...

helpfUlsuggestions・IalsowishtothankProfbssorsSalvadorBarbera

by user

on
Category: Documents
13

views

Report

Comments

Transcript

helpfUlsuggestions・IalsowishtothankProfbssorsSalvadorBarbera
DiscussionPaperNo、
316
ANIMPOSRmnl'TYTHEOYmM
INPUREPUUTIICGOODSECONOMmR
凸
WITHFEARmlTJTYCONSTRAINTS:
VOTINGBYCOMMITTIu田S
INNON-RECTANGULARFEASmnESETS
by
ShigehiroSerizawa*
Mayl992
RevisedJanuaryl994
ThelnstituteofSocialandEconomicResenTch
OsakaUmversity
6-1Mihogaoka,Ibaraki,Osaka56ZJapan
*
*Firstofall,IwishtothankProfessorWilliamThomsonfbrhisdetajledcomments
mentsand
helpfUlsuggestions・IalsowishtothankProfbssorsSalvadorBarbera,MarcusBerlia
Berliant,
MatthewJacksonandLionelMckenziefbrtheiruselUlcomments.
Abstract
Weconsidertheproblemofchoosinganaltemativeinapurepublicgoodseconomy
withfeasibiUtyconBtraintBwhenvoter8haveooadditively-separableandBingle-peakedIo
preferences・Ourpurposeistoidentifyvotingprocedure8satisfying1itop8-only11,
11nonmanipulabiUtyooand1IvotersovereigntyⅡ、FYrst,weshowthatsuchproceduresare
△
generalizationBoftheschemesof1Ivotingbycommittee811introducedbyBarbera,
SonnenscheinandZhou(1991)Second,weestablishthatwhennotwogood8canbe
Bimultaneouslyproducedattheirmaximalfeasiblelevels,thoseproceduresare
characterizedbytheexistenceofaverypowerfUlvoter.
Keywords
Feasibintyconstrajnts,Additive-separableandsingle-peakedpreferences,Tops-only,
Nonmanipulability,Votersovereignty,Votingbycommittees
llntroduction
Thispaperconcemstheproblemofchoosinganaltemativeinapurepublicgoods
economywithfeasibintyconstraintswheneachvoterha8preferencesinacertaincla88of
Ioadditively-separableandsingle-peakedoopreference8・welookfOrvotingprocedure8which
satisfythepropertiesofiitops-only11,Iinonmanipulability1iandIivoter8overeigntyi1・We
P
establishthatsuchproceduresaregeneralizationsoftheschemesofoovotingbycommitteeslo
introducedbyBarbera,Sonnen8cheinandZhou(1991,hereafterB,S&Z)JustUkethe
schemesofvotingbycommittees,thegeneralizedschemeshaveacertainpropertyof
1IdecomposabiUtygoodbygoodoo・Further,weestabUshthatwhennotwogoodscanbe
simultaneouB1yproducedattheirmaximalfeasiblelevel8,fOreachproceduresati8fying
thoseproperties,thereisavoterwhoisverypowerhll,althoughheisnotanecessaIilya
dictator・
weconBiderthefOUowingpurepubncgoodseconomies・Therei8annitenumberof
voterBandaEmtenumberofpubncgoods・ThesetofpotentiallevelsofeachgoodisEmte,
andthefeasibleBetZisasubsetoftheproductLoftheBetsofpotentiallevelsofgoods・
EachvoterhasapreferencerelationdehnedontheproductL・Avotingschemeisamethod
fOra66igmngtoeachpossiblepreferenceprohleanelementofthefeasibleset・Whenthere
areatleastthreeelementsinthefeasiblesetandthedomajnofpreferencesislargeenough,
theGibbard-Satterthwajtetheoremcanbeapplied:itsaysthatanynondictatorialscheme
ismaImpulablel・But,extendingtheresultofB,S&Z,recently,Barbera,Guland
Stacchetti(1991)andSerizawa(1992)showedthatifthefeasiblesetiBarectangle,thenon
animportantdomajnofpreferences,whicharecalled
lAschemeis…2111△hl且iffOrsomeprofileofpreferences,somevotercanobtaman
outcomethatheprefersbymisrepresentinghispreferenceiotherwisetheschemeis
nonmanimmable
1
or
璽旦且=h旦旦且dpreferences,thereexistaclassofnonmanipulablevotingschemesmuchwider
thanthecla88ofdictatorships・Suchschemesarecalled EeneralizedmedianvoterBch⑨m曙
or
uHUUI臣HuIV【】ⅡⅡ【】V
Furthermore,withaveryweaka。domofef5ciency
calledvoterBovereignty2,theycharactelizedvotmgbycommittees:IfavotingBcheme
satisEesvotersovereigntyandnonmanipulabilityonthedomajnofcro8s-Bhaped
preferenceB,thenitiBaschemeofvotmgbycommittee8.
However,thereareimportantca8e8whenthefeasiblesetis
an
、For
eg〔ample,Bupposethattherearesomenxedresources(inputs),fromwhichthepublicgood8
areproduce。、Thefeasiblesetwillcertainlydependonthetechnologyandtheresources,
andtypicallyitwillnotbearectangleWealsoassumefreedisposabilityofresources,
Thenwheneversomeproductionofthepubncgoodsisfeasible,anysmaUerproductionis
alBofeasible・Suchaconditioni8caUedzero-comprehensiveneB81nthispaper,wetreat
8uchcasesofnon-rectangularbutzero-comprehensivefeasiblesets・
InSection2,wesetupthemodelanddehnevotingbycommittees・Onenotable
featureofaBchemeofvotingbycommitteesisthatitcanbemdecomposedoointoBeparate
rules,onefbreachgoodForexample,thelevelof8omegoodcouldbedeterminedby
majorityrule,andthatoftheothergoodbydictatorship,Thuswhenthefeasiblesetisnot
rectangular,someoutcomesoftheschemeofvotingbycommitteesmaybeinfeasibleSo
next,we8tudytherestrictionsonschemesofvotingbycommitteesimpnedbyfea8ibinty、
Although,ingeneral,votingschemesdependonalltheinfOrmationcontainedinthe
prohlesofpreference8,someclassesofvotingschemesdependonlyonpartofthat
infOrmation・AndifthereisanycostoftransmittinginfOrmation,votingschemeswhich
dependonlessinfOrmationwillbepreferable、Avotingschemeis辺I…Xiftheoutcome
fOranypreferenceproEledepend8onlyonthebestelementsoftheproE1einthefeasible
set、Wecharacterizevotingbycommitteesintheclassoftops-onlyvotingschemesonthe
2AvotingBchemesatisEes
ifitisontothefbasiblesetZ
2
domainofadditively-6eparableandsingle-peaked3preferences,whichi8smanerthanthe
domainofCross詔hapedpreference8・Themainre8ultofSection2isthefbUowing:
〃qtop8-o汎lyuot”sdieme3at雛e8uote780Ue7e地冗tya狐。〃o几、α〃jPUltLbility0冗メノbe
domQi几q/Gdditjuel1ノーsepG7qblea〃dsin9le-pCM;edpre/b7e〃CCS,仇elzthe8cノbeme…scheme
Q/Uo2i几963ノcomm樅ee3tUhichsqt蛾Csノセ“iMitzノCO勉ditio〃8.
InSection3,wemakethenatmala88umptiononthefeasiblesetthatnotwogoodB
●
canbeproducedattheirmaximalfeasiblelevelsatthesametimeThehontierF(Z)ofthe
feasiblesetZisdenneda8thesetofelement8ofZsuchthattheproductionofnogoodcan
beincreasedwithoutdecreasingtheproductionofsomeothergoodGivenagoodx,Fx(Z)
istheprojectionofF(Z)onthesetofpotentiallevelsofxWeestabUshthefOUowing:
A83TmOetノbatGtOP8-07M1/UOtm93Cheme8Gtiq/iie3UOter80Uerej97LtVmd酌
冗o"、叩jptllq61eo〃tbedOm皿冗0/qddjtjUely-sepGmbleG〃d8町le-pe此edpre/b7e"CCS.、be〃
仇e7e曲Guote7isucMj(Wb7mZノp7e/i27e几cep7砿led几thedomqj几,
りめeOUtcomcleUeMeQch9oodZ…tJeos…lc7ye“theZ-fhcoo7di"CLfeQ/Uotcr
ibbe8tpomt伽Z,
iWbreoCb900dzjVtheZ-tノiCoo7dj"CUC〃tノjeUoterjbb"teIeme〃t醜Z曲atlecSt
“町…m`伽Fと(Z),tノjc"仇eoutcomclcツビ'0/ziScq"ltotノtcz-仇coordj"qteq/theU0ter
ibbe8teleme7ztmZ、
Foreg[ample,supposethattherearetwogoodsxandy,thatthe8etofpotential
levelsofxis{0,1,2,3}andthatofyis{0,1,2},andthatZ={0,1,2,3脾{0,1,2}
({(3,2))ThenF(Z)={(3,1),(2,2)},minFx(Z)=2,andminFy(Z)=LThusifthe
x-thcoordinateofi'sbestelementinZis2or3,thentheoutcomelevelofxmustbeequal
toitiifitisl,thentheoutcomelevelofxisatleastaslargeasl(butmaybe2or3)
Therefbreundertheassumptionsabove,theremustbeavoterwhoisverypowerfm
althoughheisnotnecessarilyadictator,However,COnsiderthecaseswhenfOreachgoodx,
3Apreferenceis
additively竜epara
ifitisrepresentedbyan
ionofeachgoodissingle-peaked.
、【
3
minFx(P)=0,thati8,if8omegoodisproducedatitsmaximalfeasiblelevel,thennoother
goodcanbeproduced・SuchcasestypicallyoccurwhentheresourceshomwhichthegoodB
areproducedarenxed,InthosecaseB,thevotingBcheme8becomedictatoriaL
2ModelandCharacterizationofVotingbycommittees
ThesetofvotersisN={1,2,…,、},、三2.
l>2.GivenWEN,wedenotethecardinality
 ̄
ofWby#WThesetof
urepuRo
(or幽型)isX={1,2,…,k},kz2GivenxEX
andAEX,wedenoteXN{x}by証andXlAby-AThesetof
DotentiallevelsofxEX
1s
Lx={0,1,…,mx},mx≧landL=x1Xいi…EX,AEXand`EL,w'ed…tho
x-thcoordinateofZbWk,andtheprohles((b,)yEA,((i,)y#xand(WAbWA,し,[and
LArespectivelyGivenxEXandL'〔L,wedenotetheprojectionofL'onLxbyLjt,and
themammalelementofnLjtbyM(L')Azero-comprehensive4setL'ELis型型gユlユエ
X
ifM(LリEL';otherwiseL'is
、ThefeasiblesetZisasubsetofLWe
assumethatZiszero-comprehensivebutnon-rectangular・
dennedas{CEZ’2'2M-2'2Z}GivenA〔Xand`A
-
{LAEHEXlRxl(LWEZ}byZ(2A)
1s
EPERx,wedenototh…t
ThesetofstrictDreferencerelationsonL is臭
GiventhePreferencerelationPiE身letRi
GiventhepreferencerelationPiE身letHbetheweakpreferencerelationassociatedwith
Pi(fbr2&Z'EL,ZRiZ'ifandonlyifZ'=ZorZPiZ')Givenapreferencerelation
PiEPandasetL'EL,wedenotethebestelementofPiinL'byB(Pi,L')andthex-th
coordinateofB(Pi,L')byBx(PiL)
4AsetDCLis
zerO-COmDre hensiveif
VZEL',VZ'EL,[O≦Z'二2-2'EL']
51nthispaper,Z’2ZmeansthatZ′>ZandZ'#ZiandZ′>ZmeansthatfOreachxEX,
A'〉を
4
Dp6nition:
isafimctionhomPntoZ.
moP′〔。。Ⅱ if
De5mtion:Avoting8chemefsatisnes
-
V2EZ,ョPEP'suchthatf(P)=
suchthatnP)=Z
Denmtion:
 ̄
ヨPE
LetP-Pi×…×夕hEPn・Avoting8chemefis manipulableonP'
if
P',ョiEN'&ョPiEPi8uchthat
IPi,Pゴ)Pif(P),
andotherwisefis nonmaniDulableon,′
DpfiTnition:
_
AvotingschemefisdictatorialifthereisavoteriENsuchthat
VpE ,n,f(p)=B(Pi,Z)
旦旦且ユユi旦旦:Avotingschemefsatisnes
if
VxEx,vpEpn,minB-(p:,I
,、,mlnBx(Pi,Z)≦R(P)≦…Bx(Pi,Z)
1
Remark:Goodwise-unanimityimphesunanimityandvotersovereignty.
 ̄
WewillconsiderthevotingschemesdennedbyspecibringfbreachxEXandeach
levelいOofxaclassXWE2Nof11winnmgcoalitions比suchcoalitionscan1ifbrceⅡ
thelevelofxtobehigherthan,orequalto,ikForexample,inmajorityrule,anycoalition
whosecaエdinalityisgreaterthann/2iswinningWerequirethatthebiggeracoalitionis,
thegreateritspoweris:WEプリ;t(い&W'。W-W'Ex(紗
Defmition:
Oisasubset
プリR(4)of2Nsuchthat
aThisdeEnitionofasetofwinmngcoalitionsisdifIerentfromthatinSerizawa(1992)in
5
WE翼(い&WOW-W'EiIR(い
 ̄
De5nitiom:AUst(灘(い)xEX僻x({0} ofBetBofwinningcoalitionBiBmonotonic
if
VxEX,VUk,4,ELx){0},
A≦A'=Z(4)ユプリK(い
MonotomcityoflistofsetBofwinmngcoalitionsimpUesthatifacoalitioniB
winningfOrsomelevelいfgoodx,thenthecoalitionmustalsobewmningfbranylower
consumptionleveLInordertodiscussthevotingschemesdeEnedbyspecifyingalistofsets
ofwinmngcoalitions,wedehnemaquasivotingscheme1i.
Dennition:
isafimctionfromlntoL.
De5nition:Aquasivotingschemefsatisnes ̄】Lif
VpE,n,f(p)EZ
AquasivotingschemeisavotingschemeifitsatisEesfeasibiUty.
7ifthereisamonotomcnst
De5njition:Aquasivotingschemefis
(塩(』k))xEX,LELx1{O}ofsetsofwinnmgcoalitionssuchthat
VxEX,VいLxH0},VpEpn,
&(P)≧(k={iENlBx(Pi,Z)≧pE漣(4)
that
翼(剣 neednotsatishestheconditionofPropositionlbelow.
磯鯛謡搬聯雛MH:澱lビii3lMil澱淫慨織鯛⑭
iBnOn-reCtangular.
6
塗22§11坐:A66umethatfi6votingbycommitteeswithalj鹸(iiR((k))xEX,いェ({O}
ofsetsofwinningcoalitions・ThenfsatisneBvotersovereigntyo、,′〔,nifandonlyif
-
thenstsatishes:
VxEX,VいZx1{0},襲((k)*0and“刃K(を)
Weomittheproof,whichiBstraightfOrward.
●
Remark:PropositionlimpliesthatifvotingbycommitteessatisEesvotersovereignty,
thenitalsosatishesgoodwise-unanimity・ThusfOrvotingbycommittees,voter
sovereigntyandgoodwise-unanimityareequivalent.
Votingbycommitteesmaynotsatisblfeasibinty.
…pl且-1:SupposethatN={1,2},X={x,y},Z={(0,0),(1,0),(0,1)},
藁(1)=渚(1)={WENlWf0}LetP1andP2besuchthatB(P,,Z)=(1,0)3,d
B(P2)=(0,1).Thenf(P)=(1,1)僧Z,thatis,fisnotfeasible
Proposition2belowprovidesthenecessaryconditionsonaUstof8et8ofwinning
、
coalitionsfOrtheassociatedvotingbycommitteestosatisfyfeasibility.
型旦旦旦1119ユーユ:Letfbeaschemeofvotingbycommitteesassociatedwiththenst
(z((l[))xEX,tkELxl{0}ofsetsofwmningcoalitionssatisfymggoodwi6e-ummmjty・Then
satishesfeasibilityonlyiffsatisnesConditions(i)and(ii)below.
(i)ForanyxEX,andfbranyAEZx,雍(い=0
(ii)G…'@x'LM〔z1選,←,
let(WE[Zx(し側昨Zy((_{x,y})ハZ(4-{x,y})TheⅢ
7
VWxExW,VWyE
琴(9),wxnwy#仏
R燈markCondition(ii)…:GivenL{x,y},eachcoordmateofwhichisintheprojection
ofZontheco…omdmgaDd`,sUcethefe殿ible8etZpamneltothex-yplane・IfUhandUi,
areinthepzojection8oftheslicedsurfaceZ(`_{x,y})omthex-agd…dthey-…
Z.…ively,but(A,U1,,L{x,y})iSnotfeasible,thenanytwoelementsofXt(い、。
琴(Ui,)mu8th…non宅mptyintersectiom
ProofSinceCondition(i)istrivial,weproveCondition(ii)omy.
L…`X,L{x,,}。z1x,リッ(W‘[Zx(しMルZy(し{x,,})ハZ(し{x,,})
WxE灘(⑨andWyE巧(;)Suppose,bycontradiction,thatWxnWy=q
DenoWk'=max{`IC''ELxl(いいZ(し{x,y})}and
y
ルーmax{(y'ELylWy')EZ((_(x,y})}LetPbesuchthat
{ilB(Pi,Z)=((IC,いし{x,y})}=N1Wy,and{ilB(Pi,Z)=(い』i,,(_{x,y}}=Wy・
Thengoodwise-umammityimplies:(1)L{x,y}(P)=し{x,y)WyE藩(,implies:
(2)、(P)≧UirSmceWxnWy=OimpUesthatN1WyユWx,WxE蕗(い、plie8:
(3)&(P)≧Uk
Smce(Wl【Z(し{x,y})andZ(し{x,y))i…ro-compZehensive,itfbllow8企0m
(1),(2)and(3)thatRy(P)ビZ(f_{x,y}(P))ThatMP)EZⅡhiSc…dictsthe
feasibilityoff
QED.
Eエ92g§1119ユーユ:AssumethatX={x,y)Letfbeaschemeofvotingbycommitteeswith
thelist(潅凹)xEM【ELxl{0}ofsetsofwmnmgcoalitions・Thenfsatisnesfeasibilityif
andonlyiffsatisnesCondition(i)and(ii)below.
(i)Forany\Zx,翼(tk)=OandfbranyZi,EZy,琴((i,)=O
(ii)LetZE[Zx×ZyMThen
8
vwXEHWR(4),vwyE堵(9),wxnwy#0
ProofSincetheproofofiIonlyifoIi8simnartoPropoBition2,weproveIoifuIPartonly,
ASSumethatthelistsatishesConditio、(i)and(ii).LetPE,nandZ=f(P)We
wanttoshowthatCEZ
Suppose,bycontradiction,that(1)“ZCondition(i)impnesthat(2)ZEZx×zZy.
0
DenneWx鎚{ilBx(Pi,z)≧qandwya`{ilBy(Pi,z)≧U1,)ThenZ=f(P)imp1ie8
that(3)WxE堪(い、dWyEjV(9)NowitfbUowsfromCondition(1),(2)and(3)
that(ii)implythatWxnWy#OThenfbriEWxnWy,B(Pi,Z)≧fSinceZis
zero-comprehensive,(1)impUesB(Pi,Z)EZThiscontradictsthedefinitionofB(Pi,Z).
HenceZEZ.QE.、
ThelistinExampleldoesnotsatisfyCondition(ii)ofProposition3,since
(1)E,i;t(1)and(2)E藩(2)but(1)、(2)=0.
…121旦旦:SupposethatN={1,2},X={x,y},Lx=Ly={0,1,2},
Z=(Lx"Lyハ{(2,2)},andthatXt(1)=渚(1)={WENlWナルnd
Xt(2)=務(2)={WEl1EW)LetZE(Zx×Z,ハ((2,2))ThenZ=(2,2)Forany
WxEXt(2)andWyE渚(2),lEWxnWySotheUstsatishesconditions(i)and(ii),
andtheassociatedvotingbycommitteesisfeasible.
壁巫21且-且:SupposethatX,LandZarethesameasofExample2,andthatN={1,2,3}
and蕗(1)=z(2)=琴(1)=iWi(2)={WEN|#W三2)IfWxE薦(2)WyE考(2),
thensince十Wx+#Wy≧4and#N=3,WxnWy#0.ThusthislistalsosatisEes
Condition(i)and(ii),theassociatedvotingbycommitteesisfeasible.
WenowdennethedomamsofpreferencesthatwewiUuseinthecharacterizationof
●
9
votingbycommitteeaIngeneral,anagent,spreferenceonthepotentiallevelsofa
particulargooddepend8ontheconsumptionlevelsoftheothergood8,SeparabUityde5ned
below8ayBthatthepreferenceontheavajlablelevelsofeachgoodisindependentofthe
con8umptionlevelBoftheothergood8.Aweakerver8ionofBeparabiUtyi8
peak宅eparabinty,whichBaysthatthemostpreferredlevelofeachgoodiBindependentof
theconsumptionlevel8oftheothergoods・Astrongversionisadditive-8eparability,which
saysthatapreferencecanberepresentedbyanadditively宅epaエablefUnction・Givena
preferencerelationPiEPand2-xELざ,letZk(《_x)=Bx(Pi,{WLx)|UkELx})
Dennition:
ApreferencerelationPiEPis聖旦竺旦hlEif
VxEx,vq-x,AEL-x,v4,4ELx
((k,(_x)Pi(4,`_x)-((k,(▲x)Pi(《i,魁)
DenotebyPSE,theclassofseparablepreferences.
Definition:
AprelerencerelationPiEPis
peak-SeDarable if
VXEX,VLXEL証,ZX((_X)=Bx(Pi,L)
DenotebylPSEptheclassofpeak-separablepreferences.
ifthereemBtBalist
De5mtion:ApreferencerelationPiE’is
 ̄
(UxLX-R)xEXofutiUtyfimctionssuchthatfOrallZandZ′
EL,
UPi′ ̄X:XUX(p>x:XU(い
DenotebyPAStheclassofadditively-separablepreferences.
NotethatlAS〔PSEPPSButiffbreachxEX,Lx={0,1},thenPS=,PS,
 ̄ ̄
andbothnotionscoincidewiththenotionofseparablepreferencesofB,S&Z.
10
DeEnition:ApreferencerelationPiE
-
Pismonotomcif
Vx〔x,vL,[EyHxLA,いLx,
゛(k'=((k,Lx)Pi(を',Lx)
DenotebylMtheclassofmonotomcpreference8.
ェlg且ユェェ:ApreferencerelationPiEPi8且118些匹且ょ旦旦if
VxEx,VL,[EL-x,VIMfELx,
[(k<《t≦Zh[(しx)。r4>4≧zk(しx)] ̄W-x)PA'しx)
DenotebypSPEPtheclassofsingle-peakedPreferences.
Definition:APreferencerelationPiE,is些旦且旦二旦旦旦旦difPiispeak-sepambleand
single-peaked
DenotePC=pPSnpSP
NotethatlASnPSP[PQA1sonotethatiffOreachxEX,Lx={0,1},then
single-peakednessisautomaticanysatisEedThusiffbreachxEX,Lx={0,1},sincePPS
-
coincideswiththenotionofseparablepreferenceofB,S&Z,sodoesPC,Westudythe
schemesofvotingbycommitteesonthedomamlASnPSPofadditively竜epalableand
single-peakedpreferences.
Although,ingeneral,quasivotingschemesdependonalltheinfbrmationcontained
inthepron1esofpreferences,someclassesofqUasivotingschemesdependonlyonpartof
thatinfOrmation、Votingbycommitteesdependsomyonthevoters'mostpreferredset・
Thispropertyiscalled11tops-only'1.
些型i旦旦ユ:Aquasivotingschemefis辺I…xif
11
Vp,p,Epn,
[ViEN,B(Pi,Z)=B(Pi',Z)]-f(P)=f(P')
FortheclassoftopB-onlyqua8ivoting8cheme8,weusethefOUowingnotation:
fZn-L
Theoremli8acharacterizationofvotingbycommitteesintheclassoftopB-onlyqua8i
votingBchemea
Theoreml:Ifatops-only
quasivotingschemef:Zn一Lisnonmanipulableonthedomam
P
(PASnlSP)nofadditively-8eparableandsingle-peakedpreferences,thenitisaquasi
schemeofvotingbycommittees
ProofAssumethatfZn-Lisnonmanipulableon(PASnPSP)n.ThestatementBofStep
l,2,3&4belowimplythatfisaquasischemeofvotingbycommittees・TheproofSofthese
statementsareinAppendix.
蝕旦E-l蝿,《,ZiandLiaresuchthatR(《,`_i)≧Aand2ix≧いhenfk(({,Li)≧Uk・
旦堕n-21fUk,<,Ziand(_iaresuchthatH((,(_i)≧Landいくx,thenを(({,(_i)≧を
旦堕E-aGivenxEXandAELx,let
藁(Uk)={WENlヨ(↓i)iEN8.tい`1,…,Uh)≧(k&W={iEN|<x≧Uk))
ThenWx(い…etofgeneralizedwmmngcoalitiona
且ムニE-4GivenxEX,((1)iEN,andtkELx,wehave:
R(4,,…,』h)≧“andonlyif{iENl4x≧A}EプリK(4)□
Q1gll旦互:Ifatops-onlyvotingschemef:Zn-ZsatisEesvotersovereigntyand
nonmanipulabilityon(PASnPPS)n,thenfisvotingbycommitteesassociatedwithaust
of8et8ofwinningcoalitionswhichsatisnesConditions(i)and(ii)ofProposition2.
12
3AnlmpossibilityTheorem
InSection2,wecharacterizedvotingbycommittee8inthecla88oftop8-onlyvoting
8cheme8bythemdomBofvoterBovereigntyandnonmanipulabinty、InthiB8ection,we
deriveastrongerreBulthomsuchamom8・UBingthere8ultsofSection2,wee8tablishan
impossibintytheoremwiththeadditionala8BumptiononthefeasiblesetthatnotwogoodB
canbeproducedattheirmammalfeasiblelevel8atthesametime・Thata8Bumptionho1d8
whentherearesomeExedresourcesthatarepubUclyownedandgoodsareproducedby
uBingtheresources.
Dehmtion:Letaset
翼(を)ofwinningcoalitionsbegivenVoteriENi…etovoterin
』RifiEnW・VoteriENisadecisivevoterin
riENisadecisivevoterinZK(4)if{i}Ez(9Voter
WE襲(4)
iENis
ifheisavetoanddecisivevoterin藍(9
旦旦且ユユユェ:Twoelements2andZ'EF(Z),2#('areadjace型if
V2,,EL,[(,,〉(min{』k,い)xEX-Z''EZl
…ユーLAssumethatvotingbycommitteesfsatishesfeasibilityand
goodwi8e-unanimity,andisnonmampulableon(,ASnPSP)n.LetZEF(Z)andxEXIf
therei8Z'EF(Z)adjacenttoZand4くいhe、翼(phasadecisivevoter.
Remark:NotethatM(Z)EZimpnesF(Z)={M(Z)}・ThustheconditionsZ,Z'EF(Z)
andk'くいogetherimplyM(Z)EZSoLemmalandthesubsequentresult8canbe
appUedonlytothecasesofnon-rectangularfbasiblesets.
ProofofLemmal
LetZEF(Z),dEF(Z),andxEXbesuchthat
13
(】)へj⑰畳」胃自二。(P員(閨)鮮、八貯
留弓。mの》ごB骨昌三目》一言一(閨)謡(鈩)盲目二の畠言号。一日・
田の一望、〆ワの冒○庁←ず鷺
(吟)小、v李目」(廟)菫、m鎖($『)目。(。)ベミ、、輻三、)雪、【愚(中、)・
閉具(『)(、、Ⅱ(旨昌■{か》紙箪})酎、〆・円肩口
(噌)ⅡU(⑪)鮴、、Ⅱ鮮、
(とⅡ↓(⑫)小管、Ⅱ牟
田の二m三、)目已甸、(、シ⑫。、富)己ワの⑫巨昌吾鴛
(旨)江」m己で一{】}》国](弓」》函)Ⅱ鯲富・
(臣)邸mz-君、)国邑(勺」》頃)Ⅱ傘ミⅡ傘(八$『)
(届)舐mz-{】}》くい辞])田園(宅」》国)Ⅱ紙、
(』』)国(宅】】国)Ⅱ〈Pロロ虹(、、、m国箏ユーロ(、§弾く辱》甸、田】閂、§・
p
 ̄'
 ̄
 ̄
盾。
、-ン
C□
 ̄
l{」mzl国『(勺」】国)w傘、}Ⅱ雪、一{】}
ⅡU(]⑫)隼弓)八$雷す『(②))
望。←の菩菖ごHg&」mz)国(田」一頃)w亀、、.、。ごm○○二重函の-臣曰冒旨已ご》看の房圏⑩
ー
 ̄
(]』)閂(旧)Ⅳ』』.
 ̄グ
 ̄
←
C・国・ロ。
旧腕陶膳膳陣‐障師鈩鴎巨曰の吾自(■)ず円のPgH目』望)この己【。」の○一】○自国x望。[吾の詩麗】す]の、曾国C臣
(岳)時(』c)8昌国an冨皀○口ロ】餌己己昌号】]】ご・
鮴(団】、)田‐』)Ⅱ傘、.シ三m○○已菖器-皀息己旦ご)(届)目』(】②)】曰己]超号P←ず門騨皇国寺]》
鮴(石】、》田‐山)Ⅱ紗、・目冨垣(9)門(甸一、)田‐』)Ⅱ』・
国巨←]の一℃】、す⑩函房○け←ずP←(]垣)国(田へ】国)Ⅱ{、.目彦の■ず望(】。)秒pPp])》(画)一日己毎の函一彦皀
(埠函)》(】②)時(]『)Ⅱ↓(岳)(鶴田】兵甸)
(』)時(屋)I(旨)炉(句)八鮓)
(』)時(届)Ⅱ↓(岳)く」mz-{】})国X(田])函)Ⅱ貯、八鰈》
p
甸臣ユロの]ロロ自鈩
 ̄
餌冒。》
s
Lx×Lyisnon-rectangularFurtherassumethat(2)votingbycommitteeBfsatisne8
feasibilityandgoodwise-unanimity,andi8nonmanipulableon(PASnPSP)n.Thenthe
sets
竃(…Zx)xEXhaveacommondictat.■.
且ニユユュエ上:Assumption(1)saysthatnotwogood8canbeproducedattheirma。。mal
feasiblelevelsatthesametime.
2エggfBy(1)andLemmal,eachset蕗(maxZx)hasadecisivevoterix・
LetxandyEX,Weclaimthatix=iySuppose,bycontradiction,thatixナiy、
ThenletPbesuchthatBx(Pi,Z)=maxZxandBy(Piy,Z)=maxZyThecondition
X
{ix}EXt(maxZx)impUesthat《c(P)=maxZx,while{iy}E藩(…Zy)impnesthat
fi,(P)=…ZyBy(1),thiscontmdictsthefeasibintyoffSoix=iy
Notethatalsoby(1),Proposition2impUes:
VWxE薦(maxZx),VWyEXt,WxnWy#U
SettingWy={ix},wehave
VWxE落(maxZx),ixEWx
Soixi8adictatorin裏(maxZx)
Therefbreeach恵(maxZx)hasadictat・rButalsoby(1),Pmpositi・n2implies
thatthesedictatorsarethesamevoteL
QED.
E[gEg§jllgユーム:Assumethatfbreachxandy,theprojectionZxyofthefeasiblesetZon
LxxLyisnon-rectangular,Furtherassumethatvotingbycommitteesfsatisnes
feasibintyandgoodwise-unanimity,andisnonmanipulableonthedomain(,ASmPPS)n
ofadditively器eparableandpeak-separablepreferencesThenthereisavoteriENsuch
that
(i)fbranyxEX,fbranyLEZxl(0},iisadecisivevoterofプリH(4)
15
(》】)言曽]×m〆》言②這鈩ご目弓門(函)八鮮貼目貫国H》三:曰目鷺自己鋸(炉)。
開陳仁隠、冒吊す]苦の曰。■○一○日。】ご己屋訪○崗駕誌。{ヨロ日pm8興巨】C畠](】】)旨】已岸〔輯(一)》ニョの
冨冒:已冨:ご「(】】)辱いの目自己》晉露の冨謡(目賀国H)》Hmx臣弓:8月ロ8日・曾◎二
円肩口耳苦①日日。←CBBご◎安房房一一忽.一の亘】画」の曰巴弓の曽舜の由SHP目昏門の闇屋鮴、函縄・画◎
蓋『の冨弓の。已罠一。吾○一コ吾輿晉の弓。←①旦旨P『⑩一。ご○←⑦H昏息騨昌禺自」ず:PS鮨》
昌口再禺(酌)八鈩肪目胃国H・
晋君○mの)ごg己HP已昌C目)吾菖晉②『の胃のHm※)鮮)巨口匂〆(国)八鈩川目貝国然自P
二言〆、錦(鮮)圏の三富茸【雪済.、旨の目弓〆(宅)八炉》吾曾の】翼、m国(国)召・三富←鮴、八小・
田巴勺彦の呂呂菩鷺ヨーミHⅡ{]|国(甸」)田)Ⅱ辱}牌己君HⅡ{」|国〆(勺」)国)Ⅱ貯}・盟昌&】画騨
』のB、葛①ざHのP呂望、滉凹且ざHの凹号中、国『》P呂巴員の】扇君x】目ご房、一言三m雪乏『K)鴬
蓉巨◎劃「賀意一壱)w閂、・句巨昌の『)雪Hm謡(鮨)言旨の、言農鈩(石)Ⅱ酢V鮮、・二房兵弓)Ⅳ
』・堕冒。①(、m国(国)】要「のザP『のP3員H且】○詮Cpg弓の諒酔巴亘豈]。【閑・国の曰○の』mご『H》餌■⑨二頭湧
く§ぐ。一円目謡(許).p・固已。
弓昏の日の目]Pロロ田8℃C昌一】○口』一○mの一彦のH】曰己]】弓臣のonの目幽.
哨贋値随旧r呼尹留巨目①吾筥昏Hの餌gH目』]》曽の目。」の○二.ロ国〆]○重房諒麗」匡⑩器一頃。■
■Hxい]]mpgl尉○冨信已胃。句日昏のH麗冒目の菩呉餌一○冨○巳]己○一百m⑰○房目の閉園ご島の⑫『○一円
、。『円国、具望目」】、ロ○日目己や已号]の○口吾の。C目巴目(、シ、。、四句)唇。【且&←ご色]-諾ご胃昌一の
目。⑫旨、]①-℃の異の。胃の葡甸の月のm・自営の口昏の息】、餌『○一の旦冒昌一富》ず円冒]
田、(、シ、。尅印宅)田)
】)好、〆]炉(田)w田渕(田一》国)
】】)ベxm〆》一目已包甸滉(国)M団榴(田】)国)ⅡU鮪(田)Ⅱ■〆(弓】》国)}
P膳恒に僧隅如巨②。&ごC回3言のP麗冒口宮】C易。円周房○円の目凹)麗冒目の昏鷺昏吋gsHm〆》
。、
ロ曰口吋H(国)ⅡP豈昏菖當》罵切○日の、○○。】、己【。』巨口の曰菖】富目凹凶目こ]の『の】》吾のロロCO言RmCC』
 ̄
pPpすの胃。q巨○の』・目冨口苦の『○一百m胃言目①閂目冨←ずの昌○苗8国巳.
。。■圏ロ円固H閏曰や]の閨・田思閂すの『。一一ロ、ず望ロ○日ロ目諄の①■P露。。旨←⑩』雪ヨーけ←庁⑪辱黒・匹口。①
肴肩口国(田】》園)Ⅱ(PC)餌ロ已国(弓噌頃)Ⅱ(』》ロ)】兵団)Ⅱ(揖己)》函C宙画■。←曰○菌一○塾些・団員『
愚言面⑩函詩麗ご】]】ご目。『○一円、。『の円四m目ご》目已】匝已○日ロP巳已已吾]の。■(、尹切二、⑫勺)ロ・日ロ畠
○Cロロ巨巴。■
号の昌曰淳○目巳伊圏巨目已》Cロ。【CCB臣胃]旨百日壱⑩ロ患巨のざ円昌黛鷺C勗亘□.
一
旨号巨、已餌己曾》二石の切言&&已冒①已巨すぼ○mg烏の8口◎日】の⑰量晉詩麗】亘屋]8口異同圏ロ訂.
。p苫①。。B匿自○門鯉」曰←ご巴望1土の己胃騨》]の餌ロロ圏信一①-ロ①昌呂官の訂円のロ○畠》毛》の】」の具冨&苦の
一○息-C己]『○一旨、函呂の曰(溺君「亘呂麗爵②ごC一閏、。『の【の】、pご目。■CpBP昌勺已由亘巨】・雪の
(出冨ケ]】号のロ晉鷺目○崖『。←旨mms①目の、房湧くの凹弓の昌已○頭「の]餡巨]ごC←のユロニのロP冨円巴8mの肴ケ①曰
:量『。□臣す厚cmoamC圏ず①官呂目の□鴛晉の一目ロ買砕曰臣涛麗】す】の]の『の]由巴日昌一P目のCg}豊・
甸冒晉曾BCHの晉目己。弱『⑩『辱』『○一国ワの8日の、餌島○一呉○ユロニ①ご目○国}⑤鶴の看戸のロ】[碗。Bの、。。」
■HCC[。[叩一m己
奮巨目の言壹貯上》({騨巨距胃の目・亘宣
シ石田固三己閂〆
旨官。」言の皀鷺】訪日騨邑曰巴】の急])善のロロ○○二円、。。』&皀官。』臣、の。。
UBC[。【曰苣の。吊曰
(】)鈩(ず庇)w鮮》胃(』)へ{瀦w鮮
円冨曰ワ電(⑬)】曽曾の】切宅一m(、シ函。、⑫勺)冒呂晉菖
(酉)国(勺】》国)Ⅱ閂一目』(←)く『》ベ》》[》Hw鮮V(xl(旧】(}
(可・尉関圓已】の》S8mの冒岱&葺くの]鐘上の己閂昌の目已冒函]中古の異&官の膏の貝の
へ]
旧】、(、諺、っ、亀)吊官の画の昌の」ごP]堂(己忌田望-当)]mx目&吾皀
 ̄
の
・園山(堵I〉》(×函禺曾目)苗二一二9.m程
①四巨漢閏①二一。
や》
》①閂①二生←
Ⅱ》
餉口①一m}C」○○肖由
□・郡川(ぶ《ざ鮴
芯[《×白山鍜己局〆wxpg己
川($《…《[『)出・當宅『(》)1|屋山夢}Ⅱ(ぷ)灘
匡貰}Ⅱ二割釧川($《…{[『)出・苫産山『(》)mlz
四三参・畠:ご月影の参三C二超($)灘山彦
.(ぷ)潔山、凄」審三:ご目』房の参三。』
{轍川X》|z岩}Ⅱ三(ト)已冒騨川(手…([『)単(②)
三三目、宅石(》)①局①』の三《(ぷ)灘四三台
玲二産出(}》)ぜ■昌臼己。
.恩3日)
』』一、』安し{》『(H1》{》《x国H⑤pH)
-テ
円
薗巨の一m}。]○○出凸
。x》八騨言)剣邸Ⅲ(釘(》)醜(、[)
、1割八「》(箪巳剣)八
℃目⑭}》《》《$篇三①日冨里
”州附M一鯛‐艸肌Ⅲ‐測一‐(二
([-(浅目蹴門)v’(や)門P-([+や)閉P一・湧日一$シ冒甸涕莨ア勺目
(。←曹宮国(。《}曽舅・月言冨宣冨日目・ロ《(面)釘
ロ・轍川(。(}》)醜三一・日苗二《(『)ご目([)宣言臼
ご的二一二○.函の閂“
-J.
{(虹一害百四(1$V溌傍}《(ン(、》)己月》Ⅱ(国一百曲)囚(為)
篇二9局(四mq巨切くい)し『凸砦①思量((【)門ムロの毎日
の。p巴昌①己で①望⑤①曰-①[四目堕已曰飼①[二国飼口の噸1門[①倉碧ロロ両ロ⑤①聟固《。【曰目甸滉。H○四)
苗二二○扇×罠(唾T-謁自缶P)重『⑤勇二己①旨麗の員留(凸、色巨画くq)四㎡
X白Ⅶ鞭Ⅶ昌》増
筥》v鞭Ⅶ二鶴》{(郡‐潔》)「(料鋤一N(鞭)澱P
([I(湯日×樅)V’($)浅□-([+や)門P|《門目粋$ア《H升浅シ宮甸
三一③冒三裳((、》)官鐵(、[)白・由.(釘(誓一虜(虹《彗星白目三富亘冨日ロ・ロ((、魚)台
諸昌目昌麗起・{{敏MH》’
ー、、-
00
zgのど(『)》肴の冨弓①、{⑰)言、Ⅱ{』mzl毎{Hw鮓}・
田の←(《」))】mz》」Ⅱc》】》…》ロケの、巨⑤面一彦鷺(《。))】mzⅢ(《)】mzPp』
昏旦Ⅱ】》…一口》《」)Ⅱ一一一一許←洲】(の
ロ
謡(渉)》一二の胃。。[善の二盛一
zⅡ(亀{)】mごま「の冨己の“(垣)津(虫》…》よ)w鮓・(、)目』
)》ご理のご】》炉((一一)…)品」))w鮮・円冨Hの召局さ吋邑」一
Ⅱザ。、。ご窪の亘.】一二・雪「鷺蔓鈩(串』)…》宅))wか.
壽言Bご旨s三目冨一昏昌】」》鮪(酷一)…》お))w鮨・
二言」‐二(・)ふ(《}一)…》僻。))w鈩薑:鮴(鵬T一):》今』))w好・壽。
諜一押碍)w鮓》言且m
op-匠のg丘円彦顛回。》君彦
輔(拾)…》堵))wか.吾
(⑫)】目ご]]三、m験(鮨)・
侮恒b償鳫‐陣原曙トト盟月①吾の一一○昼]盛一口胃一ぽ。】身ケ望曾の』&昌一]○回。[
己PH←。p胃留。
田の←(少)…》$)m頃曰冒』言h国富豊・亘言こぐⅡ{一m二一〈Hw鮴}m鋸(貯).この
毛自鷺:冒買冒鯲(鳧忌…少)w貯・二言。&且】。:[謡(無)》←盲の胃の(《)】m雪圏・亘蔓
(旨)鮴(《]…》よ)w鮓P己(旨)江】mz)(《汁w鈩介l《xw鮮)
■の一(《」))】mz》」ⅡP】)』》…]ロケの旨⑤彦一彦鷺←。)Ⅱ(({)示国②ロ』
ず、」Ⅱ』》函)…》回)《」)Ⅱ|》一一ぽ》円汕】》の.
この皀凰日す]亘冒宮言一言巴]]》鈩(亀{一)…》全))w炉.ご二目」ⅡPす](9)》
湫董》慈順鵠一朏竃馴師鷆篝奪璽』課
態)蕊満一M窯蕊鞠瀦鋪)獺一一篭灘薫鯛厘一一
《。
函回国固函回国○因、
得
Barbera,S,,HSonnenschein,andL・Zhou(1991):I1VOTINGBYCOMMITTEES,Ii
Econometnca59,595-609.
Bazbera,S,F・Gul,3,dB・Stacchetti(1991):IIGENERALIZEDMEDIANVOTER
SCHEMESANDCOMMITTEES,Iomimeo・
Bazbera,S・andMatthewJack8on(1991):I1ACHARACTEmZATIONOF
STRATEGY-PROOFSOCIALCHOICEFUNCTIONSFORECONOMIESWITH
PUREPUBLICGOODSII,DiscmBionPaPerNO、964.
Border,MinOandJSJordan(1983):ⅡSTRAIGHTFORWARDELECTIONS,
UNANIMITYANDPHANTOMVOTERSII,ReviewofEconomicStudieB,153-170.
Gibbard,A(1973):I1MANIPULATIONOFVOTINGSCHEMES:AGENERAL
RESULTII,EconometIica,40,587-602.
LinZhou(1991):IiIMPOSSIBILITYOFSTRATEGY-PROOFMECHANISMSIN
ECONOMIESWITHPUREPUBLICGOODSII,R2FiewofEconomicStudie8,107-119.
Satterthwaite,MA.(1975):I1STRATEGY-PROOFNESSANDARROW'S
CONDITIONEXISTENCEANDCORRESPONDENCETHEOREMSFORVOTING
PROCEDURESANDSOCIALWELFAREFUNCTIONS,'1JoumalofEconomicTheoIy,
10,187翅17.
Serizawa,S(1992):I1EXTENSIONOF'VOTINGBYCOMMITTEES'TOA
MULTIPLECONSUMPTIONLEVELSoI,mimeo・
Sprumont,Y、(1991):IITHEDIVISIONPROBLEMWITHSINGLE-PEAKED
PRnmaRENCES:ACHARACTERIZATIONOFTHEUNIFORMALLOCATION
RULE,IIEconometrica,59,509-519.
Thomson,w・(1990):I1CONSISTENTSOLUTIONSTOTHEPROBLEMOF
FAIRDIVISIONWHENPREFERENCESARESINGLE-PEAKED,IIURmimeo,1990,
JournalofEconomicTheoIy,fbrthcoming.
20
OSAKAUNIVERSITY
ThelnstituteofSocialandEconomicResearch
DiscussionPapers
No.287
CharlesYujillorioka,、ThelmpactoftheAgeStructureofthe
PopulationontheHouseholdSavingRateinjapan:ACointegration
Analysis.■Decemberl992.
No.288AtsushiTsuneki. ̄ANewlnterpretationofHaroldHotelling・sProofof
theOptiIIlalityofMarginalCostPricing. ̄Februaryl993.
No.289AtsushiTsuneki,pTheMeasurementofWastewithNonconvexTechnology,
Februaryl993.
No.290
HajinleOniki,嵐OntheOptimalSizeofEconomicOrganizations:
TheBenefitsandCostsofCentralizationandDecentralization,薄
Februaryl993.
No.291KazuyaKamiya. ̄OptimalCostA11ocationRuleinGeneralEquilibriuln
Models,衝Februaryl993.
No.292SajalLaMriandPascalisRainondos,、OntheCorrectionofTrade
DistortionsinaSmallOpenEconomy, ̄Februaryl993.
No.293JunIritaniandKiyoshiKuga,吟AlmostUniformCommodityTaxation
Doctrine-EquilibriumandEfficiency-・pMarchl993.
No.294KazuyaKamiya,ロOptimalPublicUtilityPricing:AGeneralEquilibrium
Analysis,園Aprill993.
No.295HajimeMiyazaki.、Employeeism・CorporateGovernanceandthej-Fir、. ̄
May1993.
●
No.296AtsushiYoshidapAmemiya,sPGLSforNonlinearTwoErrorComponents
Models,pMayl993.
No.297AtsushiTsuneki,・Shadow-pricinglnterpretationofthePigovianRule
fortheOptimalProvisionofPublicGoods,菌May1993.
No.298
WuJiapei・画MacrocontrolistheGuaranteeoftheDevelopmentof
MarketEconoIny-ObserveChina・sMarketEconomyfrontheAngleof
Japan・sMacrocontrol, ̄May1993.
No.Z99MototsuguShintani, ̄ExcessSmoothnessofConsumptionin」apa、, ̄May
1993.
Nq300AtsushiYoshida,。Durbin-Wu-HausmanTestforNonlinearTwoError
ColnponentsModelsRobusttoHeteroskedasticity,画junel993.
No.301DonaldW、Katzner.・TheLocationofDecision-MakingintheFirm,
junel993.
戸
 ̄
No.302
andNoriyoshiOguchi,TheNetPublicPensionDebtof
theJapanese Government. ̄(inJapanese「日本国政府の年金純債務」),
Julyl993.
TatsuoHatta
No.303WilfredJ・EthierandJamesRMarkusen,PMultinationalFirms,
TechnologyDiffusionandTrade, ̄August1993.
No.304WilfredLEthierandHenrikHorn,鰯Results-0rientedTradePolicy,鯵
August1993.
Nq305FumioOhtakeandCh…LesYujiHorioka.、SavingMotives,厨(inJapanese
「貯蓄動機」)。August1993.
No.306
ChinLim,画ErosionofInternationalPublicGoodsandThreatsand
ChallengesFacingtheAsia-PacificEconomies,鴬August1993.
No.307
KiyoshiKuga, ̄FamilyExpendituresasOutcomesofReciprocalCaring, ̄
August1993.
No.308
CharlesYujiHorioka,”lsJapan,sHouseholdSavingRateReallyHighT
Septemberl993.
No.309
ChikashiMoriguchi,”Japan・sMacroeconomicPo1icyandJapan-US
EconomicRelationsDuringtheEighties,“October1993.
No.310
DonaldW・Katzner,WesternEconomicsandtheEconomyofjapan,
”
October1993.
No.311
MototsuguShintani・同CointegrationandTestsofthePermanentlncome
Hypothesis:japaneseEvidencewithlnternationalComparisons,
h
Novemberl993.
No.312
HajimeOniki,Tae HoonOumRodneyStevensonandViminZhang,
pTheProductivity EffectsoftheLiberalizationofJapanese
Telecommunication Policy,原DeceHlberl993.
No.313
HajimeOniki,鰯OnaDesirableOrganization
oftheTelecommunications
(inJapanese:「ネットヮー
ク産業としての電気通信:広帯域通信(BISDN) 時代における電気通信産業組
織」),Decemberl993.
lndustryintheAgeofBroadbandNetwork,鰯
Nq314KiyoshiKuga,PBudgetConstraintofaFirmandEconomicTheory,
w
Januaryl994・
Nq315ShigehiroSerizawa,園Extensionof・VotingbyCommittees,toaModel
withMultipleConsumptionLevel,衝Januaryl994.
No.316
ShigehiroSerizawa.”AnlmpossibilityTheoreminPurePublicGoods
EconomieswithFeasibilityConstraints:VotingbyCommitteesin
Non-Rectangu1arFeasibleSets, ̄May1992,revisedJanuaryl994.
』
Fly UP