Comments
Description
Transcript
Finite differences
27.5 FINITE DIFFERENCES many values of ξi for each value of y and is a very poor approximation if the wings of the Gaussian distribution have to be sampled accurately. For nearly all practical purposes a Gaussian look-up table is to be preferred. 27.5 Finite differences It will have been noticed that earlier sections included several equations linking sequential values of fi and the derivatives of f evaluated at one of the xi . In this section, by way of preparation for the numerical treatment of differential equations, we establish these relationships in a more systematic way. Again we consider a set of values fi of a function f(x) evaluated at equally spaced points xi , their separation being h. As before, the basis for our discussion will be a Taylor series expansion, but on this occasion about the point xi : fi±1 = fi ± hfi + h2 h3 (3) f ± fi + · · · . 2! i 3! (27.56) In this section, and subsequently, we denote the nth derivative evaluated at xi by fi(n) . From (27.56), three different expressions that approximate fi(1) can be derived. The first of these, obtained by subtracting the ± equations, is df h2 fi+1 − fi−1 − fi(3) − · · · . = (27.57) fi(1) ≡ dx xi 2h 3! The quantity (fi+1 − fi−1 )/(2h) is known as the central difference approximation to fi(1) and can be seen from (27.57) to be in error by approximately (h2 /6)fi(3) . An alternative approximation, obtained from (27.56+) alone, is given by df fi+1 − fi h = (27.58) fi(1) ≡ − fi(2) − · · · . dx xi h 2! The forward difference approximation, (fi+1 − fi )/h, is clearly a poorer approximation, since it is in error by approximately (h/2)fi(2) as compared with (h2 /6)fi(3) . Similarly, the backward difference (fi − fi−1 )/h obtained from (27.56−) is not as good as the central difference; the sign of the error is reversed in this case. This type of differencing approximation can be continued to the higher derivatives of f in an obvious manner. By adding the two equations (27.56±), a central difference approximation to fi(2) can be obtained: 2 df fi+1 − 2fi + fi−1 fi(2) ≡ . (27.59) ≈ dx2 h2 The error in this approximation (also known as the second difference of f) is easily shown to be about (h2 /12)fi(4) . Of course, if the function f(x) is a sufficiently simple polynomial in x, all 1019