Comments
Description
Transcript
ACCREファイル
THE STAR FORMATION NEWS LETTER: No. 244 7 April 2013 担当 麻生 (東大) 2013/4/26 Forma&on and evolu&on of interstellar filaments; Hints from velocity dispersion mea-‐ surements D. Arzoumanian, Ph. Andre, N. Pere3o, and V. Konyves D. Arzoumanian et al.: Formatio l Aquila, Polaris星間雲の速度分散を調べた。 l T=10 K, 幅0.1 pcでは熱的臨界線密度Mline,crit=2cs2/G は、中心柱密度8e+21 cm–2 (Av~8)に相当。 (cf. 星形 成threshold Av=6~9) l IRAM 30 mでC18O 2–1, 13CO 2–1, N2H+ 1–0 à乱流を求めて水素の音速と合わせた。 l NH2<8e+21 subcriZcal à cs<σtot<2cs (NH2に依らない) , unbound 乱流でフィラメントが支えられている。 l NH2>8e+21 super criZcal l à σtot∝NH2,obs0.35 , bound 重力収縮、Σ0が多くなるとσtotも大きくなり~0.1 pcを維持。 l Σ0はevoluZonary indicatorになる。 0.3and0.1 0.05 3.4.RDensity velocity Pl (pc) Qi 0.3 0.4 0.5 all models, the syste Reverse dynamical evolu&on of Eta Chamaeleon&s For Plummer model Christophe Becker, Estelle Moraux, Gaspard Duchene, Thomas ! distribut 3.4. Density and velocity 3Nsys ρPl (r) = 1 + (r/R Maschberger and Warrick Lawson 3 systems arePl For all models, the 4πR Plummer model Pl l η ChameleonZs、6-‐9 Myr, d=94 pc, 18 systems in r=0.5 pc where Nsys! is the initial " nu 3Nsys 2 −5/2 ρPl (r) =The 3velocities 1 + (r/RPl )of eac l m<0.1 Mo, rbinary>50 AUが少ない。 4πRPl separaZon 30 AU以下は18% (cf. TW Hydrae assoc. 58%) cording to this density dis where number /Einitial Eof Qi N=sysEiskinthe pot where kin l universal IMFから力学進化だけで再現できるか? The velocities of each individ ter and Epot the gravitati thiswith density distribution l モデルパラメーター(初期状態)はNsys, RPl, Qで指定。 cording thustoleft three free p A&A 552, A46 (2013) Ekin is the to Q = Ekin /E potofwhere Halo stars tems N , the Plummer ra sys ter and Epot the gravitational 1.00 ener thus left with three free parameter tems Nsys , the Plummer radius RPl i Number of massive stars Number of systems l 成功率の分布を見ると最適 解がありそうだが、同時刻で はないのでダメ。 l binary選び方、brown drarfの 分布を変えてもダメ。 l 初めからm<0.1 Mo, rbinary>50 AUを少なくすると成功。 l 結論) 力学進化は重要では ない 0.3 0.1 3.5. Parameter grid 0.05 0.03 3.5.From Parameter grid the shape 0.01 0.005 R N 20 30 40 50 60 70 20 70 20 Number of VLMOs 0.3 0.1 0.05 0.03 0.01 0.005 R N 20 30 40 50 60 of the IM N = 50 by the requirem Fromsys the shape of the IMF, 0.10 we 30 40 50 60 than 70 20 30 40 "50. To 60 70 1 M cover a w Nsys = 50 by the requirement to hav Binary fraction weNumber of wide binaries tested Nsys from to than 1 M a wide20 range " . To cover to fit we estimated tested Nsys from 20 atoconstan 70. The estimated to of fit astar constant surface vations forming re vations of star forming regions (A to 1.0 pc for 50 systems. to 1.0 pc for 50 systems. The0.01 stu showed that a dense initia showed that a dense initial configu to eject enough members to eject enough members from th of VLMOs. Todyn fa the the lacklack of VLMOs. To favour 30 40 50 60 70 20 30 40 50 60 70 Physical proper&es of ou>lows: Comparing CO-‐ and H2O-‐based parameters in Class 0 sources P. Bjerkeli, R. Liseau, B. Nisini, M. Tafalla, P. Bergman, G. Melnick and G. Rydbeck アウトフローのejecZon mechanismはCO以外で調べても同じなのか? Herchel、H20(110–101) 557 GHz, H20 212–101 1670 GHz Class0天体、L1448, L1157, VLA 1623 COはcold entrained ambient gas H2, H2Oはshocked gas (H2OはCOよりH2をtraceできる) td=Llob/vmax (mom1速度だとtdを過大評価、vmaxは過去のCOに一致) P. Bjerkeli et al.: Physical properties of outflows from Class 0 sources oullow age ~103 yr (衝撃波散逸より長く、freeze-‐outより短い) 運動量P、運動エネルギーE も推定。 l dP/dt, dE/dtはCOと同じくら いだが、2-‐3倍大きい。 l mass loss rate ~106 Mo yr–1 l 結論) CO地上観測で十分 l l l l l l l l L1157 200 VLA1623 L1448 150 Dec offset (") 100 50 0 −50 −100 −150 100 50 0 −50 RA offset (") −100 100 50 0 −50 RA offset (") −100 150 100 50 0 −50 RA offset (") −100 −150 X-‐Ray Determina&on of the Variable Rate of Mass Accre&on onto TW Hydrae N. S. Brickhouse, S. R. Cranmer, A. K. Dupree, H. M. Guenther, G. J. M. Luna and S. J. Wolk The Astrophysical Journal Letters, 760:L21 (5pp), 2012 December 1 1.2 1 G-Ratio [(f+i)/r] l TW HyaからのNe IX吸収線を観測し、星への 1.1 accreZon rateを直接調べる。 l 3つの時刻のデータ 1.0 l Mg XI, Ne X, Ne IX, O VIII, Fe XVII (cooling column 0.9 of the shock) l Mg XII, Si XIII, Si XIV (stellar corona) 0.8 1.5x10 l O VII (post shock) 1.2 l à 時刻3でTeが高く、N Hが小さい。 neは一定。 8 1 l NHの変化はaccreZon preshock streamがX線を吸 1.1 7 収していることを支持。 2 1.0 l Teは距離(truncated radius)のみで変わり、Mdot, 6 B*で決まる。 0.9 3 l モデルでMdot, B*, f (hot spot filling factor)を振っ 5 0.8 て、Te, ne, NHを合わせた 1.5x10 2.0x10 2.5x10 3.0x10 3.5x10 4.0x10 T (K) l 時刻3ではB*は変わらず、Mdotとfが小さくなった。 l X線を使うとMdotは過小評価されがちだが、可視 光の結果を合った。 6 The Astrophysical Journal Letters, 760:L21 (5pp), 2012 December 1 2 3 2.0x106 2.5x106 3.0x106 Te (K) 3.5x106 4.0x106 Brickhouse et al. He α/He β G-Ratio [(f+i)/r] Figure 1. Theoretical G-ratio (i.e., ratio of forbidden plus intercombination t 6.4 resonance line fluxes) for Ne ix as a 6.3 function of Te 6.2 (solid curve) from AtomDB (Foster et al. 2012; Chen et al. 2006). Overplotted are the observed ratios wit 1σ errors (vertical error bars) for the individual observations (open circles 3 numbered in time order) and for the summed spectrum (solid circle). Horizonta error bars (dashed lines) show how the errors on the observed ratios translate t the errors on Te . Ion 6 6 6 6 6 6 e Figure 1. Theoretical G-ratio (i.e., ratio of forbidden plus intercombination to resonance line fluxes) for Ne ix as a function of Te (solid curve) from AtomDB (Foster et al. 2012; Chen et al. 2006). Overplotted are the observed ratios with 1σ errors (vertical error bars) for the individual observations (open circles, numbered in time order) and for the summed spectrum (solid circle). Horizontal error bars (dashed lines) show how the errors on the observed ratios translate to the errors on Te . 1 Table 1 Emission Line Fluxes 2 λref a (Å) Flux (Uncorrected for Absorption) 6.6 (10−6 photons cm−2 s−1 ) Pointing 1b 6.5 Pointing 2b Pointing 3b Mg xi 9.17 21 2.5 ±210.4 1.7 2.4 ± 0. 21 ± 0.5 21 1x10 2x10 Ne x 9.71 1.8 ± 0.8 -2 3x103.1 ± 0.5 4x10 2.8 ± 0. NH (cm ) Ne x 10.24 7.0 ± 0.7 9.0 ± 2.0 8.7 ± 0. Ne ix 2. Ratio of11.00 7.3 ± 0.7 line (Heα)6.6 ± 1.0 7.9 ± 1. Figure the flux of the resonance to that of Heβ as a function ofNe hydrogen column for given 6.21. ix 11.54density (dashed 19.9 ± curves) 1.5 23.7 ±log 1.8[Te ] (K) from 24.2 ± toNe 6.6xas labeled.12.13 Absorption models McCammon (1983) 63.8 ±are 3.1from Morrison 74.1 ±&3.3 77.2 ± 3. and are from Foster al. (2012). Overplotted Feline xviiemissivities 12.27 3.2 ±et0.8 4.7 ± 1.0 are the observed 2.1 ± 0. ratios error ± bars) observations (open Ne ixwith 1σ errors 13.45(vertical128.3 6.9for the individual 144.7 ± 7.0 187.8 ± 8. circles, numbered in time order) and for the summed spectrum (solid circle). Ne ix 13.55 93.5 ± 5.5 97.8 ± 5.9 115.4 ± 6. Observed points are placed on the curve appropriate for their Te as determined Ne ix 13.70Horizontal47.4 ± bars 4.0 (dotted50.4 ± show 3.4 how the 53.9 ± 4. from their G-ratios. error lines) errors We have preferred to analyse the observed spectrum as it is, and have tried to obtain information also from the secondary spectrum. This was not trivial, mostly because no usual spectroscopic methods for the parameter determinations can be applied to the close companion. In fact, neither hydrogen lines nor elements with lines in two different ionization stages are independently observable. We based our parameters for the secondary mostly on the Ca I line at 6122.21 Å which is a good luminosity indicator (Cayrel et al. 1996). The two components for this line are rather well separated and free of blends. Unfortunately, the other two lines of the Ca I triplet at 6102.73 Å and 6161.30 Å are blended. The composite synthetic spectrum normalized to the continuum (PS) was computed according to the relation (Lyubimkov & Samedov 1987) The Herbig Ae SB2 System HD 104237 C.R. Cowley, F. Castelli, and S. Hubrig l l l l l 分光連星Herbig Ae Hd 104237 (DX Cha) weak absorpZon lineからabundanceを測った。 モデル大気 (ATLAS9)から主星はTeff=8250 K, 重力加速度log g=4.2 F (P )R + F (S)R F (P S) = . (1) F (P S) F (P )R + F (S)R 観測された等価幅(連星同士が混ざる)とモデルからの真の等価幅を使うと We use the subscript ‘λc’ to indicate the continuum at a wavelength λ. F for the primary (P) and secondary (S) have units of energy per 星の半径比がわかる。 unit area per sec per Ångström. R are the stellar radii. After some experimentation with alternate models and different 等価幅からabundanceもわかる。 radii ratios, we selected a ratio R /R = 1 (see Section 4.4), and the parameters T = 4800 K and log (g) = 3.7 for the secondary. was deduced from the A rotational velocity v sin (i) = 12 km 25元素調べて、ほとんどsolar vsalue comparison of the observed and computed profiles. We thank the referee, Barry Smalley, who pointed out that the same v sin (i) and Zrが最もenhanced、Liもenhanced macroturbulence (8 and 9 km s , respectively) would have nearly the same combined profile as a v sin (i) of 12 and no macroturbuLiは他のHerbig Aeでは見つかっていない。 lence. This would be the case if the stars were tidally locked. A microturbulent velocity ξ = 1.0 km s and solar abundances Herbig AeはmagneZc p/CP starになると考えられているが、化学的には K, log (g) = 4.0 and assumed were assumed. FBA used T = 4500 solar abundances and a microturbulent velocity ξ = 2 km s . indicaZveではない。(solarまたはmild oo) with the Fig. 3 compares the observed Ca profile at 6122.21λÅ B λ λ λc λc 2 P 2 P 2 S 2 S λ λc Figure 3. Observed (black) and calculated Ca I λ6122.21, with log (g) = 3.7 (light grey), and log (g) = 4.0 (dark grey). The main feature is due to the primary. Absorption from the same line in the secondary star (see the text) is to the violet. S P Table 2. Adopted parameters for primary and secondary atmospheres. eff −1 −1 Primary Secondary −1 t eff t −1 I composite profiles computed for Teff = 8250 K and log (g) = 4.2 for the primary and for both Teff = 4800 K, and log (g) = 3.7 and Teff = 4500 K and log (g) = 4.0 for the secondary. In the first case, the ratio of radii is RS /RP = 1, in the second case it was deduced from the relation MS gP RS2 = · . MP gS RP2 (2) for a mass ratio MP /MS = 1.29 (Böhm et al. 2004). The too broad wing of the secondary star profile computed for log(g) = 4.0 is evident. The adopted parameters for the two components (Table 2) were well suited to reproduce several primary–secondary pairs of profiles as Fe I at 4950.11, 4969.92, 5002.793, 5393.17, 5576.09, 6065.48, 6252.56, 6335.33 Å, Ca I 6717.68 Å, and several others. Teff K log (g) ξ turb 8250 ± 200 4800 ± 200 4.2 ± 0.25 3.5− ≤ 3.7 2.5 ± 1 1.0 ± 1 Downloaded from http://mnras.oxfordjournals.org/ at National Astronomical Observatory of Japan on April 18, 2013 l l l l