...

石 康 浩 Overview of Diverse Computer Simulations and their

by user

on
Category: Documents
15

views

Report

Comments

Transcript

石 康 浩 Overview of Diverse Computer Simulations and their
ῒΐ /, (,**1)
. ,,+ῌ,-3 ῕ ῔
,**1 + . ,**1 1 +2 Overview of Diverse Computer Simulations and
their Potential Contribution to Volcanology
Yasuhiro ISHIMINE῍
This paper presents an overview of diverse computer simulations, such as those based on the finite di#erence
method, lattice Boltzmann method and molecular dynamics, to discuss their potential contribution to volcanology.
The general features of several numerical methods are described to provide information for finding appropriate
approaches to investigate various volcanic processes on a wide range of time and space scales. This paper also
outlines previous numerical studies of some volcanic phenomena, including the generation of magma deep
underground, the ground deformation due to magma injection into the Earth’s crust, and the evolution of giant
eruption columns penetrating into the stratosphere. Fundamental issues on conducting computer simulations of
volcanic phenomena are then discussed with the aim of promoting e#ective numerical studies in volcanology.
Key words : simulation, numerical procedure, modeling, multiphysics
+ῌ ῐ ῎ ῑ ῏
LMl4|N}@o7O:Y"'67 P(~I{2A% QR(S€‚ƒ„…
!"#$% &'
†‡ˆ(T‰Š‹ ,**/ ; LMUV+_WŒŽ‹
()(*+',-./'012
+33/a ; The Earth Simulator Center, ,**/
B
345%6789:;<=>%$?:@2A
X‘YZ%
%B CDE2FG HIJ
’“8Z”[W} •\8]L–4I2
KL2MNOPQR0'S
TUVW8
AoB z'$?:^—<_`Z%o{ 67˜
A%B X !"'#Y"<$7Z%0%12
LM'™!a:9'67˜1šb2
&[\:@2FG H
›GcRœx:~I%$?:@
''()] *^+_(*A2)^T^'`,<-
2A%B dž Ÿ_ ef¡,'Ÿ_ e¢(
Z%.a:bcde4 /f?'0gh(<
£gh67S
T¤‡8 67˜1)^+¥_
2ij'12k3<l4Z%56_bcdm87
'67˜‰+o ¦iUV1
nKo% 8T9 +33- ; : ,**- ; ;< ,**+
B
§¨-0'S
© 1A?uvª„«‚ ,**+ e
p= >?:qG
@AB:Y"<r:C"12
29oB
4 ,**. m8
¬~I j­U"k\UI:f'
®KIo dž l: ,**. ; Hidaka
e s8 Dt:#uvwbExJ?Y"
et al., ,**/
B 6mŸ_n'Ÿ_67opq¯ghr°6
yA2VFG:[:G H(
7 ¦s
'±²³´«b© ,**,ῌ,**0 t
8V
:IJK4I%$?:@oB z'o{ zIm8
9'67˜e4L7+'‰+<K2 µu:vG¶
·-*/ῌ***0 ¸w¹y+žº5»x -ῌ+
y¼Ÿ_ e67z
National Research Institute for Earth Science and
Disaster Prevention
-ῌ+ Tennodai, Tsukuba, Ibaraki -*/ῌ***0, Japan.
Corresponding author : Yasuhiro Ishimine
e-mail : [email protected]
N O » ¼
222
‰Šš34›œ&_‹Œ"( t
,**/ ; ,**/ ; B Ž3 ž
,**/
cu&iŸ(# ’¡( J(M[r
!"# $%&'(#)*+
,
-../ *
1–#(
{ _
‘x"’,¢
+
,0" 1
,2 3 145
l“nJo?Y &_”/
6,789:
;<=>2 ? @&A
$%$3s1ABCB•&I _£"tM
B 5>4C
D E)( F
S –¤y&—/-D/ t S
,**/ ; G ,**. p. ,++ !"#$
T S
{&I y
HI 1
9:
;<=>J%K
jp˜3-u( UM[
L2 J(MNOP&&-#(J) 5C
Q
Y $%$
&¥ '()-#( *+, ,**. "H" ¦J}#' s˜&™š›L
I-&.(H/ /
§œ&M$%$ nJo?¨
(R0ST1&&I 23
([rJ}#(
45&6LUM&78VW69X"#(Y
,–IW UM[r`")©Jž
J:Z[/ ;\]&M&I J"# t| *+
,
$%$<= ,>U?Y^JJ
(#(78R0ˆ‚ i,ªŸ323 J
)& Z@R00&_AB`YCBD
"#(D 4 #? ª¡« s
/
˜T6?I†c({{¢J(78
UM&EaFG IbHc d R0_
i£¢&.(#) Lcu™¤¬
^eIJ"#(Y&I KKLfLM"#
†c­ %’# &_
( NO ,**/ ; *gh ,**+ I i,
¥6–¤¡«" 78
PjQ^-#((RS(H/
$% [ªv
IT1U9V(W _
>klm
nJo?I XpYZ5qlmL([r\
,–I *+
,
&–
¤D ®¦"J(M•§~ d R0ˆ‚ ƒ
sI t >klm ]^_ 7
„&I¬¯"( $% SI ¨°R0©
`(a&'upZvbH`"w.c
±*-(™ª²«¬SEQx³­-sVW6
H&"#L "H" d
exH.f
^HIQy(J(M [/
78MS)
J6J/
,–I $%I´J t W &z{]jQIH.<=
®&Iy ¯°”YD/±° ™ª
t|23g-mC
6h}#i j
²VW6IY $%$&J}#P&™¤‹
pmC
6\k ~ I<6m
&}#(JµH/
C
6<6€‚=qmJ(M23ƒB#„l
ª²{w 78^³&-¥6R0ˆ‚
m…]/ <†< T1&I n7
¡«" *+
,
d _´
l o9‡pqmC
67rˆk >
¶ t · - ² &'(#”
Q ‰?Y_"#( mW&aH}#Ws"
"}#(]jQ ª†cJJ)& t ]
<†<YŠ7ˆk ?-&tJ qk‹
jQ&_
$%¡« Ž·
7Œ uT1" t u vw(x&
² "$%!T&
yLŽ { -zˆkW&t
B fLFG"# µ· $% Ea ‘ ‰I {&U}#y|}~-’
, ²¡«R0ˆ‚Ii,) H
+ 4Q9 “ ”•–#(
t )
¶‹h}#(#$
<=--€—"# % [‹(J(M—$I YZ - ²&\o·
{ )R0E‚
"¸( { l$ ›‹&iŸY¸“
-#( "H" 0‚ ƒ„
/B W¹Q+=ql$ ¹º&º(
s˜…•?†c-JI`( ™E
R0&»}#(J /H–B'¼"#'Y
Y $%$I78R0&–‡Y ˆ‚&U
µ¶·¸z¹º6»¼45K
cd
ecf
223
 + , ¨"#‰Š$ ©œª/^1 "#6!0« Z-<¬­®?\ (a) 1¯
%!U5ž‰Š$ w:4‰Š°0«Ÿ_G6K! (b) 1¯‚
!U52Œ‰Š$ <3±0«u4V²j0 <QL@A³I!‰
Š´_G6:
Fig. +. Examples of two-dimensional calculation grids. The black polygon in the lower right corner is an obstacle
at which calculations are not required. (a) An example of rectangular grids used in finite di#erence method.
(b) An example of unstructured grids used in finite element method.
, D w|O!PL }
,ῌ+ | gh Gi~GID^]N
G*9_G6KL €|
!
"#$%&'()*+ ,ῌ- ,-."#
/0
1 g‚h GiT5
}
cd
ecf1
ƒƒDIA , „…†
: 
123
45!6
1 "#FG‡ˆ g"#‰Šh GiT5!"
78
9:1 ;<=
‹ŒFŽ4 C"#‰ŠV"
>?0*"#@AB C #„…†B Z +\ J01 FG
!1 DE FG
‘#ŠJ*L1C5’EJ]NG“*
=H6B *IJ KLMN C=
C]N‚?0*”•–"#„…†
H
6O!P!QRHS:4A5
B Z ,\
TU! CV =H=>W* =>?
"#‰Š„…†1 "#‰ŠG|
0*"#/0 U5XY Z[\ J =>]
FŽ4 $[T  + (a) 1 —˜™IU
D^B _`abMN c
+ , - š ›˜œIU + , - šG%
d
ecf1 g=>"#h GiT5_GJB
&A Cž' Z‰Š'D1'GiT5\ =>"#1 _j0"#/0klmn
(=>|G* f (+, +), f (+, ,), f (+, -) š
lopGq[
rs!tuvcd
ecf
?GŸ^) _*1 MƒA
+,¡*!G:¢5_G6K! -<"#
1 w=>!"#x^6B
1‰Š'‡ˆV£.46B _ tyw
z{6tL
* ¤¥<"#1 <(¦Ž§"#‰ŠJ
224
º » ¼
!"
#"
$%&'()*+ ,ῌ- ,-.
/0 ,ῌ0 ,1234 56789:
4;<"+ ,ῌ1 ,=>)?@AB6
C D7EFGHIJKLM
NO)+
PQ&'R("JSTUV7SWX
Y5678C 9Z[\]J ^;_;
`abc7de9f) ^J ^;
_;9&g)PQ) h9i
;j9 dk8PQC lR4m+
nop Kq/0rs;tuvw"
R(";wPQ9x9;
,ῌ2 ,yzSTUV7SWX/0 ,ῌ+* ,{
34j"PQ+ |
8}7~Cz+zPQ9€‚ƒ+
m ^(J ,ῌ++ ,9 SPH =>J+
,ῌ+, ,ῌz„…8EX5†c6C ‡ , ˆ
56789‰)PQŠ‹+
,ῌ+- ,Œ6ŽX , ˆ5678HI
Š‹(I"v"
P‘’"
“”J•m –09‰"
—˜"(
HI™š/›;"
,ῌ+. ,C PQ
J2PQY(œ9 ’9
=>) pp—˜ ž Ÿ STUV7SWX
¡¢£¤;/0+
¥ , wR(JN“”¥ (a) K¦z9j]J§œ¨;y j"¦zR9¢©"ª«¬¢
JPQ){3 ­®¯†c6° + (b) z9jy SPH 0
; Smoothed Particle R(JNO
(a) 9±¦z²³?
aœGIJ
+ (c) Smoothed Particle NO;´
(b) µ¶‡´·±J
Smoothed Particle 9¸š)^;_;
K
y"m(’"z¹zNO)
Fig. ,. Schematic illustrations of a substance represented by a set of particles. (a) A gravity current
consisting of numerous rigid particles. (b) A
gravity current consisting of a continuous fluid,
which is described by smoothed particles used in
SPH method. (c) Fluid concentration on the
dashed line in (b), which is described by the
superposition of Gaussian distributions to have
continuous values.
|}œº»¼§iDE6456
,ῌ, ῌῐ῎῏
225
E "#7i ‰Š#‹ (roundo#
error) /UBE Š#HV3 WXV3 ‰…
YF‹ / SE7i/ E 1W
!"#
…&V" , @ 1ŒZ5"
$%&' ()!
"# [V \AnGgE* (,) *
! +,-
#$%X2!
*./ 0"# ++
/ Š#456b]1
!! 456
fgEh 9Ž K‘’0N “
123
789:;<<6=>?@/23
+ "AB
6”d! I 456•–—
˜™^š_c K!eF `a†
df
Cg
dt
(+)
#$%&DE f, g FG
/.DE3 v/›œbžlEN I
cŸ l`m 7i?@d ‰dFJ`‹ (trun-
'H (+) () IEB
cation error) dFJ` ! I$%
*J?*+456 KLM6>45
0T,X2!/¡d7i fgEh 6N #$%/,-.() O
fgEh ¢£k,
/I 0 ,-.,-
$ K!eF 49eI$N ¤f!
/PQ! KRS0T,/U
/%H ¥gI "AB (+) Y3
BEN 0V3 #$%1W,.X2V3
"AB (+) Y3@ 3
fKtoZ[tN\fKtoN
df ῍
ῌ
dt ῍tCto
[t
(,)
fKtoZ[tῌ,N\fKto\[tῌ,N
df ῍
ῌ
dt ῍tCto
[t
(-)
/X2!$ (,) `X2GHm` ¢£¦h§iI (-) ¨•©–:—/
/X2! (,) ] to ^_+#X2
UBE oªmbeE3 >
&V3^` [t 1W4ID5@++a
«¬;:6/UBEDGGHUˆ
(+) (,) b23
!/ 6cd !eF*/ fgEh
7i jk &*V"
/ X2jIn !*­/D
EGH23®U GHUˆ/!E
*89 237.:DE";<
B ?*>¯¨°™ K±@+SEjk 4
=>V3 ?@l2"m;<23
56URSkl12"?,m^.
Vl <! N O~` +nm
nV3AB!n
o
C#D"23 4I
œ EGTo+
pE/
pqV@@ WGE"456Rrjh¢£
7.:!F?d :! nse"236c¤fDE3I
b$%q0 GH*&*
" 0"# tuƒ²)! v6
I3 / !eF (+) r3I
wJ!
J sL> %H
,ῌ- ΐ῍῏ῑῒ
X2K 3 *Ht!Lu%m
6 F j&8+/V3
v MwX2xy4Imz{
‰1W‹ KFinite Di#erence Method l"xV3
V"23 |}N|O~*
FDMN ‡ˆGE (/UBE/
! Mw fgEh PQ
1W y +(a) ³zb2
+$R VnV E+89H
3 ´+U,-+{!.! µ
!SE` ;€:;‚I 0
|}V"+#/~6 (,) (-) "# T@ 3 EƒU„VV X2´+#&*! KX2RS
7iF , d/V3 456
,N , t¶­ - t¶´+&8+
! 1W…†_&DE3 /‡ˆG
(·¸c¹V"€+a³zUL6‚!
226
¯ ° » ¼
tJ (g*' tJ9 ;ˆ=
! "#
$"
uŒ,0X0m30
%&'
()
* +,-
" Švw0x.G3Uil
./,012'3'
45675819:;"<=
yXGˆŽN
&(
1 U2}z ,
'-F
/3' >,?-'09 }({9B
-=/3* |;‘
@? AB
C D3 E
’“’}~=/3' $Š9‡''”•
-F !GHI"#$ %J+
–’—[€˜"Z'-F @?-™19
!&+3"#K'1,09
L*4‚f3ˆ3' ƒƒš„…
L*'M/'
†* ›œ‡X/1+xU'
BN(
OP)E"9*Q +R
-9 B
ƒ/3' lˆ‰Š‹
,9-.
-.ST()G3 U
-0&+aŒž1Ÿ"<
VW/(,0XYZ" [\]^_`
L*%J
=/3'
M'1@?M/ a-F bcd2,
B
Pv"-' - BN(
D
33,?
2-Oe=/3' E
3ŽYxU'-F ¡"EDK
fg'aG 3=P?/h i*4'
,‘D-"-' 2}¢’gM“*-'
jk5M/G9BM'G'l67 09£” (+333) (g*' /)'3
89,:;=m3' <n=N(S,/h
9 Connor and Brebbia (+312) W•y– (+332) —x&
,o*>-f3pN:?3 @'A
+˜¤,¥l"9…¦y– (+310) ™Y PGgB/-jkf3LlgM
a
¡G3“M/3' L- a )
ilpN:?9 2CqDGrh/3' E
ES-PvG392C'}N_~€ (+33/d)
:,EFGHI+sk"#
Thompson et al. (+33.) 1
aJKES-.tLM)
NXO=/
,ῌ/ ῑῌ῏῍ῐ
3'
5\§cBN(
B
9 Aš
BN(
uPv9-2
QU
'
-, GG"Rw3'
Press et al. (+33.) xSU' TU
V*
9WXyzY (+322) Z[
von Neumann ›œC G"rh/ AžŸ œC 9 E/(¡: :
¨r
©v · grad!rª«rdivv
¨t
(.)
Grh/
,'-2CqD{\ ,¢ N(S3 aa r 9!
-=/ TVD V9]z (+33.) (g*
£ v 9¤¥3'¦
a
' BN(
,'-9 a|^D
ilN(S,ƒlG :+9(DŸ-/9¬
B
HI
GG"2C'}N_~€
ž2CpNif3:­aG
ž
(+33/b, c) 1"`V*=/3'
upN9¬g
f3" H:+jk,
,ῌ. ῑῌῒ῎ῐ
"-M®¯x
§Ph £°c±²C
AB
C Finite Element Method L-9
f3‘D3''2ˆ' ˜¨
FEM! ,V* a,
G3 3LlaG
ailJK,³©-F
BN(
GbZ<'M/3' B
E
Oe=/-
AB~
C Finite Volume Method
F9 VW,cn+ ! (‚
L-9 FVM! 3,ƒlaG
, „9…†+d†
B~
9 ´HI•µ¶² + - „9defe(‚(g
™yOž! ,‡f3Ÿ ž,aG p
h +b! G3‡l…†+dei
N,ª« · 1,¬*¸¹~ Vo j=, ()klm&P3noaG
Ÿ ž f sW"­œ,
ˆ ‰p+.,'0
!HIGŠ,?-'01 qe ‰pnoaT‹rD
sWWggG'l1"
"
¨ ῏
ῑ fv · dS
fdVª«
ῒῌ῎
¨t ῐ῍῎
(/)
G¡3N(S - dV 9~® dS 9º
¼¸š›2¹S…ºPQ
G»‘O’LE“JKLMEJNO
227
G … ‹€TU"
7†Œ‡h
Vo Vo P< €F!<ˆQIˆ‰Ž"
So (/) ‚l {ŠUE);/ 7m,
!
f " (/) A5@‹"
‘O’LE“JKLMEJNO”
(.) #$%!&'(
‰Œ•"
–,Ž 3XIZ"
?‚
(/) )*+
l f=:‰‘VPQ
A5g ’Xql
!!,-./
0"1# $%"
)2 &"
—`€F!‚ˆƒc fE˜O‰=
A5g )"
3
456'(7)
F
8"
3
95 *+,
“F!‚ˆƒc= G*;‰
-.:3";/01< =>?)2
=™qŽ!+A5"
‚l b;‰G
'
3
rse fGravitational Many-body problems ; N rs
*+@34A5 BCDEFG6,
(g xmQ ‰#G”rs!d•–š›
*+"
3+78H!I
—˜
‘O’LE“‚l™Œš)"
> JKLMEJNOI(9:;<
š››Ž(G Ž^m œF!œ (Ebisuzaki
PQ
95 =R'>=R>?S
et al., +33+) bžŸ hO O¡ He G¢
@TA!
JKLMEJNO( BC (/)
<£%¤ž f¥Ÿ +332g FJKLMEJNO
D"UEF
VWG !
Q
=R'>+X=R>@H!
?S
;‰GJKLMEJNO PzG;¦š§>F
G< =R>Y(IZ!
9Q+
aO,hijklbc!)Pz‰!
?S[\ =R>]^J_K!(!
"™ G)…‰! c)¨§Œ!
LM (+33.) ¡c,/¡‘O0/¢^
mvnJKLME
,ῌ0 JNO;/!
Y(£U#"
f¤6
(/) )N`)B
"
3 )
+33. ; Hut and Makino, +333g
aOP5
Q>(
bcd>e fBoundary Ele-
,ῌ3 ment Method BEMg hijkl
?‚lq¦,¥h€A5(¦,Gr
RS
TU!
N`cdVW!XY
s> ‘O’LE“JKLMEJNO{‰,
&')
^m= 1)noZ
Q
3=) b€5‰#JKLME
3
[5\])^!I> pq_r
JNOe (Molecular Dynamics Simulation) xmQ
`a@3FbcPQ
8J de%0
©§BlWªE (MD) xmQ
3(G †
Q @ 3 f g ] ? S «,Q¬F^
­,®¯h fŽ^m Amber Gaus-
Brebbia and Dominguez (+33-) hisj (,***) F
sianng ¨Ž! °±²±˜žE³ ´²
_
±˜žE©µŒbcPQ
ªP0/)
,ῌ1 ¨ +*** [¶€‚ˆƒc)! k )tl)uJKLMEJNOFmvn
€JKLMEJNO
«·¬!
) b/w>e xmQ
#@>c
3(
/w> cdoyD"z+*
(Narumi et al. ,**0)
€5‰#JKLMEJNO )­—hP<
p{|7;}~@UE"
Q>
"
5 ¶€t>¸²OJŸ§®|%
p{|7!,EjBc
3G< 3
UE"
G ¦,(! ¶€¹
B€‚l[€ƒ!)
ˆ +, ¯°†Ž"
±‰ 0 ¯°†Ž"
:‰
3q„!
^c
rst…,cd
;}~ Lennard-Jones ¸²OJŸ
3
uY7R+Q
FvY
^w|7
=UE
º€‰#,ao]²"
Q
UE"Qmxyz< P{@Z+Q
|†
>! b³8¶+,€5‰#)e f³8¶+
(,**.) }!<H~PQ
)g > }´¶€VW*0»5
F
,ῌ2 Q
€5‰#JKLMEJNO&µ¶
*+‚l *4€‡! 9
Hoover (+332) †· (,***) F
€F!‚ˆƒc‰"
+@„Š
(
£ ¤ » ¼
228
,ῌ+* SPH fg-$*S( w fg
!"# h;8'(i=m>
j
x+kyz{lk,%|]}~+,
!"#$%
(M SPH Smoothed Particle
&'( !"# V+kymno,a9 [
)*+, -.
fg-dp[9)*Y SPH €qr
-+/, 0&120)* 3
st (+33+) 672'( uv‚1 (+33,) 
! 4Distinct Element Method 50 DEM6 6M+(
"7 ! (Discrete Element Method : DEM) ,ῌ+, 89 ! (Particle Element Method : PEM)
,FwƒJ
,)GH*, -
,:;,
( J
xyz8aB„.8'(E
3 ! )*+<#=>?@AB$
…†>‡! 4ˆ[‰
8C%DE&'8' F#=>?@A(
5t0{6 Ht0 |xDYk
50+
8)GH*IJ)*+
ŠHt0+, F0& })J
,
K+ ,-
5t09~‹JŒYX+m~
!"#.-
!"# /#=>?@A KL
[- KZV+,(
0+1/MNOH*)*+ F0
}€Z@ F -
& 3 !)*2 34 , 56780
‚+E wƒJ
]„Ž
,)P8(
)*8' 3
3 ! QR 9S+,:;T
!)*80„.,
4‘@A’#“6 2|
UVW 4Hard Particle Model 50 Hard Sphere
\A „.wƒJ
J”,o
Model6 , QR :0,+<=UVW 4Soft
•–…—(,Mt'(E J
]
Particle Model 50 Soft Sphere Model6 , >?
M$H*IJ)*8' MJ
]$
T
UVW + 0 + 8MXY(
•–†‡+,(Z@ˆ*2 ˜A
,Z@Y[ \ABCDY(])*
™!š›#nœ‘@A’#“,:; )*‰ž
+E^_ 1+ <=UVW <
DY9+Ÿ,ŠŸ „.
F1,8'([])*+
‹ +0&„dŒ 8M8 ¡
E^_,( +_` GCa
J J
J•–ŽJIJ
9 HbBCI2(J)*+0&12
9 „.[t'J
J¢8 de
0UVW <=UVW 8cK
†‡Y(E( [)GH*
+de%fg, Lh- !"
)*+˜A™!š £¤!nœ‘@A’#“,
#*Y 4M +3316 3 !N
:; OP(‘ 3 !,’|'
OPQ
i (+332) i (+332) 67 BZg¥“+¦§,8
,ῌ++
SPH !"# J
)*$jR
&'( FNS SPH 4Smoothed
' J, ”8'(•qJ
-i¨
D– ,**, — ,+ © - ª˜ˆ
,ῌ+- Particle Hydrodynamics 6 SPH k=
«¬W­®# ¯W°!£®£#,:;
lTLUCVD 4mn>V*(
bUVWMX80J
)* ¯W°!
KW6 Smoothed Particle ,:o F#=X
£®£# M±&™š20)*«`IJ
!"#,YZ+)*+ +_
².Y}— F8' F
` pqro80092o5,
².³´}µ›~T0|')*¶
[\)/
s]2'(,%+ 4^ ,
œ+ µ›~™š+; ¢·ž
b6 _F,Pt' Smoothed Particle 8 u
Ÿ-
- ¸¹F#=X Hb
G(,,Y k=`8uJ
¡()*c9SY ¯W°!£®£#
abc ,t0VDMdve,
Ӣ
8'-2
¯W°!£®£#}—+€º(' ®…™J
\HŽU¹†º®+!@<»tO0¼MNOP0MQ
229
tional Physics ,**+ v Vol. +03, Issue , 3H.MNO
P0MQ$Œ4 7
<
!
"! #$
%&'()
-
*+,!- & !.
-ῌ+ , /01
2) 3 +
wx \Hy\
-OI=F:
, 4 56,789
: ); <78!"#=
‘ \Hy\}AAv N’z{M|
>?(@<$%<)A8
`} 3/4 N.~ N_G3U
@&>B'(
!(
MNOP0MQŽPQ
“v=F$
@<J<-O^J€Š
)*+
,8!C -@<$./0
r
=F:bx hijF)
1
D2 & 23E4
”B9
<v=‚= >aB<!Jd•
5=FG678=<> 9H:< , I;
Y*<:+8ƒ<OST–=<
<J<K=L%<(!$> B
=I .FMNOP0MQ2 "?R: H
MQŽ„–<stui3…
/N—†
.)
"#+!@= {:(NU*‡ˆv[FX
!(B? MNOP0
SA
BTEC (+333) H.UVD
-ῌ, !"#$
!WE (,**+) FX+!=
.˜ /4+!^J78 N—`}
,ῌ+. ™–>š›
YZ
K=)[G
FX \HI
‰œ 1P0sisžih<>Ÿ <
}{M|p
<
/3G6E45<(./]
avN—`}Š; <L‹Œ `}
^J_ KLM`aB<<J<=bLN
M¡¢Ž:( `}9£
=!<> K=78=OS99c
& |?={:(‘’=L
M¡“& M|
<PI@=:( \Hde Q8C R
T¤ ”(
=M|{>B•–L
ST
fg,8hijO0U%G6_ kl
<% 2
—h¥laB<L‹
< VWmXnopVY#GH1qrh
2 /˜i }™
U¦š`}˜i
<> K=L#Z[<I@=
a%š+=
& K
& •–L
<vM|{
=) MNOP0MQZ[<stui<v
›L# }&—œ§2!
=
¨
K=bL\]
<J<^
_`a%w
/—œ <78= 3,ῌ
#=@= : K
+- `4 #= Hersum et al. (,**/) _ Niimura (,***)
=bx M1<bL=^
<>7©”v= ª1q0«#=<
;yc!Jdz{kῌhs0ih!Jd
y|
J<bL‹<K=m~žŸ 7 FMNOP0MQ@Fe5(!= aB
2 }! ¡¬­ 3,ῌ- `4 #= a%
<Q 23G}G6_ bx fm~
Ÿ <h®0I
¢–S£ŽT&
2==g<>€w(! !(
(!= 3Aharonov et al., +331 ; Iwamori, +332 ; Spiegel-
I) K=hijFk VOF 3Volume
man et al., ,**+ <>4 !(Ž Niq<¯¤
Of Fluid ; Hirt and Nichols, +32+4 _P‚rus
m~ °±M0)² =B@³¥3—œ
(Sussman et al., +33.) <>56,@=
´¦µ¶)+!=
=D) CSF 3Continuum
-ῌ- %&'()*
Surface Force ; Brackbill et al., +33,4 aFl(!
—œ
avU¦:(// €§
=
K=!mnA;oƒ
¨<(~©¡ : @F^ \Hž
—·q=v–~_&78(!= N
„… (+33/e) p†d‡q<r
¸F`}š/a%ª£˜iš+F
sWt (,**-) [ˆ
P{O0= ‰Š
/U¦`}˜i«%B†+
¬­:
u‹l%=^
Journal of Computa-
(
230
C ¹ » ¼
"
#‚ƒ
8s -9 Mti]
l'v1)„
\? f
GABCDEAFG 8,ῌ+. -9 …u†.//a
v
wxo_4'/jz‡
23ˆ\?t
!" #$%
yM
4z‰LŠH!23
&
'
()*
1
Eo
{‹mŒ|:o
)+,-.! /"
#)0$
%
_;<}&€EŠ 0~€ŽP)Q
&1
234')*(
)5/*6
z‰h/3Z‚
ƒ„23
7+, 8,ῌ- -9 ). Kuritani (,**.) :;</
Z~ŽP2
4'*…4m%
1
0+=>1/2?&
2
-ῌ/ ab
o_`o0 /k:o
@ +34&ABCDEAFG 8,ῌ3 -9 ).
_‘+†
’Y“ 8, B”EOP•#9 Eo
*(H!
8I5'6J +331 :9 K
E‡ˆ‰Š‹ Œ
L78)MN
/ #GOPQ&9/
qT+Ž
3/qT
:R ;<)=
STOUVWTXYO
‘Z1/Hf
)>Z[\? 8,ῌ3 -9 2@A
;<:
H!
(Iitaka et al. ,**.)
J-i– 1oJ`^ o_`—
1
o_`—˜ *67+, 8,ῌ- -9 ™
-ῌ. š€ABCDEAFG0)5
# B]^CD
`—ABCDEAFG m<
2 M‡ ,
E_ FGH`<)Ia
’†+%
Z@ jz
‹\?“› 8L
JK LFbM/0c
F”œV +** V|9 )•–`—
234'*( *6&9, 8,ῌ. - ; dN'
Q—)˜™ž4 `—™š
ŸY B¡¢T
OP ,**/9 ef&9, 8,ῌ0 - ; Dahm, ,*** ; Mériaux
*)
/)<
/
1
8s .9 and Lister, ,**,9 Q.
L `<R
3Z@ ›œ+:wAE{/†)}7
Sg
Th*( *6&9,
`—B]žbŸŒ|
(Ryan, +322 ; Saunders, ,**/) ef&9, (Cayol and
) jz
¡£¤¢)5jkŠŽP\?
Cornet, +331 ; Gudmundsson and Brenner, ,**/) U.
{Y¥1
)5
# i.! /2V
£¤{Y¥ Œ)
i
8o_q
T/Mi–vi19 =>o_‘Mt¥¦
# L!WX9:Y%
¦§:) §¨ŽP23/
¨œ
jk$a I.
l4mZ[\i
© !" o_‘©@ªª«P¬E2M
l)#n
/i]/(^
1
(Carroll
iª«¬)­ mg ¥4M®­
and Holloway, +33. ; Tait et al., +323) o_`op
JKbh
/323Z®¥V¯T) ‡
ab
(^qT
Š%¯wž4
/)°s
+"
#r)s
/0c
q
°±
;</ Wohletz et al. (+32.) 2±
T+. tc
+du . +qT
ŽP o_‘3/qT+m
+e%HfTgh
iv Y
²˜
”|²ˆ)Q m³¤ ³I
^LY^wExy/3jz
pT{
.)5jk
!" Z’3´1X¡¥
YP`o
. i]kjLL
”GŽP 8,ῌ+, -9 1
€ŽP)bS
l)m%
/ )n|Eo
4' 8}~
µ;<0 bT
8Clarke et al., ,**, ;
G€EAFG9 g n|
Neri and Dobran, +33. ; Valentine and Wohletz, +323 qT+//oJ`^
ab
:9 0 `—¥4´+b
`o1
¶–`—µ
`—µ¶_/·u
4'
b]4'@ Kinjo et al. (+333) =p ' q
­‡Mi2a}-i– 1oo/
(,**/) : Lennard-Jones S€GAP)r+3
G¸M
+¹{‹º·¸/
4&ABCDEAFG 8,ῌ3 -9 ))5$a ~`º»InWfg6G)¼B¢>@Q<=>?@<AB
231
Oberhuber
et al. (+332) Dartevelle et al. (,**.) !
"#$
%&'( (,**0) ) *
+,-.
/01 234
5678 9,ῌ. :;
<=>?@<AB
(% (+33.) C)D/E61
FGC23HIJ%KL30MNO
P56QRS T U.VW.XYZ@[
\]^ _\`K56Hab !
c d6CeRBfg3061 h"# i$
Uj%k3T&l)mn'(o)3 p
 -1 'JKy<=>?@<ABC6L4³
OP 9´µMN¡>œ;1 , ³'¶·bO
PC6L4³NOP/ QR
S5T0UVlHS5¸0I¹§
3 Lv)2306G¨3061
Fig. -. An example of Molecular Dynamics Simulation for bubble nucleation (Courtesy of T. Kinjo).
The time evolution of bubble nucleation due to
instantaneous expansion was investigated numerically. A bubble with several solute molecules (red)
appeared in the surrounding solvent molecules
(white).
qrs)t*+ ,u56v0)w-03
06/I01 xy -0zg6.
{.
3 |}D/-~I.E^ €
‚0)v.Ms156ƒI2zg306 (Armienti
et al., +322 ; He#ter and Stunder, +33- ; Tanaka, +33.)1
QRSOPT „…†34-fg3065
6756 9Hurst and Turner +333 ; 89 +331;1
5)‡ˆ '(:0T ‰GŠI‹Œ;5
6Ž E6v0‚5z ‰G<‘=
’BQ@ (Volcanic Ash Advisory Center“VAAC) v0
”}•–[—@˜I™fg hI.<=>?@
<ABš›M‘=>œ3061
 .1 žŸH<=>?@<AB 9
? @¡>œ;1 ¢£¤¥ +33+ AvB E6C 2 ¦ kgῌs
§D OPHi$E#¨/ ©ª +.** F«G§H¬I'D 9­§
H®ῌ­§H¯®; qr3°'±3E61
Fig. .. An example of numerical simulations of a volcanic eruption column accompanying a horizontally
spreading umbrella cloud (Courtesy of Y. J. Suzuki). The calculation was carried out with the discharge rate
of 2.*²+*2 kg/s, which is comparable to that of the Pinatubo +33+ eruption. A vertical cross-section of the
mass fraction of the discharged gas-particle mixture at +.** s is depicted.
¡ » ¼ ¼
232
= v ‹ B # ῌ " Œ R  z A (Gri$ths, ,*** ;
ΐ
Manga and Ventura, ,**/)$ z"!ῌ9=v
!"#$ ΐ%& '( (,**,) ) Seino et al.
A#xy2„…†‚G '2 Ž‡)#9
(,**.) ,*** * !+"#
…|ˆB0^[0C:῕
W
,῎-./0#$ 1( (+333)
p# (Hon et al., +33. ; Kilburn, ,**.)$
2 3῍4#56
VUW2 VSῌA#‚
7#8 !"#9$:;<=
^2 H=‰fŠMqVJ2‹‡Œ<
#%#$
-ῌ0 Wp#$ &74Q ῌ9=vŽA#
,|}2,tuB8 z=va
&>?'2 2()*+
2‘<aB’9‘^[_J"#$ YB
῏+ @ABCD ,῏EF GHIJ"#
Šab“W,G[!"# '/
K-#$ L.B/0 E1M2 !)
0 ῌ"”’“•”–,•—)–”—˜B^
3(4A#N567 28OP9A
`KA# , ™˜š#$
#Q,#$ :;<B
xyΐ'2 Y™›)J @,ῌ- XF J2Y™ƒ
P9A#=RB῏+ @STF IUV0
œJ @,ῌ/ XF š› , ™˜Wp#$ z"! ,
2WRB$
™˜2 #“5Mœ4 +!
STXY>?2 Z@ABHB
, =+"#$ 2 –”—˜/Wῌ"
!Cῑ/P9A#DEP9[BF῕0
—+)‡žžRŽ%#P9Ÿ<B-M,
' !G[!"\] @Minakami, +3., B^F H
@ †r¡¢£¤F Wp#$ Q2 –
1W2IJW_;`KA#abcdefg+
”—˜¥ῌ)¦ῑžž§Oz,A#{|Lῐ
"# (Mastin, ,**+)$ =RB῏+h0
ῑŸ<B @¨v©£¤F Wp#$ Ÿ =RL%!"# ijbklMm 4QBV
2 ¡ª( (+32.) Miyamoto and Sasaki (+332) Young
῏+22nNOPQoWR#
and Wadge (+33*) B^p#$ « 2 ¢+7
4QBRS2JGT+"B4QWp#$
–”“•z,*+Qx£1¤¥–
qUrcrsRBA# itu
£“5Mš›
' @Costa and Macedonio,
vMm J2 iVSWm w&"#=vR
,**/ ; ¬( +33*F$ z ­¦῕š›
S<Bxy
!"B$ z4QBSTB^
(Favalli et al. ,**/) ) ®¯jrjJ @,ῌ+- XF
῏+IUV02 SPH J @,ῌ++ XF OG[ΐ (Crisci et al., +333) p#$ H1W2
RSY{Wp#$ ΐ%& Z[(
VSῌT§ !῔„(°,ῌ"B#ab®
(,**/) \4S]>A#
^[_‚G - ™˜›)
g+"#
CῑZ@A{|OP^[
@Hidaka et al., ,**/ ; ¨ /F$
_8& YB`ab!"#}c+"#$
€B‡&ῌ".#VQŽE
!±#
-ῌ1 VSῌ ™X*W©ªA#«¡ῌ eῌ2
rcrde+"BJJTfA# VSῌ
²¬A#hD­#$ 8 RS
BT~]ῌ".#$ VSῌW2gh
-M,
ῒ¤E'$ n ®³‘B‡
{|=R iῌ<BP92jk+"#$ 8
=RBRS´›O+:#µ•¶ELῐ
;<=
l€G[B+"D
Y™ƒœJ @,ῌ/ XF '²¬
Wp#$ #m2 VSῌnYBo#p
n~Wp#$ zE2 ¯°)±–B^ *·
‚^2 -h<W+%WqVW
64#‡&ῌ"
Wp#$ 8 z"
R#rƒsB$
!VJ8῕#²¸
p# (Denlinger
VSῌtuWp#H=6
2 ῔„)…vwxyVSgh=Rz,A
and Iverson, ,**+ ; Takahashi, ,**+)$ Beven(,**+) ³
( (+323) B^–²Ÿ´µ¶
·LB#$
#zWp#$ z8 VSj†){U|}B^
-ῌ2 VSῌn~<B€B‡A#$ & g
«¡ῌA#xyW2 ŸXW¸¹¥–£“5
hz,yVSῌῌ9nh‚ƒ=Rz,
MY™›)J @,ῌ- XF W,ΐ'
ˆ‰v‰vVS ŠŠVS TUVSQ8
@Laigle and Coussot, +331 ; º¹(¬ ,*** ; Z»(º
R9® »³§"C¬^¼[\˜YZ[2\Y]^
233
AWXoIpRS?&TUYZ[
2\Y]^N> VVO +31/ ; Nomanbhoy and
Satake, +33/ ; Tinti et al., +333 qr0 R9:R s
t u;=vw&YZ[2\Y]^
Ml VxW ,**+ I 9X AyTUY="
zN VZ{ ,**. >5
-ῌ3 ῌ῍῎
R| AWXBC }~VX<.
€;u[07'05 !R9AB
<.I\ AB+,D ‚X]^ƒ
M_R|`ab;R9„HI~
˜ / ™A YZ[2\Y]^ VšOµ›œ
c ž9Ÿ -. R¶= ,** m-ῌs 0™A
¡&¢iN0 <£ ·
-I¸¤ ¤¥¥8¹¦2º
.®D
&Cn£7
Fig. /. An example of lava flow simulations (Courtesy
of E. Fujita). The lava is assumed to flow from a
vent on the southeastern flank of Mt. Fuji with a
rate of ,** m-/s. The lava spreads towards Gotenba
Station under the influence of topographic heterogeneity.
Cce=& ‚…\†]^ƒ ='"
H"05 u‡056>7'de
Q?
R| S?frˆ ghstN‰ i
j=Š‹`kJKm*
Œ
N‰ R|
=
(lm*
]^
‚X]^ƒ X8Q?> !e=Ž/\
;
_n‘ (granular flow ; Duran ,**, ; Jaeger et
al., +330) 05’ Œ :oghp ‚X]^ƒ
‚…\†]^ƒ V“i# -./h q
=’”rst0& •uv (Branney
+32. and Kokelaar, ,**,) Œ \ 7'= wx
”ˆC–-./h" Œ !" #$%
2 ‚Xƒ ‚…\†ƒ y’^8 +=
&'()! &*+ ,-.
,
X8 m;
/0 &1 0!23/
4
05
6 4
7 R|…\† z{YZ[2\Y]^q>m;
Neri —˜™š
›/\E05 (Dobran
!"#8$9
et al., +33. ; Giordano and Dobran, +33. ; Todesco et al.,
:%&'&(7');6)
,**,) | 3HœR9}~ €ž8Ÿ ™
< =>* ?@ !AB
H¡¢&N‰ 7(<R|…\† ‚
C+,-./D&EFGH01
ģ 4
¤¥¦_&= §X„¨
2I JK L3M0456NOO
Š C–©=ª…†‰ Œ \ R
7 !P825 6Q?
|…\†=b‡S&‡„¨«ˆN
Ishimine (,**/) I¬F^œš n „2­HR90
R9:R;
<S=I<>0?TU@9A
:R
® ‰MlN Córdoba (,**/) 5
VAWX > YZ[2\Y]^J_
Š¯N0 BC ‹4U
”
BC `D" (Heinrich et al., ,**+ ;
ˆ , Œ° z{-./0 X]^:%&
Kelfoun and Druitt, ,**/ ; Pitman et al., ,**-) NX
K05 VItoh et al., ,*** ; u±n\ +331 BC
0 abIEF0cd"44;
-./No²0 >5 (Wadge et al.,
= >N",
AWX0e=f'4
+332) Žn9O (+33.) 0 X…\† e=
gGQ?H0-./h?
l*zN-./‘ |’“ˆ
T ON AWX9i4
!B
f014
…\†]^ e=Š(7
OO;e=&
"IJ jK
'5O’
Ok70!
1$D V,ῌ+* L 7'k7&Ml>m*
6 \> 4’Y^E/Ž/\¬\^-./
VCampbell et al., +33/ ; NOnPQ +33* VR|”³•Š´–Ž/\ D;
—
— 8 » ¼
234
{GA‘’wuwq“”Oqy
|U#I(
Malin and Sheridan, +32, ; +33- ! ,ῌ+* "#
$
.
" (Mitani et al., ,**.) SPH ,ῌ++ _`QOPQROS) }~ TU3
" (Nagasawa and Kuwahara, +33-) %&'(
>4%•AŽqO’€b#I-)F
-ῌ+* >'( - GWH^a2
TU)
) *+*,
'
PQROS0‚"Izƒ>FG8„4(A^
O
( -
./%"#) *+*0
123'
|'%Z…%W†-d"#I( ?01
43 0
523!6#
17"
Aj'!–
.—%& /'3˜™#v‡%J<
-8- 9#:$%; ! &<'=!>3(
QAc 'ˆ; 3‰b/e%wš
"?0@!)3*+A%&
B *+*
4RŒ3"#I'( ">" -F)
0,--."##:C"2%/ 9*+*D
a&%G8&› œ2žW3Ÿ %I( #:$%; %&0' 012
OPQROS
¡X&)U”'%…¢3'W
+332 ; White et
al., ,**-( ?!0 363!4
}~
F%£Š00¤¥'( TU3_
>"# 5%/./%' E
`QOPQROS‹3¦"#I2„3
67 ,**-( ">" -F
G8) H!C"
) a2
§Œ$¨"#I>%]c%F%I(
I9:I 0;%J<K=>L%J<M?
Gm
u>
§Œ) _`QOPQROS
N@A%&
OPQROSTU)
3GW©TU
W0Ž'3%II/-
'VWAXI%I(
'( ‘fd
Mo’'’ 9; 3
V ) B3YZI#CDG8
E
ª“OPQROSo«
0¬„#%I
[%FJ<ATU\]GWH^0 _
I/0 -
Gm”'3d"#I( TU
`Q
)a\]3VF%I( bc
3gI#) Y•'%”TU37b# i!
Idef
3gI#) H
!JhK!LGi
­R%&
z[ –f!?—f
®Hf3
3YZ2jMklmn
NO%&3o"# P[
YZ2˜™ F3)E
Qš¯
›œV
QRpST% G"#_`QO
W%ITUA›#12"%]c%F%I(
PQROSAU0V2Q#I (Epstein
-
Gx3A OPQROSTU3P°
and Axtell, +333)( ).%>6qr
±2450%II/mƒ)"cF2>²†%I(
s _`Q%/WI#XJ'3
 OPQROS)!b
Gž0
G85YAZ ! t!'uvwxy z[{
Iq³„F#I( _`QK=) 'F
|%&
}\
'~3]A^ '
´e%!Z…3µ6'%HF"#I
3_`AZ %&IOPQROSaI(
( a
./%EzŸ ¡ˆ¢£7!!b¤¥
!bo"
) #W
co"$]
0 &
./%¶
0&
ˆ;
L%/A
#_`QH
dA
e%Oqy (GIS :
>3ˆI#¦:)%§RŒOPQROS
Geographic Information System) "TU
¤¨\©IªX a
{|3YZIe%
aI( bc bE
P€
fg&h! ij
«3!b#Fb
·¬"#I#0©¸
"‚3.k'
(lmƒ)[AOPQR
)%I( -
./%·¬OPQROS
Gm
OS%&0A„F#I efnTU…%†
’k¶)­"2>4I(
!befK=TUo ,**0( f @,3g
¹z"./3 %/AG8
]TU OPQROS
*pb‡+
a2)®'%¯°0º­ G8a
0#±
I0I2ˆ>'( bc Aspinall et al. (,**0) )
'( a
„ ) :8f!M»²f%
qrR!‰
,(-%&
z[I
&
)³´"#I%Ia2
¯µ%mƒ0/™
#
st;~ G" uv%Š‹RŒ_
( ¶#4&€%OPQROSK
`Aw"#I( Guidazzoli et al. (,**0)
=)·x3A›4ƒ0aI)Ib aF
…
) OPQROS
{|xyf'%TUN|
%W¸
¡X&) a
VV)G
# yzs*Ez3Ž84b
83¹4%I( ¯q'~3º¼"J
4abe»£¼¼12Ž'»#%I!"#$%!&'
235
t‘8x` EV54!"#$%
!&'yzc{’.2T 4ab
!"#$%!&'()*+ ,
|?.+ “’.`V*<
-.!"#$%!&'/012
…J*
3 4*5 678()
+ 49:6;!"#$%!&'*
῏
<
^3”ab}•~€ –ab—!o
44* =*>212
?.+ !"#$%!&' 4
῎
‚!€ 6˜s/ab}ƒ^™„€!
"#$%!&'PQ…†š(<E E
4!"#$% 4&@A*BC?.
^3”ab}•~€ ‡›*sˆiab‰
> 3 DE2FGH%
4œ™Š€ "‹}*ssž Œ€ k
I =*'( )?.*<
m%|%I!yŸ\ ¡pŽt#Š€
!"#$%!&' >2JC
$’ 32¢2%.8„t
*+K >L%I,M
b£¤(<E 6˜s/ab}¥
DE2?.-.* 8/NO
‘¦ € ƒ^™„€ 3’§€“”R•
8PQR>0*<;S1
¨–5—˜(<E ™•H*‡›
2+ 3T8PQ3;> 45M
*skšab}›“œ©€>ª›h*s6ab
;* 6.+
789<:;
}ž €;>«l;7
¬—˜­;®*
)2U> ?T 4!"#$%!&'
“”Ÿ?.*<E ?2>$’
;;2 V<
¯ E b 6˜s/ab}
WT=. X4Y
*/¡3 °4&..46,abijkl
ZI[\>*<!"#$%!&'/M
mn± ²³Ÿ%´ °4µ¢fª46¶&
;5&].?@NO
!"#$%!&'/—!|µ± 6u. 4
A5BC^_ !"#$%!&'/D
!"#$%!&'E.+*
E; ` !"#$%!&'
{£¤¥¦ ‹}§¨~
/F7GabHRcId
RTJK5LU4abMNeOf
PQ*<; Tg
E hQXT !"#$%!&'RS
TUabH 4,ijklmnabV
opWq5 ` 44!"
X rstuvsUabHwt4x
yzY!"#$%!&'Z+ {An et al.,
,**- ; Tanaka and Yamamoto, ,**, ; [\|T ,**0 ; ]
^|*} ,**/~ ?T€F7abH]
‚> G*+abHƒ_54
!"#$%!&'K5Luv`a?.
E2
b*„=T…J4!"#$%
!&' *s†$‡cdeVf
ˆ‰ghi* jsH*+Kt8
‚>NU ['FmnŠab*<
k*<;>* labmQ:‹
+*Œ8 no!p*
qr:2U 6s5FŽ'*t5!"#
$%!&'/*<uv+ wt
ῌ ῑ ῐ ῍
Aharonov, E., Spiegelman, M. and Kelemen, P. (+331)
Three-dimensional flow and reaction in porous media :
implications for the Earth’s mantle and sedimentary
basins. J. Geophys. Res., +*,B1, +.2,+ῌ+.2--.
©^ ' (+31/) +13, ªž“«(·¬`­O
/€ kš , ,2 ..3ῌ.0*.
An, J., Ueda, H., Matsuda, K., Hasome, H. and Iwata, M.
(,**-) Simulated impacts of SO, emissions from the
Miyake volcano on concentration and deposition of
sulfur oxides in September and October of ,***. Atmospheric Environment, -1, -*-3ῌ-*.0.
¸)®0|¯ *° (,**-) *±¹4²+*±³
!"´º.»%m+,7 µm +/ ª$¶
spab!·p„¤ ,-.ῌ,-/.
¸‘¹6 (+33.) +Ns ‡›*s:ºp ,.2p.
Armienti, P., Macedonio, G. and Pareschi, M.T. (+322) A
numerical model for simulation of tephra transport and
deposition : applications to May +2, +32*, Mount St.
Helens eruption. J. Geophys. Res., 3-B0, 0.0-ῌ0.10.
Aspinall, W.P., Carniel, R., Jaquet, O., Woo, G. and
Hincks, T. (,**0) Using hidden multi-state Markov
models with multi-parameter volcanic data to provide
236
º » — ¼
empirical evidence for alert level decision-support. J.
Volcanol. Geotherm. Res., +/-, ++,ῌ+,..
Beven, K. J. (,**+) Rainfall-runo# modelling, the primer.
Wiley, Chichester, -0*p.
Brackbill, J. U., Kothe, D. B. and Zemach, C. (+33,) A
continuum method for modeling surface tension. J.
Comput. Phys., +**, --/ῌ-/..
Branney, M. J. and Kokelaar, P. (,**,) Pyroclastic density
currents and the sedimentation of ignimbrites. Geological
Society Memoir ,1, London, +/,p.
Brebbia, C.A. and Dominguez J. (+33-) ῎
-2*p.
Campbell, C.S., Cleary, P.W. and Hopkins, M. (+33/)
Large-scale landslide simulations : global deformation,
velocities and basal friction. J. Geophys. Res., +**B/,
2,01ῌ2,2-.
Carroll, M.R. and Holloway, J.R. (+33.) Volatiles in
magmas. Reviews in mineralogy -*, Mineralogical Society of America, Washington, D.C., /+1p.
Cayol, V. and Cornet, F.H. (+331) -D mixed boundary
elements for elastostatic deformation field analysis. Int.
J. Rock Mech. Min. Sci., -., ,1/ῌ,21.
Clarke, A.B., Neri, A., Voight, B., Macedonio, G. and
Druitt, T. H. (,**,) Computational modelling of the
transient dynamics of the August +331 Vulcanian explosions at Soufrie
◊re Hills Volcano, Montserrat : influence
of initial conduit conditions on near-vent pyroclastic
dispersal. In The eruption of Soufrie
◊re Hills Volcano,
Montserrat, from +33/ to +333 (Druitt, T.H. and
Kokelaar, B.P. eds), Memoir ,+, Geological Society,
London, -+3ῌ-.2.
Connor, J. J. and Brebbia, C.A. (+312) ! "#$%&'()* +
,-./ ,.*p.
Córdoba, G. (,**/) A numerical model for the dynamics
of pyroclastic flows at Galeras Volcano, Colombia. J.
Volcanol. Geotherm. Res., +-3, /3ῌ1+.
Costa, A. and Macedonio, G. (,**/) Numerical simulation
of lava flows based on depth-averaged equations.
Geophys. Res. Lett., -,, L*/-*., doi : +*.+*,3/,**.GL
*,+2+1.
Crisci, G.M., Di Gregorio, S., Nicoletta, F., Rongo, R. and
Spataro, W. (+333) Analysing lava risk for the Etnean
area : simulation by cellular automata methods. Nat.
Hazards, ,*, ,+/ῌ,,3.
Dahm, T. (,***) Numerical simulations of the propagation
path and the arrest of fluid-filled fractures in the Earth.
Geophys. J. Int., +.+, 0,-ῌ0-2.
Dartevelle, S., Rose, W.I., Stix, J., Kelfoun, K. and Vallance, J.W. (,**.) Numerical modeling of geophysical
granular flows : ,. computer simulations of plinian clouds
and pyroclastic flows and surges. Geochem. Geophys.
Geosyst., /, Q*2**..
Denlinger, R.P. and Iverson, R.M. (,**+) Flow of variably
fluidized granular masses across three-dimensional terrain ,. Numerical predictions and experimental tests. J.
Geophys. Res., +*0B+, //-ῌ/00.
Dobran, F., Neri, A. and Todesco, M. (+33.) Assessing the
pyroclastic flow hazard at Vesuvius. Nature, -01, //+ῌ
//..
Duran, J. (,**,) 0123456707189
:;5 < =" > ?@AB ,3+p.
Ebisuzaki, T., Makino, J. and Okumura, S.K. (+33+) Merging of two galaxies with central black holes. Nature, -/.,
,+,ῌ,+..
Epstein, J. M. and Axtell, R. (+333) CDE5FGH7
IJK-LM.N OPQROS. 5 TU
VWXY8 Z[\] ,-0p.
Favalli, M., Pareschi, M.T., Neri, A. and Isola, I. (,**/)
Forecasting lava flow paths by a stochastic approach.
Geophys. Res. Lett., -,, L*--*/, doi : +*.+*,3/,**.GL
*,+1+2.
&%^῏ (+33.) ῌ4_`ab cde4\]
E ,.2p.
&fg (,**.) hijOPQROS.7kl
mnopqr abs4tuv!wxyz{qr
|}~€ +- ‚ƒ„…†‡ˆ‰O.ŠL‹nŒ
 02ῌ1+.
0D4EŽ (+332) 0OPQROS. ‘
’A ,*2p.
“”῍8•%–—˜i™š›”œ (,**,) žŸ
hi¡¢/£¤J¥,¦§¨©no7 e
ªk4E« -1 ,-ῌ-..
Giordano, G. and Dobran, F. (+33.) Computer simulations of the Tuscolano Artemisio’s second pyroclastic
flow unit (Alban Hills, Latium, Italy). J. Volcanol.
Geotherm. Res., 0+, 03ῌ3..
Gri$ths, R.W. (,***) The dynamics of lava flows. Annu.
Rev. Fluid Mech., -,, .11ῌ/+2.
Gudmundsson, A. and Brenner, S. L. (,**/) On the conditions of sheet injections and eruptions in stratovolcanoes.
Bull. Volcanol., 01, 102ῌ12,.
Guidazzoli, A., Diamanti, T., Ponti, F. D., Neri, A., Bisson,
M., Ongaro, T. E., Gori, R., Pareschi, M. T., Calori, L.,
Imboden, S., Cavazzoni, C., Erbacci, G. and Menconi,
G. (,**0) An interactive virtual environment to communicate vesuvius eruptions numerical simulations and
Pompeii history. In ACM SIGGRAPH ,**0 Educators
Program (ACM special interest group on computer
graphics and interactive techniques eds), SIGGRAPH
’*0, ACM Press, New York.
¬”­® (+331) ¯°OPQROS.5¨±²³
´¯°µ¶·5 ¸¹\] ,-2p.
He#ter, J.L. and Stunder, B. J.B. (+33-) Volcanic ash forecast transport and dispersion (VAFTAD) model. Weather and Forecasting, 2, /--ῌ/.+.
Heinrich, Ph., Boudon, G., Komorowski, J.C., Sparks, R.S.
J., Herd, R. and Voight, B. (,**+) Numerical simulation
of the December +331 debris avalanche in Montserrat,
Lesser Antilles. Geophys. Res. Lett., ,2, ,/,3ῌ,/-,.
Hersum, T., Hilpert, M. and Marsh, B. (,**/) Permeability and melt flow in simulated and natural partially
molten basaltic magmas. Earth Planet. Sci. Lett., ,-1, 132ῌ
2+..
%623Qµ¶·¸l¹º!mn»O¼(*&'()&NO
Hidaka, M., Goto, A., Umino, S. and Fujita, E. (,**/)
VTFS project : Development of the lava flow simulation
code LavaSIM with a model for three-dimensional convection, spreading, and solidification. Geochem. Geophys.
Geosyst., 0, Q*1**2.
(+323) ,/,p.
Hirt, C.W. and Nichols, B.D. (+32+) Volume of fluid
(VOF) method for the dynamics of free boundaries. J.
Comput. Phys., -3, ,*+ῌ,,/.
Hon, K., Kauahikaua, J., Denlinger, R. and Mackay, K.
(+33.) Emplacement and inflation of pahoehoe sheet
flows : observations and measurements of active lava
flows on Kilauea Volcano, Hawaii. Geol. Soc. Amer.
Bull., +*0, -/+ῌ-1*.
Hoover, W.G. (+332) +10p.
Hurst, A.W. and Turner, R. (+333) Performance of the
program ASHFALL for forecasting ashfall during the
+33/ and +330 eruptions of Ruapehu volcano. New Zealand J. Geol. Geophys., .,, 0+/ῌ0,,.
Hut, P. and Makino, J. (+333) Astrophysics on the
GRAPE family of special-purpose computers. Science,
,2-, /*+ῌ/*/.
(+332) !" #
02 2*,ῌ2*1.
$ (,**/) %&'()* : +, !-./
"0!" #$#1#23%&'(423 5%6
)*789':;<= +> +0 ,-23>?@A
..3ῌ./..
Iitaka, T., Hirose, K., Kawamura, K. and Murakami, M.
(,**.) The elasticity of the MgSiO- post-perovskite
phase in the Earth’s lowermost mantle. Nature, .-*, ..,ῌ
../.
BC.DEFGHIJ (+32.) K/LM0L1
&'()&NO
+32- ,P230L1Q45
%6 ,3 S,.,-S,/,.
B67R6 S (+33.) %T189$UV/W
&'()&NO :;XYZ< -0 ,,ῌ,1.
Ishimine, Y. (,**/) Numerical study of pyroclastic surges.
J. Volcanol. Geotherm. Res., +-3, --ῌ/1.
B=[\ (,**/) ] %T1 0L1&'()&N
O^_W`> #$#1#23%&'(423
5%6)*789':;<= +> +0 ,-23>?
@A .//ῌ./1.
Bab (,**.) <c;de?f!gh @
iAj ,.,p.
Itoh, H., Takahama, J., Takahashi, M. and Miyamoto, K.
(,***) Hazard estimation of the possible pyroclastic flow
disasters using numerical simulation related to the +33.
activity at Merapi Volcano. J. Volcanol. Geotherm. Res.,
+**, /*-ῌ/+0.
kBlCDmIR (,**/) 8Enf!opoqFG
Hn_Er #$#1#23%&'(423
5%6)*789':;<= +> +0 ,-23>?
@A +*0ῌ++*.
Iwamori, H. (+332) Transportation of H,O and melting in
237
subduction zones. Earth Planet. Sci. Lett., +0*, 0/ῌ2*.
Jaeger, H.M., Nagel, S.R. and Behringer, R.P. (+330)
Granular solids, liquids, and gases. Rev. Mod. Phys., 02,
+,/3ῌ+,1-.
sI J K ,1 L (+33-) MtN# 5&'()
&NO= u8vO<w +2.p.
xIyOEPz (+331) {8|}QR~
gh %6 ., S+-S++.
Kelfoun, K. and Druitt, T.H. (,**/) Numerical modeling
of the emplacement of Socompa rock avalanche, Chile. J.
Geophys. Res., ++*, B+,,*,.
€# (+333) STU?‚V ƒ„W… N†‡
ˆ!‰XWŠ5
u8vO<w +2.p.
Kilburn, C.R. J. (,**.) Fracturing as a quantitative indicator of lava flow dynamics. J. Volcanol. Geotherm. Res.,
+-,, ,*3ῌ,,..
Kinjo, T., Ohguchi, K., Yasuoka, K. and Matsumoto, M.
(+333) Computer simulation of fluid phase change :
vapor nucleation and bubble formation dynamics.
Comput. Mater. Sci., +., +-2ῌ+.+.
‹YŒ DZ C[D IPŽ \]
(,***) ^‘W’“TU? i_AYj
--2p.
”:•`1a (,**.) +> +0 ,”:•`bA –—.
˜™ -32p.
šBcŒ›œd *D ž (+333) %6
Ÿ< ¡&'()&NO Z¢W£’ 2 +,-ῌ
+-2.
‹¤E¥e (,**+) %6¦§W&'()&NO gh
† 0 -,*ῌ-,-.
‹6¨G©fª« (,**.) gm6¬­®o:¯h
0!°±RRi¦jk²³´ #$#1#2
3%&'(423 5%6)*789':;<= +>
+/ ,-23>?@A -1,ῌ-32.
Kuritani, T. (,**.) Magmatic di#erentiation examined
with a numerical model considering multicomponent
thermodynamics and momentum, energy and species
transport. Lithos, 1., ++1ῌ+-*.
Laigle, D. and Coussot, P. (+331) Numerical modeling of
mudflows. J. Hydraul. Eng., +,-, 0+1ῌ0,-.
Malin, M.C. and Sheridan, M.F. (+32,) Computer-assisted
mapping of pyroclastic surges. Science, ,+1, 0-1ῌ0.*.
Manga, M. and Ventura, G. (,**/) Kinematics and dynamics of lava flows. Special Paper -30, Geological Society of America, Boulder, ,+2p.
Mastin, L.G. (,**+) A simple calculator of ballistic
trajectories for blocks ejected during volcanic eruptions.
USGS Open-File Report ,**+ῌ./.
Mériaux, C. and Lister, J.R. (,**,) Calculation of dike
trajectories from volcanic centers. J. Geophys. Res., +*1B
., doi : +*.+*,3/,**+JB***.-0.
Minakami, T. (+3.,) On the distribution of volcanic ejecta.
(Part I.) The distribution of volcanic bombs ejected by
the recent explosions of Asama. Bull. Earthq. Res. Inst.,
,*, 0/ῌ3,.
Mitani, N.K., Matuttis, H.-G. and Kadono, T. (,**.)
Density and size segregation in deposits of pyroclastic
238
 ¼ ¹
flow. Geophys. Res. Lett., -+, L+/0*0, doi : +*.+*,3/,**.
GL*,*++1.
Miyamoto, H. and Sasaki, S. (+332) Numerical simulations
of flood basalt lava flows : roles of parameters on lava
flow morphologies. J. Geophys. Res., +*-B++, ,1.23ῌ
,1/*,.
(,***) 1 .2 (+*) .1ῌ/,.
(+310) !"
,.1p.
#$%&' (!)#$*+%&, (,**0) "
#-"$)./0%&123456ῌ')789(
):);*+<,0 =-. +1 /0> .?1@A
0--p.
23B4 (+33+) Smoothed Particle CDEF5G67
$ HIJ +* ,,3ῌ,-3.
Nagasawa, M. and Kuwahara, K. (+33-) Smoothed particle
simulations of the pyroclastic flow. Int. J. Mod. Phys., B
1, +313ῌ+33/.
Narumi, T., Ohno, Y., Okimoto, N., Koishi, T., Suenaga,
A., Futatsugi, N., Yanai, R., Himeno, R., Fujikawa, S.,
Taiji, M. and Ikei, M. (,**0) A // TFLOPS simulation
of amyloid-forming peptides from yeast prion Sup-/ with
the special-purpose computer system MDGRAPE--. Proc.
Supercomputing ,**0.
Neri, A. and Dobran, F. (+33.) Influence of eruption
parameters on the thermofluid dynamics of collapsing
volcanic columns. J. Geophys. Res., 33B0, ++2--ῌ++2/1.
Niimura, H. (,***) Lattice-gas model with wetness control
for various deformable microstructures. Comput. Phys.
Commun., +,3, +./ῌ+/1.
Nomanbhoy, N. and Satake, K. (+33/) Generation mechanism of tsunamis from the +22- Krakatau eruption.
Geophys. Res. Lett., ,,, /*3ῌ/+,.
Oberhuber, J.M., Herzog, M., Graf, H.-F. and Schwanke,
K. (+332) Volcanic plume simulation on large scales. J.
Volcanol. Geotherm. Res., 21, ,3ῌ/-.
KL 8 (,***) MNO
0$9: ,.*p.
Pitman, E.B., Nichita, C.C., Patra, A., Bauer, A., Sheridan,
M. and Bursik, M. (,**-) Computing granular avalanches and landslides. Phys. Fluid, +/, -0-2ῌ-0.0.
Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (+33.) Numerical Recipes in C ;P <
Q-R=>?S@TA BC *+DE
U 02*p.
Ryan, M.P. (+322) The mechanics and three-dimensional
internal structure of active magmatic systems : Kilauea
volcano, Hawaii. J. Geophys. Res., 3-B/, .,+-ῌ.,.2.
VW X (,**.) 6FCDEGH
+13, /I YJKZLYMN1%&1@
.* 0-ῌ1+.
SO[\ (,**+) ]^6FCDEPQ_G
H
R`Sa%&1@ /, ,.+ῌ,...
Saunders, S. J. (,**/) The possible contribution of circumferential fault intrusion to caldera resurgence. Bull.
Volcanol., 01, /1ῌ1+.
3bM (+331) cdT^eN1fOgU V
GW .2, +*ῌ+/.
Seino, N., Sasaki, H., Sato, J. and Chiba, M. (,**.) Highresolution simulation of volcanic sulfur dioxide dispersion over the Miyake Island. Atmospheric Environment,
-2, 1*1-ῌ1*2+.
*+XYhi6j4klg;Z[8mno\ (,**/)
,+ ]plgq^MNO
krsthi6 +/3p.
Spiegelman, M., Kelemen, P.B. and Aharonov, E. (,**+)
Causes and consequences of flow organization during
melt transport : the reaction infiltration instability in
compactible media. J. Geophys. Res., +*0B,, ,*0+ῌ,*11.
_"u (+33.) `ZvwxCDE
yt56z1t{MNOab cd
Ae +..p.
Sussman, M., Smereka, P. and Osher, S. (+33.) A level set
approach for computing solutions to incompressible twophase flow. J. Comput. Phys., ++., +.0ῌ+/3.
67$\|}~o\ (+33/a) fgh€i
j6 k‚"$"o +2.p.
67$\|}~o\ (+33/b) lƒ„m6
k‚"$"o --0p.
67$\|}~o\ (+33/c) ƒ„m6 k
‚"$"o -+,p.
67$\|}~o\ (+33/d) …†.M
NO‡ˆi‰z5t k‚"$"o ,**p.
67$\|}~o\ (+33/e) Š‹ŒJ
k‚"$"o ,**p.
nop\TŽq (,**0) ^Žrs‘’“”
5tC•–E - —˜
™šR
› -,, ,*.ῌ,*3.
Tait, S., Jaupart, C. and Vergniolle, S. (+323) Pressure, gas
content and eruption periodicity of a shallow, crystallising magma chamber. Earth Planet. Sci. Lett., 3,, +*1ῌ
+,-.
œ (,**+) …†žŸ ¡¢yŸC£¤€i
€i +/ ,-ῌ-*.
œ¥† ¦@t4 uŽ§¨ -Wv© wx y
(,**/) SPH CDE^z #$#$%&{%|}ª%& «^z ’“
”z5t¬ -. +0 /0%&.?1@A ,3.ῌ,3/.
œo ­ (,**-) €i
vw® ;Z
~ +-
+/*ῌ+0,.
œo ­GuMu (,**/) ¯t€°
±²³´‚µ¶Gƒ·.2„†7$ #
$#$%&{%|}ª%& «^z ’“”z
5t¬ -. +0 /0%&.?1@A ,.,ῌ,./.
Takahashi, T. (,**+) Mechanics and simulation of snow
avalanches, pyroclastic flows and debris flows. In Particulate Gravity Currents (McCa#rey, W.D., Kneller, B.C.
and Peakall, J. eds), ++ῌ.-. Special Publication Number
-+ of the Int. Ass. Sediment., Blackwell Science, Oxford.
œ¸ K…¹º (+32.) †‡ˆ‰
‚"!)%/1 ,1B, .01ῌ.2/.
œ¸ K…¹ºŠyO‹Œ (+331) ^»
&š¶h·¸¹ºd»¬†ef¼(
)*
/*
,*ῌ,/.
!" (+33-) #$% +33+ῌ
3, &&'(
)*
+,-. .. ,/ῌ/..
/01 (+332) 2345678
9:;&&<=5 >? +22p.
Tanaka, H.L. (+33.) Development of a prediction scheme
for volcanic ash fall from Redoubt volcano, Alaska.
Proc. First International Symposium on Volcanic Ash
and Aviation Safety. USGS Bull., ,*.1, ,2-ῌ,3+.
Tanaka, H.L. and Yamamoto, K. (,**,) Numerical simulation of volcanic plume dispersal from Usu volcano in
Japan on -+ March ,*** using PUFF model. Earth
Planets Space, /., 1.-ῌ1/,.
!B"# /$C D%&
1@ A
(+33.) &EF'
5 #$(
G% +33+ 0 . 2 )5 & -3 ,/1ῌ,00.
The Earth Simulator Center (,**/) Annual report of the
Earth Simulator Center April ,**.-March ,**/. The
Earth Simulator Center, -/,p.
Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W. (+33.)
F'H7IJKLMN* OP Q+,-
RS -/,p.
Tinti, S., Bortolucci, E. and Armigliato, A. (+333) Numerical simulation of the landslide-induced tsunami of +322
on Vulcano Island, Italy. Bull. Volcanol., 0+, +,+ῌ+-1.
Todesco, M., Neri, A., Ongaro, T.E., Papale, P., Macedonio,
G., Santacroce, R. and Longo, A. (,**,) Pyroclastic
flow hazard assessment at Vesuvius (Italy) by using
numerical modeling. I. Large-scale dynamics. Bull.
Volcanol., 0., +//ῌ+11.
TU.@VD/"WX0YZ[ (,**0) 1
\2]3^_`abcde:;f4gh
&i5j )63k ,**0 7lm1no8
pq ,++.
96:/rs;t (+333) H73<=H
239
7uvwx
=5yz{F'<|= ([}
~ +1.p.
>1"?@ (,**/) €8AJ‚ƒ„…b†
‡B&ˆ‰ŠF'
C +3
‹F'<
ŒŽnoDq +2ῌ+3
>‘EFE (+33*) G’<
„
“†”•H–—˜ ™šI 0/ -,+ῌ.++.
› J (,**-) K7
5œ:;L
7|=<=5 >? ..0p.
Valentine, G.A. and Wohletz, K.H. (+323) Numerical
models of Plinian eruption columns and pyroclastic
flows. J. Geophys. Res., 3.B,, +201ῌ+221.
Wadge, G., Jackson, P., Bower, S.M., Woods, A.W. and
Calder, E. (+332) Computer simulations of pyroclastic
flows from dome collapse. Geophys. Res. Lett., ,/, -011ῌ
-02*.
White, J.D.L., Smellie, J.L. and Clague, D.A. (,**-) Explosive subaqueous volcanism. Geophysical Monograph,
+.*, American Geophysical Union, Washington DC, -13
p.
Wohletz, K.H., McGetchin, T.R., Sandford, M.T. and
Jones, E.M. (+32.) Hydrodynamic aspects of calderaforming eruptions : numerical models. J. Geophys. Res.,
23B+*, 2,03ῌ2,2/.
MN DOž (+322) FORTRAN & C Ÿ „“†
¡=PO )¢£¤yQ~ ,11p.
MN R¥¦§J (+33,) ¨©(
„“†
ST Uª«V +3,p.
MK (,**+) ¨©(
=¦†¬4 nW~
-0*p.
MK­XY Z (+332) [®D¯=¬
—˜ Uª«V +,2p.
B°\]±6^_16¥²³`´µ/
(+33*) a”F'
µ£bcq
-. -3+ῌ-30.
Young, P. and Wadge, G. (+33*) FLOWFRONT : simulation of a lava flow. Computer & Geosciences, +0, ++1+ῌ
++3+.
Fly UP