayami, Akira Ueno and Kei Ameyama, "Evaluation of the 4-points Bending Fatigue Properties of Ti-6Al-4V Alloy with Harmonic Structure Created by Mechanical Milling and Spark Plasma Sintering", Proc. of the 3rd Japan-Chine Fatigue Symposium, November 6–8, 2014, Takayama, Japan. 8. Akira Ueno, Masahide Nishida, Susumu Miyakawa, Koji Yamada, Shoichi Kikuchi, "ǻKth estimation of aluminum die-casting alloy by means of ¥area method ", Proc. of the APCFS/SIF-2014 International Congress, December 9-12, 2014, Sydney, Australia. 9. Microstructure And Mechanical Properties Of Sic Compacts Produced By Mechanical Milling And Spark Plasma Sintering, N. Z. B. Khalil, S. K. Vajpai, K. Ameyama, 9th International Materials Technology Conference & Exhibition (IMTCE2014), Kuala Lumpur (Malaisia), May 13-16, 2014. 䛆ཱྀ㢌Ⓨ⾲䛇㻌 1. ๓ᮧᝆ㍤㸪ୖ㔝 ᫂㸪ᮧᒣ⩧ဢ㸪ຍ⸨ྑஓ㸪㺀ෆᅽᘧ㧗ᅽỈ⣲ἲࢆ⏝࠸ࡓ ࣑ࣝࢽ࣒࢘ྜ㔠 A7075-T6511 ࡢ ⑂ປ≉ᛶཬࡰࡍ㧗ᅽỈ⣲࢞ࢫࡢᙳ㡪ホ ౯㺁㸪᪥ᮏᶵᲔᏛ㛵すᨭ㒊➨ 90 ᮇᐃ⥲࣭ㅮ₇࣭Ⓨ⾲ணᐃ, 2015. 2. Ᏻ⏣࿘ᖹ㸪ୖ㔝 ᫂㸪ᑠᯘ⠜ྐ㸪௰ ⫕㸪ᶓᒣᙪ㸪㓇㐩㞝㸪ቃ⏣ᙲ ⰾ㸪⳥ụᑗ୍㸪㺀Zr ᇶࣂࣝࢡ㔠ᒓ࢞ࣛࢫࡢ 4 Ⅼ᭤ࡆ⑂ປ≉ᛶཬࡰࡍỈศࡢ ᙳ㡪ホ౯㺁㸪᪥ᮏᶵᲔᏛ㛵すᨭ㒊㛵すᏛ⏕ᖹᡂ 26 ᖺᗘᏛ⏕ဨ༞ᴗ◊✲ Ⓨ⾲ㅮ₇࣭Ⓨ⾲ணᐃ, 2015. 3. ᗮ ᮏᑀ㸪ୖ㔝 ᫂㸪㺀ᅇ㌿᭤ࡆ⑂ປヨ㦂ᶵ⏝⑂ປࡁ㐃⥆ほᐹࢩࢫࢸ࣒ࡢ 㛤Ⓨ㺁㸪᪥ᮏᮦᩱᏛ➨ 32 ᅇ⑂ປࢩ࣏ࣥࢪ࣒࢘ㅮ₇ㄽᩥ㞟㸪2014. 4. ✄ᇉᰆ㤶㸪ᇼᕝᩍୡ㸪ᐑᓥᩄ㑻㸪ⳫᏊ㈗ᬕ㸪ୖ㔝 ᫂㸪ቃ⏣ᙲⰾ㸪ᒾၿ 㑻㸪ᕝ㔝ඃᕼ㸪㺀AIP ἲ UBMS ἲࡼࡾ TiAlN ⭷ࢆ⿕そࡋࡓ㧗㏿ᗘᕤ ල㗰ࡢ⑂ປᙉᗘẚ㍑㺁㸪᪥ᮏᶵᲔᏛ M&M2014 ᮦᩱຊᏛ࢝ࣥࣇࣞࣥࢫ, ⚟ᓥᏛ㸪USB, 2014. 5. ᇼᕝᩍୡ㸪ᕝ㔝ඃᕼ㸪ୖ㔝 ᫂㸪ቃ⏣ᙲⰾ㸪ᐑᓥᩄ㑻㸪㺀࢟ࣥࢡᦆയࢆ࠼ ࡓ PBO ⧄⥔ࡢᘬᙇᙉᗘࡢ☜⋡ศᕸ㺁㸪᪥ᮏᶵᲔᏛ M&M2014 ᮦᩱຊᏛ࢝ ࣥࣇࣞࣥࢫ㸪⚟ᓥᏛ㸪USB, 2014. 6. ୖ㔝 ᫂㸪㧗᰿ ┿㸪ୖ㔝ᩥᘯ㸪㺀ᅛయ㧗ศᏊᙧ⇞ᩱ㟁ụ⏝㟁ゎ㉁⭷ࡢຎ ホ౯㺁㸪᪥ᮏᶵᲔᏛ M&M2014 ᮦᩱຊᏛ࢝ࣥࣇࣞࣥࢫ㸪⚟ᓥᏛ㸪USB, −113− 2014. 7. ୰ᮧᝆኴ㸪⳥ụᑗ୍㸪ྜྷ⏣ ⩧㸪ୖ㔝 ᫂㸪䭯ᒣ 㸪㺀ప ࣉࣛࢬ࣐❅ ࢆࡋࡓᕤᴗ⏝⣧ࢳࢱࣥࡢ 4 Ⅼ᭤ࡆ⑂ປ≉ᛶཬࡰࡍ⤖ᬗ⢏ᚄࡢᙳ㡪ホ ౯㺁㸪 8. ᒸ⏣ᝋ㑻㸪ᇼᕝᩍୡ㸪ᐑᓥᩄ㑻㸪ⳫᏊ㈗ᬕ㸪ୖ㔝 ᫂㸪ቃ⏣ᙲⰾ㸪ᒾၿ 㑻㸪 ᕝ㔝ඃᕼ㸪 㺀⭷ཌࡢ␗࡞ࡿ TiCrAlSiN/CrN ⿕そ㧗㏿ᗘᕤල㗰ࡢ⑂ປ≉ᛶ㺁㸪 ᪥ᮏᶵᲔᏛ M&M2014 ᮦᩱຊᏛ࢝ࣥࣇࣞࣥࢫ㸪⚟ᓥᏛ㸪USB, 2014. 9. ▮ுኴ㸪᳃ ၨஅ㸪すཱྀඞⱱ㸪ᯇ⏣┿⌮Ꮚ㸪㓇㐩㞝㸪ୖ㔝 ᫂㸪⳥ụ ᑗ୍㸪୕ᾆ ᣅ㸪㺀⯪⯧⏝ࢡࣛࣥࢡ㍈ᮦᩱࡢࢠ࢞ࢧࢡࣝ⑂ປ≉ᛶᅾ≀ ࢧࢬࡢ㛵ಀࡘ࠸࡚㺁㸪᪥ᮏᮦᩱᏛ➨ 63 ᮇᏛ⾡ㅮ₇㸪⚟ᒸᏛ㸪USB, 2014. 10. ቃ⏣ᙲⰾ㸪ᙇ Ⰿᩩ㸪⳥ụᑗ୍㸪ᶓᒣᙪ㸪ୖ㔝 ᫂㸪㓇㐩㞝㸪㺀ࣔࣝ ࣇࢫ࣭ࣂࣝࢡᮦࡢ㉸㧗ࢧࢡࣝᇦ࠾ࡅࡿ☜⋡⑂ປ≉ᛶࡢゎᯒ㺁㸪᪥ᮏᮦ ᩱᏛ➨ 63 ᮇᏛ⾡ㅮ₇㸪⚟ᒸᏛ㸪USB, 2014. 11. ྥᒣᏕ㸪ⰼᮌᏹಟ㸪ᒸ⏣᠇ྖ㸪ቃ⏣ᙲⰾ㸪Ⳣ⏣ ῟㸪すᕝ ฟ㸪ୖ㔝 ᫂㸪 㓇㐩㞝㸪㺀㟼ⓗᙉᗘ≉ᛶ್ࡼࡿ㕲㗰ᮦᩱࡢ S-N ᭤⥺㛵ࡍࡿ⤫ィⓗ᥎ ᐃ㺁㸪᪥ᮏᮦᩱᏛ➨ 63 ᮇᏛ⾡ㅮ₇㸪⚟ᒸᏛ㸪USB, 2014. 12. ྥᒣᏕ㸪୰ᮧ⿱⣖㸪ⰼᮌᏹಟ㸪ᒸ⏣᠇ྖ㸪ቃ⏣ᙲⰾ㸪㓇㐩㞝㸪Ⳣ⏣ ῟㸪 すᕝ ฟ㸪ୖ㔝 ᫂㸪㺀㟼ⓗᙉᗘ≉ᛶ್ࡼࡿ㠀㕲㔠ᒓᮦᩱࡢ S-N ᭤⥺㛵 ࡍࡿ⤫ィⓗ᥎ᐃ㺁㸪᪥ᮏᮦᩱᏛ➨ 63 ᮇᏛ⾡ㅮ₇㸪⚟ᒸᏛ㸪USB, 2014. 13. ⳥ụᑗ୍㸪୰ᮧᝆኴ㸪ྜྷ⏣ ⩧㸪ୖ㔝 ᫂㸪༡㒊⣫୍㑻㸪୰ᮧ⿱⣖㸪㺀ᚤ⢏ Ꮚࣆ࣮ࢽࣥࢢࢆ⏝ࡋࡓᕤᴗ⏝⣧ࢳࢱࣥ⾲㠃ࡢࣁࢻࣟ࢟ࢩࣃࢱࢺ ᒙࡢ〇㺁㸪᪥ᮏᮦᩱᏛ➨ 63 ᮇᏛ⾡ㅮ₇㸪⚟ᒸᏛ㸪USB, 2014. 14. ୖ㔝 ᫂㸪௰ ⫕㸪ᑠᯘ⠜ྐ㸪㺀ࢭࣜᏳᐃṇ᪉ᬗࢪࣝࢥࢽࢼࣀ」ྜ ࢭ࣑ࣛࢵࢡࢫࡢ⑂ປᙉᗘಙ㢗ᛶホ౯㸦➨㸯ሗ㸸Ẽ୰㸧㺁㸪᪥ᮏᮦᩱᏛ➨ 63 ᮇᏛ⾡ㅮ₇㸪⚟ᒸᏛ㸪USB, 2014. 15. ୖ㔝 ᫂㸪ᑠᯘ⠜ྐ㸪௰ ⫕㸪㺀ࢭࣜᏳᐃṇ᪉ᬗࢪࣝࢥࢽࢼࣀ」ྜ ࢭ࣑ࣛࢵࢡࢫࡢ⑂ປᙉᗘಙ㢗ᛶホ౯㸦➨㸰ሗ㸸Ỉ୰㸧㺁㸪᪥ᮏᮦᩱᏛ➨ 63 ᮇᏛ⾡ㅮ₇㸪⚟ᒸᏛ㸪USB, 2014. 16. ⳥ụᑗ୍㸪S. Heinz㸪E. Dietmar㸪୰ᮧᝆኴ㸪ྜྷ⏣ ⩧㸪ୖ㔝 ᫂㸪㺀ప ❅ ࣉࣛࢬ࣐ࢆࡋࡓ Ti-6Al-4V ྜ㔠ࡢ㉸㡢Ἴ⑂ປ≉ᛶ㺁㸪᪥ᮏᮦᩱᏛ➨ 63 ᮇᏛ⾡ㅮ₇㸪⚟ᒸᏛ㸪USB, 2014. 17. ྜྷ⏣ ⩧㸪⳥ụᑗ୍㸪୰ᮧᝆኴ㸪ୖ㔝 ᫂㸪㺀Ti-6Al-4V ྜ㔠ࡢ 4 Ⅼ᭤ࡆ⑂ ປ≉ᛶཬࡰࡍప ࣉࣛࢬ࣐❅ࡢᙳ㡪ホ౯㺁㸪᪥ᮏᮦᩱᏛ➨ 63 ᮇᏛ⾡ ㅮ₇㸪⚟ᒸᏛ㸪USB, 2014. 䛆ᣍᚅㅮ₇䛇㻌 −114− 1. ࢫࢬ࢟㈈ᅋᣍᚅㅮ₇㸪ୖ㔝 ᫂㸪㺀¥area ἲࢆ⏝࠸ࡓ࣑ࣝࢲ࢝ࢫࢺྜ㔠 ࡢ⑂ປ㝈ᗘண 㸪ᅇ㌿᭤ࡆ⑂ປヨ㦂ᶵ⏝⑂ປࡁ㐃⥆ほᐹࢩࢫࢸ࣒ࡢ㛤 Ⓨ㺁㸪2014 ᖺ 10 ᭶ 8 ᪥. ௨ୖ −115− ᆺ◊✲⨨ᡂᯝሗ࿌᭩ ⨨ྡ ◊✲㈐௵⪅ 㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧 ☢Ẽศᯒ⨨㸦NMR㸧 ⏕⛉Ꮫ㒊࣭ᩍᤵ࣭ሐ ◊✲ࢸ࣮࣐ ࢯࣇࢺ࣭ࣁ࣮ࢻ⼥ྜᮦᩱࡢ㝵ᒙⓗᵓ㐀ไᚚࡼࡿ᪂ᮦᩱࡢⓎ ◊✲ࡢᴫせ ࠸ࢁ࠸ࢁ࡞ࢯࣇࢺᮦᩱ㸦᭷ᶵ࣭㧗ศᏊᮦᩱ㸧ࣁ࣮ࢻᮦᩱ㸦㔠ᒓ㸪㔠ᒓ㓟≀࡞ 㸧ࢆ⼥ྜࡉࡏ㸪ศᏊࣞ࣋ࣝࡽᕧどⓗࣞ࣋ࣝ࠾ࡅࡿྛ㝵ᒙ࠾࠸࡚⢭ᐦᵓ㐀 ไᚚࢆ⾜࠺ࡇ࡛㠉᪂ⓗ࡞ᛶ⬟࣭ᶵ⬟ࢆ♧ࡍᮦᩱࡢⓎࢆ┠ᣦࡋࡓ◊✲ࢆ⾜ࡗࡓࠋ ≉ᮏ⨨ࢆศᏊᵓ㐀ࡢỴᐃࡶࡕ࠸࡚㸪ศᏊ࡛ࣞ࣋ࣝࡢ⢭ᐦᵓ㐀ࡀᮦᩱ≀ᛶ ࠼ࡿᙳ㡪ࡘ࠸᳨࡚ウࡋ㸪ୗグ♧ࡍࡼ࠺࡞ᡂᯝࢆⓎ⾲ࡋࡓࠋ ㄽᩥ 1) Photoluminescent Gold(I) Complex with Biphenyl Acetylene Ligand Showing Stable Nematic Liquid-Crystalline Phase, N. Sugimoto, S. Tamai, K. Fujisawa, O. Tsutsumi, Mol. Cryst. Liq. Cryst., 601, 97–106 (2014). 2) Synthesis, liquid–crystalline behavior, and photoluminescence properties of novel Au(I) complex with naphthalene ring in a mesogenic core, Y. Rokusha, N. Sugimoto, S. Yamada, O. Tsutsumi, Proc. SPIE, 9182, 918206, DOI: 10.1117/12.2060334 (2014). 3) Reversible thermal-mode control of luminescence from liquid-crystalline gold(I) complexes, K. Fujisawa, Y. Okuda, Y. Izumi, A. Nagamatsu, Y. Rokusha, Y. Sadaike, O. Tsutsumi, J. Mater. Chem. C, 2, 3549–3555 (2014). 4) Tuning the photoluminescence of condensed-phase cyclic trinuclear Au(I) complexes through control of their aggregated structures by external stimuli, K. Fujisawa, S. Yamada, Y. Yanagi, Y. Yoshioka, A. Kiyohara, O. Tsutsumi, Sci. Rep., in press. ᅜ㝿Ꮫ 1) Full-Color Luminescence from a Single Liquid-Crystalline Gold Complex, O. Tsutsumi, O.M. Younis, M. Tamaru, S. Tamai, N. Sugimoto, K. Fujisawa, 2014 Organic Photonics + Electronics (SPIE Optics + Photonics), San Diego, USA, August 17, 2014. ᅜෆᏛ 1) ࣆࣛࢰ࣮ࣝ㓄Ꮚࢆ᭷ࡍࡿᾮᬗᛶ୕᰾㔠㘒యࡢ㟁Ẽఏᑟ≉ᛶ㸪ᓥಙ࿃㸪⏣ 㞞୍㸪ሐ㸪➨ 63 ᅇ㧗ศᏊᏛᖺḟ㸪ྡྂᒇᅜ㝿㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥ 2) ᾮᬗᛶ୕᰾㔠㘒యࡢࢼࣀ✵㛫࠾ࡅࡿⓎග≉ᛶ㸪୰ᮧᜤ㍜㸪⏣㞞୍㸪⋢ ⩧㸪ሐ㸪➨ 63 ᅇ㧗ศᏊᏛᖺḟ㸪ྡྂᒇᅜ㝿㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥ 3) White-Color Emission from Polymer Liquid Crystals Containing Rod-Like Gold Complexes in Side-Chain, O. Younis㸪S. Tamai㸪O. Tsutsumi㸪➨ 63 ᅇ㧗ศᏊᏛ ᖺḟ㸪ྡྂᒇᅜ㝿㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥ 4) ᾮᬗᛶᲬ≧㔠㘒యࡢ࢟ࣛࣝࢿ࣐ࢳࢵࢡ┦࠾ࡅࡿⓎග≉ᛶ㸪ᮡᮏ⳯ࠎ㸪ሐ㸪 ➨ 63 ᅇ㧗ศᏊᏛᖺḟ㸪ྡྂᒇᅜ㝿㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥ 5) ᾮᬗᛶ᭷ᶵ࣭↓ᶵࢼࣀࣁࣈࣜࢵࢻᮦᩱࡢ㟁ẼᏛ≉ᛶ㸪す⏣ử㸪ሐ㸪 ➨ 63 ᅇ㧗ศᏊᏛᖺḟ㸪ྡྂᒇᅜ㝿㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥ 6) ⎔≧࣏ࣜ࢜࢟ࢯࣔࣜࣈࢹ࣮ࢺࢹࣥࢻ࣐࣮ࣜ」ྜయࡢᾮᬗᣲື㸪Ώ㑓ுᖹ㸪 ὠᏲ㐩ၨ㸪ሐ㸪➨ 63 ᅇ㧗ศᏊᏛᖺḟ㸪ྡྂᒇᅜ㝿㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥ ⏝ᡂᯝ −116− ᆺ◊✲⨨ᡂᯝሗ࿌᭩ ⨨ྡ ◊✲㈐௵⪅ 㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧 ᙉຊ X ⥺⨨ ⏕⛉Ꮫ㒊࣭ᩍᤵ࣭ሐ ◊✲ࢸ࣮࣐ ࢯࣇࢺ࣭ࣁ࣮ࢻ⼥ྜᮦᩱࡢ㝵ᒙⓗᵓ㐀ไᚚࡼࡿ᪂ᮦᩱࡢⓎ ◊✲ࡢᴫせ ࠸ࢁ࠸ࢁ࡞ࢯࣇࢺᮦᩱ㸦᭷ᶵ࣭㧗ศᏊᮦᩱ㸧ࣁ࣮ࢻᮦᩱ㸦㔠ᒓ㸪㔠ᒓ㓟≀࡞ 㸧ࢆ⼥ྜࡉࡏ㸪ศᏊࣞ࣋ࣝࡽᕧどⓗࣞ࣋ࣝ࠾ࡅࡿྛ㝵ᒙ࠾࠸࡚⢭ᐦᵓ㐀 ไᚚࢆ⾜࠺ࡇ࡛㠉᪂ⓗ࡞ᛶ⬟࣭ᶵ⬟ࢆ♧ࡍᮦᩱࡢⓎࢆ┠ᣦࡋࡓ◊✲ࢆ⾜ࡗࡓࠋ ≉ᮏ⨨࡛ࡣ㸪⤖ᬗ୰࠾ࡅࡿศᏊࡢࣃࢵ࢟ࣥࢢᵓ㐀ࢆࢼࣀ࣓࣮ࢱ࣮࡛ࣞ࣋ࣝゎ ᫂ࡋ㸪ศᏊจ㞟ᵓ㐀ࡀᮦᩱ≀ᛶ࠼ࡿᙳ㡪ࡘ࠸᳨࡚ウࡋࡓࠋ ㄽᩥ 1) Photoluminescent Gold(I) Complex with Biphenyl Acetylene Ligand Showing Stable Nematic Liquid-Crystalline Phase, N. Sugimoto, S. Tamai, K. Fujisawa, O. Tsutsumi, Mol. Cryst. Liq. Cryst., 601, 97–106 (2014). 2) Synthesis, liquid–crystalline behavior, and photoluminescence properties of novel Au(I) complex with naphthalene ring in a mesogenic core, Y. Rokusha, N. Sugimoto, S. Yamada, O. Tsutsumi, Proc. SPIE, 9182, 918206, DOI: 10.1117/12.2060334 (2014). 3) Reversible thermal-mode control of luminescence from liquid-crystalline gold(I) complexes, K. Fujisawa, Y. Okuda, Y. Izumi, A. Nagamatsu, Y. Rokusha, Y. Sadaike, O. Tsutsumi, J. Mater. Chem. C, 2, 3549–3555 (2014). 4) Tuning the photoluminescence of condensed-phase cyclic trinuclear Au(I) complexes through control of their aggregated structures by external stimuli, K. Fujisawa, S. Yamada, Y. Yanagi, Y. Yoshioka, A. Kiyohara, O. Tsutsumi, Sci. Rep., in press. ᅜ㝿Ꮫ 1) Full-Color Luminescence from a Single Liquid-Crystalline Gold Complex, O. Tsutsumi, O.M. Younis, M. Tamaru, S. Tamai, N. Sugimoto, K. Fujisawa, 2014 Organic Photonics + Electronics (SPIE Optics + Photonics), San Diego, USA, August 17, 2014. ᅜෆᏛ 1) ࣆࣛࢰ࣮ࣝ㓄Ꮚࢆ᭷ࡍࡿᾮᬗᛶ୕᰾㔠㘒యࡢ㟁Ẽఏᑟ≉ᛶ㸪ᓥಙ࿃㸪⏣ 㞞୍㸪ሐ㸪➨ 63 ᅇ㧗ศᏊᏛᖺḟ㸪ྡྂᒇᅜ㝿㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥ 2) ᾮᬗᛶ୕᰾㔠㘒యࡢࢼࣀ✵㛫࠾ࡅࡿⓎග≉ᛶ㸪୰ᮧᜤ㍜㸪⏣㞞୍㸪⋢ ⩧㸪ሐ㸪➨ 63 ᅇ㧗ศᏊᏛᖺḟ㸪ྡྂᒇᅜ㝿㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥ 3) White-Color Emission from Polymer Liquid Crystals Containing Rod-Like Gold Complexes in Side-Chain, O. Younis㸪S. Tamai㸪O. Tsutsumi㸪➨ 63 ᅇ㧗ศᏊᏛ ᖺḟ㸪ྡྂᒇᅜ㝿㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥ 4) ᾮᬗᛶᲬ≧㔠㘒యࡢ࢟ࣛࣝࢿ࣐ࢳࢵࢡ┦࠾ࡅࡿⓎග≉ᛶ㸪ᮡᮏ⳯ࠎ㸪ሐ㸪 ➨ 63 ᅇ㧗ศᏊᏛᖺḟ㸪ྡྂᒇᅜ㝿㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥ 5) ᾮᬗᛶ᭷ᶵ࣭↓ᶵࢼࣀࣁࣈࣜࢵࢻᮦᩱࡢ㟁ẼᏛ≉ᛶ㸪す⏣ử㸪ሐ㸪 ➨ 63 ᅇ㧗ศᏊᏛᖺḟ㸪ྡྂᒇᅜ㝿㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥ 6) ⎔≧࣏ࣜ࢜࢟ࢯࣔࣜࣈࢹ࣮ࢺࢹࣥࢻ࣐࣮ࣜ」ྜయࡢᾮᬗᣲື㸪Ώ㑓ுᖹ㸪 ὠᏲ㐩ၨ㸪ሐ㸪➨ 63 ᅇ㧗ศᏊᏛᖺḟ㸪ྡྂᒇᅜ㝿㆟ሙ㸪2014 ᖺ 5 ᭶ 28 ᪥ࠥ5 ᭶ 30 ᪥ ⏝ᡂᯝ −117− ⨨ྡ㸹 㹖⥺ᅇᢡ⨨ ◊✲㈐௵⪅ 㒊㛛ྡ ◊✲ࢸ࣮࣐ 㹖⥺ᅇᢡ⨨ࡼࡿ㓟≀ᢸᣢ㔠ᒓゐ፹ᮦᩱḟ㟁ụṇᴟᮦᩱࡢ≧ែゎᯒ ᆒ୍⣔ゐ፹ᮦᩱࡋ࡚⏝࠸ࡽࢀࡿྛ✀㓟≀ᢸయୖࠊ1Lࠊ&Rࠊ0Q ࡞ࡢ 㔠ᒓࢼࣀ⢏Ꮚ࠾ࡼࡧ 3G&X ࡞ࡢྜ㔠ࢼࣀ⢏Ꮚࢆᢸᣢࡋࡓ⢊ᮎゐ፹ᮦᩱࢆྜᡂ ࡋࠊ㹖⥺ᅇᢡ⨨ࢆ⏝࠸࡚ࡑࡢ⤖ᬗ≧ែࡢゎᯒࢆ⾜ࡗࡓࠋ᪤▱ᵓ㐀ࡢᶆ‽ヨ ᩱࡢẚ㍑࡞ࡽྜᡂࡋࡓヨᩱࡢ⤌ᡂࡸ⤖ᬗᵓ㐀ࢆỴᐃࡋࡓࠋࡲࡓࠊᨺᑕ ◊✲ࡢᴫせ ගࢆ⏝࠸ࡓࡑࡢሙᏛ≧ែゎᯒࡢ⤖ᯝྜࢃࡏࠊᢸᣢ㔠ᒓゐ፹ࡢᛂάᛶ 㔠ᒓᏛ✀ࡢᏛ≧ែࡢ┦㛵ࢆ᫂ࡽࡋࡓࠋࡲࡓࠊࣜࢳ࣒࢘࢜ࣥḟ 㟁ụࡢṇᴟά≀㉁࡛࠶ࡿ /L1L2 ࡸ /L)H32 ࡞ࢆྜᡂࡋࠊࡑࡢ㟁ụ≉ᛶࢆホ౯ ࡍࡿྠࠊࡑࢀࡽࡢ⢊ᮎᮦᩱࡢ≧ែゎᯒࢆ⾜ࡗࡓࠋࡇࢀࡣࠊ㟁ụ≉ᛶࢆ ホ౯ࡍࡿୖ࡛ᚲせྍḞ࡞ሗ࡛࠶ࡿࠋ ⏝ᡂᯝ ࠙ཎⴭㄽᩥ㸦ᰝㄞࡁ㸧 ࠚ Misaki Katayama, Koichi Sumiwaka, Ryota Miyahara, Hisao Yamashige, Hajime Arai, Yoshiharu Uchimoto, Toshiaki Ohta, Yasuhiro Inada, Zempachi Ogumi, “X-ray absorption fine structure imaging of inhomogeneous electrode reaction in LiFePO4 lithium-ion battery cathode”, J. Power Sources, 2014, 269, 994-999. Takayasu Moroki, Hiroyuki Yasui, Yusuke Adachi, Katsuhiko Yoshizawa, Airo Tsubura, Kazuhiko Ozutsumi, Misaki Katayama, and Yutaka Yoshikawa, “New Insulin-Mimetic and Hypoglycemic Hetero-Binuclear Zinc(II)/Oxovanadium(IV) Complex”, Curr. Inorg. Chem., 2014, 4(1), 54-58. Satoshi Asaoka, Hideo Okamura, Yusuke Akita, Katsuyoshi Nakano, Kenji Nakamoto, Kazutoshi Hino, Tadashi Saito, Shinjiro Hayakawa, Misaki Katayama, Yasuhiro Inada, “Regeneration of manganese oxide as adsorption sites for hydrogen sulfide on granulated coal ash”, Chem. Eng. J., 2014, 254, 531-537. ∦ᒣ┿⚈, ✄⏣ᗣᏹ, “DXAFS ࡼࡿ㛫ศゎ X ⥺྾ศග”, ⾲㠃⛉Ꮫ, 2014, 35(3), 141-145. ࠙ⴭ᭩ࠚ ✄⏣ᗣᏹ࣭∦ᒣ┿⚈ࠊ ࠕXAFS/EELS ᒁᡤᵓ㐀ゎᯒࠖ ࠊሗᶵᵓࠊ59-66 (2014). ࠙ᅜෆᏛⓎ⾲ࠚ ∦ᒣ┿⚈, ᐑཎⰋኴ, Ώ㑔⛱ᶞ, ᒣୗ⩧ᖹ, ✄⏣ᗣᏹ, ࠕ㖄┤᪉ྥἼ㛗ศᩓᆺ XAFS ἲࡢ㛤Ⓨ 㛫-✵㛫ศゎゎᯒࡢᛂ⏝ࠖ, ➨ 17 ᅇ XAFS ウㄽ, ᚨᓥ, 2014 ᖺ 9 ᭶. −118− ᐑ⏣ఙᘯ, ㇏⏣, ᪥㔝ୖ㯇Ꮚ, Ώ㑔⛱ᶞ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕࢹࣛࣇ࢛ࢧࢺᆺ㓟≀ ࠾ࡅࡿ d 㟁Ꮚࢫࣆࣥ≧ែࠖ, ➨ 17 ᅇ XAFS ウㄽ, ᚨᓥ, 2014 ᖺ 9 ᭶. ᒣୗ⩧ᖹ, ᒣᮏᝆ⟇, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕᢸᣢࢽࢵࢣࣝ⢏Ꮚࡢ⾲㠃㓟ᛂ㛵ࡍࡿ㏿ᗘ ㄽⓗゎᯒࠖ, ➨ 17 ᅇ XAFS ウㄽ, ᚨᓥ, 2014 ᖺ 9 ᭶. ᒣᮏᝆ⟇, ᒣୗ⩧ᖹ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕIn situ XAFS ἲࡼࡿࢰࣝ-ࢤࣝἲ࡛ࡢᢸᣢ Ni ゐ ፹ㄪ〇㐣⛬ࡢゎᯒࠖ, ➨ 17 ᅇ XAFS ウㄽ, ᚨᓥ, 2014 ᖺ 9 ᭶. ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕ✵㛫ศゎ࢜࣌ࣛࣥࢻほ ᡭἲࡢ㛤Ⓨ㟁ᴟᛂゎᯒࡢᛂ⏝ࠖ, ᨺᑕ ගᏛ➨ 7 ᅇⱝᡭ◊✲͆᭱ඛ➃࢜࣌ࣛࣥࢻほ ࡛᫂ࡽ࡞ࡿ≀ᛶ⛉Ꮫ͇, ᯽, 2014 ᖺ 9 ᭶. ᓥ⏣ెዉ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ,ࠕ࣑ࣝࢼᢸᣢࡋࡓ Pd Cu ࡢᅛ┦ྜ㔠࣓࢝ࢽࢬ࣒ࠖ , ➨ 4 ᅇ CSJ Ꮫࣇ࢙ࢫࢱ 2014, ᮾி, 2014 ᖺ 10 ᭶. ㈏㞝ᘺ, ᐑཎⰋኴ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕX ⥺྾ศගἲࡼࡿࣜࣥ㓟ࣂࢼࢪ࣒࢘ࣜࢳ࢘ ࣒ṇᴟࡢ㟁ᴟᛂゎᯒࠖ, ➨ 4 ᅇ CSJ Ꮫࣇ࢙ࢫࢱ 2014, ᮾி, 2014 ᖺ 10 ᭶. ᯇᒸဴஓ, ᒣୗ⩧ᖹ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕin-situ XAFS ἲࡼࡿࢩࣜ࢝ᢸᣢ Ni ゐ፹ࡢ CO ࡼࡿ㑏ඖᛂࡢゎᯒࠖ, ➨ 4 ᅇ CSJ Ꮫࣇ࢙ࢫࢱ 2014, ᮾி, 2014 ᖺ 10 ᭶. ᐑཎⰋኴ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕ✵㛫ศゎྍ⬟࡞᪂つἼ㛗ศᩓᆺ XAFS ἲࡢ㛤Ⓨࠖ, ➨ 50 ᅇ X ⥺ศᯒウㄽ, ྎ, 2014 ᖺ 10 ᭶. ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕ❧㤋 SR ࢭࣥࢱ࣮XAFS ࣅ࣮࣒ࣛࣥࢆ⏝࠸ࡓゐ፹㟁ụࡢᛂゎ ᯒࠖ, ྜྠࢩ࣏ࣥࢪ࣒࢘ 2014㹼ᨺᑕග࣮ࣞࢨ࣮ࡢ༠ാࡼࡿ᪂⏘ᴗᡂ㹼, ⚄ᡞ, 2014 ᖺ 11 ᭶. ᐑཎⰋኴ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕṇᴟᛂࡢ✵㛫ศゎゎᯒྥࡅࡓ᪂ࡋ࠸Ἴ㛗ศᩓᆺ XAFS ἲࡢ㛤Ⓨࠖ, ➨ 55 ᅇ㟁ụウㄽ, ி㒔, 2014 ᖺ 11 ᭶. ᒣᮏᝆ⟇, ᒣୗ⩧ᖹ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕᢸᣢ Ni ⢏Ꮚࡢ㓟㑏ඖ≉ᛶཬࡰࡍ⢏Ꮚࢧࢬ ຠᯝࠖ, ➨ 28 ᅇ᪥ᮏᨺᑕගᏛᖺ࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘, ⲡὠ, 2015 ᖺ 1 ᭶. Ώ㑔⛱ᶞ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕ㌿㟁Ꮚ㔞 XAFS ࡼࡿᙧ≧ไᚚࡋࡓᢸᣢ Cu2O ⢏Ꮚࡢ ⾲㠃㑏ඖᛂࠖ, ➨ 28 ᅇ᪥ᮏᨺᑕගᏛᖺ࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘, ⲡὠ, 2015 ᖺ 1 ᭶. ᓥ⏣ెዉ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕࣃࣛࢪ࣒࢘㖡ྜ㔠ゐ፹ࡢ⏕ᡂᑐࡍࡿ๓㥑య⤌ᡂࡢຠᯝࠖ, ➨ 28 ᅇ᪥ᮏᨺᑕගᏛᖺ࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘, ⲡὠ, 2015 ᖺ 1 ᭶. ⏣᠇ᖾ, ∦ᒣ┿⚈, ┾⏣ᬛ⾨, ᑠሐᙪ, ᑠᓥ୍⏨, ✄⏣ᗣᏹ, ࠕ㓟≀࢞ࣛࢫ୰࠾ࡅࡿ Mn ࢜ࣥࡢᒁᡤᵓ㐀ࠖ, ➨ 28 ᅇ᪥ᮏᨺᑕගᏛᖺ࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘, ⲡὠ, 2015 ᖺ 1 ᭶. ᆤᐶኴ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕࢮ࢜ࣛࢺᢸᣢࡋࡓ Ni(II)࢜ࣥࡢ྾╔≧ែࡢゎᯒࠖ, ➨ 28 ᅇ᪥ᮏᨺᑕගᏛᖺ࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘, ⲡὠ, 2015 ᖺ 1 ᭶. Siwaruk Chotiwan, Hiroki Tomiga, Misaki Katayama, Yasuhiro Inada, “Thermodynamic and kinetic study on redox reaction of silica supported cobalt catalysts”, ➨ 28 ᅇ᪥ᮏᨺᑕගᏛᖺ࣭ᨺᑕග ⛉Ꮫྜྠࢩ࣏ࣥࢪ࣒࢘, ⲡὠ, 2015 ᖺ 1 ᭶. 䭜Ꮥ♸, ༓ᑜ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ⸨ᒸẎ, ኴ⏣ಇ᫂, ᑠᓥ୍⏨, ࠕṇᴟά≀㉁ −119− Li2MnSiO4 ࡢࢰࣝѸࢤࣝἲࡼࡿస〇ホ౯ࠖ, 㟁ẼᏛ➨ 82 ᅇ, ᶓ, 2015 ᖺ 3 ᭶. 㕥ᮌ῟ྖ, ᒣୗ⩧ᖹ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕᕼⷧ࡞ࢩࣜ࢝ᢸᣢ Ni ゐ፹ࡢ㓟㑏ඖ≉ᛶࠖ, ᪥ ᮏᏛ➨ 95 Ꮨᖺ, ⯪ᶫ, 2015 ᖺ 3 ᭶. ▼㥴ᖹ, ∦ᒣ┿⚈, ✄⏣ᗣᏹ, ࠕ࣓ࢯ࣏࣮ࣛࢫࢩࣜ࢝ᢸᣢࡋࡓ Co ゐ፹ࡢ㓟㑏ඖ≉ᛶࠖ, ᪥ᮏᏛ➨ 95 Ꮨᖺ, ⯪ᶫ, 2015 ᖺ 3 ᭶. ࠙ಟኈᏛㄽᩥࠚ ᆤᐶኴࠊ ࠕ✀ࠎࡢࢮ࢜ࣛࢺᑐࡍࡿࢽࢵࢣࣝ(II)࢜ࣥࡢ࢜ࣥ≧ែࡢゎ᫂ࠖ ᓥ⏣ెዉࠊ ࠕ⤌ᡂࡢ␗࡞ࡿࣃࣛࢪ࣒࢘㖡ྜ㔠ゐ፹ࡢ⏕ᡂ࣓࢝ࢽࢬ࣒ࠖ −120− ᆺ◊✲⨨ᡂᯝሗ࿌᭩ ⨨ྡ NMR ◊✲㈐௵⪅ ᑠᓥ୍⏨ 㸦⏕⛉Ꮫ㒊࣭ᛂ⏝Ꮫ⛉࣭ᩍᤵ㸧 JEOL ECS-400 㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧 ◊✲ࢸ࣮࣐ ⺯ගᛶᾮᬗᇶࢆ⾲㠃ಟ㣭ࡉࡏࡓࢩࣜ࢝ࢼࣀ⢏Ꮚࡢྜᡂ≀ᛶࡢホ౯ ◊✲ࡢᴫせ ࢩࣜ࢝ࢼࣀ⢏Ꮚࡣ㟁ሙ༳ຍୗ࡛≉␗࡞ᣲືࢆ♧ࡍࡇࡀ▱ࡽࢀ࡚࠸ࡿࡀࠊࡑࡢ ᣲືࡣゎ᫂ࡉࢀ࡚࠸࡞࠸ࠋࢩࣜ࢝ࢼࣀ⢏Ꮚ⾲㠃ࢆ⺯ගᛶᾮᬗᇶ࡛ಟ㣭ࡍࡿࡇ ࡛㸦࠼ࡤࠊSilica:11-(Ethoxydimethylsilyl)undecyl-2,5-bis ((4-(octyloxy)phenyl)ethynyl)benzoate 㸧 ࡸ 㛵 㐃 ྜ ≀ ࡛ ࠶ ࡿ Silica:Undecylethoxydimethylsilane㸧ࠊ㟁ሙ༳ຍୗ࠾ࡅࡿࢩࣜ࢝ࢼࣀ ⢏Ꮚࢆྍどࡋࠊࡑࡢᣲືࢆどぬⓗゎ᫂ࡍࡿࡇࢆ┠ⓗࡍࡿࠋ ⺯ගᛶᾮᬗᇶࡢᵓ㐀ࢆゎᯒࡍࡿࡓࡵᐊ (20Υ)ࠊ400 MHz ᮲௳ୗࡢ⁐ᾮ 1H NMR ࢫ࣌ࢡࢺࣝࡼࡿ ᐃࢆ⾜ࡗࡓࠋලయⓗ ᐃࡋࡓྜ≀ 5 ✀ࢆ௨ୗ ♧ࡍࠋ࡞࠾ඹྠ◊✲ᩍဨࡣࠊᑠᓥ୍⏨ࠊ┾⏣ᬛ⾨ࠊⰼᓮ▱๎ࠊ㔠Ꮚගభ࡛࠶ࡿࠋ (1) 1-(Octyloxy)-4-(2-(trimethylsilyl)ethynyl)benzene (2) 1-Ethynyl-4-(octyloxy)benzene (3) 10-Undecen-1-yl-2,5-dibromobenzoate (4) 10-Undecen-1-yl 2,5-bis((4-(octyloxy)phenyl)ethynyl)benzoate (5) Undecylethoxydimethylsilane ⏝ᡂᯝ ᖺᗘᮍᥖ㍕ศࡢᅜෆᏛⓎ⾲ 㸦1㸧Ώ㑔ಟᖹࠊⰼᓮ▱๎ࠊᑠᓥ୍⏨ࠊࠕࢩࣜ࢝ࢼࣀ⢏ᏊᾮᬗศᏊࢆ⤖ྜࡉࡏ ࡓ↓ᶵ࣮᭷ᶵࣁࣈࣜࢵࢻᆺྜ≀ࡢྜᡂ≀ᛶࠖࠊ᪥ᮏᏛ➨ 94 Ꮨᖺ 㸸4E4-11ࠊ 㸦ྡྂᒇᏛࠊ2014 ᖺ 3 ᭶ 30 ᪥㸧 −121− ᆺ◊✲⨨ᡂᯝሗ࿌᭩ ⨨ྡ ◊✲㈐௵⪅ 㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧 ◊✲ࢸ࣮࣐ ࣞࢡࢭࣝ ⏕⛉Ꮫ㒊࣭ᩍᤵ㸦ࣞࢡࢭࣝタ㛗㸧 ࣭᪩㔝ಇဢ ࣑ࢻࣜࢰ࣒࢘ࣜࢩ⣽⬊ෆඹ⏕⸴㛵ࡍࡿ◊✲㸦ᢸᙜ㸸⸆Ꮫ㒊࣭ᩍᤵ࣭ᮧ ಙᏕ㸧 ࣌ࣉࢳࢻࢺࣛࣥࢫ࣏࣮ࢱ࣮ (PEPT1) ࢆࢱ࣮ࢤࢵࢺࡋࡓ 5㸫࣑ࣀࢧࣜࢳ ࣝ㓟 (5-ASA) ࣉࣟࢻࣛࢵࢢࡢྜᡂ Caco-2 ⣽⬊ᑐࡍࡿ㍺㏦≉ᛶ◊✲ 㸦ᢸ ᙜ㸸⸆Ꮫ㒊࣭ᩍᤵ࣭⸨⏣༟ஓ㸧 ◊✲ࡢᴫせ ࣑ࢻࣜࢰ࣒࢘ࣜࢩඹ⏕⸴ࡣࠊ㓟ᛶ᮲௳ୗ࡛ගྜᡂ⏘≀ࡢ࣐ࣝࢺ࣮ࢫࢆᨺฟࡍࡿ ࡇࡀ≉ᚩ࡛࠶ࡾࠊࡇࡢᨺฟ⤒㊰ࡘ࠸࡚ࡣ᫂࡞Ⅼࡀከࡃ᳨ウࢆ⾜ࡗࡓࠋᨺ ฟ᮲௳ୗ࡛Ⅳ㓟ࡢྲྀࡾ㎸ࡳࡽᨺฟࡲ࡛ࡣࠊᩘศ࠸ࡗࡓ▷࠸ᛂ࡛㉳ࡇࡿࡇ ࡀศࡗࡓࠋࡲࡓࠊᨺฟࡉࢀࡿ࣐ࣝࢺ࣮ࢫࡢ㒊ศࡀ✚ࡉࢀࡓࢹࣥࣉࣥ ࡽ࡛ࡣ࡞ࡃࠊᅛᐃࡋࡓⅣ⣲ࡽ᪂ࡓྜᡂࡋ࡚࠸ࡿࡇࡀศࡗࡓࠋ ₽⒆ᛶ⭠⅖ࡣཌ⏕ປാ┬ࡼࡾ㞴ᣦᐃࡉࢀ࡚࠸ࡿᝈ࡛࠶ࡿࠋ₽⒆ᛶ⭠ ⅖ࡢ⒪⸆ࡋ࡚ࡣ㸫࣑ࣀࢧࣜࢳࣝ㓟$6$ࡀỗ⏝ࡉࢀ࡚࠸ࡿࡀࠊ⅖ 㒊ࡢ㏦㐩ᛶࡀஈࡋࡃࠊ༑ศ࡞⒪ຠᯝࡀᚓࡽࢀ࡞࠸ࡇࡶከ࠸ࠋ⤒ཱྀȕ 㸫ࣛࢡࢱ࣒ᢠ⏕≀㉁ࡢᑠ⭠ࡽࡢ྾㛵ࡋ࡚࠸ࡿROLJRSHSWLGH WUDQVSRUWHU3(37ࡣࠊᖖே࡛ࡣ⭠࡛ࡢⓎ⌧ࡣࢇㄆࡵࡽࢀ࡞࠸ࡢ ᑐࡋࠊ₽⒆ᛶ⭠⅖ࡢᝈ⪅࡛ࡣ⭠⅖㒊ࡶ㧗Ⓨ⌧ࡋ࡚࠸ࡿࡇࡀሗ࿌ ࡉࢀ࡚࠸ࡿࠋᮏ◊✲࡛ࡣࠊ$6$ࡢ1+ᇶ࠶ࡿ࠸ࡣ&22+ᇶ࣑ࣀ㓟ࢆᑟධ ࡋࡓࢪ࣌ࣉࢳࢻᆺࣉࣟࢻࣛࢵࢢࢆྜᡂࡋࠊࡇࢀࡽྜ≀ࡢ3(37ࢆࡋࡓ㍺ ㏦࣭௦ㅰ≉ᛶࢆ&DFR⣽⬊ࢆ⏝࠸᳨࡚ウࡋࡓࠋ&DFR⣽⬊࠾ࡅࡿ3(37 ࢆࡋࡓ *O\6DUࡢྲྀࡾ㎸ࡳࡣࠊ᳨ウࡋࡓ $6$ࣉࣟࢻࣛࢵࢢ࡚ࡀ⃰ᗘ౫ Ꮡⓗ㜼ᐖࡉࢀࡓࠋ*OXࢆ$6$ࡢ1+ᇶ࠶ࡿ࠸ࡣ&22+ᇶᑟධࡋࡓࣉࣟ ࢻࣛࢵࢢ࡛ࡣࠊ>+@*O\6DUྲྀࡾ㎸ࡳᑐࡍࡿ,&್㢧ⴭ࡞ᕪࡀㄆࡵࡽࢀࡓ ࡇࡽࠊ࣑ࣀ㓟ࡢᑟධ㒊ࡼࡾࣉࣟࢻࣛࢵࢢ3(37ࡢぶᛶᕪ␗ ࡀ⏕ࡌࡿࡇࡀ♧၀ࡉࢀࡓࠋࡲࡓࠊ$6$ࡢ1+ᇶ࣑ࣀ㓟9DOࠊ7\Uࠊ/\V ࢆᑟධࡋࡓࣉࣟࢻࣛࢵࢢࡣࠊ&DFR࣍ࣔࢪࢿ࣮ࢺ୰࡛ศゎࡉࢀࡓࡀࠊ&22+ᇶ ࣑ࣀ㓟ࢆᑟධࡋࡓࣉࣟࢻࣛࢵࢢ࡛ࡣࡃศゎࡀㄆࡵࡽࢀ࡞ࡗࡓࠋࡇࡢ⤖ ᯝࡣࠊぶ⸆≀࡛࠶ࡿ$6$ኚࡏࡎ⭠㒊Ⓨ⌧ࡍࡿ3(37㏦㐩ࡉ ࡏࡿࡇࡀ࡛ࡁࢀࡤࠊࡼࡾຠ⋡ⓗ࡞⒪ࢆ⾜࠺ࡇࡀ࡛ࡁࡿྍ⬟ᛶࢆ♧၀ࡍࡿ ࡶࡢ࡛࠶ࡾࠊᚋࡣࠊᐇ㝿 $6$ ࡢࣉࣟࢻࣛࢵࢢࡢྲྀࡾ㎸ࡳᐇ㦂ࠊ,%'ࣔࢹ ࣝື≀ࢆ⏝࠸ࡓ⒪ᐇ㦂ࢆ⾜࠺ࡇ࡛,%'ᑐࡍࡿ᪂つ⒪⸆ࡋ࡚ࡢྍ⬟ ᛶࢆ㏣ồࡋ࡚࠸ࡃணᐃ࡛࠶ࡿࠋ −122− ⏝ᡂᯝ 㸺ᅜෆᏛ㸼 ᰘ⏣࠶࠸ࠊ㧗ᶫᩥ㞝ࠊ➟ཎ㈼ὒࠊᮧಙᏕ ࣑ࢻࣜࢰ࣒࢘ࣜࢩඹ⏕ ࢡࣟࣞࣛ࠾ࡅࡿ࣐ࣝࢺ࣮ࢫᨺฟࡢไᚚᶵᵓࡘ࠸࡚ ཎ⏕⏕≀Ꮫ➨ ᅇࠊ 㸦ྎ㸧ࠊ ᖺ ᭶ ⏤㱟Ⴙࠊす ㈗ᘯࠊἙ㔝⿱ඔࠊᑎ⏣ᬛ♸ࠊ⸨⏣༟ஓ 3(37ࢆᶆⓗࡋ ࡓ࣑ࣀࢧࣜࢳࣝ㓟ࣉࣟࢻࣛࢵࢢࡢ &DFR⣽⬊࠾ࡅࡿ㍺㏦≉ᛶࡢ᳨ ウ᪥ᮏ⸆Ꮫ➨ ᖺ㸦㛗ᓮ㸧 ࠊ ᖺ ᭶㸦Ⓨ⾲ணᐃ㸧 㸺ㄽᩥ㸼 ࡞ࡋ 㸺ࡑࡢ㸼 ⸨⏣༟ஓ㸬 ᾘ⟶ࢺࣛࣥࢫ࣏࣮ࢱ࣮ࡢ྾㞀ቨࡋ࡚ࡢᙺᾘ⟶௦ㅰ ࠾ࡅࡿ✀ᕪ㸬 ᣢ⏣〇⸆ㅮ₇㸦㟼ᒸ㸧ࠊ2014 ᖺ 12 ᭶ −123− ᆺ◊✲⨨ᡂᯝሗ࿌᭩ ⨨ྡ ◊✲㈐௵⪅ 㸦ᡤᒓ࣭ᙺ⫋࣭Ặྡ㸧 ◊✲ࢸ࣮࣐ SR ග㟁Ꮚศග࣭࢜ࣥᩓ」ྜศᯒ⨨ ⌮ᕤᏛ㒊≀⌮⛉Ꮫ⛉࣭ᩍᤵ࣭㞴Ἴ⚽ 㧗ศゎ⬟୰࢚ࢿࣝࢠ࣮࢜ࣥᩓ 65 ග㟁Ꮚศගࡼࡿᅛయ⾲㠃ࡢᵓ㐀ࠊ㟁Ꮚ ≧ែゐ፹ᶵ⬟ࡢゎᯒ ◊✲ࡢᴫせ ᖺᗘࡢࡓࡿࢸ࣮࣐ 㸧 651(;$)6 ࡼࡿᾮᬗࡢୗᆅ㓄ྥ⭷ࡢゎᯒ 㸧 ཎᏊ≧㓟⣲ࡼࡿࢢࣛࣇࢺࡢ⾲㠃㓟 㸧 ᩥ㒊⛉Ꮫ┬ඛ➃◊✲ᇶ┙ඹ⏝࣭ࣉࣛࢵࢺࣇ࢛࣮࣒ᙧᡂᴗ࠾ࡅࡿඹྠ ⏝ ⏝ᡂᯝ ᮏ⨨ࡢ⏝ࡣ⾲㠃≀⌮࣭⾲㠃⛉Ꮫ࡛ࡢ◊✲ᡂᯝࢆୖࡆࡿࡓࡵࡔࡅ࡛࡞ࡃࠊ ᩘᖺ๓ࡽ⌮ᕤᏛ㒊≀⌮⛉Ꮫ⛉ 3 ᅇ⏕ࡢṇㄢᤵᴗ࡛࠶ࡿࠕ≀⌮Ꮫ≉ูᐇ㦂㸯ࠖ ࡢ୍ࡘࡢࣃ࣮ࢺࡋ࡚౪⏝ࡉࢀࠊᏛ⏕ᨺᑕගࢆᐇ㝿⏝ࡋ࡚ࡶࡽ࠸ࠊࡑࡢ ࣏ࢸࣥࢩࣕࣝࡢ㧗ࡉࢆయ㦂ࡋ࡚ࡶࡽࡗ࡚ࡁࡓࠋ ᮏ⨨ࡣ㏻ᖖࡢᐇ㦂ᐊࡣ࡞ ࠸ᆺᐇ㦂⨨࡛ࡶ࠶ࡾࠊࡑࢀ័ࢀࡿࡇࡶ㈗㔜࡞⤒㦂࡞ࡗ࡚࠸ࡿࠋ ◊✲ᡂᯝሗ࿌᭩ M. Takizawa, K. Kondo and H. Namba,“Oxidation states of graphite studied by near edge x-ray absorption fine structure measurements”, Memories of the SR Center Ritsumeikan University, No.16, 2014,pp.145-146. ᅜෆ㆟ ἑඃࠊ㏆⸨ㅬసࠊ㞴Ἴ⚽ࠕ྾➃㏆ഐ ; ⥺྾ᚤ⣽ᵓ㐀 ᐃࡼࡿࢢࣛࣇ ࢺ⾲㠃ࡢ㓟≧ែࠖ ࠊ➨ ᅇ᪥ᮏᨺᑕගᏛᖺ࣭ᨺᑕග⛉Ꮫྜྠࢩ࣏ࣥ ࢪ࣒࢘㸦❧㤋Ꮫࠊ ᖺ ᭶㸧 ࠋ −124− ⌮ ᕤ Ꮫ ◊ ✲ ᡤ グ −125− ⌮ᕤᏛ◊✲ᡤࢩ࣏ࣥࢪ࣒࣭࣮࢘࣡ࢡࢩࣙࢵࣉሗ࿌᭩ ௦⾲⪅ (ᡤᒓ࣭⫋ྡ࣭Ặྡ) 㞟ྡ ⸆Ꮫ㒊⸆Ꮫ⛉࣭ᩍᤵ࣭Ẹ⛅ ᆒ ᅜ㝿◊✲㞟㻌 ➨ 㻝㻜 ᅇ䛂Ꮫⓗ䛻䝥䝻䜾䝷䝮䛥䜜䛯ྜᡂⰍ⣲㢮䛾㉸ศᏊ䝘䝜⛉Ꮫ䛃㻌 Tenth International Workshop on Supramolecular Nanoscience of Chemically Programmed Pigments (SNCPP14) 㛤ദ᪥⛬ ሙ ሗ࿌ෆᐜ 㸰㸮㸯㸲ᖺ㸳᭶㸱㸮᪥㹼㸰㸮㸯㸲ᖺ㸴᭶㸯᪥ ࢚࣏ࢵࢡ❧㸰㸯 ணࡵᵝࠎ࡞ሗࢆࣉࣟࢢ࣒ࣛࡋࡓศᏊࢆタィࡍࡿࡇ࡛ࠊ࢚ࢿࣝࢠ࣮ᢞධࡍ ࡿࡇ࡞ࡃࠊ⮬ᕫ㞟✚⬟ࢆ⏝ࡋ࡚ࠊෆ㒊ᵓ㐀ࡀ⦓ᐦ࡛యᵓ㐀ࡶ᫂☜࡞ࢼࣀ ㉸ศᏊᵓ㐀యࢆᵓ⠏ࡍࡿࡇࡣࠊࢼࣀ⛉Ꮫࡢ᥎㐍ࡁ࡞ᙳ㡪ࢆ࠼ࡿࠋࡑࡇ ࡛ࠊᗈ࠸ព࡛ࡢࠕᏛⓗࣉࣟࢢ࣒ࣛࡉࢀࡓྜᡂⰍ⣲㢮ࡢ㉸ศᏊࢼࣀ⛉Ꮫࠖ 㛵ࢃࡿ◊✲ᡂᯝࢆⓎ⾲ࡍࡿᅜ㝿◊✲㞟 SNCC2014ࢆࠊ❧㤋Ꮫࡧࢃࡇ࣭ ࡃࡉࡘ࢟ࣕࣥࣃࢫ࡛ୖグᮇ㛫⾜ࡗࡓࠋ ᇶㄪㅮ₇ 1 ௳ࠊᣍᚅㅮ₇ 8 ௳ࠊ㑅ᢤㅮ₇ 2 ௳ࠊ࣏ࢫࢱ࣮Ⓨ⾲ 36 ௳ࡀ⾜ࢃࢀࠊ ⣙ 100 ྡࡢཧຍ⪅ࡀ࠶ࡾࠊኚ┒ἣ࡛࠶ࡗࡓࠋ≉ࠊⱝᡭ࡛㉸ศᏊࢼࣀ⛉Ꮫࡢ ศ㔝࡛◊✲ࢆ⾜ࡗ࡚࠸ࡿ◊✲⪅ࢆᅜෆእࡽᣍᚅࡋ࡚ࠊάⓎ㆟ㄽࢆ⾜࠸ࠊࡇ ࡢศ㔝ࡢⓎᒎࡗ࡚ࡁ࡞ព⩏ࡀ࠶ࡗࡓࠋ ᅇࡢ SNCC2014 ࡢ BKC ࡛ࡢ㛤ദࡣࠊᮏᏛࡢ◊✲⪅ࠊ≉Ꮫ㝔⏕ࢆྵࡴ ⱝᡭࡢ◊✲⪅ࡗ࡚ࡁ࡞่⃭ࢆ࠼࡚ࡃࢀࡓࠋࡇࡢࡼ࠺࡞ὶࡼࡗ࡚ࠊ ❧㤋Ꮫࡢᅜ㝿㈨ࡍࡿࡇࡀ࡛ࡁࡓࠋࡲࡓࠊ༤ኈ◊✲ဨࡸᏛ㝔⏕࡞ ࡢⱝᡭ◊✲⪅ࢆྵࡴᮏᏛࡢ◊✲⪅ࡀࠊࠕᏛⓗࣉࣟࢢ࣒ࣛࡉࢀࡓྜᡂⰍ⣲㢮 ࡢ㉸ศᏊࢼࣀ⛉Ꮫࠖࡢ◊✲Ⓨ⾲ࢆⱥㄒ࡛⾜࠺ࡇ࡛ࠊ❧㤋Ꮫࡽࡢ◊✲Ⓨ ಙࡔࡅ࡛ࡣ࡞ࡃࠊᅜ㝿ࡶ᥎㐍࡛ࡁࡓࠋ ཱྀ㢌ㅮ₇⪅ࡣࠊJishan Wu㸦ࢩ࣏࣮ࣥ࢞ࣝᅜ❧㸧ࠊ⏣୰㝯⾜㸦ி⌮㸧ࠊ ᕝ⿱୍㸦ᕤ㸧ࠊᑎᮧ⨾㔛㸦❧㤋㸧ࠊᒣཱྀኴ㸦❧㤋㸧ࠊJeongho Kim 㸦㡑ᅜ㺃Inha Univ.㸧ࠊᲚ ㈗༤㸦ᮍ᮶ ICT ◊㸧ࠊᯘ ᏹᬸ㸦ዉⰋඛ➃⛉ᢏ㸧ࠊ 㰺⸨ᑦᖹ㸦ྡ⌮㸧ࠊ⋤ ᬡᓠ㸦ᶓ᱒ⶱ㸧ࠊᆏᮏⰋኴ㸦ᮾ⌮㸧ࡢ 11 ྡ 㸦ᩗ⛠␎࣭Ⓨ⾲㡰㸧࡛࠶ࡾࠊࡑࡢࡢヲ⣽ࡣࠊබᘧ HP ࢆཧ↷ࡋ࡚ୗࡉ࠸ࠋ http://www.ritsumei.ac.jp/se/rc/staff/tamiaki/sncpp14/ −126− ࢩ࣏ࣥࢪ࣒࣭࣮࢘࣡ࢡࢩࣙࢵࣉ㛤ദຓᡂ ሗ࿌᭩ ௦⾲⪅ ⏕⛉Ꮫ㒊࣭ᩍᤵ࣭ୗጔ 㑻 (ᡤᒓ࣭⫋ྡ࣭Ặྡ) 㞟ྡ ➨ 2 ᅇ⏕་⛉Ꮫࢥ࣒ࣟ࢟࢘ 㛤ദ᪥⛬ 2014 ᖺ 6 ᭶ 27 ᪥ ሙ ࢧ࢚ࣥࢫࢥ㸯F S ㅮ⩏ᐊ ⏕་⛉Ꮫ⛉࡛ࡣࠊᖺ 1 ᅇ⛬ᗘࠊᡤᒓᩍဨࡢ◊✲ᡂᯝࢆ㡰⤂ࡍࡿࡶ ሗ࿌ෆᐜ ࠊᏛእࡽࡑࡢ௦ࡢࢺࣆࢵࢡࢫヲࡋ࠸₇⪅ࢆᣍ⪸ࡋࠊ⏕་⛉Ꮫࢥࣟ࢟ ࣒࢘ࢆ㛤ദࡋ࡚࠸ࡿࠋ ᅇࡢࣉࣟࢢ࣒࡛ࣛࡣࠊ⏕་⛉Ꮫ⛉ࡢᩍᤵ 2 ྡࠊ≉ูㅮ₇ࡋ࡚ࠊி㒔 Ꮫࡼࡾጒᑿㅮᖌࡢㅮ₇ࢆ⾜ࡗࡓࠋ ᴫせࡣୗグ࡛࠶ࡿࠋ յ࣮࢜ࣉࢽࣥࢢ࣐࣮ࣜࢡ Ꮫ⛉㛗㸦ࢥ࣮ࢫ㛗㸧 ࣭ྖ 17:00-17:05 յㅮ₇ 㸯㸬 ୗጔ 㑻㸦⏕་⛉Ꮫ⛉࣭ᩍᤵ㸧 ࠕຠ⋡ⓗࡘබᖹ࡞་⒪㈨※㓄ศ ᪉ἲ☜❧ࡢࢳࣕࣞࣥࢪࠖ 17:05-17:40 㸰㸬 ᇼ ⾜㸦⏕་⛉Ꮫ⛉࣭ᩍᤵ㸧ࠕࡀࢇ⣽⬊ࡢ⣽⬊ෆࢩࢢࢼࣝఏ㐩ࠥHippo ⤒㊰ࢆᡭࡀࡾ ࡋ࡚ࠥࠖ 17:40-18:15 㸱㸬 ጒᑿ ᾈ㸦ி㒔ᏛᏛ㝔་Ꮫ◊✲⛉࣭ᾘჾෆ⛉Ꮫ࣭ㅮᖌ㸧 ࠕࡀࢇᖿ ⣽⬊ࢆᶆⓗࡋࡓ᪂ࡋ࠸ࡀࢇ⒪ࡢྍ⬟ᛶࠖ 18:15-19:00 ᮏ◊✲ࡢㅮ₇⪅ࡢᣍ⪸ㅰ♩ࠊ◊✲㈝ࢆࢃࡏ࡚࠸ࡓࡔ࠸ࡓࠋ −127− ࢩ࣏ࣥࢪ࣒࣭࣮࢘࣡ࢡࢩࣙࢵࣉ㛤ദຓᡂ ሗ࿌᭩ ௦⾲⪅ ⌮ᕤᏛ㒊 ᩍᤵ ⸨ ᐙ 㞷 ᮁ (ᡤᒓ࣭⫋ྡ࣭Ặྡ) 㞟ྡ 㻡㻙㼠㼔㻌㻸㼑㼏㼠㼡㼞㼑㼟㻌㼛㼚㻌㻿㼑㼙㼕㻙㻯㼘㼍㼟㼟㼕㼏㼍㼘㻌㻭㼚㼍㼘㼥㼟㼕㼟㻌 㻌 㻔㻌 ‽ྂゎᯒධ㛛ㅮ⩏㻌 㻕 㛤ദ᪥⛬ 䠎䠌䠍䠐㻌 ᖺ㻌 䠓㻌 ᭶㻌 䠏㻌 ᪥㻌 䡚㻌 㻌 䠎䠌䠍䠐㻌 ᖺ㻌 㻌 䠓㻌 ᭶㻌 䠑㻌 ᪥ ሙ ❧㤋Ꮫ䜃䜟䛣䛟䛥䛴䜻䝱䞁䝟䝇㻌 䝁䝷䞊䝙䞁䜾䠥䠥㻌 㻌 䝥䝺䝊䞁䝔䞊䝅䝵䞁䝹䞊䝮 ሗ࿌ෆᐜ ᩘᏛࡢᚤศ᪉⛬ᘧࡢ⌮ㄽࡢ୰࡛ࡶࠊ≉‽ྂゎᯒࡢศ㔝⤠ࡗࡓࢧ࣐࣮ࢫ ࢡ࣮ࣝࢆࠊ❧㤋Ꮫࡢ BKC ࢟ࣕࣥࣃࢫ࠾࠸࡚㛤ദࡋࡓࠋࡇࡢศ㔝ࡢୡ⏺ ࡢ➨㸯ே⪅࡛࠶ࡿ Nicolas Burq ᩍᤵ㸦ࣃࣜ㸯㸯Ꮫ㸧ࠊMichael Hitrik ᩍᤵ 㸦UCLA㸧ࢆㅮᖌࡋ࡚ᣍࡁࠊ᭱ඛ➃ࡢヰ㢟ࡢ୰ࡽࡑࢀࡒࢀࢺ࣮ࣛࢫୖࡢࢩ ࣗࣞࢹ࣮ࣥ࢞᪉⛬ᘧࡢไᚚ⌮ㄽࠊ‽ྂ㠀⮬ᕫඹᙺస⏝⣲ࡢࢫ࣌ࢡࢺࣝ⌮ㄽ ࡘ࠸࡚ࠊᏛ㝔⏕ࡶ⌮ゎ࡛ࡁࡿධ㛛ࣞ࣋ࣝࡽ᭱᪂ࡢ◊✲ᡂᯝࡲ࡛ࠊ㸱 㛫࡙ࡘ㐃⥆ㅮ⩏ࢆ⾜ࡗ࡚ࡶࡽࡗࡓࠋࡑࡢࠊᾏእࠊᅜෆ࡛ά㌍ࡍࡿ㸳ேࡢⱝᡭ ࡢ◊✲⪅ࡢㅮ₇ࡶࣉࣟࢢ࣒ࣛධࢀࡓࠋ㸳㸮ே㏆࠸ཧຍ⪅ࡀࡇࡢ◊✲ศ㔝ࡢⓎ ᒎᐤࡍࡃ⇕ᚰຮᙉࡋࠊ㆟ㄽࢆ῝ࡵࡓࠋ ㅮᖌࡽࡢᣍ⪸ࡣࡶࡕࢁࢇࠊᾏ㐨Ꮫ࣭⟃ἼᏛ࣭ᮾிᏛ࣭㜰Ꮫ࣭⚄ ᡞᏛ࣭ᗈᓥᏛ࡞ࡢ࣏ࢫࢻࢡࡸᏛ㝔⏕࠸ࡗࡓⱝᡭ◊✲⪅ࡢ᪑㈝ࡢຓ ᮏຓᡂ㔠ࢆά⏝࡛ࡁࡓࠋ ୍㒊ࡢㅮ₇ࡘ࠸࡚ࡣࠊ࣮࣒࣮࣍࣌ࢪ http://www.math.ritsumei.ac.jp/takuwatanabe/LSCA/LSCA2014.html ୖㅮ⩏㘓ࢆබ㛤ࡋ࡚࠸ࡿࠋ −128− ࢩ࣏ࣥࢪ࣒࣭࣮࢘࣡ࢡࢩࣙࢵࣉ㛤ദຓᡂ ሗ࿌᭩ ௦⾲⪅ ሗ⌮ᕤᏛ㒊࣭ᩍᤵ࣭ᒣୗⱱ (ᡤᒓ࣭⫋ྡ࣭Ặྡ) 㞟ྡ Asian Conference on Quantum Information Science (AQIS) 㛤ദ᪥⛬ 2014 ᖺ 8 ᭶ 20 ᪥ 㹼2014 ᖺ 8 ᭶ 24 ᪥ ሙ ி㒔ᕷࠊⰪ⹒㤋 ሗ࿌ෆᐜ 㔞Ꮚィ⟬࣭㔞Ꮚ㏻ಙࡢᐇ⌧㛵ࢃࡿⴌⱆⓗ࣭Ꮫ㝿ⓗ࡞ࢺࣆࢵࢡࢆᢅ࠺㔞Ꮚ ሗ⛉Ꮫ㛵ࡍࡿᅜ㝿㆟ $VLDQ&RQIHUHQFHRQ4XDQWXP,QIRUPDWLRQ6FLHQFH $4,6࡛ࡣࠊ⌮ㄽⓗ࠾ࡼࡧᐇ㦂ⓗ࡞ഃ㠃ࢆᣢࡘࢺࣆࢵࢡ⯡ࢆࢫࢥ࣮ࣉ ࡋ࡚ࠊᙜヱศ㔝ࡢ᭱᪂ࡢ◊✲ᡂᯝⓎ⾲ࡼࡿ◊✲⪅ሗࡢᶵࢆ࠼ࡿ ࡇࢆ┠ⓗࡋࡓࠋ㔞Ꮚሗ⛉Ꮫࡢ◊✲ࡣࠊᚲ↛ⓗᚑ᮶ࡣูࡢศ㔝࡛࠶ࡗ ࡓ」ᩘࡢ◊✲ศ㔝ࡢ◊✲⪅ࡀ㞟࠺ࡼ࠺࡞ࡾࠊᙜヱศ㔝ࡣ᪂ࡋ࠸Ꮫ㝿࣭⼥ྜ㡿 ᇦࡋ࡚ࡶὀ┠ࡉࢀ࡚࠸ࡿࠋࡇࡢࡼ࠺ᵝࠎ࡞㠃ࡽᏛ⾡ⓗࡶᚋࡲࡍࡲࡍ ࡑࡢ㔜せᛶࡀቑࡍ⪃࠼ࡽࢀࡿ㔞Ꮚሗ⛉Ꮫ㛵ࡍࡿ◊✲ࢆࠊ≉ࢪᅪ ࠾࠸࡚⯆ࢆࡍࡿࡇࢆ࡞┠ⓗࡋࡓࠋ ᮏ㆟ࡣࠊᣍᚅㅮ₇ࠊ୍⯡ㅮ₇ࠊ࣏ࢫࢱ࣮ࢭࢵࢩࣙࣥࡽᵓᡂࡋࡓࠋᣍᚅㅮ ₇⪅ࡣࠊ$QGU«&+$,//28;,15,$3DULV5RFTXHQFRXUWࠊ$UDP+$552:0,7ࠊ +ROJHU +2)0$11 +LURVKLPD 8QLYHUVLW\ ࠊ $OH[DQGHU +2/(92 6WHNORY 0DWKHPDWLFDO,QVWLWXWHࠊ-RKQ0$57,1,68&6DQWD%DUEDUDࠊ0DVDQDR2=$:$ 1DJR\D8QLYHUVLW\ࠊ9DOHULR6&$5$1,&476LQJDSRUHࠊ<RVKLKLVD<$0$0272 6WDQIRUG8QLYHUVLW\DQG1,,࡛࠶ࡗࡓࠋࡲࡓࠊᅇࡣࠊ*LOOHV%5$66$5' 8QLYHUVLW«GH0RQWUHDOࠊ5LFKDUG&/(9(,4&:DWHUORRࠊ'DQLHO*277(60$1 3HULPHWHU,QVWLWXWHࠊ7KRPDV9,',&.6LPRQV,QVWLWXWH8&%HUNHOH\ࡽ ࡼࡿࢳ࣮ࣗࢺࣜࣝࢆࠊᮏศ㔝ཧධࢆ⪃࠼࡚࠸ࡿࡼ࠺࡞࿘㎶ࡢ◊✲⪅࡞ ࡶẼᴦ⫈ㅮ࡛ࡁࡿࡼ࠺↓ᩱ࡛බ㛤ࡋࡓࠋ ୍⯡ㅮ₇ࡣ᥇ᢥ⋡ࢆ ௨ୗࡋ࡚ཝ㑅ࡍࡿ୍᪉ࠊ࣏ࢫࢱ࣮ࡣᏛ⏕ࢆྵࡵ࡚ ࡛ࡁࡿࡔࡅከࡃࡢ◊✲⪅Ⓨ⾲ࡢሙࢆᥦ౪ࡋࠊάⓎ࡞㆟ㄽࡀ࡛ࡁࡿࡼ࠺㓄៖ ࡋࡓࠋⓎ⾲ᑐࡋ࡚ࡣάⓎ࡞㉁ᛂ⟅ࡀ⾜ࢃࢀࡓࠋ㆟య࡛ࡣࠊཱྀ㢌Ⓨ⾲௳ ᩘ ௳㸦/RQJ7DON ௳㸪6KRUW7DON ௳㸧㸪࣏ࢫࢱ࣮Ⓨ⾲௳ᩘ ௳࡛࠶ ࡗࡓࠋࡲࡓࠊᏛ⏕ࡀⓎ⾲ࡋࡓ࣏ࢫࢱ࣮ࡢ୰ࡽ 6WXGHQW3RVWHU$ZDUG ࢆ ௳ 㑅ࢇࡔࠋ ࡞ཧຍᅜࡣࠊᙜึࡢ┠ⓗࡢ㏻ࡾࠊ᪥ᮏࠊ୰ᅜࠊ㡑ᅜࠊࢩ࣏࣮ࣥ࢞ࣝ࡞ࡢ ࢪࢆ୰ᚰࡋ࡚ࠊࢳ࢙ࢥࠊ࣓ࣜ࢝࡞ࡽከᩘཧຍࡋࠊࡑࡢࡶ㸯㸵 ᅜࡽࠊయ࡛㸯㸴㸮ྡ㸦࠺ࡕእᅜࡽࡢཧຍ⪅㸷㸴ྡ㸧࡛࠶ࡗࡓࠋ ࡲࡓࠊ㛵㐃ศ㔝ࡢࢧࢸࣛࢺ࣮࣡ࢡࢩࣙࢵࣉࢆ㆟ࡢ๓ᚋᮾிᏛ࠾ࡼࡧ 㜰Ꮫ࡛⏬ࡋࠊཧຍ⪅ࡢቑຍ࠾ࡼࡧ㛵㐃ศ㔝ࡢ◊✲⪅ࡢὶ࡞ࢆಁ㐍ࡋ ࡓࠋ ୖグࡢ㆟ࢆ㏻ࡋ࡚ࠊᙜึࡢ┠ⓗ㏻ࡾࠊ㔞Ꮚሗฎ⌮ࡢ◊✲ศ㔝㛵ࡋ࡚ࠊ ᭱᪂ࡢ◊✲ᡂᯝࡢⓎ⾲ሗࢆ⾜࠺ሙࢆࢪᅪ㸦ᅇࡣ᪥ᮏ㸧࠾࠸ ࡚ᥦ౪ࡍࡿࡇࡀ࡛ࡁࡓ⪃࠼࡚࠸ࡿࠋࡑࢀࡼࡾᙜヱศ㔝ࡢ≉ࢪᅪ࡛ ࡢࡉࡽ࡞ࡿⓎᒎຠᯝࡀ࠶ࡗࡓ⪃࠼࡚࠸ࡿࠋ −129− ( ) 2014 8 2015 21 3 2013 −130− ࢩ࣏ࣥࢪ࣒࣭࣮࢘࣡ࢡࢩࣙࢵࣉ㛤ദຓᡂ ሗ࿌᭩ ௦⾲⪅ ⌮ᕤᏛ㒊࣭ᩍᤵ࣭ᆏ༤ᖾ (ᡤᒓ࣭⫋ྡ࣭Ặྡ) 㞟ྡ Workshop on Quantum Information Theory and related Topics 㛤ദ᪥⛬ 2014 ᖺ 9 ᭶ 4 ᪥㹼2014 ᖺ 9 ᭶ 6 ᪥ ሙ ⾰➟࢟ࣕࣥࣃࢫ ◊ᚰ㤋 632 ྕᐊ ሗ࿌ෆᐜ ࣭ཧຍ⪅㸱㸵ྡ㸦Ꮫእ⪅㸰㸰ྡࠊᏛෆ⪅㸯㸳ྡ㸧 㸦ࡑࡢෆᾏእ◊✲⪅㸵ྡ㸧 ࣭ㅮ₇⪅㸯㸰ྡ㸦༤ኈ㝔⏕㸰ྡ㸧(ࡑࡢෆᾏእ◊✲⪅㸱ྡ) ࣭2012 ᖺࡽ⥅⥆ࡋ࡚㛤ദࡉࢀ࡚࠸ࡿ㔞Ꮚሗ⌮ㄽ㛵ಀࡍࡿᅇ┠ࡢᅜ㝿◊ ✲㞟࡛࠶ࡾࠊᅇࡣከࡃࡢᅜෆእࡢᏛ࣭◊✲ᡤࡽཧຍࡀ࠶ࡾࠊ┒ἣ࡛࠶ ࡗࡓࠋ㸯᪥┠ࡣࠊ㔞Ꮚ࢚ࣥࢺࣟࣆ࣮ࡸస⏝⣲➼ᘧ㛵㐃ࡍࡿㅮ₇ࠊ㸰᪥┠ࡣࠊ 㔞Ꮚࣇࢼࣥࢫ㛵㐃ࡍࡿㅮ₇ࡸ㔞Ꮚ࢚ࣥࢱࣥࢢ࣓ࣝࣥࢺࠊ⮬⏤☜⋡ㄽ㛵 ࡍࡿㅮ₇ࠊ᭱⤊᪥ࡣస⏝⣲༢ㄪ㛵ᩘ㛵ࡍࡿㅮ₇ࡀ࠾ࡇ࡞ࢃࢀࡓࠋㅮ₇ᚋάⓎ ࡢ㆟ㄽࡀ࡞ࡉࢀ㠀ᖖᐇࢆࡋࡓࠋ2015 ᖺ 9 ᭶ 1 ᪥㹼9 ᭶ 3 ᪥ࡣࠊࣁࣀ ᩘᏛ◊✲ᡤ࡛➨㸲ᅇࡢྠྡࡢᅜ㝿◊✲㞟ࡀ㛤ദࡉࢀࡿࡇࡀ☜ᐃࡋ࡚࠸ࡿࠋ ሗ࿌⪅ࡣࡇࡢ◊✲㞟ࡢദ⪅ࡢ୍ேࡋ࡚ࠊㅮ₇⪅ࡢᡭ㓄ࢆࡋ࡚࠸ࡿࠋ −131− ࢩ࣏ࣥࢪ࣒࣭࣮࢘࣡ࢡࢩࣙࢵࣉ㛤ദຓᡂ ሗ࿌᭩ ௦⾲⪅ (ᡤᒓ࣭⫋ྡ࣭Ặྡ) ⸆Ꮫ㒊㺃ᩍᤵ࣭ὸ㔝 ┿ྖ 㞟ྡ ➨ 2 ᅇ ୖ⓶ࣂࣜୖ⓶㍺㏦㛵ࡍࡿᅜ㝿ࢩ࣏ࣥࢪ࣒࢘ 㛤ദ᪥⛬ 2014 ᖺ 11 ᭶ 1 ᪥㸦ᅵ㸧 㹼 11 ᭶ 2 ᪥㸦᪥㸧 ሙ BKC ࣮࣒ࣟグᛕ㤋࣮࣍ࣝ ሗ࿌ෆᐜ ᅜෆࡢ⏕⌮Ꮫࠊ⣽⬊⏕≀Ꮫࠊ⸆≀ືែᏛࡢ➨୍⥺ࡢ◊✲⪅㸦33 ྡࠊࢩ࣏ࣥ ࢪࢫࢺ 18 ྡ㸧ຍ࠼ࠊ⭈ୖ⓶ࣂ࣭ࣜ㍺㏦ศ㔝ࡢ➨୍⥺ࡢ◊✲⪅࡛࠶ࡿ࢝ࣥ ࢨࢫᏛ་Ꮫ㒊࣓ࢹ࢝ࣝࢭࣥࢱ࣮ࡢ Yu ᩍᤵࢆᣍࡁࢩ࣏ࣥࢪ࣒࢘ࢆ㛤ദࡋ ࡓࠋࢩ࣏ࣥࢪ࣒࡛࢘ࡣ⏕య㜵ᚚࡸࠊ⸆≀྾ࡢ᭱๓⥺࡛࠶ࡿୖ⓶⤌⧊ࡢᶵ⬟ᵓ ⠏ࡘ࠸࡚ศᏊࣞ࣋ࣝࠊ⤌⧊ࣞ࣋ࣝࠊಶయ࡛ࣞ࣋ࣝࡢ᭱ඛ➃ࡢ◊✲ᡂᯝࢆⓎ⾲ ࡋࠊពぢࢆ⾜ࡗࡓ㸦ཧຍ⪅ 60 ྡ㸧 ࠋᮏᏛࡽࡣ⸆Ꮫ㒊ࡢ᱇ᩄஓඛ⏕ࠊ⸨⏣ 㝯ྖඛ⏕ࠊἼከ㔝ுඛ⏕ࡀࢩ࣏ࣥࢪ࣒࢘Ⓨ⾲ࢆࡉࢀࡓࠋ ࢩ࣏ࣥࢪ࣒࡛࢘ࡣࠊྡྂᒇᏛᏛ㝔ࡢ⸨ྜྷዲ๎ᩍᤵࢆ࠾ᣍࡁࠊࢱࢺࢪࣕ ࣥࢡࢩࣙࣥ㸦⣽⬊㛫ࡢᐦ╔⤖ྜ㸧ࢆᵓᡂࡍࡿࢱࣥࣃࢡ㉁࡛࠶ࡿࢡ࣮ࣟࢪࣥࡢ⤖ ᬗᵓ㐀⏕యࣂࣜࡢ⏕⌮ᶵ⬟ࡘ࠸࡚≉ูㅮ₇ࢆ㛤ദࡋࡓࠋࡲࡓࠊᇶ♏◊✲ ࡋ࡚⏕యࣂࣜࡢศᏊᇶ┙ࡸ㍺㏦㛵ࡍࡿ◊✲ࡽࠊ᪂ࡓ࡞⸆┤⤖ࡍࡿ ᛂ⏝◊✲ࡲ࡛ᖜᗈࡃⓎ⾲ࡀ࡞ࡉࢀࠊάⓎ࡞ពぢࠊሗࡀ࡞ࡉࢀࡓ㸦〇 ⸆ᴗࡽࡢཧຍ⪅ 2 ྡ㸧ࠋࡉࡽࠊⱝᡭ◊✲⪅㸦Ꮫ㒊⏕࣭Ꮫ㝔⏕㸧ࢆ୰ᚰ ࣏ࢫࢱ࣮Ⓨ⾲ࠊ࣏ࢫࢱ࣮ウㄽࢆ⾜ࡗࡓࠋᮏᏛࡢᏛ⏕ࠊᏛ㝔⏕ 13 ྡࡶࢩࣥ ࣏ࢪ࣒࢘ཧຍࡋࡓࠋ ࠾ࡶ࡞ཧຍ⪅ࡣ௨ୗࡢ㏻ࡾࠋ ࣭Alan SL. Yu㸦University of Kansas Medical Center, Kansas City㸧 ࣭⸨ྜྷዲ๎㸦ྡྂᒇᏛᏛ㝔⸆⛉Ꮫ◊✲⛉㸧 ࣭୰Ⰻ㸦ி㒔ᗓ❧་⛉Ꮫ་Ꮫ㒊㸧 ࣭᭶⏣᪩ᬛᏊ㸦㜰ᏛᏛ㝔⏕⛉Ꮫ◊✲⛉㸧 ࣭Ọ᳃ᚿ㸦㜰ᏛᏛ㝔་Ꮫ⣔◊✲⛉㸧 ࣭ᮌᮧ ᚭ㸦ᮥᯘᏛ་Ꮫ㒊㸧 ࣭Ἑཎඞ㞞㸦㔛Ꮫ་Ꮫ㒊㸧 ࣭㓇⚽⣖㸦ᐩᒣᏛᏛ㝔་⸆⣔㸧 ࣭㕥ᮌ႐㑻㸦⏕⌮Ꮫ◊✲ᡤ㸧 ࣭Ọ⣧ஓ㸦㜰⸆⛉Ꮫ㸧 ࣭ᯘ ஂ⏤㸦㟼ᒸ┴❧Ꮫ㣗ရᰤ㣴Ꮫ㒊㸧 ࣭ᐑᮏ㈼୍㸦ᚨᓥᏛ་Ꮫ㒊་⛉ᰤ㣴Ꮫ⛉㸧 −132− ࣭㕥ᮌ႐㑻㸦ᒸᓮࣂ࢜ࢧ࢚ࣥࢫࢭࣥࢱ࣮⣽⬊⏕⌮㒊㛛㸧 ࣭༑㔛ᙲ㸦ᒱ㜧⸆⛉Ꮫ㸧 ࣭ຍ⸨ᑗኵ㸦㔠ἑᏛᏛ㝔⸆Ꮫ◊✲⛉㸧 ࣭ᑿ⏿♸ᶞ㸦༓ⴥᏛᏛ㝔་Ꮫ◊✲㝔㸧 −133− ࢩ࣏ࣥࢪ࣒࣭࣮࢘࣡ࢡࢩࣙࢵࣉ㛤ദຓᡂ ሗ࿌᭩ ௦⾲⪅ (ᡤᒓ࣭⫋ྡ࣭Ặྡ) ሗ⌮ᕤᏛ㒊࣭ᩍᤵ࣭ᖹᯘ 㞟ྡ 㟁Ꮚሗ㏻ಙᏛ➨㸰㸷ᅇಙྕฎ⌮ࢩ࣏ࣥࢪ࣒࢘ 㛤ദ᪥⛬ ᖹᡂ㸰㸴ᖺ㸯㸯᭶㸯㸯᪥ࠥ㸯㸱᪥ ሙ ❧㤋Ꮫᮒ㞛࢟ࣕࣥࣃࢫ ሗ࿌ෆᐜ ୖグ᪥⛬࡛ࢩ࣏ࣥࢪ࣒࢘ࢆ㛤ദࡋ㸪❧㤋Ꮫᮒ㞛࢟ࣕࣥࣃࢫ࠾࠸࡚ࡣ௨ ୗࡢෆᐜࢆᐇࡋࡓ㸸 ᵏᵏᵍᵏᵏᵆ້ᵇᵏᵑᵘᵑᵎ㛈ᵏᵕᵘᵓᵎύܖဃӼẬᜒ˟Ẑ˖ಅỉஇЭዴỂẨỦ̮ӭϼྸ২ᘐẑᴾ ㊃᪨㈶ྠ㡬ࡅࡓ㸷♫ࡽಙྕฎ⌮ศ㔝ࡢ◊✲⪅࠾㉺ࡋ࠸ࡓࡔࡁ㸪ྛ♫࡛ ࡢಙྕฎ⌮◊✲ࡢྲྀࡾ⤌ࡳࡸࡑࡢά⏝ἲࡘ࠸࡚ࡈㅮ₇㡬࠸ࡓ㸬ᢏ⾡ⓗ࡞ヰࡔ ࡅ࡛࡞ࡃ㸪ྛㅮ₇⪅ࡈ⮬㌟ࡢ⤒㦂ࢆ㋃ࡲ࠼ࡓⱝᡭ◊✲⪅ྥࡅࡢ࣓ࢵࢭ࣮ࢪࡀࡑ ࢀࡒࢀࡢㅮ₇ࡕࡾࡤࡵࡽࢀ࡚࠾ࡾ㸪ᙜヱศ㔝ࡢᏛ⏕ࡗ࡚㠀ᖖ౯್ࡢ࠶ ࡿ㈗㔜࡞⤒㦂࡞ࡗࡓ㸬ࡲࡓ㸪Ꮫࡣ␗࡞ࡿไ⣙ࡸどⅬࡽࡢ◊✲άືࡘ ࠸࡚ࡢヰࡣ㸪Ꮫ⏕ࡸⱝᡭࡔࡅ࡛࡞ࡃࢩࢽࡢᏛ◊✲⪅ࡗ࡚ࡶ᪂㩭࡛⯆ ῝࠸ࡶࡢ࡛࠶ࡗࡓ㸬 ㅮ₇ᚋ࠾ࡼࡑ㸯㛫ࡢ᠓ㄯࢆタࡅ࡚㸪Ꮫ⏕ྛ♫ࡢ◊✲⪅ࡢὶࡢ 㛫ࢆ⏝ពࡋࡓࡀ㸪ሙࡢ࠶ࡕࡽࡇࡕࡽ࡛⇕ᚰ㉁ၥࢆࡍࡿᏛ⏕ࡢጼࡀࡳࡽࢀ㸪 ⤊้࡞ࡗ࡚ࡶሙࢆ㛢ࡵࡽࢀ࡞࠸┒ἣ࡛࠶ࡗࡓ㸬 ཧຍ⪅ࡢࣥࢣ࣮ࢺᑐࡋ࡚㸪ᅇ⟅ࡢ࠶ࡗࡓ᪉ࡢ 94%ࡀᮏࣉࣞ࣋ࣥࢺࡢ ホ౯ࡋ࡚ࠕᮇᚅ௨ୖࠖ࠶ࡿ࠸ࡣࠕᮇᚅ㏻ࡾࠖ⟅࠼࡚࠾ࡾ㸪ᮏ࣋ࣥࢺࡢ┠ ⓗࡀ㐩ᡂࡉࢀࡓ⪃࠼ࡽࢀࡿ㸬 ᵏᵏᵍᵏᵑᵆ້ᵇᵏᵓᵘᵎᵎ㛈ᵏᵕᵘᵑᵎύཎКᜒᴾ ி 㒔 ྡ ᩍ ᤵ ∦ ᒣ ᚭ ඛ ⏕ ࠾ ࡼ ࡧ IEEE Signal Processing Society Distinguished Lecturer ࡛࠶ࡿ V. John Mathews ᩍᤵࢆᣍ⪸ࡋ࡚ࡑࢀࡒࢀ㸪 ࣇ ࣝ ࢱ ࣜ ࣥ ࢢ ࢩ ࢫ ࢸ ࣒ ྠ ᐃ ࠾ ࡼ ࡧ Signal Processing for Health Monitoring of Aerospace Structures 㛵ࡍࡿ≉ูㅮ₇ࢆ㡬࠸ࡓ㸬200 ྡࢆ㉺ ࠼ࡿཧຍ⪅ࡀ⫈ㅮࡋ㸪ᴟࡵ࡚᭷ព⩏࡞ㅮ₇ࡍࡿࡇࡀ࡛ࡁࡓ㸬 −134− ᪥㻌 䠖 2014 ᖺᗘ ❧㤋Ꮫ⌮ᕤᏛ◊✲ᡤ Ꮫ⾡ㅮ₇ ദ㻌 䠖⌮ᕤᏛ◊✲ᡤ 㻌㻌㻌㻌㻌㻌㻌 2014 ᖺ 12 ᭶ 10 ᪥䠄Ỉ䠅㻌 㻌 18䠖00䡚19䠖30 㻌 ሙ䠖 ❧㤋Ꮫ䜃䜟䛣䞉䛟䛥䛴䜻䝱䞁䝟䝇 䝻䞊䝮グᛕ㤋㻌 5 㝵㻌 ㆟ᐊ ㅮ㻌 ᖌ䠖 ₇㻌 㢟䠖 せ㻌 ᪨䠖 㻌 ி㒔Ꮫ་Ꮫ◊✲⛉㻌 䝯䝕䜱䜹䝹䜲䝜䝧䞊䝅䝵䞁䝉䞁䝍䞊㻌 䝉䞁䝍䞊㛗㻌 ᡂᐑ㻌 ࿘Ặ㻌 㻌 䛂䝇䝖䝺䝇䚸䛣䛣䜝䚸䝥䝻䝇䝍䜾䝷䞁䝆䞁䛃㻌 㻌 䝇䝖䝺䝇䛿䚸ෆⓗ䜔እⓗ⎔ቃ䛾ኚ䛷⏕య䛾ᜏᖖᛶ䛜◚⥢䛧䛯≧ែ䜢䛔䛖䚹䝇䝖 䝺䝇䛿䚸Ẽ䛺䛹䛾㌟య䜈䛾่⃭䛸䛸䜒䛻᪂つ⎔ቃ䜔እᩛ䜈䛾ᭀ㟢䛸䛔䛳䛯ᚰ ⌮ⓗ่⃭䛷ច㉳䛥䜜䚸ឤ⚄⤒䛾⥭ᙇ䜔䝇䝖䝺䝇䝩䝹䝰䞁䛾ศἪ䛸ゝ䛳䛯㌟య ⓗᛂ䛻ຍ䛘䚸Ᏻ䚸ᜍᛧ䚸ᨷᧁᛶ䚸䛒䜛䛔䛿䚸䛖䛴≧ែ䛸䛔䛳䛯䛣䛣䜝䛾ᛂ䜢 ᘬ䛝㉳䛣䛩䚹ㅮ₇䛷䛿䚸䛣䜜䜙䝇䝖䝺䝇ᛂ䛾⬻ෆ䝯䜹䝙䝈䝮䛻䛚䛡䜛⅖ศᏊ 䝥䝻䝇䝍䜾䝷䞁䝆䞁䛾ാ䛝䛻䛴䛔䛶㏙䜉䜙䜜䛯䚹㻌 −135− ⌮ᕤᏛ◊✲ᡤ䛾㐠Ⴀ 㻞㻜㻝㻠 ᖺᗘ㻌 ᡤ㛗㻌 ῝ᕝ㻌 Ⰻ୍㻌 ⌮ᕤᏛ㒊㒔ᕷ䝅䝇䝔䝮ᕤᏛ⛉㻌 㻌 㻌 ᇼ㻌 ⾜㻌 ⏕⛉Ꮫ㒊⏕་⛉Ꮫ⛉㻌 㻌 ጤဨ㻌 ⚟ᮏ㻌 ၿὒ㻌 ⌮ᕤᏛ㒊ᩘ⌮⛉Ꮫ⛉㻌 㻌 㻌 ᒣᓮ㻌 ᘯ㻌 ⌮ᕤᏛ㒊㟁ᏊሗᕤᏛ⛉㻌 㻌 㻌 ᮌ⫤㻌 㞞❶㻌 ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉㻌 㻌 㻌 ዟ㻌 ኴ㻌 ሗ⌮ᕤᏛ㒊ሗ䝁䝭䝳䝙䜿䞊䝅䝵䞁Ꮫ⛉㻌 㻌 㻌 すཎ㻌 㝧Ꮚ㻌 ሗ⌮ᕤᏛ㒊䝯䝕䜱䜰ሗᏛ⛉㻌 㻌 㻌 㔝㛫㻌 㻌 ⏕⛉Ꮫ㒊⏕ሗᏛ⛉㻌 㻌 㻌 ୍ᕝ㻌 ᬸᏹ㻌 ⸆Ꮫ㒊⸆Ꮫ⛉㻌 ሷ⃝㻌 ᡂᘯ㻌 䝇䝫䞊䝒ᗣ⛉Ꮫ㒊䝇䝫䞊䝒ᗣ⛉Ꮫ⛉㻌 㻌㻌 −136− 2015 ᖺ 3 ᭶ 10 ᪥ ༳ๅ 2015 ᖺ 3 ᭶ 31 ᪥ Ⓨ⾜ ❧㤋Ꮫ⌮ᕤᏛ◊✲ᡤ⣖せ ➨ 73 ྕ ࠛ525-8577 ⦅ 㞟 ව ㈡┴ⲡὠᕷ㔝㊰ᮾ୍┠ 1 ␒ 1 ྕ ❧㤋Ꮫ⌮ᕤᏛ◊✲ᡤ Ⓨ ⾜ ᡤ ௦ ⾲ ⪅ ࠛ600-8047 Ⰻ ୍ ி㒔ᗓி㒔ᕷୗி༊ᯇཎ㏻㯑ᒇ⏫ᮾධ ▼ືஅ⏫ 677-2 ༳ ๅ ᡤ ῝ ᕝ ओ⏣୰ࣉࣜࣥࢺ CONTENTS of No. 73, 2014 <Treatise> 1. Quadratic reciprocity law over number fields ……………………………………………………………………………………………………… Hidenori Ishii ……… 1 2. Relationship between polishing performance and viscoelasticity of epoxy resin polishing pads ………………………………………………………………… Yasuhiro TANI, Yu ZHANG and Junji MURATA ……… 5 3. Development of partiallty Ni-coated diamond abrasives for electroplated tools ………………………………………………………………… Yu ZHANG, Yasuhiro TANI and Junji MURATA ……… 15 4. A feasibility study for the application for slicing Si ingots using a wet etching assisted by wire-friction ………………………………………………………………… Yasuhiro TANI, Yu ZHANG and Junji MURATA ……… 27 5. Social Sciences of Hope in the Theory of Language Communication and Language Philosophy - Is it possible for us to fully understand each other? : From discussions of W.V.O. Quine, D. Davidson & R. Rorty ………………………………………………………………………………………………… Tsukasa Yamanaka ……… 37 6. Formation of Forsterite Grains Nd Direct Observation of The Sublimaion of Crystal Formation Grain ……………………………………………………………………… Chihiro Kaito, Saito Yoshio, Chiyoe Koike ……… 45 7. Shikiba Construction Method and its Origin ……………………Masao Okuda, Youji Nakane, Yukihiko Kani, Katsuhiro Nishimura and Kiyoshi Hayakawa ……… 53 8. History of cut and soil at the ruins ……………………… Katsuhiro Nishimura, Yukihiko Kani, Masao Okuda, Youji Nakane, Kiyoshi Hayakawa ……… 63 9. Operations Research Linear Planning solving with Excel Solver 1 …………………………………………………………………………………………………… Yoshiki Hayashi ……… 71 Abstracts of Research Projects using Institute Experimental Apparatuses …………………………………………… 79 Other Activities …………………………………………………………………………………………………………… 125