Comments
Description
Transcript
i (t) - apctp
Foundation of gravitational wave data analysis III, IV Kazuhiro Hayama Osaka City University 13年8月9日金曜日 Content Feature of observed data Search for gravitational wave bursts Single detector case Multiple detector phase Multimessenger observation 13年8月9日金曜日 Expected gravitational wave sources Continuous Stochastic Transient Waveform parameterization Waveform highly uncertain Supernovae Gamma-ray bursts Pulsar glitches Soft Gamma Repeater 13年8月9日金曜日 GW bursts −22 3 x 10 amplitude 2 1 0 Kotake et al. −1 0 0.2 0.4 time[s] 0.6 0.8 −20 4 x 10 amplitude 3 2 1 0 −1 Takiwaki et al. −2 0 0.02 0.04 0.06 time[s] 0.08 0.1 −21 4 x 10 2 amplitude 0 −2 −4 Kuroda et al. −6 −8 0 13年8月9日金曜日 0.01 0.02 0.03 time[s] 0.04 0.05 0.06 GW bursts Pulsar glitches ∆Ω/Ω~10-6 τ~50-500[ms] Starquake from LMXBs etc Crust collapse due to accretion onto a neutron star, Coincidence emission of a X-ray and a GW 13年8月9日金曜日 GW bursts Gamma-ray bursts NSNS binaries Hypernovae Soft Gamma Repeater Flares from magnetars 13年8月9日金曜日 Search for gravitational wave bursts Feature of observed data Search method for GW bursts 13年8月9日金曜日 Search for gravitational wave bursts Unlike search for inspiraling signals, the burst search cannot use template. Every burst-like signal showing up has to be regarded as a candidate of true GW signal at first. We have to watch observation data very carefully, how well the data condition is, what kind of statistical property the data has, ... 13年8月9日金曜日 Interferometric Gravitational Wave Detector Abramovici et al. Science (1992) 13年8月9日金曜日 Detector and Noise v = G(Γ(x + xn + xe ) + en ) Object Sensor Pre-amplifier Amplifier &Filter Γ x Sensor Noise xn External Noise xe Electric Noise en Experimental Apparatus Mio, 2013 v is observed data. Strain h is calibrated from v. 13年8月9日金曜日 Calibration −1 h = H Verr + AVfb Interferometer h Verr H − D A F Vfb 13年8月9日金曜日 Feedback Detector and Noise Input-equivalent noise xequ = xn + en / Γ Important “xequ is small” Noise that limits the detector sensitivity is the ones near the sensors The fundamental noise : Noise that the sensors have cannot be removed. The detector is designed so that the sensitivity of the detector is limited by the fundamental noise of the sensor 13年8月9日金曜日 Fundamental detector noise Seismic Noise test mass (mirror) Residual gas scattering Beam splitter LASER Wavelength & amplitude fluctuations photodiode Radiation pressure "Shot" noise Quantum Noise 13年8月9日金曜日 Rana Detector noise There are various kinds of noise Stationary noise The statistical property is well known. Mathematically called stochastic process. Non-Stationary noise Unexpected noise transients, Non-reproducible noise. Very difficult for treat. This kind of noise affects the burst search in particular. 13年8月9日金曜日 How do you see feature of noise ? Two signals have same variance, but apparently their frequency are much different. 13年8月9日金曜日 Spectral Analysis Variance is mean squared value of a signal, which lose frequency information. x(t) = Asin(ω t + φ ) Variance = A / 2 2 Spectral analysis is a powerful tool for seeing the frequency structure. Power spectrum density will be introduced here. 13年8月9日金曜日 Power Spectral Density (Two-sided )Power spectral density S(ω) is defined as | XT (ω ) | 2 S(ω ) = lim 2π T T →∞ The Variance σ2 is written as σ = x(t) 2 2 1 = lim T →∞ T ∫ T /2 − T /2 x(t)2 dt dω = lim ∫ | XT (ω ) | T →∞ − T /2 2π T T /2 = ∫ ∞ −∞ 2 S(ω )dω The PSD decomposes a signal power into power at frequency components. 13年8月9日金曜日 Power Spectral Density It is useful to define one-sided PSD as a function of frequency: σ = 2 ∫ ∞ −∞ S(ω )dω = ∫ ∞ 0 G( f )df , G( f ) = 4π S(2π f ) What is the unit of the PSD ? σ = 2 V2 13年8月9日金曜日 ∫ ∞ 0 G( f )df V2/Hz Hz Feature of observation data Frequency dependent data Narrow frequency band feature Non-Stationarity 13年8月9日金曜日 Frequency dependent noise spectrum ic Seism r e s Th e rm 13年8月9日金曜日 La al t o sh Narrowband Feature in Spectrum Violin modes in LIGO 2010NIMPA.624..223A Barish 1999 13年8月9日金曜日 V. Boschi D. thesis Thermal noise spectrum Solving EoM of harmonic oscillator driven by random force, 13年8月9日金曜日 Non-Stationarity Changing the sensitivity in short time scale Different statistical properties of different frequency bands 13年8月9日金曜日 Non-Stationarity There are many burst-like noise coming from the detector, environment around. It is hard to distinguish between noise and true GWs 13年8月9日金曜日 Spectrogram A series of PSDs of short time segments. Good tool for seeing signals in the time-frequency map. 13年8月9日金曜日 Data Conditioning The GW data is not ready for search for very weak, unknown transients. We need data conditioning Whitening Removing artifacts ( Line removal ) 13年8月9日金曜日 Whitening : Linear Prediction Error Filter Linear Prediction Part: Assume x[n] can be expressed as a linear combination of previous M samples M x[n] = ∑ c[m]x[n − m] m=1 Prediction Error: e[n] = x[n] − x[n] Determining c[m]: Determine c[m] so that the mean square of the prediction error is minimum N 1 2 2 σ e = ∑ e[n] N n=1 13年8月9日金曜日 Linear Prediction Error Filter The necessary condition is ∂σ = 0, 1 ≤ k ≤ M ∂c[k] 2 e This equation results in Yule-Walker equation M ∑ r[m − k]c[m] = r[k], 1≤k ≤ M m=1 N /2 1 r[k] = lim x[n]x[n − k] ∑ N→∞ N n=− N /2 r[k] is autocorrelation coefficients. In practice, N is finite, N 1 r[k] = x[n]x[n − k] ∑ N n=k+1 13年8月9日金曜日 Example of the Linear Prediction Error Filter 5 x 10 20 band pass filterd at 64Hz 2000Hz 0 5 0 0.02 0.04 0.06 0.08 0.1 0.12 0.1 0.12 after conditioning 0.5 0 0.5 0 13年8月9日金曜日 0.02 0.04 0.06 0.08 Line removal (MBLT) x ei : time series to be line removed (k ) : estimate in stage k of a line at frequency fi (k ) To obtain ei , first subtract ei is obtained by x (k ) i xi (k ) = x − ei (k −1) and the modified time series ei (k ) i-th line (k −1) M lines fi Frequency 13年8月9日金曜日 Line removal (k ) Heterodyne xi at the carrier frequency fi X = L({xn * cos(2π fi n)}) Y = − L({xn * sin(2π fi n)}) Apply a running median to both quadratures Xn = median({X j }), j = n − m,..n,..n + m (k ) The line estimate ei is obtained by modulating a carrier at fi with two quadrature en 13年8月9日金曜日 (k ) = Re((Xn + iYn )exp(2π fi n)) Example of line removal Before 13年8月9日金曜日 After Detection statistics Observation data h can be written as summation of a gravitational wave(if it contains) s and detector noise n h= s+n + − s = F+ s + F− s Our goal is to decide a gravitational wave s exist or not from the observed data h. The decision is performed using the statistical hypothesis testing. Standard method is Neyman–Pearson’s likelihood ratio test p[h | s] : Probability to obtain h when s exists. p[h | 0] : Probability to obtain h when s exists. p[h | s] Λ[h] ≡ p[h | 0] 13年8月9日金曜日 Detection statistics Assume the detector noise n is distributed with white Gaussian, p[n] is ⎡ n⋅n⎤ p[n] = C exp ⎢ − ⎥ 2 ⎣ ⎦ In case of p[h|s] and p[h|0], n can be expressed as n= h−s n=h The likelihood ratio is p[h | s] 1 ⎡ ⎤ = exp ⎢ (s ⋅ h) − (s ⋅ s) ⎥ p[h | 0] 2 ⎣ ⎦ 13年8月9日金曜日 Search method p[h | s] 1 ⎡ ⎤ = exp ⎢ (s ⋅ h) − (s ⋅ s) ⎥ p[h | 0] 2 ⎣ ⎦ We search s of which the likelihood ratio is beyond a given threshold going through all over parameter space. In case of CBC, the waveform is well parameterized (s(p1,p2,...)) the parameters can be limited ~10. In such case, matched filter method is the optimal。 In case of a supernova, the waveform cannot be parameterized in practice, we have to go other way. Flanagan&Hughes(1998) proposed a novel method in their research on a GW from a BH-BH merger. They found a GW from a BH-BH merger could be expressed in a small region of the time-frequency space Frequency and proposed excess power method : to find time-frequency regions of which power excesses other regions. Time 13年8月9日金曜日 Detection of gravitational wave bursts Single detector case Detector network case 13年8月9日金曜日 Single detector case Assuming a GWB is localized in a limited timefrequency space. Excess power method is applied to fine time-frequency tiles. Also this search is necessary for evaluation of the data quality of a detector. 13年8月9日金曜日 Excess Power Method Assume a gravitational wave signal concentrates into timefrequency region T={ts,δt,fs,δf} The Fourier components in the Nt −1 region are −2 π i(t −t ) f K = H ∑e j =0 j s k h(t j ) 1 k t j = ts + jΔt, Nt = δ t / Δt, fk = Δt Nt 2 k2 H K h = h + h⊥ E ≡ h ⋅ h = 4 ∑ 2 k =k1 σ δ f = f2 − f1 , f1 = k1 / δ t, f2 = k2 / δ t If data is noise only, E is distributed with χ2 with degree of T=2δtδf. Excess power tiles will be detected by χ2 test. 13年8月9日金曜日 T(δt,δf) s h|| χ2 test For the Gaussian distributed noise x(t), the Fourier components X(f) is also Gaussian distributed. Therefore the power |X(f)|2 is χ2 distributed. In order to decide the power in T(δt,δf) comes from just noise or a GW statistically, we test whether the power follows the χ2 distribution. This test is called χ2 test. N χ =∑ 2 i=1 ( Ei − En ) 2 Ando En We test whether the probability χ2 is found in the χ2-distribution with N degrees (called p-value) is beyond a given threshold. If the p-value is under the given threshold, we reject that T(δt,δf) is noise only. 13年8月9日金曜日 χ χ2 Excess Power Method Project time series data onto the timefrequency space by Fourier space. Calculate the excess power changing the time-frequency window Find TF tiles of which power is beyond a given threshold. Group the tiles coming from a same event The reconstruction of the event is finished. 13年8月9日金曜日 Excess power for single data Since we have multiple detectors, the single detector search may not be effective. But the idea should be useful as Tools for Detector characterization Tools to extract physical information from detected GWs 13年8月9日金曜日 Neutrino Heating Mechanism Clear relation between the explosion mechanism and the gravitational waveform 13年8月9日金曜日 MagnetoHydroDynamic mechanism Kotake 13年8月9日金曜日 Clustering method Frequency Threshold sort by E Select Emax Time Overlapped with more stronger pixels? no Select next pixel 13年8月9日金曜日 yes Remove the pixel Clustering method Frequency Threshold sort by E Select Emax Time Overlapped with more stronger pixels? no Select next pixel 13年8月9日金曜日 yes Remove the pixel Clustering method Frequency Threshold sort by E Select Emax Time Overlapped with more stronger pixels? no Select next pixel 13年8月9日金曜日 yes Remove the pixel Clustering method Frequency Threshold sort by E Select Emax Time Overlapped with more stronger pixels? no Select next pixel 13年8月9日金曜日 yes Remove the pixel Clustering method Frequency Threshold sort by E Select Emax Time Overlapped with more stronger pixels? no Select next pixel 13年8月9日金曜日 yes Remove the pixel Clustering method Frequency Threshold sort by E Select Emax Time Overlapped with more stronger pixels? no Select next pixel 13年8月9日金曜日 yes Remove the pixel Clustering method Frequency Threshold sort by E Select Emax Time Overlapped with more stronger pixels? no Select next pixel 13年8月9日金曜日 yes Remove the pixel Clustering method Frequency Threshold sort by E Select Emax Time Overlapped with more stronger pixels? no Select next pixel 13年8月9日金曜日 yes Remove the pixel Clustering method Frequency Threshold sort by E Select Emax Time Overlapped with more stronger pixels? no Select next pixel 13年8月9日金曜日 yes Remove the pixel Clustering method Frequency Threshold sort by E Select Emax Time Overlapped with more stronger pixels? no Select next pixel 13年8月9日金曜日 yes Remove the pixel Clustering method Frequency Threshold sort by E Select Emax Time Overlapped with more stronger pixels? no Select next pixel 13年8月9日金曜日 yes Remove the pixel Clustering method Frequency Threshold sort by E Select Emax Time Overlapped with more stronger pixels? no Select next pixel 13年8月9日金曜日 yes Remove the pixel Clustering method Frequency Threshold sort by E Select Emax Time Overlapped with more stronger pixels? no Select next pixel 13年8月9日金曜日 yes Remove the pixel Clustering method One of other methods is to combine spectrograms considering multiple detector data. 13年8月9日金曜日 Detector network case Data analysis with a multiple-detector network is important for the burst searches → The false alarm rate is dramatically improved. Two types of data analysis methods. Coincidence analysis Coherent network analysis 13年8月9日金曜日 Coincidence analysis In the coincidence analysis, we first analyze each detector data separately, and generate event lists. The gravitational wave signal is recorded in each detector with slightly different arrival times. The arrival time depends on where the gravitational wave comes from. The coincidence analysis will test whether the listed triggered events in each event list are within a given coincidence window or not. The time window is w、the peak times of triggered events in the i-th and j-th detector are ti, tj, the durations are Δti, Δtj, the condition ti、tj have to be satisfied is 1 | ti − t j | ≤ w + (Δti + Δt j ) 2 Typically w is decided as maximum light-travel-time between detectors. 13年8月9日金曜日 Waveform consistency test There are lots of coincident noise transients in each detector. In order to veto these events, we need use more information. One method is to test waveform consistency. Pearson product-moment correlation coefficient is defined as N R= ∑ (x i − x )( yi − y) i=1 N ∑ (x i=1 i − x) N 2 ∑ ( y − y) 2 i i=1 http://adsabs.harvard.edu/abs/2004CQGra..21S1695C 13年8月9日金曜日 Coherent network analysis ⎡ x1 (t) ⎢ ⎢ ⎢ xd (t) ⎣ ⎤ ⎡ F1+ (θ , φ ) F1× (θ , φ ) ⎥ ⎢ ⎥=⎢ ⎥ ⎢ F1d (θ , φ ) Fd × (θ , φ ) ⎦ ⎣ data = detector response x Response Reconstruction ⎤ ⎡ n1 (t) ⎥ ⎡ h+ (t) ⎤ ⎢ ⎥+⎢ ⎥⎢ ⎥ ⎢⎣ h× (t) ⎥⎦ ⎢ nd (t) ⎦ ⎣ ⎤ ⎥ ⎥ ⎥ ⎦ gravitational wave + noise ξi (t) = Fi+ (θ , φ )h+ (t) + Fi× (θ , φ )h× (t) h = (AT A)−1 AT x Extraction of a gravitational wave is performed by solving the inverse problem. Finding most likely signals by changing sky position (θ,ϕ). 13年8月9日金曜日 Coherent network analysis ⎡ x1 (t) ⎢ ⎢ ⎢ xd (t) ⎣ x ⎤ ⎥ ⎥= ⎥ ⎦ ⎡ F1+ (θ , φ ) F1× (θ , φ ) ⎢ ⎢ ⎢ F1d (θ , φ ) Fd × (θ , φ ) ⎣ A ⎤ ⎡ n1 (t) ⎥ ⎡ h+ (t) ⎤ ⎢ ⎥+⎢ ⎥⎢ ⎥ ⎢⎣ h× (t) ⎥⎦ ⎢ nd (t) ⎦ ⎣ h ⎤ ⎥ ⎥ ⎥ ⎦ ξi (t) = Fi+ (θ , φ )h+ (t) + Fi× (θ , φ )h× (t) −1 h = (A A) A x T T Solving the inverse problem using the maximum likelihood method. Calculating likelihood statistic at all over the sky position. The GW candidates are the signals of which L is beyond a given threshold set by the background noise study. L = max(− x − Ah ) 2 where x 2 d = ∑ ∫ xi (t)T xi (t) dt i=1 data(x) − estimated signal(ξ ) 13年8月9日金曜日 2 T 0 h = (AT A)−1 AT x Likelihood Sky-map In case of noise only data, the typical pattern of the likelihood sky map shows up. The pattern of the noise only skymap change with which detector network you use. −20 1 x 10 If a gravitational wave contains, then the pattern changes 0.5 0 H1-H2-L1 −0.5 Noise θ −1 0 θ ϕ 13年8月9日金曜日 Noise+Signal ϕ 0.02 0.04 0.06 0.08 0.1 0.12 0.14 Likelihood Sky-Map around a GW burst 13年8月9日金曜日 Ill-Poseness of Inverse Problem At some sky positions, one of eigenvalues of the antenna pattern A becomes very small. This lead the inverse problem to ill-posed one. The variance is amplified. 90 N θ latitude 45 N 0 45 S 90 S 180 W135 W90 W 45 W 0 45 E 90 E 135 E180 E longitude ϕ 13年8月9日金曜日 Injected signal: sineGaussian235HzQ9 Condition Number Ill-poseness are characterized by condition number. Cond(A) over the skymap of H1-H2-L1-V1 log10 scale Feature: Cond(A) , then, error of the solution Strength of Ill-poseness strongly depends on the sky location 13年8月9日金曜日 Tikhonov regularization Tikhonov regularization: technique to address this Ill-pose problem Impose regulator on the maximum likelihood Regulator should be a function of the sky location Consider eigenvector of M=ATA: We can assume 0 (detectors are co-aligned) Condition number Regulator so that condition number ~ 1 13年8月9日金曜日 Cond(A) over the skymap Effect of regulator After adding regulator 90 N 90 N 45 N 45 N 0 latitude latitude Before adding regulator 0 45 S 45 S 90 S 180 W135 W90 W 45 W 0 45 E 90 E 135 E180 E longitude 90 S 180 W135 W90 W 45 W 0 45 E 90 E 135 E180 E longitude 13年8月9日金曜日 Error of the regularized ML approach The error consists of two components: Bias and Variance Bias Variance Total error Bias g g 13年8月9日金曜日 0 Bias 1 Bias + Variance Variance Variance corresponds to Gursel&Tinto formula corresponds to constraint coherent approach by Klimenko Position reconstruction of a burst 10 LHV is >10°, but adding KAGRA~1° Important for multi-messenger obs. 1 Klimenko et al.(2011) 13年8月9日金曜日 Error region H1L1V1 network Likelihood skymap burst signal containing Median Error Region The region where likelihood is larger than at true position and the true position is included with 50% probability The root of the total error area is called median error region 13年8月9日金曜日 Triggered events 13年8月9日金曜日 S5+S6 result LVC, 2012 13年8月9日金曜日 But everything is under assumption of Gaussian.... Yes, it is. Should we go to non-Gaussian world and construct new tools? PSD, likelihood, data conditioning, ... At present, nobody knows. 13年8月9日金曜日 Noise modeling(inspiral case) Roever(2011) 13年8月9日金曜日 Noise modeling(burst case) 0 10 Student Student detection efficiency −1 10 Gauss Student −2 10 Gauss Student Gauss Gauss Student Gauss Hayama, Roever −3 10 −4 10 −3 10 −2 10 false alarm probability 76 13年8月9日金曜日 −1 10 0 10 Multimessenger observation 13年8月9日金曜日 Difficulty of the detection and confirmation A lot of GW-like noise transients → Cannot veto even taking coincidence The accuracy of position reconstruction is not enough → Difficult to identify what is the source. It is very important to identify the source of the gravitational wave in collaboration with multi-ray, multi-band astronomical telescopes 13年8月9日金曜日 Multi-Messenger observation http://www.gw.hep.osaka-cu.ac.jp/gwastro/overview.html 13年8月9日金曜日 Multimessenger Observation Mainly two ways GW → EMs Follow-up EMs→ GW Follow-up 13年8月9日金曜日 EM triggers → GW observation GW event alert → Follow-up by EM telescopes EM event alert → Follow-up by deep analysis of GW archived data Position, time, source type 13年8月9日金曜日 Triggered GW searches γ ray、X ray event triggered GW searches Sources:GRB、SGR、pulsar glitches Can use information event time, sky location Confident detection Astronomy from multiple inormation GRB triggered search Off-source On-source GRB 13年8月9日金曜日 Off-source SGR1806-20 hyper flare SGR hyperflare showed on Dec. 27th, 2004 Distance:6-15kpc, E~1046erg, lasting ~6 min LIGO Hanford(4km) in science mode 13年8月9日金曜日 GW search associated with GRB 137 GRB found during S5(2005-2007) binary merger search ApJ 715 1435(2010) at 150Hz with 0.01M⦿c2=1.8x1052erg Upper limit equivalent distance unmodeled search ApJ 715 1438(2010) 13年8月9日金曜日 S6 GRB searches S6(July 2009-October 2010) LIGO Hanford-LIGO Livingston-Virgo network 404 GRBs observed by GCN (Gamma-ray burst coordinates network) Unmodeled bursts with Egw=10e-2 Mpc 13年8月9日金曜日 B150Hz 17 B300Hz 7 Merger NSNS 16 NSBH 28 GRB070201, GRB051103 Short GRBs GRB070201 : sky location overlapped with M31 (770kpc) GRB051103 : sky location overlapped with M81 (3.6Mpc) no GW found Binary coalescence in M31 were excluded at > 99% CL Binary coalescence in M81 were excluded at > 98% CL Maybe Neutron star quake in M31, M81 Coalescence in galaxy behind M31, M81... 13年8月9日金曜日 Pulsar glitch ∆Ω/Ω~10-6 Sudden change of spin frequency Possible GW source Spin frequency[Hz] 103 PSR J1824-2452 102 Crab Vela PSR J0537-6910 101 100 10-1 10-2 10-1 100 101 Distance[kpc] 13年8月9日金曜日 102 GW search associated with pulsar glitches 10-15 h[f] 10-20 10-25 10-30 10-35 10-1 100 101 102 Frequency[Hz] 13年8月9日金曜日 103 104 Process of multimessenger obs. GW alert --> EM followup observation Transient alert from EM telescopes --> GW data analysis position reconstruction sky area for obs 13年8月9日金曜日 Process of MultiMessenger Observation Winter run : FAR < 1 per day Autumn run : FAR < 0.25 for most telescopes, < 0.1 for PTF and Swift 13年8月9日金曜日 Select Observation region for follow-up Blue Luminosity (Bigger, More stars form) GW data LB × Likelihood P= Distance GWGC 13年8月9日金曜日 GWGC: Gravitational Wave Galaxy Catalog Contains ~50,000 galaxies within 100Mpc Four catalog compilation: Tully Nearby Galaxy Catalog, Neighboring Galaxies, V8k, HyperLEDA Uses Principal Galaxy Catalog(PCG) identifier to improve removal of degenerate galaxies from multiple catalog Main problem: Incompleteness D. White et al, 2011 92 13年8月9日金曜日 Coordinated search with EM telescopes Optical TAROT, Zadko, QUEST ROTSE Pi of the Sky SkyMapper PTF Liverpool Telescope X-ray Swift 13年8月9日金曜日 EM Partners winter/autumn autumn Optical telescopes (sq. deg.) o TAROT : 3.4 o Zadko : 0.17 o ROTSE : 3.5 o QUEST : 9.4 o SkyMapper : 5.7 o Pi of the Sky : 400 o PTF : 7.8 o Liverpool : 21 13年8月9日金曜日 Radio o LOFAR : 30-240MHz, 25 sq. deg. o EVLA : 5GHz, 7sq. arcmin. 13年8月9日金曜日 Follow up observation conducted in S6 Optical telescopes Winter run : 8 GW alerts →4 observed by > 1 telescopes Autumn run : 6 GW alerts →5 “ Obtained ~ 1800 images in total. X-ray satellite : Swift 2GW alerts were sent and observed Radio telescopes LOFAR : 5GW alerts were sent and observed Expanded-VLA : 2GW alerts observed but high-latency followup(3weeks, (5weeks, 8months) later.) 6cm observations 13年8月9日金曜日 Optical Follow-up Analysis Image subtraction Reference image subtracted from images Resulting image contains transients Thresholds used to remove background PTF, ROTSE, SkyMapper and Liverpool 13年8月9日金曜日 Catalog-based search Catalog of objects visible in fields created (SExtractor) Track variability across multiple images Threshold flux changes used to find interesting transients TAROT, QUEST, Zadko and Pi of The Sky G18666 13年8月9日金曜日 G19377 13年8月9日金曜日 G20190 13年8月9日金曜日 G21852 13年8月9日金曜日 G23004 13年8月9日金曜日 LOFAR Low frequency array LOFAR can image up to 24 5°x5° fields simultaneously. Low latency radio all-sky monitor LVC awarded ~4 hours-per-week observing-time during S6 Followed up 6 GW alerts. Results not yet 13年8月9日金曜日 Expanded VLA Radio source detection Variability analysis Identification of contaminating transients (AGN?) 6 sources in the fields of each galaxy consistent with number of expected serendipitous sources (Windhorst, 2003) 13年8月9日金曜日 Image region ~30’ around one galaxy Nominal FOV of 7’ Green Bank Telescope Radio pulses from Green Bank Telescope Drift-scan Possible joint sources includes CBCs, pulsar glitches, cosmic strings, ... (although most pulses are probably just terrestrial background...) 32 single pulse candidates coincident with S5/VSR1 Analysis is in progress(almost finished). 13年8月9日金曜日 Nasu radio telescope One can observe any direction within +/- 5deg from the zenith (Dec. +32deg ~ +42deg) For RT19870422-like events, Nasu reaches ~100Mpc 106 13年8月9日金曜日 http://www.astro.phys.waseda.ac.jp/index-e.html WJN Radio transients 3min. 3min. Flux 2Jy 2Jy Time 13年8月9日金曜日 107 10 Niinuma et al. 2009 Radio afterglow ? RT19840613 RT19870422 o flux: 0.4-0.6mJy at 140Mpc o duration: < 7days o event rate: 6000-150000Gpc-3yr-1 (consistent with estimated CBC rate ref:J.Abadie et al. (2010)) o flux: 1.5-2.0mJy at 1.05Gpc o duration: ~2months o event rate: 80-20000Gpc-3yr-1 (consistent with estimated CBC rate) 108 13年8月9日金曜日 Bower et al. ApJ 666 346-360 (2007) RXTE PCA Crust collapse due to accreting mass etc. rho, LIGO SNRGW 3 4 3.5 2.5 3 2 2.5 1.5 2 1.5 1 1 0.5 0.5 0 0 20 40 60 80 100 120 140 energy/noise_variance, RXTE PowerX 13年8月9日金曜日 0 Swift Observatory Three telescopes on one platform BAT: γ rays(15-150keV), wide FOV XRT: X rays(0.3-10keV), 0.4°x0.4°FOV UVOT: 170nm, 0.28°x0.28°FOV Provided a few pointing to GW candidates via ToO program in 2009-2010 13年8月9日金曜日 GW-XRT pipeline raw sky-map by GW Sky-map provided by the burst pipeline (O(100deg2)) GWGC: within 50Mpc (O(100deg2)→ O(1deg2)) Re-calculation of sky-map weighted by blue light luminosities, distances, Mi L P∝∑ Di i Five tiles at one event were sent to Swift. Joint event significance Λ joint (η , S,Ω) = Λ GW (η )Λ EM (S)Λ cor (Ω) GW obs p(η | signal) Λ GW = p(η | noise) 13年8月9日金曜日 from 2XMMi-DR3 Inverse of P of observing an accidental P for position correlation serendipitous Xray sources not correlated between X and GW with GW Summary of XRT detections 13年8月9日金曜日 UVOT analysis 20 reduced-threshold XRT detections were examined in UVOT. No XRT detection corresponds to an UV-optical transients or a variable source. 13年8月9日金曜日 Summary of XRT detections 13年8月9日金曜日 Process of the first detection R. Weiss (MIT) 3 13年8月9日金曜日 2010年9月16日 Human Check Burst pipeline (cWB) L1 tdog+8[m] H1 tdog+42[m] 6 13年8月9日金曜日 Requested sky region for follow-up Top$1000$pixels$reported$ • $total$area:$129$sq$deg$ • $es5mated$containment:$19%$ Telescopes$pointed$at$$ nearby$galaxies$(<50$Mpc)$$ in$this$area$ Zadko' Swi$% Usable'images:' • TAROT:&20,&+&[44&min&0&4&day]& • ROTSE:&102,&+&[0.5&0&29]&day& • Zadko:&63,&+&[1,&160]&day& • SkyMapper:&21,&+&8&day& • Swi$:&4,&+&[0.5,&105]&day& SkyMapper TAROT,' ROTSE' Zadko' 13 13年8月9日金曜日 nearby'' galaxies' Big Dog in the sensitivity curves SNR=15@LHO SNR=10@LLO 13年8月9日金曜日