Comments
Description
Transcript
Exercises
27.9 EXERCISES 27.9 Exercises 27.1 27.2 27.3 Use an iteration procedure to find the root of the equation 40x = exp x to four significant figures. Using the Newton–Raphson procedure find, correct to three decimal places, the root nearest to 7 of the equation 4x3 + 2x2 − 200x − 50 = 0. Show the following results about rearrangement schemes for polynomial equations. (a) That if a polynomial equation g(x) ≡ xm − f(x) = 0, where f(x) is a polynomial of degree less than m and for which f(0) = 0, is solved using a rearrangement iteration scheme xn+1 = [ f(xn )]1/m , then, in general, the scheme will have only first-order convergence. (b) By considering the cubic equation x3 − ax2 + 2abx − (b3 + ab2 ) = 0 for arbitrary non-zero values of a and b, demonstrate that, in special cases, the same rearrangement scheme can give second- (or higher-) order convergence. 27.4 27.5 The square root of a number N is to be determined by means of the iteration scheme xn+1 = xn 1 − N − x2n f(N) . Determine how √ the process has second-order convergence. √to choose f(N) so that Given that 7 ≈ 2.65, calculate 7 as accurately as a single application of the formula will allow. Solve the following set of simultaneous equations using Gaussian elimination (including interchange where it is formally desirable): x1 + 3x2 + 4x3 + 2x4 2x1 + 10x2 − 5x3 + x4 4x2 + 3x3 + 3x4 −3x1 + 6x2 + 12x3 − 4x4 27.6 The following table of values of a polynomial p(x) of low degree contains an error. Identify and correct the erroneous value and extend the table up to x = 1.2. x 0.0 0.1 0.2 0.3 0.4 27.7 = 0, = 6, = 20, = 16. p(x) 0.000 0.011 0.040 0.081 0.128 x 0.5 0.6 0.7 0.8 0.9 p(x) 0.165 0.216 0.245 0.256 0.243 Simultaneous linear equations that result in tridiagonal matrices can sometimes be treated as three-term recurrence relations, and their solution may be found in a similar manner to that described in chapter 15. Consider the tridiagonal simultaneous equations xi−1 + 4xi + xi+1 = 3(δi+1,0 − δi−1,0 ), i = 0, ±1, ±2, . . . . Prove that, for i > 0, the equations have a general solution of the form xi = αpi + βq i , where p and q are the roots of a certain quadratic equation. Show that a similar result holds for i < 0. In each case express x0 in terms of the arbitrary constants α, β, . . . . Now impose the condition that xi is bounded as i → ±∞ and obtain a unique solution. 1033 NUMERICAL METHODS 27.8 A possible rule for obtaining an approximation to an integral is the mid-point rule, given by x0 +∆x f(x) dx = ∆x f(x0 + 12 ∆x) + O(∆x3 ). x0 27.9 27.10 Writing h for ∆x, and evaluating all derivates at the mid-point of the interval (x, x + ∆x), use a Taylor series expansion to find, up to O(h5 ), the coefficients of the higher-order errors in both the trapezium and mid-point rules. Hence find a linear combination of these two rules that gives O(h5 ) accuracy for each step ∆x. Although it can easily be shown, by direct calculation, that ∞ 1 e−x cos(kx) dx = , 1 + k2 0 the form of the integrand is appropriate for Gauss–Laguerre numerical integration. Using a 5-point formula, investigate the range of values of k for which the formula gives accurate results. At about what value of k do the results become inaccurate at the 1% level? Using the points and weights given in table 27.9, answer the following questions. (a) A table of unnormalised Hermite polynomials Hn (x) has been spattered with ink blots and gives H5 (x) as 32x5 −?x3 + 120x and H4 (x) as ?x4 −?x2 + 12, where the coefficients marked ? cannot be read. What should they read? (b) What is the value of the integral ∞ 2 e−2x I= dx, 2 −∞ 4x + 3x + 1 as given by a 7-point integration routine? 27.11 Consider the integrals Ip defined by Ip = 1 x2p √ dx. 1 − x2 −1 (a) By setting x = sin θ and using the results given in exercise 2.42, show that Ip has the value 2p − 1 2p − 3 1 π Ip = 2 ··· . 2p 2p − 2 2 2 (b) Evaluate Ip for p = 1, 2, . . . , 6 using 5- and 6-point Gauss–Chebyshev integration (conveniently run on a spreadsheet such as Excel) and compare the results with those in (a). In particular, show that, as expected, the 5-point scheme first fails to be accurate when the order of the polynomial numerator (2p) exceeds (2×5)−1 = 9. Likewise, verify that the 6-point scheme evaluates I5 accurately but is in error for I6 . 27.12 In normal use only a single application of n-point Gaussian quadrature is made, using a value of n that is estimated from experience to be ‘safe’. However, it is instructive to examine what happens when n is changed in a controlled way. (a) Evaluate the integral 5 In = √ 7x − x2 − 10 dx 2 using n-point Gauss–Legendre formulae for n = 2, 3, . . . , 6. Estimate (to 4 s.f.) the value I∞ you would obtain for very large n and compare it with the result I obtained by exact integration. Explain why the variation of In with n is monotonically decreasing. 1034 27.9 EXERCISES (b) Try to repeat the processes described in (a) for the integrals 5 1 √ Jn = dx. 7x − x2 − 10 2 Why is it very difficult to estimate J∞ ? 27.13 Given a random number η uniformly distributed on (0, 1), determine the function ξ = ξ(η) that would generate a random number ξ distributed as (a) 2ξ√ on 0 ≤ ξ < 1, (b) 32 ξ on 0 ≤ ξ < 1, π πξ (c) cos on − a ≤ ξ < a, 4a 2a (d) 12 exp(− | ξ |) on − ∞ < ξ < ∞. 27.14 27.15 27.16 27.17 A, B and C are three circles of unit radius with centres in the xy-plane at (1, 2), (2.5, 1.5) and (2, 3), respectively. Devise a hit or miss Monte Carlo calculation to determine the size of the area that lies outside C but inside A and B, as well as inside the square centred on (2, 2.5), that has sides of length 2 parallel to the coordinate axes. You should choose your sampling region so as to make the estimation as efficient as possible. Take the random number distribution to be uniform on (0, 1) and determine the inequalities that have to be tested using the random numbers chosen. Use a Taylor series to solve the equation dy + xy = 0, y(0) = 1, dx evaluating y(x) for x = 0.0 to 0.5 in steps of 0.1. Consider the application of the predictor–corrector method described near the end of subsection 27.6.3 to the equation dy = x + y, y(0) = 0. dx Show, by comparison with a Taylor series expansion, that the expression obtained for yi+1 in terms of xi and yi by applying the three steps indicated (without any repeat of the last two) is correct to O(h2 ). Using steps of h = 0.1 compute the value of y(0.3) and compare it with the value obtained by solving the equation analytically. A more refined form of the Adams predictor–corrector method for solving the first-order differential equation dy = f(x, y) dx is known as the Adams–Moulton–Bashforth scheme. At any stage (say the nth) in an Nth-order scheme, the values of x and y at the previous N solution points are first used to predict the value of yn+1 . This approximate value of y at the next solution point, xn+1 , denoted by ȳn+1 , is then used together with those at the previous N − 1 solution points to make a more refined (corrected) estimation of y(xn+1 ). The calculational procedure for a third-order scheme is summarised by the two following two equations: ȳn+1 = yn + h(a1 fn + a2 fn−1 + a3 fn−2 ) yn+1 = yn + h(b1 f(xn+1 , ȳn+1 ) + b2 fn + b3 fn−1 ) (predictor), (corrector). (a) Find Taylor series expansions for fn−1 and fn−2 in terms of the function fn = f(xn , yn ) and its derivatives at xn . 1035 NUMERICAL METHODS (b) Substitute them into the predictor equation and, by making that expression for ȳn+1 coincide with the true Taylor series for yn+1 up to order h3 , establish simultaneous equations that determine the values of a1 , a2 and a3 . (c) Find the Taylor series for fn+1 and substitute it and that for fn−1 into the corrector equation. Make the corrected prediction for yn+1 coincide with the true Taylor series by choosing the weights b1 , b2 and b3 appropriately. (d) The values of the numerical solution of the differential equation dy 2(1 + x)y + x3/2 = dx 2x(1 + x) at three values of x are given in the following table: x y(x) 0.1 0.030 628 0.2 0.084 107 0.3 0.150 328 Use the above predictor–corrector scheme to find the value of y(0.4) and compare your answer with the accurate value, 0.225 577. 27.18 If dy/dx = f(x, y) then show that ∂2 f ∂2 f ∂f ∂f ∂2 f d2 f = 2 + 2f + f2 2 + +f dx2 ∂x ∂x∂y ∂y ∂x ∂y ∂f ∂y 2 . Hence verify, by substitution and the subsequent expansion of arguments in Taylor series of their own, that the scheme given in (27.79) coincides with the Taylor expansion (27.68), i.e. yi+1 = yi + hyi(1) + 27.19 h2 (2) h3 (3) y + yi + · · · , 2! i 3! up to terms in h3 . To solve the ordinary differential equation du = f(u, t) dt for f = f(t), the explicit two-step finite difference scheme un+1 = αun + βun−1 + h(µfn + νfn−1 ) may be used. Here, in the usual notation, h is the time step, tn = nh, un = u(tn ) and fn = f(un , tn ); α, β, µ, and ν are constants. (a) A particular scheme has α = 1, β = 0, µ = 3/2 and ν = −1/2. By considering Taylor expansions about t = tn for both un+j and fn+j , show that this scheme gives errors of order h3 . (b) Find the values of α, β, µ and ν that will give the greatest accuracy. 27.20 Set up a finite difference scheme to solve the ordinary differential equation d2 φ dφ + =0 dx2 dx in the range 1 ≤ x ≤ 4, subject to the boundary conditions φ(1) = 2 and dφ/dx = 2 at x = 4. Using N equal increments, ∆x, in x, obtain the general difference equation and state how the boundary conditions are incorporated into the scheme. Setting ∆x equal to the (crude) value 1, obtain the relevant simultaneous equations and so obtain rough estimates for φ(2), φ(3) and φ(4). Finally, solve the original equation analytically and compare your numerical estimates with the accurate values. x 1036 27.9 EXERCISES 27.21 Write a computer program that would solve, for a range of values of λ, the differential equation dy 1 , = dx x2 + λy 2 27.22 y(0) = 1, using a third-order Runge–Kutta scheme. Consider the difficulties that might arise when λ < 0. Use the isocline approach to sketch the family of curves that satisfies the nonlinear first-order differential equation dy a . = dx x2 + y 2 27.23 For some problems, numerical or algebraic experimentation may suggest the form of the complete solution. Consider the problem of numerically integrating the first-order wave equation ∂u ∂u +A = 0, ∂t ∂x in which A is a positive constant. A finite difference scheme for this partial differential equation is u(p, n) − u(p − 1, n) u(p, n + 1) − u(p, n) +A = 0, ∆t ∆x where x = p∆x and t = n∆t, with p any integer and n a non-negative integer. The initial values are u(0, 0) = 1 and u(p, 0) = 0 for p = 0. (a) Carry the difference equation forward in time for two or three steps and attempt to identify the pattern of solution. Establish the criterion for the method to be numerically stable. (b) Suggest a general form for u(p, n), expressing it in generator function form, i.e. as ‘u(p, n) is the coefficient of sp in the expansion of G(n, s)’. (c) Using your form of solution (or that given in the answers!), obtain an explicit general expression for u(p, n) and verify it by direct substitution into the difference equation. (d) An analytic solution of the original PDE indicates that an initial disturbance propagates undistorted. Under what circumstances would the difference scheme reproduce that behaviour? 27.24 In exercise 27.23 the difference scheme for solving ∂u ∂u + = 0, ∂t ∂x in which A has been set equal to unity, was one-sided in both space (x) and time (t). A more accurate procedure (known as the Lax–Wendroff scheme) is u(p + 1, n) − u(p − 1, n) u(p, n + 1) − u(p, n) + ∆t 2∆x ∆t u(p + 1, n) − 2u(p, n) + u(p − 1, n) . = 2 (∆x)2 (a) Establish the orders of accuracy of the two finite difference approximations on the LHS of the equation. (b) Establish the accuracy with which the expression in the brackets approximates ∂2 u/∂x2 . (c) Show that the RHS of the equation is such as to make the whole difference scheme accurate to second order in both space and time. 1037 NUMERICAL METHODS 27.25 Laplace’s equation, ∂2 V ∂2 V + = 0, ∂x2 ∂y 2 is to be solved for the region and boundary conditions shown in figure 27.7. V = 80 −∞ 40 40 40 40 40 20 20 20 40 40 ∞ V =0 Figure 27.7 Region, boundary values and initial guessed solution values. 27.26 Starting from the given initial guess for the potential values V , and using the simplest possible form of relaxation, obtain a better approximation to the actual solution. Do not aim to be more accurate than ± 0.5 units, and so terminate the process when subsequent changes would be no greater than this. Consider the solution, φ(x, y), of Laplace’s equation in two dimensions using a relaxation method on a square grid with common spacing h. As in the main text, denote φ(x0 + ih, y0 + jh) by φi,j . Further, define φm,n i,j by φm,n i,j ≡ ∂m+n φ ∂xm ∂y n evaluated at (x0 + ih, y0 + jh). (a) Show that 2,2 0,4 φ4,0 i,j + 2φi,j + φi,j = 0. (b) Working up to terms of order h5 , find Taylor series expansions, expressed in terms of the φm,n i,j , for S±,0 = φi+1,j + φi−1,j , S0,± = φi,j+1 + φi,j−1 . (c) Find a corresponding expansion, to the same order of accuracy, for φi±1,j+1 + φi±1,j−1 and hence show that S±,± = φi+1,j+1 + φi+1,j−1 + φi−1,j+1 + φi−1,j−1 has the form h4 4,0 0,4 (φ + 6φ2,2 i,j + φi,j ). 6 i,j (d) Evaluate the expression 4(S±,0 + S0,± ) + S±,± and hence deduce that a possible relaxation scheme, good to the fifth order in h, is to recalculate each φi,j as the weighted mean of the current values of its four nearest neighbours (each 1 with weight 15 ) and its four next-nearest neighbours (each with weight 20 ). 2,0 0,2 2 4φ0,0 i,j + 2h (φi,j + φi,j ) + 1038