...

基礎数学II

by user

on
Category: Documents
6

views

Report

Comments

Transcript

基礎数学II
基礎数学Ⅱ
http://www.biwako.shiga-u.ac.jp/sensei/kumazawa/
11/19/2003
次の極限値を求めよ。
(i) lim
x↓3
x2 − 9
|x − 3|
(v) lim (1 +
x→+∞
x2 − 9
(ii) lim
x↑3 |x − 3|
√
x−2
(iii) lim
x→4 4 − x
3 x
)
2x
tan x
x→0 x
(vi) lim
sin x
x→+∞ x
(vii) lim
(2 + h)4 − 16
h→0
h
(iv) lim
(i)
lim
x↓3
(ii)
x2 − 9
=
|x − 3|
lim
x↓3
x2 − 9
x−3
=
lim(x + 3)
=
6
x2 − 9
=
lim
x↑3 |x − 3|
(∵ x > 3)
x↓3
x2 − 9
lim
x↑3 −x + 3
=
lim(−x − 3)
=
−6
(∵ x < 3)
x↑3
(iii)
√
x−2
=
lim
x→4 4 − x
=
=
=
√
√
( x − 2)( x + 2)
lim
√
x→4 (4 − x)( x + 2)
x−4
lim
√
x→4 (4 − x)( x + 2)
1
− lim √
x→4
x+2
1
−
4
√
(∵ 分子・分母に ( x + 2) を掛けた)
(iv)
(2 + h)4 − 16
=
h→0
h
lim
=
lim
=
lim(x + 2)(x2 + 4)
=
8 + 8 + 8 + 8 = 32
lim
(v)
lim (1 +
x→+∞
3 x
) =
2x
=
=
(vi)
x→2
x4 − 16
x−2
(∵ 2 + h = x とおいた)
(x2 − 4)(x2 + 4)
x→2
x−2
x→2
1
lim (1 + )(3y/2)
y→+∞
y
1 3
lim (1 + )y 2
y→+∞
y
(∵
3
= y とおいた)
2x
1
(∵ lim (1 + )x = e)
y→+∞
y
3
e2
tan x
=
x→0 x
lim
=
=
(vii) すべての実数 x に対して、
sin x
x→0 x cos x
sin x
1
× lim
lim
x→0 x
x→0 cos x
lim
1×1=1
| sin x| ≤ 1
よって、
−
1 sin x 1
≤
≤
x
x
x
x → +∞ の時の極限値を考えており、
1
= 0,
x→+∞ x
− lim
であるから、
1
=0
x→+∞ x
lim
sin x
=0
x→+∞ x
lim
11/19/2003
12/03/2003
次の関数を x に関して微分せよ。
(i) y =
1
1
1
+ 2 + + x + x2 + x3
3
x
x
x
(ii) y =
x
1 + x2
(iv) y = (x2 + x + 1)2 − (x3 + 1)3
(v) y =
(iii) y = (1 + x)3
1+x
1 + x + x2
(i)
1
1
1
+ x + x2 + x3
+
+
x3 x2 x
= x−3 + x−2 + x−1 + x + x2 + x3
y=
で,微分
d n
{x } = nxn−1
dx
(n は整数)
が成立するから
y =
=
(ii)
y =
=
=
−3x−4 − 2x−3 − x−2 + 1 + 2x + 3x2
− x34 −
2
x3
−
1
x2
+ 1 + 2x + 3x2
1
2
2 ×
(1
+
x
)
−
x
×
(1
+
x
)
(x)
(1 + x2 )2
1
2
2
(1
+
x
)
−
2x
(1 + x2 )2
1 − x2
(1 + x2 )2
(∵ 関数の商の微分の公式)
(iii)
y =
=
3(1 + x)2 × 1 (∵ 合成関数の微分)
3(1 + x)2
(iv)
y =
=
2(x2 + x + 1)1 × (2x + 1) − 3(x3 + 1)2 × (3x2 )
(∵ 合成関数の微分)
2(x2 + x + 1)(2x + 1) − 9x2 (x3 + 1)2
(v)
y =
=
=
1
2
2 (1
+
x)
×
(1
+
x
+
x
)
−
(1
+
x)
×
(1
+
x
+
x
)
(1 + x + x2 )2
1
2
)
−
(1
+
x)
×
(1
+
2x)
(1
+
x
+
x
(1 + x + x2 )2
x(2 + x)
−
(1 + x + x2 )2
12/03/2003
12/10/2003
次の関数を x に関して微分せよ。
(i) y = xn ex
(ii) y =
(iii) y =
(iv) y = x(log x − 1)
ax + b
cx + d
x3
(v) y = log(x +
1 − 3x
+ x2 − 2
(vi) y =
x+
√
√
x
x2 + a2
(i)
y =
=
(ii)
nxn−1 ex + xn ex
x2 + a2 )
(∵ 関数の積の微分公式と
d{ex }
= ex )
dx
xn−1 ex (n + x)
y =
=
=
ax + b
cx + d
1
a × (cx + d) − (ax + b) × c
(cx + d)2
ad − bc
(cx + d)2
(∵ 関数の商の微分公式)
(iii)
1 − 3x
x3 + x2 − 2
1
3
2
2
− 3 × (x + x − 2) − (1 − 3x) × (3x + 2x)
(x3 + x2 − 2)2
1
3
2
2
3
2
− 3x − 3x + 6 − (3x + 2x − 9x − 6x )
(x3 + x2 − 2)2
3 x3 − x + 3
2
x3 + x2 − 2 2
y =
=
=
=
(∵ 関数の商の微分公式)
(iv)
y =
x(log x − 1)
=
1
1 × (log x − 1) + x( − 0)
x
=
log x
(v)
(∵ 関数の積の微分公式と
y =
√
log(x +
d{log x} 1
= )
dx
x
x2 + a2 )
√
1
d{x + x2 + a2 }
×
√
dx
x + x2 + a2
=
ここで,第2項は
d{x +
√
√
x
x2 + a2 }
x + x2 + a2
=1+ √
= √
dx
x2 + a2
x2 + a2
となるから,
√
1
x
+
x2 + a2
y =
× √
√
x + x2 + a2
x2 + a2
1
= √
x2 + a2
(vi)
y =
=
=
=
=
x+
(x +
(x +
(x +
(x +
√
√
√
√
√
x
x2 + a2
1
x2 + a2 )2
1
x2 + a2 )2
1
x2 + a2 )2
a2
× 1 × (x +
× x+
√
√
x2
+
a2 )
− x × (1 + √
x2 + a2 − x − √
(x2 + a2 − x2 ) √
1
x2
x
x2 + a2
)
x2 + a2
x2 + a2
√
x2 + a2 )2 x2 + a2
12/10/2003
12/17/2003
次の関数を x に関する 1 次,2 次,3 次導関数を求めよ。
(i) y = exp(
x2
)
2
(iii) y = sin(ex )
(ii) y = log(1 + x2 )
(i) 1 次導関数
y = x exp(
x2
)
2
2 次導関数
y = y
x2
= x exp( )
2
= 1 × exp(
= exp(
x2
x2
) + x × x exp( ) (∵ 積の微分)
2
2
x2
)(1 + x2 )
2
3 次導関数
(3)
y
= y
x2
2
= exp( )(1 + x )
2
= x exp(
= exp(
(ii) 1 次導関数
(∵ 上の 2 次導関数)
x2
x2
) × (1 + x2 ) + exp( ) × (2x)
2
2
x2
)x(3 + x2 )
2
(∵ 積の微分)
1
× 2x
1 + x2
2x
=
1 + x2
y =
(∵ 積の微分)
2 次導関数
2x
y =
1 + x2
=2
1 − x2
(1 + x2 )2
3 次導関数
y
1 − x2
= 2
(1 + x2 )2
=4
x(x2 − 3)
(1 + x2 )3
(iii) 1 次導関数
y = sin(e )
x
= cos(ex )ex
2 次導関数
x
y = cos(e )e
x
= − sin(ex )ex × ex + cos(ex ) × ex
x
x
x
(∵ 積の公式)
x
= e (cos(e ) − sin(e )e )
3 次導関数
y
x
x
x x
= e (cos(e ) − sin(e )e )
= ex × {cos(ex ) − sin(ex )ex ) + ex × (− sin(ex )ex − cos(ex )e2x − sin(ex )ex )}
= ex {− cos(ex )e2x − 3 sin(ex )ex + cos(ex )}
12/17/2003
01/14/2004
次の関数の一次偏導関数および二次偏導関数をすべて求めよ。
(i)
f (x, y) = x2 y + xy3
(ii)
f (x, y) = y log(1 + x)
(i)
∂ f (x, y)
∂x
∂ f (x, y)
∂y
∂2 f (x, y)
∂x2
∂2 f (x, y)
∂x∂y
2
∂ f (x, y)
∂y∂x
2
∂ f (x, y)
∂y2
= 2xy + y3
= x2 + 3xy2
= 2y
= 2x + 3y2
= 2x + 3y2
= 6xy
(ii)
∂ f (x, y)
∂x
∂ f (x, y)
∂y
2
∂ f (x, y)
∂x2
∂2 f (x, y)
∂x∂y
∂2 f (x, y)
∂y∂x
2
∂ f (x, y)
∂y2
=
y
1+x
= log(1 + x)
y
(1 + x)2
1
=
1+x
1
=
1+x
=−
=0
01/14/2004
Fly UP