Comments
Description
Transcript
月面基地を守る「ルナー・テキスタイル工法」の実験的検証
ᮾᛴᘓタᢏ⾡◊✲ᡤሗ No.38 東急建設技術研究所報No.38 U.D.C 624.012.8(158) U.D.C 624.012.8(158) ᭶㠃ᇶᆅࢆᏲࡿࠕࣝࢼ࣮࣭ࢸ࢟ࢫࢱࣝᕤἲࠖࡢᐇ㦂ⓗ᳨ド 月面基地を守る「ルナー・テキスタイル工法」の実験的検証 ୖ ㍜㸨 ᰗཎ ዲᏕ㸨 ୖ ** Ύ㸨㸨 * * 井上 大輔 柳原 好孝 沼上 清 せ ⣙㸸 ᭶㠃㛤Ⓨࢆຠ⋡ⓗ⾜࠺ࡓࡵࡣ㸪᭶㠃ேࡀᅾࡍࡿᣐⅬࡀᚲせ࡞ࡿࠋࡇࢁࡀ᭶㠃࡛ࡣ㸪ኪࡢ ᗘᕪ㸪Ᏹᐂᨺᑕ⥺㸪 㞳╔㝣క࠺ࢧࣥࢻࣈࣛࢫࢺ㸪㝹▼࡞ࡢ⬣ጾࡀᏑᅾࡍࡿࠋࡇࢀࡽࡽேࡸᶵᮦࢆಖㆤࡍࡿࡓࡵ㸪ⴭ⪅ࡽࡣࣟ࣎ࢵࢺࢆࡗ࡚᭶ 㠃ᣐⅬࡢ࿘ᅖ᧦ቨࢆ⠏ࡃࠕࣝࢼ࣮࣭ࢸ࢟ࢫࢱࣝᕤἲࠖࢆᥦࡋ࡚࠸ࡿࠋ᭱ᑠ㝈ࡢ㈨ᮦ࡛᧦ቨࢆᵓ⠏ࡍࡿࡓࡵ㸪᭶ࡢ◁ࢆࢸ࢟ ࢫࢱࣝ㸦⧊≀㸧࡛ໟࡳ㎸ࢇࡔࠕᅵࡢ࠺ࠖࢆ✚ࡳୖࡆࡿࠋࡇࡢᕤἲࡼࡗ࡚㸪ࣜࢫࢡࡢࡁ࠸᭷ேᏱᐂసᴗࢆ᭱ᑠ㝈ࡵ࡞ ࡀࡽ㸪᭶㠃ᇶᆅࡢ⤒῭ⓗ࡞ᘓタࡀྍ⬟࡞ࡿࠋᆅୖ࠾࠸࡚ࡶ㸪㢼Ỉ⅏ᐖᑐ⟇ࡸ᭷ᐖ≀㉁ฎ⌮ࡢά⏝ࡀᮇᚅࡉࢀࡿࠋⴭ⪅ࡽࡣ ࡇࡢᕤἲࡘ࠸࡚ᐇ㦂ⓗ࡞᳨ドࢆ⾜ࡗࡓࠋࡲࡎ᧦ቨᚲせ࡞ᙧ≧ࢆ᫂ࡽࡍࡿࡓࡵ㸪ᅵࡢ࠺✚ᒙయࡢ㟼ຊᏛࣔࢹࣝࢆゎᯒࡋ㸪 ᭶ࡢᶍᨃ◁ࢆࡗࡓ 1/40 ࢫࢣ࣮ࣝࡢ㐲ᚰᶍᆺᐇ㦂ࡼࡾ☜ㄆࡋࡓࠋḟࡑࡢ⤖ᯝᇶ࡙࠸࡚ᅵࡢ࠺⿄࠾ࡼࡧࣟ࣎ࢵࢺࢆタィࡋ㸪 1/10 ࢫࢣ࣮ࣝヨసᶵࢆ⏝࠸ࡓᅵࡢ࠺ሸ⋡ࡢホ౯ᐇ㦂ࢆ⾜ࡗࡓࠋࡇࢀࡽࡢ᳨ドࡼࡾ㸪ᥦᕤἲࡢ᭷ຠᛶࡀᐇ㦂ⓗ☜ㄆࡉࢀࡓࠋ 㺕㺎㺺㺎㺢㺼㸸 ᭶㠃ᇶᆅ㸪↓ேᕤ㸪ᅵࡢ࠺᧦ቨ㸪㐲ᚰᶍᆺᐇ㦂㸪ໟᶵᲔ ┠ ḟ㸸 ⫼ᬒ┠ⓗ ᅵࡢ࠺✚ᒙࡢࡓࡵࡢ᪼㝆⨨タィ ࣝࢼ࣮࣭ࢸ࢟ࢫࢱࣝᕤἲ ᅵࡢ࠺〇㐀⨨ࡢタィホ౯ ᅵࡢ࠺✚ᒙయࡢᏳᐃᙧ≧タィ ࡲࡵ Ᏻᐃᛶ᳨ドࡢࡓࡵࡢ㐲ᚰᶍᆺᐇ㦂 ⫼ᬒ┠ⓗ ᭶㠃㛤Ⓨࢆຠ⋡ⓗ⾜࠺ࡓࡵࡣ㸪᭶㠃ேࡀᅾ ࡍࡿࡓࡵࡢᣐⅬࡀᚲせ࡞ࡿࠋࡇࢁࡀ᭶㠃࡛ࡣ㸪 ኪࡢ ᗘᕪ㸪Ᏹᐂᨺᑕ⥺㸪㞳╔㝣క࠺ࢧࣥࢻࣈࣛࢫ ࢺ㸪㝹▼࡞ᵝࠎ࡞⬣ጾࡀᏑᅾࡍࡿࠋᣐⅬࡢࠕᇙタࠖ ࡼࡗ࡚ࡇࢀࡽࡢ⬣ጾࡽேࡸᶵᮦࢆᏲࡿࡇࡀ࡛ࡁ ࡿࠋ᭶㠃ࡢࡼ࠺࡞ᴟ㝈⎔ቃ࠾࠸࡚ᇙタసᴗࢆຠ⋡ⓗ ⾜࠺ࡓࡵࡣᘓタࣟ࣎ࢵࢺᢏ⾡ࡀྍḞ࡛࠶ࡿࠋ᭶ 㠃᥈ᰝࣟ࣎ࢵࢺࡘ࠸࡚ࡣከࡃࡢ◊✲ࡀ࡞ࡉࢀ࡚࠸ࡿ ࡀ㸪ᇙタࡢࡼ࠺࡞㔜సᴗࢆ᭶㠃࡛⾜࠺ࣟ࣎ࢵࢺࡘ࠸ ࡚ࡣ◊✲ࡀࢇ㐍ࢇ࡛࠸࡞࠸ࠋᇙタᕤἲࡑࡢࡶࡢ ࡘ࠸࡚ࡣ࠸ࡃࡘࡢࢹࡀᥦࡉࢀ࡚࠸ࡿࡶࡢ ࡢ㸪ලయⓗ࡞᳨ドࡣ㊊ࡋ࡚࠸ࡿࠋ ࡇࡢࡼ࠺࡞⫼ᬒࡢࡶ㸪ᙜ♫࡛ࡣ᭶㠃ᣐⅬࡢᇙタ ᅗ ᭶㠃ᣐⅬᇙタᕤἲ 㸦1: ᅵ◁, 2: ᨭᣢࣇ࣮࣒ࣞ, 3: ᅵࡢ࠺㸧 㐺ࡋࡓࣟ࣎ࢵࢺᕤἲࢆᥦࡋ࡚࠸ࡿ 㸯㸧ࠋࡇࡢᕤἲ࡛ࡣ ᣐⅬࡢ࿘ᅖᅵࡢ࠺✚ᒙయࢆᘓタࡋ㸪ࡇࢀࢆ⏝࠸࡚ᇙ タࢆ⾜࠺ࠋᮏ✏࡛ࡣ㸪ࡇࡢᕤἲ࠾࠸࡚᭱ࡶࢡࣜࢸ ࡽࢀࡿࠋᅗ୰ࡢ㸯ࡣᅵ㸪㸰ࡣᨭᣢࣇ࣮࣒ࣞࢆ♧ࡍࠋᕤ ࢝ࣝ࡞せ⣲࡛࠶ࡿࠕᅵࡢ࠺ࠖ↔Ⅼࢆ࠶࡚㸪ᅵᅽゎᯒ ἲ a1) ࡣᣐⅬᅵࢆ┤᥋ࡪࡏࡿ᭱ࡶ༢⣧࡞ᕤἲ࡛࠶ ᇶ࡙࠸ࡓᇶᮏタィ㸪ᶍᆺᐇ㦂ࡼࡿጇᙜᛶホ౯ࢆ ࡿࠋ᭱㡬㒊ࢆ༑ศそᅵࡍࡿࡓࡵ㠀ᖖከࡃࡢᅵࢆ ⾜࠺ࠋࡲࡎᅵࡢ࠺ᚲせ࡞ᙧ≧ࢆぢᴟࡵࡿࡓࡵ㟼ຊᏛ 㞟࣭ᥭ㔜ࡍࡿᚲせࡀ࠶ࡿࠋᕤἲ b1), b2) ࡛ࡣᆅ┙ࢆ ࣔࢹࣝࢆゎᯒࡋ㸪㐲ᚰᶍᆺᐇ㦂ࡼࡾ☜ㄆࡍࡿࠋࡑࡋ ᥀๐ࡍࡿࡇ࡛ᥭ㔜㧗ࡉࢆ┦ᑐⓗᑠࡉࡃࡍࡿࠋࡋ ࡚せồࡉࢀࡿᙧ≧ࡢᅵࡢ࠺ࢆ↓ே〇㐀ࡍࡿ⨨ࢆタィ ࡋ᭶㠃ࡣ◁₍ࡢࡼ࠺⇱ࡋࡓ⣽࠸◁࡛そࢃࢀ࡚࠾ ࡋ㸪1/10 ࢫࢣ࣮ࣝヨసᶵࡼࡿᛶ⬟☜ㄆࢆ⾜࠺ࠋࡇࢀ ࡾ㸪᥀๐ࡀᅔ㞴࡛࠶ࡿࠋ㔜ຊࡀᑠࡉ࠸ࡓࡵ㸪᥀๐ຊࡢ ࡽࡢ᳨ウࡼࡾ㸪ᥦࢩࢫࢸ࣒ࡢᇶᮏタィࡘ࠸࡚ጇ ☜ಖࡶ㞴ࡋ࠸ࠋࢡ࣮ࣞࢱ࡞ࡢ⮬↛ᆅᙧࢆ⏝ࡍࡿሙ ᙜᛶࢆ☜ㄆࡍࡿࠋ ྜ㸪ᣐⅬࡢᘓタᆅࡀไ㝈ࡉࢀࡿࠋᕤἲ a2) ࡛ࡣᣐⅬ࿘ ᅖᨭᣢࣇ࣮࣒ࣞࢆᵓ⠏ࡋࡓᚋそᅵࡍࡿࡇ࡛㸪ᇙ ࣝࢼ࣮࣭ࢸ࢟ࢫࢱࣝᕤἲ タࡢᚲせᅵ㔞ࢆῶࡽࡋ࡚࠸ࡿ㸰㸧㸪㸱㸧ࠋᕤἲ b3) ࡣ᥀๐ ᭶㠃ᣐⅬࡢᇙタᕤἲࡣ㸪ᅗ㸯ᣲࡆࡿ㸴✀㢮ࡀ⪃࠼ ᨭᣢࣇ࣮࣒ࣞࢆే⏝ࡍࡿ᪉ἲ㸲㸧࡛࠶ࡿࠋࡋࡋᨭᣢࣇ *࣓࢝ࢺࣟࢢ࣮ࣝࣉ メカトログループ ** 技術研究所 ᢏ⾡◊✲ᡤ 65 65 東急建設技術研究所報No.38 ᅗ ࢻ࣮ࢨࢱࣉࡢᅵ◁౪⤥ࣟ࣎ࢵࢺ ᅗ ᅵࡢ࠺᧦ቨᘓタࣟ࣎ࢵࢺࡢ࣓࣮ࢪ ᅗ ᅵࡢ࠺᧦ቨ࡛ᅖࢃࢀࡓ᭶㠃ᣐⅬ ࡽࢀࡓࢫࣛࢲ࡛ࣟ࣎ࢵࢺࢆᙇฟࡋࡓᚋ㸪᪼㝆⨨ࢆ ఙࡤࡍࡇࡼࡾⲴ㝆ࢁࡋࡀࡍࡿࠋ ࡇࡢᵓᡂࡼࡾ㸪ᅗ ࡢࡼ࠺࡞ᡭ㡰࡛ᣐⅬᇙタࡀྍ ⬟࡞ࡿࠋ1) ᕤࣟ࣎ࢵࢺࡣᆅ┙ࢆ࠶ࡿ⛬ᗘᩚᆅࡍࡿࠋ ᇙタᚲせ࡞ᅵࡣ㸪ࢻ࣮ࢨࢱࣉࡢ⛣ືࣟ࣎ࢵࢺ⩌ ࡼࡗ࡚࿘㎶ࡽ㞟ࡵࡽࢀࡿ㸦ᅗ 㸧ࠋ2) 㞟ࡵࡽࢀࡓᅵࢆ ᅗ ࣟ࣎ࢵࢺࡼࡿ᭶㠃ᣐⅬࡢᇙタᕤᡭ㡰 ᕤࣟ࣎ࢵࢺ⬗యෆ㒊ഛ࠼ࡓ⧄⥔ࢩ࣮ࢺ࡛ໟࡳ㸪ᅵ ࡢ࠺ࢆᵓ⠏ࡍࡿࠋ3) ࡑࢀࢆᆶ┤✚ࡳ࠶ࡆࡿࡇ࡛㸪 ࣮࣒ࣞࡣᆅ⌫ࡽ㐠ᦙࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࡓࡵ㸪ᕤ ᧦ቨࢆᘓタࡍࡿࠋ4) ࡇࡢ᧦ቨࢆ」ᩘᘓタࡋ࡚ᣐⅬࢆᅖ ຠ⋡㝈⏺ࡀ⏕ࡌࡿࠋᕤἲ a3) ࡣ᥀๐ࡶᨭᣢࣇ࣮࣒ࣞ ࠺㸦ᅗ 㸧ࠋ5) ࡑࡢୖࡽᅵࢆࡪࡏࡿࠋ6) ᣐⅬࡀ㟢 ࡶ⏝࠸ࡎ㸪ᅵࡢ࠺ࢆ✚ᒙࡋ࡚᧦ቨࢆᵓ⠏ࡍࡿࡇ࡛ᚲ ฟ࡞ࡃᇙタࡉࢀࡓࡇࢆ☜ㄆࡍࡿࠋ せᅵ㔞ࢆᑡ࡞ࡃࡍࡿ 㸯㸧ࠋⴭ⪅ࡽࡣᇙタࡢࡓࡵࡢ㈨ᮦࡸ ᆅ┙᥀๐ࢆࢇᚲせࡋ࡞࠸ࡇࡢᕤἲࡀ᭱ࡶᐇ⌧ ᅵࡢ࠺✚ᒙయࡢᏳᐃᙧ≧タィ ᛶࡀ㧗࠸⪃࠼㸪ࡇࢀࢆᐇ⌧ࡍࡿࣟ࣎ࢵࢺᕤἲࡋ࡚ ᥦᕤἲ࠾࠸࡚᭱ࡶ᳨ウࡍࡁⅬࡢࡦࡘࡣ㸪✚ ࠕࣝࢼ࣮࣭ࢸ࢟ࢫࢱࣝᕤἲࠖࢆ㛤Ⓨࡋ࡚࠸ࡿࠋ ᒙࡋࡓᅵࡢ࠺ࡢ㌿ಽື࡛࠶ࡿࠋᆅୖ࠾࠸࡚ࡣ୍ ࡇࡢᕤἲࡢⅬࡣ 1) ༢⣧సᴗࡢ⧞ࡾ㏉ࡋ࡛࠶ࡿࡓࡵ ⯡ⓗ㸪ᅵࡢ࠺✚ᒙయࡢ⾲㠃ࢆᨭᣢࣇ࣮࣒ࣞࡸࢥࣥࢡ ࣟ࣎ࢵࢺࡀẚ㍑ⓗᐜ࡛᫆࠶ࡿࡇ㸪2) ᚲせ㈨ᮦࡀ㍍ ࣮ࣜࢺ࡛⿵ᙉࡍࡿࠋࡋࡋึᮇࡢ᭶㠃㛤Ⓨ࡛ࡣࡇࢀࡽ 㔞ࡘᑡ࡞࠸ࡓࡵᆅ⌫ࡽࡢ㐠ᦙࢥࢫࢺࢆపῶ࡛ࡁࡿ ࡢ⏝ࡀᅔ㞴࡛࠶ࡿࡓࡵ㸪⿵ᙉ↓ࡋ࡛Ᏻᐃࡉࡏࡿࡇ ࡇ㸪3) ᆅ┙ࡢ῝࠸᥀๐ࡀせ࡛࠶ࡾᢏ⾡ⓗ㞀ቨࡀᑠ ࡀᮃࡲࡋ࠸ࠋᮏ⠇࡛ࡣ㸪ᅵࡢ࠺✚ᒙయࡢ㒊ศⓗ࡞㌿ ࡉ࠸ࡇ㸪࡛࠶ࡿࠋࡋࡓࡀࡗ࡚ᚑ᮶ᥦࡉࢀ࡚࠸ࡿᇙ ಽ࣭ືᑐࡍࡿ㟼ຊᏛⓗ࡞Ᏻᐃᛶゎᯒࡘ࠸࡚㏙ タᕤἲẚ㸪Ᏻࡘ⤒῭ⓗ࡞ᇙタࡀྍ⬟࡞ࡿࠋ ࡿࠋࡇࡢ⤖ᯝᇶ࡙ࡁ㸪ᥦࡍࡿࣟ࣎ࢵࢺࡢసᴗᑐ㇟ ᅗ ࡣᥦࡍࡿᕤࣟ࣎ࢵࢺࡢᴫᛕᅗ࡛࠶ࡿࠋࣟ࣎ ≀࡛࠶ࡿᅵࡢ࠺✚ᒙయࡢᙧ≧ࢆỴᐃࡍࡿࠋ ࢵࢺࡣ⬗య㒊⬮㒊ࡽᵓᡂࡉࢀࡿࠋ⬗య㒊ࡣᅵࡢ࠺ 〇㐀ᶵ⬟ࢆᢸ࠸㸪A) ᅵࡢ࠺⿄ࡢᕳ≀㸪B) ◁㈓ⶶ⨨㸪 ㌿ಽືᑐࡍࡿᏳᐃゎᯒ C) ◁౪⤥⨨㸪D) ◁Ვໟ⨨㸪E) ᅵࡢ࠺ฟ⨨ࢆ ᮏゎᯒ࡛ࡣ㸪ᅵࡢ࠺✚ᒙయࢆᅗ ࡢࡼ࠺࡞㸰ḟඖ᩿ ᭷ࡍࡿࠋ⬮㒊ࡣᅵࡢ࠺✚ᒙᶵ⬟ࢆᢸ࠸㸪F) ㉮⾜⨨㸪 㠃࡛ࣔࢹࣝࡍࡿࠋ✚ᒙయࡢእᙧࡣ㸪㧗ࡉ H㸪ᖜ B㸪 G) ᪼㝆⨨ࢆ᭷ࡍࡿࠋ᪼㝆⨨ࡣ╔㝣ᶵࡽࣟ࣎ࢵࢺ ⣬㠃ዟ⾜ࡁ᪉ྥࡢ㛗ࡉ L ࡍࡿࠋ᭶㠃ࡢ㔜ຊ g ࡣᆅ⌫ ࢆ㝆ࢁࡍࡓࡵࡶව⏝ࡉࢀࡿ㸦ᅗ ୗ㸧ࠋ╔㝣ᶵタࡅ ୖࡢ 1/6 ࡍࡿࠋ✚ᒙయࡀཷࡅࡿാᅵᅽ PA ࡣ㸪 66 Internal friction Cohesion c [kPa] Angle ij [deg.] 東急建設技術研究所報No.38 ᅗ ᅵࡢ࠺᧦ቨࡢᏳᐃゎᯒࣔࢹࣝ PA KA cos G ≀ᅵ◁ࡢࣃ࣓࣮ࣛࢱࢆỴࡵࡿᚲせࡀ࠶ࡿࠋᇙタᑐ㇟ ࡣ┤ᚄ D = 4 m㸪㛗ࡉ E = 5 m ࡢᰕࢆᐃࡍࡿࠋ◁ࡢ (2) ࡪ ࡾ ཌ t Ӎ 0.3 m ࡍ ࡿ 㸪 ✚ ᒙ య ࡢ ᙧ ≧ ࡣ H t Dt c ࡣ⢓╔ຊ㸪ȭࡣෆ㒊ᦶ᧿ゅ㸪KA ࡣാᅵᅽಀᩘ㸪HZ ᆅୖ࡛ࡢᇶ‽್ೌ࠸ s = 0.3 m ࡍࡿ㸪H = 4.5 m ືᑐࡍࡿᏳ⋡ࢆ FS ࡍࡿ㸪PA ࠾ࡼࡧ✚ᒙయࡢ⮬ 㸦15 ẁ✚ᒙ㸧࡞ࡿࠋL ࡣ 6.1 ⠇࠾࠸࡚ 1 m タィ 㔜 W ࡼࡿⅬ Q ࡲࢃࡾࡢ࣮࣓ࣔࣥࢺࡢ㔮ࡾྜ࠸ࡽ㸪 3J S gH Z2 2 PA cos G ࡉࢀࡓࡇࡽ㸪L = 6.0 m ࡞ࡿࠋ FS PA cos G H Z 3 (3) § B ¨¨ © HZ ᅵ◁ࡘ࠸࡚ࡣ㸪ḟ⠇ࡢᐇ㦂࡛⏝࠸ࡓᶍᨃ◁ FJS-1㸴㸧 2 · B ¸¸ 3 tan G HZ ¹ ࢆ⏝࠸ࡿࠋFJS-1 ࡢ⢏ᚄ୰ኸ್ D50 ࡣ 75ȣm㸪⢏Ꮚẚ (4) 㔜ࡣ 2.9㸪ࡉᐦᗘࡣ 1.4㹼2.0 g/cm3 ࡛࠶ࡿࠋᐦᗘࡼ ࡗ࡚ኚࡍࡿ FJS-1 ᭶⾲ᅵࡢ≉ᛶࢆᅗ㸵♧ࡍ㸵㸧㸶㸧ࠋ ࡞࠾᭶㠃ࡣ㧗┿✵ࡢࡓࡵ㢼ຊࡣ⪃៖ࡋ࡞࠸ࠋᆅ㟈ືࡶ ⢓╔ຊ c ࡣ FJS-1 ࡢ࠺ࡀ 2 ಸ௨ୖࡁ࠸ࡀ㸪ෆ㒊ᦶ᧿ ࡛࣐᭱ࢢࢽࢳ࣮ࣗࢻ㸱⛬ᗘ࡛࠶ࡿࡓࡵ┬␎ࡋࡓ 㸳㸧ࠋ ゅ ij ࡘ࠸࡚ࡣࡰ➼ࡋ࠸ࠋ㎸ᅵࡢ┦ᑐᐦᗘࡘ࠸ ᘧ(4)ࡽ㸪PA ࡀ᭱㸦c=0㸧ࡘț=0 ࡢࡁ FS ࡀ᭱ ࡚ࡣ㸪⥾ᅛࡵ࡞࠸ᐃ࡛ 40%㸦Ț=1.6 g/cm3㸧ࡍࡿ ᑠ࡞ࡾ㸪᭱ࡶᏳᐃ࡞ࡿࡇࡀࢃࡿࠋࡇࡢࡁ ij = 38 deg.࡞ࡾ㸪ᘧ(1)ࡽ KA=0.24 ࡛࠶ࡿࠋ୍᪉ᅵࡢ ᘧ(1)ࢆᘧ(4)௦ධࡍࡿ㸪 min FS ࠺ࡢ┦ᑐᐦᗘࡘ࠸࡚ࡣ㸪༑ศ⥾ᅛࡵࡿ௬ᐃࡋ࡚ 3 JS § B ¨ K A J ¨© H Z · ¸¸ ¹ 2 100%㸦ȚS =2.0 g/cm3㸧ࡍࡿ㸪 J S J (5) ᖜ B ࢆỴࡵࡿࡇࡀ࡛ࡁࡿࠋ㌿ಽࡘ࠸࡚ࡣ㸪Ᏻ⋡ Fs = 1.1 ࡍࡿ㸪ᘧ(5)ࡽ B H Z t 0.27 ࡞ࡿࠋ ືࡘ࠸࡚ࡣ㸪ᅵࡢ࠺⿄ࡢᦶ᧿ゅȜࢆỴࡵࡿᚲせࡀ࠶ ᧿ゅࢆȜࡍࡿ㸪Ỉᖹ᪉ྥࡢຊࡢ㔮ྜ࠸ࡽ FS FS PA cos G J S gH Z2 tan H B tan H tan G PA cos G HZ (6) ࡿࠋᩥ⊩㸷㸧ࡼࢀࡤ㸪⣽࠸ᅵ◁ࡀධࡗࡓሙྜࡣȜ=15 㹼23°࡛࠶ࡿࠋࡇࡇࡽ᭱ᑠ್ࡢȜ=15°ࢆ᥇⏝ࡋ㸪ື (7) Ᏻ⋡ Fs=1.1 ࡍࡿ㸪ᘧ(8)ࡽ B H Z t 0.39 ࡞ࡿࠋ ࡋࡓࡀࡗ࡚ B t 1.8m ࡛࠶ࡿࠋ௨ୖࡽ㸪ᅵࡢ࠺✚ᒙయ ᘧ(7)ࡘ࠸࡚ࡶᘧ(4)ྠᵝ㸪ț=c=0 ࡢࡁ FS ࡀ ࡢᙧ≧ࡣᘧ(9)ࡢࡼ࠺タィࡉࢀࡓࠋ ᭱ᑠ࡞ࡿࡇࡀࢃࡿࠋᘧ(1)ࢆ௦ධࡍࡿ min FS B 2 JS tan H KA J HZ 1.25 ࡞ࡿࠋ ௨ୖࡢ᮲௳タᐃࡽ㸪ඛ㏙ࡢゎᯒᘧᇶ࡙࠸࡚ᅵࡢ࠺ ḟືࡘ࠸࡚ࡢᏳ⋡ࢆ⟬ฟࡍࡿࠋᅵࡢ࠺㛫ࡢᦶ W PA sin G tan H 5.6 m ࢆ‶ࡓࡍᚲせࡀ ㏙ࡍࡿᅵࡢ࠺࣏ࢣࢵࢺ㛗ࡉࡢᩚᩘಸࡍࡿᚲせࡀ࠶ࡿࠋ ࡣᅵࡢ࠺ࡢࡉᐦᗘ࡛࠶ࡿࠋືᅵᅽࡼࡿ㌿ಽࡸ FS 4.3 m , L t E 2t ࠶ࡿࠋࡲࡓ H ࡣᅵࡢ࠺㸯ࡘࡢ㧗ࡉ s ࡢಸᩘ㸪L ࡣᚋ ࡣಽቯࡋࡓᅵࡢ࠺ࡢ㧗ࡉ㸪Țࡣ㎸ᅵࡢࡉᐦᗘ㸪ȚS W B 2 PA sin G B 20 40 60 80 100 Relative Density DR [%] ᅵࡢ࠺✚ᒙయࡢᙧ≧ࢆタィࡍࡿ࠶ࡓࡾ㸪ᇙタᑐ㇟ 2 ¸ ¹ 0 ᅵࡢ࠺✚ᒙయࡢᙧ≧タィ (1) sin I G sin I ·¸ cos 2 I §¨ 1 cos G ¨© FJS-1 Apollo 15-17 Core Tube ᅗ ᭶ᅵተࡢᅽ⦰≉ᛶ Coulomb ࡢࡃࡉࡧ⌮ㄽᇶ࡙࠸࡚ᘧ(1)࡛ồࡵࡽࢀࡿࠋ 1 JgH Z2 K A 2cH Z K A 2 8 6 4 2 0 60 50 40 30 s, H , B, L 0.3, 4.5, 1.8, 6.0 [m]ࠉ (8) (9) ࠉ Ᏻᐃᛶ᳨ドࡢࡓࡵࡢ㐲ᚰᶍᆺᐇ㦂 ࡓࡔࡋ✚ᒙయయࡢືࢆ⪃࠼ࡿ㝿ࡣ㸪Ȝࢆᅵࡢ࠺ᗏ 㐲ᚰᶍᆺᐇ㦂ࡣ㸪ᕧᵓ㐀≀ࡢᣲືࢆ⦰ᑠᶍᆺ࡛ 㠃◁ࡢᦶ᧿ゅ⨨࠼ࡿᚲせࡀ࠶ࡿࠋ ⌧࡛ࡁࡿࡓࡵ㸪ᆅ┙ᕤᏛศ㔝࠾࠸࡚ࡼࡃ⏝࠸ࡽࢀࡿࠋ ᘧ(5)(8)ࡽ㸪HZ ࡀᑠࡉ࠸Ᏻ࡛࠶ࡿࡇࡀࢃ 1/N ࢧࢬࡢᶍᆺᑐࡋ࡚㔜ຊࡢ N ಸࡢ㐲ᚰຊࢆ࠼ ࡿࠋࡋࡓࡀࡗ࡚ HZ=H ࡋ㸪᭱ࡶ༴㝤᮲௳࡛࠶ࡿᅵ ࡿࡇ࡛㸪ᐇ㝿ࡢᅵᅽࢆ⌧ࡍࡿ㸯㸮㸧ࠋࡋࡓࡀࡗ࡚㔜ຊ ࡢ࠺✚ᒙయయࡘ࠸࡚Ᏻᛶࢆ᳨ウࡍࡿࡇ࡛㸪㒊 ࡀ⣙ 1/6 ࡛࠶ࡿ᭶㠃ࡢᅵᅽࡶ㸪N/6 ಸࡢ㐲ᚰຊࢆ࠼ࡿ ศⓗ࡞ᔂቯᑐࡍࡿᏳᛶࡶಖドࡉࢀࡿࠋ ࡇࡼࡾ⌧ྍ⬟࡛࠶ࡿࠋࡇࢀࢆ⏝ࡋ࡚᭶㠃ᅵࡢ 67 東急建設技術研究所報No.38 ᅗ ࢻ࣒ࣛᆺ㐲ᚰᶍᆺᐇ㦂⨨ Fall margin FS (=Gfall/Gm) ᅗ ᅵࡢ࠺᧦ቨヨ㦂యࡢ㌿ಽࡼࡿಽቯ ᅗ ᅵࡢ࠺᧦ቨࡢ 1/40 ࢫࢣ࣮ࣝヨ㦂య (mm) ⾲ ᅵࡢ࠺᧦ቨヨ㦂యࡢᙧ≧(mm) C1 Scale s B 1/40 8 38 320 C2 C3 C4 6 4 2 0 0 0.2 0.4 0.6 Wall width B/HZ 0.8 T 0 0 1520 0 0 ࡿࠋᅵ◁ࡣ᭶ᶍᨃ◁ FJS-1 ࢆ⏝ࡋࡓࠋᅵࡢ࠺⿄ࡣ㸪 8 19 0 0 ࣑ࣝࢥ࣮ࢸࣥࢢࡉࢀࡓ࣏࢚ࣜࢳࣞࣥࢩ࣮ࢺ㸦ᘬ 1/1 320 760 0 0 ᙉᗘ 5 N/mm㸪ཌࡳ 0.12 mm㸪㔜ࡉ 70 g/mm2㸧ࢆ⏝࠸ 1/40 15 19 0 0 ࡓࠋ㎸ᅵࡘ࠸࡚ࡣ㸪✵୰ⴠୗἲࢆ⏝࠸࡚࡛ࡁࡿ㝈 1/1 600 760 0 0 ࡾᆒ୍◁ࢆሸࡋࡓࠋ㎸ᅵࡢ┦ᑐᐦᗘࡣ 40%㸪ᅵ 8 38 103 100 ࡢ࠺ࡢ┦ᑐᐦᗘࡣ 100%ࡋࡓࠋᅵࡢ࠺ᙧ≧ࡣ⾲ ♧ 320 1520 4100 4000 ࡍ㸲ࣃࢱ࣮ࣥࢆ⏝࠸ࡓࠋ࡚┤᪉యᙧ≧ࡋ㸪ᅵࡢ࠺ 1/40 1/40 1/1 0.2 0.4 0.8 0.2 B/H C1 C2 C3 C4 D 1/1 s/B 8 0.28 0.14 0.14 0.28 ᅗ ᧦ቨᖜ B/HZ ᑐࡍࡿ㌿ಽవ⿱ ࡢཌࡉ s ᖜ B ࡣྛࠎ㸰✀㢮ࡎࡘ⏝ពࡋࡓࠋ᮲௳ C4 ࡛ ࠺✚ᒙయࡢᏳᐃᛶ㛵ࡍࡿゎᯒ⤖ᯝࡢጇᙜᛶࢆ᳨ドࡋ㸪 ࡣ᮲௳ C1 ᆅ┙ᣐⅬᶍᆺࢆຍ࠼ࡓࠋᣐⅬᶍᆺࡣ⟄ ᅵࡢ࠺࠾ࡼࡧᅵࡢ࠺ᵓ⠏ࣟ࣎ࢵࢺࡢタィࢆࡅࡿࠋ ≧࡛㸪㉁㔞 78 g㸦5t ┦ᙜ㸧ࡋࡓࠋ ලయⓗ࡞ᐇ㦂᪉ἲࡣ 1) ᅵࡢ࠺✚ᒙయࡀಽቯࡍࡿࡲ࡛㐲 ᚰຊࢆቑຍࡉࡏ㸪ࡑࡢࡁࡢ㐲ᚰຊࢆグ㘓ࡍࡿࠋ2) ಽ ᅵᵴࡢቃ⏺᮲௳ ቯࡢᣲືࢆほᐹࡋ㸪◚ቯ࣮ࣔࢻࡘ࠸࡚ᐃᛶⓗホ౯ 1) ᅵᵴᅵࡢ࠺ࡢ㛫⏕ࡌࡿᦶ᧿ࢆపῶࡉࡏࡿࡓࡵ㸪 ࡍࡿࠋ3) ほᐹࡉࢀࡓ◚ቯ࣮ࣔࢻࡘ࠸࡚ゎᯒ⤖ᯝẚ ቃ⏺㠃ᅛᙧࢢࣜࢫࢆሬᕸࡋࡓࠋ2) ◁₃ࢀࢆ㜵ࡄࡓࡵ㸪 ㍑ࡋ㸪Ᏻᐃゎᯒᡭἲࡢጇᙜᛶࢆ᳨ドࡍࡿࠋ ቃ⏺ⷧ࠸ࢦ࣒⭷ࢆࢢࣜࢫ࡛ᙅࡃ㈞ࡾࡅࡓ㸦ᅗ ྑ㸧 ࠋ 3) ᅵᵴᗏ㠃◁ࡢᦶ᧿ࢆ⌧ࡍࡿࡓࡵ㸪FJS-1 ࢆⷧࡃ ᐇ㦂ࡢࢭࢵࢺࢵࣉ ᥋╔ࡋࡓࠋ ᐇ㦂⨨ ࢻ࣒ࣛᆺࡢ㐲ᚰᶍᆺᐇ㦂⨨㸦ᮾ〇సᡤ〇㸧ࢆ⏝ ᐇ㦂⤖ᯝ⪃ᐹ ࠸ࡓࠋࡑࡢᶍᘧᅗࢆᅗ ♧ࡍࠋ᭱ᅇ㌿༙ᚄࡣ 472 ᅗ ࡣ⾲㸯ࡢ✚ᒙయᑐࡋ࡚㐲ᚰ㍕Ⲵࢆ⾜࠸ಽቯࡉ mm ࡛࠶ࡾ㸪400 rpm ௨ୖࡢᅇ㌿㏿ᗘࢆ࠼ࡿࡇࡀ࡛ ࡏࡓ࡛࠶ࡿࠋᅗ୰ࡢ┤⥺ࡣ㸪㍕Ⲵ๓ࡢ㎸◁ࡢእᙧ ࡁࡿࠋ㐲ᚰຊࢆ⟬ฟࡍࡿᇶ‽⨨ࡣ㸪✚ᒙయࡢ㧗ࡉ᪉ ࢆࢺ࣮ࣞࢫࡋࡓ⥺࡛࠶ࡿࠋేグࡉࢀࡓ್ࡣ㸪ಽቯࡢ ྥࡢ୰ᚰタᐃࡋࡓࠋ 㐲ᚰຊ Gfall㸪ಽቯࡋࡓᅵࡢ࠺ࡢ㧗ࡉ HZ㸪࠾ࡼࡧᔂቯ๓ ࡢ✚ᒙయࡢ⦪ᶓẚ B/H ࡛࠶ࡿࠋGfall ࡣ Gm = 6.7G ᑐࡍ ᅵࡢ࠺ᶍᆺ ࡿẚ⋡࡛⾲グࡋࡓࠋാᅵᅽࡀ㐲ᚰຊẚࡍࡿ௬ ᐇ㦂⨨ྜࢃࡏ࡚〇సࡋࡓᅵࡢ࠺✚ᒙయࡢ 1/40 ᶍ ᐃࡍࢀࡤ㸪Gfall/Gm ࡣᏳᐃゎᯒ࠾ࡅࡿᏳ⋡ Fs ➼౯ ᆺࢆᅗ ♧ࡍࠋࡇࡢᶍᆺ㐲ᚰຊ Gm =40/6 = 6.7G ࢆ ࡛࠶ࡿࡳ࡞ࡏࡿࠋHZ ࡣᔂࢀࡓᅵࡢ࠺ࡢᩘࢆᅵࡢ࠺ ࠼ࡿࡇ࡛㸪᭶㠃࠾ࡅࡿᐇ≀ࡢᣲືࢆ⌧࡛ࡁ ᩘ࡛㝖ࡋ࡚⟬ฟࡋࡓࠋ࡚ࡢ᮲௳ᑐࡍࡿᐇ㦂⤖ᯝࢆ 68 東急建設技術研究所報No.38 ᩚ⌮ࡋ㸪ᶓ㍈᧦ቨᖜ B/HZ ࢆ, ⦪㍈㌿ಽవ⿱ Gfall/Gm 0.6 0.5 0.4 0.3 0.2 0.1 0 0.23 0.25 0.27 0.29 0.31 Stroke s [m] Height z [m] ࢆࡗࡓࢢࣛࣇࢆᅗ ♧ࡍࠋࡇࡢᐇ㦂⤖ᯝᑐࡋ㸪 ௨ୗࡢ 㡯┠ࡘ࠸࡚⪃ᐹࡋࡓࠋ ᐇ㦂ࡢ⌧ᛶ ᮲௳ C1 ᑐࡋ࡚㸰ᅇᐇ㦂ࢆ⾜ࡗࡓࡇࢁ㸪ಽቯࡢᵝ Ꮚ⌧ᛶࡀㄆࡵࡽࢀࡓࠋಽቯࡢ㐲ᚰຊ Gfall ࡣ㸪᭶ 㠃ࡢᅵᅽ Gm ࡢ 5.9 ಸ࠾ࡼࡧ 6.1 ಸ࡛࠶ࡗࡓࠋⴠୗࡋࡓ ᅵࡢ࠺ࡢᩘࡶ➼ࡋࡃ㸪 14 ᒙࡢ࠺ࡕ 6 ᒙ࡛࠶ࡗࡓࠋ ᅗ ᪼㝆⨨ࡢ㐠ືᏛࣔࢹࣝ ᅵࡢ࠺✚ᒙయࡢ◚ቯ࣮ࣔࢻ ◚ቯ࣮ࣔࢻࡣ㌿ಽࡀᨭ㓄ⓗ࡛࠶ࡗࡓࠋᅵࡢ࠺⿄ࡢᘬ Shoulder ࡣほ ࡉࢀ࡞ࡗࡓࠋືࡣ᮲௳ C3 ࠾࠸࡚ࢃࡎ ⏕ࡌࡓࡀ㸪ࡑࢀࡀ᭱⤊ⓗࡣ㌿ಽࢆᘬࡁ㉳ࡇࡋࡓࠋ 3.2 Roller Guide ືࡀほ ࡉࢀ࡞ࡗࡓ⌮⏤ࡋ࡚㸪ᅵࡢ࠺㛫ࡢᦶ᧿ ࡀᐃࡼࡾࡶࡁࡗࡓྍ⬟ᛶࡀ࠶ࡿࠋ ᅵࡢ࠺ࡢᖜཌࡉẚ s/B ࡢẚ㍑ 1.9 ᮲௳ C2 C3 ࢆẚ㍑ࡍࡿ㸪s/B ࡣಽቯ㐲ᚰຊ Gfall Motor Cylinder 6.1 Roller Guide ᑐࡋ࡚ࢃࡎ㈇ࡢ┦㛵ࡀㄆࡵࡽࢀࡓࠋs/B ࢆ㸰ಸ ࡍࡿಽቯ㐲ᚰຊࡣ⣙ 5/6 ࡞ࡗࡓࠋࡉࡽ᮲௳ C3 ࡛ ࡣ㍕Ⲵ୰ཌࡉ s ࡢ 1/3 ⛬ᗘࡢືࡀほᐹࡉࢀࡓࠋࡇࢀ Wheel Motor Ba ery ࡽࡢ㇟ࡽ㸪ᖜཌࡉẚࡀࡁ࠸ືࡋࡸࡍࡃ࡞ ᅗ ᪼㝆⨨ࡢᙧ≧タィ (m) ࡾ㸪ࡑࡢ⤖ᯝࡋ࡚ಽቯࡋࡸࡍࡃ࡞ࡗࡓ⪃࠼ࡽࢀࡿࠋ ᅵࡢ࠺✚ᒙయࡢ⦪ᶓẚ㌿ಽవ⿱ ࡚ไ㝈ࡍࡿࠋࡍࡿࣜࣥࢡ㛗ࡉࡀ 3 m ࡢሙྜ㸪ᥭ⛬ 4.2 ᅗ ࡢྛ᮲௳࠾࠸࡚ B/HZ Gfall/Gm (Fs) ࡢ㛫ṇ m ࢆ‶ࡓࡍࣃࣥࢱࢢࣛࣇࡣ㸰㹼㸱ẁ࡞ࡿࠋᑠᆺࢆ ࡢ┦㛵ࡀぢࡽࢀࡓࠋ᮲௳ C4 ࡣゎᯒ್ࡼࡾࡶᏳᛶࡀప ┠ⓗ㸰ẁᘧࢆ᥇⏝ࡋ㸪ᅗ ᕥࡢࡼ࠺࡞᪼㝆⨨ࢆタ ࡗࡓࡀ㸪ࡇࢀࡣᆅ┙ࡼࡿᙳ㡪࡛࠶ࡿ⪃࠼ࡽࢀࡿࠋ ィࡋࡓࠋw ࡣ⬗య࠾ࡼࡧᅵ◁ࡢ㔜㔞㸪L ࡣࣜࣥࢡ㛗ࡉ㸪 ࡇࢀ௨እࡢ᮲௳࡛ࡣᐇ㦂್⌮ㄽ್ࡀᴫࡡ୍⮴ࡋࡓࠋ z ࡣᥭ⛬㸪s ࡣ┤ື࣮ࣔࢱࡢ㛗ࡉ㸪a b ࡣ࣮ࣔࢱᅇ㌿ HZ ࡣ࡚ࡢ᮲௳࠾࠸࡚ 0.4H㹼0.6H ࡛࠶ࡗࡓࡇࡽ㸪 ᨭⅬࡢ⨨㸪am bm ࡣࣜࣥࢡୖࡢ࣮ࣔࢱᅇ㌿ᨭⅬࡢ ࡇࡢ⠊ᅖ࡛㒊ศಽቯࡀ㉳ࡇࡿ௬ᐃࡍࡿࡇ࡛㸪ᅵࡢ ⨨࡛࠶ࡿࠋࡇࡢࣔࢹࣝࡢ㡰㐠ືᏛゎᯒࡼࡾ㸪z s ࡢ ࠺✚ᒙయࡢᏳᛶࢆண ࡛ࡁࡿ⪃࠼ࡽࢀࡿࠋᐇ㦂ᅇ 㛵ಀࡣኚᩘ ș ࢆ፹ࡋ࡚ᘧ(10)ࡢࡼ࠺⾲ࡉࢀࡿࠋ ᩘࢆቑࡸࡋࡓ㏣ヨࡀᮃࡲࢀࡿࡶࡢࡢ㸪ᮏゎᯒᡭἲࡢಙ z ® ¯s 㢗ᛶࡘ࠸࡚ぢ㏻ࡋࡀᚓࡽࢀࡓࠋ ᅵࡢ࠺✚ᒙࡢࡓࡵࡢ᪼㝆⨨タィ 2 L sin T C0 2C1 sin T 2C 2 cos T (10) ࡇࡇ࡛ C0㹼C2 ࡣᐃᩘ࡛࠶ࡾ㸪ࣜࣥࢡࣃ࣓ࣛࢱ L, a, b, am, タィ᮲௳ bm ࡽồࡵࡽࢀࡿࠋࡇࡢᘧᇶ࡙࠸࡚ྛ✀ࣃ࣓ࣛࢱࢆ ๓⠇࡛ᚓࡽࢀࡓᅵࡢ࠺᧦ቨࡢᏳᐃᙧ≧ᇶ࡙ࡁ㸪ᅵ タィࡋࡓ⤖ᯝࢆᅗ ྑ♧ࡍࠋࣜࣥࢡ㛗ࡉ L = 3.0 m, ࡢ࠺✚ᒙࡢࡓࡵࡢ᪼㝆⨨ࡢタィ᮲௳ࢆࡲࡵࡿࠋ ࣮ࣔࢱ㛗ࡉ s = 0.23 㹼 0.31 m㸪 ࣮ࣔࢱල㛗ࡉ a = b ࡲࡎ๓㏙ࡋࡓᏳᐃゎᯒ⤖ᯝࡽ㸪᪼㝆⨨ᚲせ࡞ = 0.21, am = 0.60, bm = 0.46 [m] ࡋࡓࠋࡇࡢࡁࡢ㧗ࡉ ᥭ⛬㸦ྍኚ㧗ࡉ㸧ࡣ 4.2 m ࡞ࡿࠋḟᡴୖࡆࣟࢣࢵࢺ z ࡢྍኚ⠊ᅖࡣ㸪1.0 㹼 5.8 m ࡞ࡗࡓࠋࡋࡓࡀࡗ࡚ᥭ ࡼࡿไ⣙ࢧࢬࢆ᳨ウࡍࡿࠋ᪥ᮏࡢᡴୖࡆᐇ✚࠾ ⛬ࡣ 4.8 m ࡛࠶ࡾ㸪᪼㝆⨨ᚲせ࡞ᥭ⛬ 4.2 m ௨ୖࢆ ࠸࡚᭱ࡶࡁ࠸࣮࣌ࣟࢻࡣ HTV ࡛࠶ࡾ㸪┤ᚄ 4.4 m㸪 ‶ࡓࡋࡓࠋᐇ㝿ࡢᥭ⛬ࡣෆ⮚࣮ࣔࢱࡢࡁࡉࡼࡗ࡚ 㧗ࡉ 9.6 m ࡛࠶ࡿࠋࣟ࣎ࢵࢺࡢࡁࡉࢆࡇࡢ⠊ᅖෆ ᭱ᑠ㧗ࡉࡀไ㝈ࡉࢀ㸪ᑡࡋపࡃ࡞ࡿࠋ ࡵࡿࡓࡵ㸪3.2×3.0 [m]ࡢ㛗᪉ᙧࢆࣟ࣎ࢵࢺࡢᢞᙳᙧ≧ ᭱⤊ⓗỴᐃࡋࡓ᪼㝆⨨ࡢᙧ≧ࢆᅗ ♧ࡍࠋ㐠 ࡋ࡚タᐃࡍࡿࠋࡋࡓࡀࡗ࡚ 3.2 m ࡀ᪼㝆⨨ࡢ᭱㛗 ືᏛⓗゎᯒຍ࠼㸪࣑ࣝࢆᵓ㐀ᮦᩱࡋࡓሙྜࡢᙉ ࡉ࡞ࡿࠋࡲࡓࣟ࣎ࢵࢺࡢ㧗ࡉࡘ࠸࡚ࡣ㸪HTV ࡢ ᗘࢆ⪃៖ࡋࡓୖ࡛㸪せồᵝ࡛࠶ࡿ㛗ࡉ 3.2 m ࠾ࡼࡧ 1/3 ⛬ᗘࡢ 3.3 m ࢆᐃࡍࡿࠋ ᥭ⛬ 4.2 m ࡀ‶ࡓࡉࢀࡓࠋ ᪼㝆⨨ࡢᙧ≧タィ ᅵࡢ࠺〇㐀⨨ࡢタィホ౯ ᪼㝆⨨ࡣࣃࣥࢱࢢࣛࣇ᪉ᘧࢆ᥇⏝ࡍࡿࠋࣃࣥࢱࢢ ゎᯒ࠾ࡼࡧᐇ㦂ࡼࡗ࡚ᚓࡽࢀࡓᅵࡢ࠺✚ᒙయࡢᏳ ࣛࣇࡣఙࡤࡍᨭⅬࡀ೫ࡾᏳᐃ࡞ࡿࡓࡵ㸪୍⯡ ᐃᙧ≧ᇶ࡙ࡁ㸪ᥦࡍࡿ᭶㠃ᣐⅬᇙタ࣑ࢵࢩࣙࣥ ࣜࣥࢡ㛗ࡉࡢ㸴⛬ᗘࢆ㸯ẁ࠶ࡓࡾࡢ᭱ᥭ⛬ࡋ ࠾࠸࡚᭱ࡶࢡࣜࢸ࢝ࣝ࡞ᶵ⬟࡛࠶ࡿᅵࡢ࠺〇㐀⨨ 69 東急建設技術研究所報No.38 1000 750 200 150 1800 150 400 150 ᅗ ࣏ࢣࢵࢺࣞᆺ㐃⥆ᅵࡢ࠺ (mm) ⾲ ᅵࡢ࠺ࡢ✀㢮ໟ⨨ Function Textile feeder 1. Normal 2. Wrapping 3. Pocket sandbags cloth array ᅗ ⦪ࣆ࣮ࣟᆺᅵ◁ໟ⨨ ฟ⨨ࡣᖹ࣋ࣝࢺࢥࣥ࣋ࢆ᥇⏝ࡋࡓࠋᅗ୰ࡢ㯮࠸ ż × ㍈ࡣ㥑ື㍈࡛࠶ࡾ㸪㒊࡛ 4 ᮏ㓄⨨ࡋࡓࠋ Sand feeder × Sandbag maker Sandbag conveyor × ࡇࡢ⨨࠾ࡼࡧ᪼㝆⨨㸪㉮⾜⨨ࢆḟࡢᡭ㡰࡛⧞ ż ż ㏉ࡋືసࡉࡏࡿࡇࡼࡾ㸪௵ពᩘࡢᅵࡢ࠺ࢆ㐃⥆ⓗ 〇㐀ࡋ㸪㝽㛫࡞ࡃ✚ᒙࡍࡿࡇࡀ࡛ࡁࡿࠋ1) ࣮ࣟࣝ ≧ಖᣢࡉࢀࡓᅵࡢ࠺⿄ࢆ࣮࡛ࣟࣛ㏦ࡾฟࡋ㸪ᅵࡢ࠺ ࡘ࠸࡚タィホ౯ࢆ⾜ࡗࡓࠋ ⿄ࡢཱྀࢆ࣍ࢵࣃ࣮┤ୗ⨨ࡉࡏࡿࠋ2) ࢫࣛࢻᘧࡢ ࣏ࢣࢵࢺࣞᆺ㐃⥆ᅵࡢ࠺⿄ ₃ᩯࢆୗ㝆ࡉࡏ㸪⿄ཱྀᤄධࡍࡿࠋ3) ࣮ࣟࣛࢆ㏫㏦ࡾ 㐃⥆ⓗᅵࡢ࠺ࢆ〇㐀࣭✚ᒙࡍࡿࡓࡵࡢᅵࡢ࠺⿄ࡣ㸪 ࡉࡏ㸪₃ᩯࡢୗ➃ྲྀࡾࡅࡽࢀࡓࣇࢵࢡᅵࡢ࠺⿄ ⾲ ♧ࡍ 3 ✀㢮ࡀ⪃࠼ࡽࢀࡿࠋ1 ࡢ୍⯡ⓗ࡞ᅵࡢ࠺ࡣ㸪 ࢆ⿕ࡏࡿࠋ4) ₃ᩯࢆୖ᪼ࡉࡏ㸪ࣇࢵࢡᅵࡢ࠺⿄ࢆᘬ ⿄ࡢ㐃⥆ⓗ࡞౪⤥ࡸ㸪〇㐀ࡋࡓᅵࡢ࠺ࡢ㝽㛫࡞࠸タ⨨ ࡅࡿࠋ5) ࣍ࢵࣃ࣮ෆ㒊ࡢࣉࣟ࣌ࣛᆺࣂࣝࣈࢆᡤᐃࡢ ࡣ࡛࠶ࡿࠋ2 ࡢ㢼࿅ᩜ᪉ᘧࡣࡇࢀࡽࢆゎỴ࡛ࡁࡿ ᅇᩘࡔࡅᅇ㌿ࡉࡏ㸪ᅵࡢ࠺⿄ෆ㒊◁ࢆᐃ㔞౪⤥ࡍࡿࠋ 㠃㸪ᕸࡢᢡࡾ␚ࡳ⦭〇ࡀㄢ㢟࡞ࡿࠋࡑࡇ࡛➹⪅ 6) ₃ᩯࢆࡧୗ㝆ࡉࡏ㸪ࣇࢵࢡࢆእࡍࠋ7) ᅵࡢ࠺⿄ࣟ ࡽࡣ㸪3 ࡢ࣏ࢣࢵࢺࣞ᪉ᘧࢆᥦࡍࡿࠋࡇࡢ᪉ᘧ࡛ ࣮ࣛᅵࡢ࠺ࢥࣥ࣋㉮⾜⨨ࢆྠ㥑ືࡉࡏ࡚㸪 ࡣᅗ ࡢࡼ࠺࡞࣏ࢣࢵࢺࡀ」ᩘ㐃࡞ࡗࡓᙧ≧ࡢᅵࡢ࠺ ᅵࡢ࠺⿄ࢆฟ࣭ᩜタࡍࡿࠋ8) ᡭ㡰㸯㹼㸵ࢆ⧞㏉ࡋ㸪 ⿄ࢆ⏝࠸ࡿࠋ࣏ࢣࢵࢺࢆᑡࡋ❧࡚ࡓ≧ែ࡛ᅵ◁ࢆᢞධ ௵ពࡢ㛗ࡉ㐩ࡋࡓࡽ㸪₃ᩯࡢୗ➃タࡅࡓࢫࣛࢻ ࡍࡿࡇࡼࡗ࡚㸪⦭〇࡞ࡋᅵ◁ࡢໟࡀྍ⬟࡛࠶ ᘧࡢ࢝ࢵࢱ࣮࡛ᅵࡢ࠺⿄ࢆษ᩿ࡍࡿࠋ9) ᅵࡢ࠺㸯ࡘศ ࡿࠋ࣮ࣟࣛࡼࡿ㐃⥆ⓗ࡞౪⤥ࡀྍ⬟࡛࠶ࡾ㸪ล≀࡛ ࡢ㧗ࡉࡔࡅ㸪᪼㝆⨨ࢆୖ᪼ࡉࡏࡿࠋ ษ᩿ࡍࡿࡇࡼࡾ࣏ࢣࢵࢺࡢᩚᩘಸࡢ㛗ࡉ࡛ᅵࡢ࠺ ࢆ〇㐀࡛ࡁࡿࠋࡇࡢࡓࡵᅵࡢ࠺✚ᒙయࡢ↓ே〇㐀㐺 ᅵࡢ࠺ሸ⋡ࡢホ౯ ࡋ࡚࠸ࡿࠋᅵ◁ᢞධཱྀࡣࢆࡏࡎ㸪ࡑࡢୖᅵࡢ࠺ࢆ タィࡋࡓᅵࡢ࠺ሸ⨨ࡣ㸪 ࡘࡢࣇࢵࢡ L, C, R ࢆ ✚ࡳ㔜ࡡࡿࡇ࡛ሰࡄࠋ 㐺ษᅵࡢ࠺⿄ࢆᤕᤊࡍࡿࡇ࡛ᅵ◁ࢆ₃ࢀ࡞ࡃ࣏ࢣ ࣏ࢣࢵࢺࡢ㛫㝸ࡣ㸪್᭱ࡀࣟ࣎ࢵࢺ⬗యࡢ㧗ࡉ ࢵࢺሸࡍࡿࡇࡀ࡛ࡁࡿࠋᤕᤊࡀศ࡞ሙྜ ࡼࡗ࡚㸪᭱ᑠ್ࡀᅵ◁౪⤥⨨ࡢඛ➃ࢧࢬไ㝈ࡉ ࡣᅵ◁₃ࢀࡀ⏕ࡌ㸪⏕⏘ᛶࡢపୗࢆᣍࡃࠋࡑࡇ࡛ࡼࡾ ࢀࡿࠋࡇࢀࡽࢆ⪃៖ࡋࡓୖ࡛㸪᭱ࡶࡁ࠸ 1000 mm ࢆ ᭱㐺࡞ࣇࢵࢡ㓄⨨ࢆ᳨ウࡍࡿࡓࡵ㸪ᅵࡢ࠺⿄࠾ࡼࡧᅵ ࣏ࢣࢵࢺ㛫㝸ࡋ࡚ᐃࡵࡓࠋࡲࡓᅵࡢ࠺ࡢሸࡸ ࡢ࠺ሸ⨨ࢆ 1/10 ࢫࢣ࣮࡛ࣝヨసࡋ㸪ሸ⋡ࡢホ౯ ฟ࡞࣏ࢣࢵࢺࡽ◁ࡀࡇࡰࢀ࡚ࡶᡤᐃࡢᅵࡢ࠺ ᐇ㦂ࢆ⾜ࡗࡓࠋ⨨ࢆᅗ 㸪⤖ᯝࢆᅗ ♧ࡍࠋ 㧗ࡉ s ࡀᚓࡽࢀࡿࡼ࠺㸪࣏ࢣࢵࢺཱྀࡢࡁࡉྜࢃ ᶓ㍈ࡣᅵࡢ࠺⿄ࢆᤕᤊࡋࡓࣇࢵࢡࡢ⨨ࣃࢱ࣮ࣥࢆ♧ ࡏ࡚⿄㧗ࡉࢆࡁࡵࡋࡓࠋணഛᐇ㦂ᇶ࡙࠸࡚ 25% ࡋ࡚࠾ࡾ㸪L ࡣᕥ㸪C ࡣ୰ᚰ㸪R ࡣྑࡢࣇࢵࢡࢆពࡍ ࡢᅵ◁₃ࢀࢆᐃࡋ㸪⿄㧗ࡉࢆ 400 mm ࡋࡓࠋ ࡿࠋࡑࢀࡽࡢ࠺ࡕ⏝ࡋ࡞ࡗࡓࣇࢵࢡࡣࣥࢲ࣮ࣂ ࣮⨨ࡁ࠼࡚⾲グࡋࡓࠋ⦪㍈ࡣᅵࡢ࠺⿄ࡢሸ⋡ࢆ ⦪ࣆ࣮ࣟᆺᅵࡢ࠺ໟ⨨ ♧ࡍࠋᅵࡢ࠺⿄ࡀ‶ᮼ࡞ࡗࡓࢆ 100% ࡋ㸪⣙ ᅗ ࡢᅵࡢ࠺⿄ᅵ◁ࢆሸࡋ࡚ᅵࡢ࠺ࢆ〇㐀ࡍࡿ 120%ࡢᅵ◁ࢆᢞୗࡋࡓࡢ㸪ᅵࡢ࠺⿄ࡢ୰ሸࡉࢀ ⨨ࢆ㸪ᅗ ࡢࡼ࠺タィࡋࡓࠋໟᶵᲔࡼࡃ⏝࠸ ࡓᅵ◁ࡢ㉁㔞ࢆグ㘓ࡋࡓࠋィ ࡣࣇࢵࢡࣃࢱ࣮ࣥẖ 3 ࡽࢀ࡚࠸ࡿ⦪ࣆ࣮ࣟᆺࡢໟᶵᵓࢆཧ⪃㸪ᅵࡢ࠺⿄ ᅇ௨ୖ⾜ࡗࡓࠋᲬࢢࣛࣇୖࡢㄗᕪᲬࡣᶆ‽೫ᕪࢆ♧ࡍࠋ ౪⤥⨨ࡣࢦ࣒࣮ࣟࣛ㸪ᅵ◁౪⤥⨨ࡣࣉࣟ࣌ࣛ ㉥⥺ࡣሸ⋡ࡢ┠ᶆ್࡛࠶ࡿࠋ25%ࡢᅵ◁₃ࢀࢆᐃ ࢩࣕࣇࢺ㸪ᅵࡢ࠺ሸ⨨ࡣࣛࢵࢡࣆࢽ࢜ࣥ㥑ືࡢ ࡋࡓᅵࡢ࠺⿄ᙧ≧ࡋ࡚࠶ࡿࡇࡽ㸪┠ᶆࡣ 75%௨ ₃ᩯ㸪࠾ࡼࡧ࣏ࢣࢵࢺཱྀࢆᤕᤊࡍࡿࣇࢵࢡ㸪ᅵࡢ࠺ ୖ࡛࠶ࡿࠋᅵࡢ࠺ࡢࡣࡽࡳࢆ⪃៖ࡋ 80%┠ᶆタᐃࡋ 70 東急建設技術研究所報No.38 ⾲ ヨసᶵࡢᕤ㏿ᗘ㸦㸯࣏ࢣࢵࢺ࠶ࡓࡾ㸧 Function Speed Quantity Time [s] Textile feeder 25 mm/s 75 cm3/s 10 mm/s 25 mm/s 150 mm 864 cm3 120 mm 150 mm 6 11.5 12 29.5 Sand feeder Sandbag maker Sandbag conveyor Total ࠺࣏ࢣࢵࢺ㸯ࡘ࠶ࡓࡾࡀ 100 mm ࡛࠶ࡾ㸪ຍ࠼࡚ࣇࢵ Sand filling rate [%] ᅗ ᅵࡢ࠺ᵓ⠏ࣟ࣎ࢵࢺࡢ 1/10 ヨసᶵ ࢡᤕᤊࡉࡏࡿࡓࡵ㛤ཱྀ㒊 25 mm ࢆ ࡍࡿࡇ ࡽ㸪ྜィ࡛ 150 mm ࡞ࡿࠋᅵ◁౪⤥⨨ࡘ࠸࡚ࡣ㸪 120 100 80 60 40 20 0 ᅗ ࠾ࡅࡿࣇࢵࢡࣃࢱ࣮ࣥ L_R ࢆᐃࡍࡿ㸪㸯࣏ ࢣࢵࢺࡢᐜ✚ 720 cc ᑐࡋ࡚ 120%ࡢᅵ◁ࢆ౪⤥ࡍࡿࡇ ࡛ሸ⋡ 80%ࢆ㐩ᡂ࡛ࡁࡿࡓࡵ㸪7201.2 㸻 864 cm3 ࡞ࡿࠋᅵࡢ࠺ሸ⨨ࡘ࠸࡚ࡣ㸪ᅵࡢ࠺࣏ࢣࢵ ࢺࢆᤕᤊ࣭ゎᨺࡍࡿࡓࡧࣇࢵࢡࢆୖୗ 30 mm ࡉࡏࡿࡓࡵ㸪304 㸻 120 mm ࡞ࡿࠋᅵࡢ࠺ฟࢥ ࣥ࣋ࡣ㸪ᅵࡢ࠺⿄౪⤥⨨ྠᮇࡉࡏࡿࡓࡵᐇ㉁ 0 None _C_ L__ LC_ L_R LCR ⛊࡛࠶ࡿࠋࡇࢀࡽࡢせ⣲ᚲせ࡞㛫ࢆ㊊ࡋྜࢃࡏࡿ Sandbag hooking pattern 㸪ᅵࡢ࠺㸯࣏ࢣࢵࢺ࠶ࡓࡾࡢᕤ㏿ᗘࡣ 29.5 ⛊࡞ ᅗ ᅵࡢ࠺ሸ⋡ࣇࢵࢡࣃࢱ࣮ࣥ ࡗࡓࠋࡇࢀືసษ᭰࠼ࡢ㛫ࢆຍ࠼ࡿ㸪㸯࣏ࢣࢵ ࢺ 30 ⛊⛬ᗘ࡛〇㐀࡛ࡁࡿࡇࡀࢃࡗࡓࠋ ࡓࠋ◁ࡣ⢏ᚄ 0.6 mm ௨ୗࡩࡿ࠸㸪┦ᑐᐦᗘࡣ⣙ 75% ௨ୖࢆࡶ㸪᧦ቨ㸯ࡘ࠶ࡓࡾࡢᕤ㏿ᗘࢆᴫ⟬ࡋ ࡋࡓࠋ ࡓࠋ࣏ࢣࢵࢺᩘࡣ 9 ಶ15 ᒙ࡛࠶ࡿࡇࡽ㸪309 ᐇ㦂ࡢ⤖ᯝ㸪ࣇࢵࢡࢆࡃࢃ࡞࠸ሙྜࡣᖹᆒ 5 15 㸻 4050 ⛊࡞ࡿࠋࡇࢀ᪼㝆⨨ࡢືస㛫ࢆຍ ࡢሸ⋡ࡀᚓࡽࢀࡓࠋሸ⋡ࢆ㧗ࡵࡿࡓࡵࡣ㸪ሸ ࡍࡿ㸪1 㛫 10 ศ⛬ᗘ࡛᧦ቨ㸯ࡘࢆ〇㐀࡛ࡁࡿࠋ ㏿ᗘࢆ≛≅ࡋ࡚ᅵ◁౪⤥⨨ࡢฟཱྀࢆ⣽ࡃࡋࡓࡾ㸪 ᧦ቨࢆ㸱ࡘᡂࡉࡏࡿࡓࡵᚲせ࡞㛫ࡣ㸪᧦ቨ㛫ࡢ ࣏ࢣࢵࢺࡀࡓࢃࡲ࡞࠸ࡼ࠺⿵ᙉࡋࡓࡾࡍࡿᚲせࡀ࠶ ㉮⾜せࡍࡿ㛫ࢆྵࡵ࡚ 4 㛫⛬ᗘぢ✚ࡶࡿࡇ ࡿࡇࡀࢃࡗࡓࠋ୍᪉㸪ᕥྑ୧᪉ࡢࣇࢵࢡࢆࡗࡓ ࡀ࡛ࡁࡿࠋࡋࡓࡀࡗ࡚㸪᭶㠃 ᗘࡀᏳᐃࡋ࡚࠸ࡿᮇ㛫 ሙྜࡣ 80%௨ୖࡢሸ⋡ࢆ㐩ᡂࡋࡓࠋࡇࡢ⤖ᯝࡽ㸪 ୰᧦ቨࡢᕤࢆ࡛ࡁࡿࡇࡀࢃࡗࡓࠋ ᕥྑࡢࣇࢵࢡࢆ࠺ࡇ࡛┠ᶆሸ⋡ࢆ‶ࡓࡍᅵࡢ࠺ ࢆ〇㐀࡛ࡁࡿࡇࡀࢃࡗࡓࠋ ࡲࡵ ᭶㠃ᣐⅬࢆᇙタࡍࡿࡓࡵࡢᅵࡢ࠺✚ᒙయࢆᵓ⠏ࡍࡿ ᅵࡢ࠺᧦ቨࡢᕤ㏿ᗘࡢホ౯ ࠕࣝࢼ࣮࣭ࢸ࢟ࢫࢱࣝᕤἲࠖࢆᐇ㦂ⓗ᳨ドࡋࡓࠋ ᭶㠃࡛ࡣኪࡢࢧࢡࣝࡀ⣙ 1 ࣨ᭶㛗࠸ࡇࡽ㸪 Ᏻ࡞ᅵࡢ࠺✚ᒙయࡢᙧ≧ࢆタィࡍࡿࡓࡵ㸪ᩘࣃࢱ࣮ ᗘࡀs100Υ௨ୖኚࡍࡿࡓࡵ㸪ࣟ࣎ࢵࢺࡀືస࡛ ࣥࡢᙧ≧ࡘ࠸࡚㐲ᚰᶍᆺᐇ㦂ࢆ⾜࠸㸪ゎᯒ⤖ᯝẚ ࡁࡿ㛫ᖏࡀไ㝈ࡉࢀࡿࠋࡑࡇ࡛ᅵࡢ࠺᧦ቨࡢᕤ㏿ ㍑ࡋࡓࠋࡑࡢ⤖ᯝ㸪ಽቯࡋࡓ㒊ศὀ┠ࡍࡿࡇ࡛㸪 ᗘࢆホ౯ࡍࡿࡓࡵ㸪ᅵࡢ࠺࣏ࢣࢵࢺ㸯ಶ࠶ࡓࡾࡢ〇㐀 ㌿ಽవ⿱ࡢᐇ㦂್ゎᯒ್ࡀᴫࡡ୍⮴ࡍࡿࡇࡀࢃ せࡍࡿ㏿ᗘࢆ㸪1/10 ࢫࢣ࣮ࣝࡢヨసࣟ࣎ࢵࢺࢆ⏝࠸ ࡗࡓࠋࡇࡢࡇࡽ㸪᭶㠃ᅵࡢ࠺✚ᒙయࡢタィᡭἲࡢ ࡚ᐇ ࡋࡓࠋ⤖ᯝࢆ⾲ ♧ࡍࠋ➨ ิࡣᅵࡢ࠺ᵓ⠏ ጇᙜᛶࡀ☜ㄆࡉࢀࡓࠋせồࡉࢀࡿᙧ≧ࡢᅵࡢ࠺ࢆ↓ே ᚲせ࡞ྛ⨨ࡢ㏿ᗘᛶ⬟࡛࠶ࡿࠋ࣮ࣔࢱࡣ࠸ࡎࢀࡶ ᵓ⠏ࡍࡿᶵᵓࢆタィࡋ㸪1/10 ࢫࢣ࣮࡛ࣝࡢ㒊ศヨస࠾ Dynamixel (1.5 Nm, 60 rpm) 㸪 ࢥ ࣥ ࢺ ࣟ ࣮ ࣛ ࡣ ࡼࡧືసᐇ㦂ࡼࡾ㸪タィࡢጇᙜᛶࡀホ౯ࡉࢀࡓࠋࡇ ARM7TDMI (48 MHz)ࡋࡓࠋ➨㸱ิࡣᅵࡢ࠺㸯࣏ࢣࢵ ࢀࡽࡢ◊✲ᡂᯝࡼࡗ࡚㸪ࣟ࣎ࢵࢺࡢヲ⣽࡞ᵝࢆᮏ ࢺࢆ〇㐀ࡍࡿࡓࡵྛ⨨ࢆ᭱ప㝈ືࡉ࡞ࡅࢀࡤ࠸ ᱁ⓗ᳨ウࡍࡿࡓࡵࡢᇶᮏࢹ࣮ࢱࡀᚓࡽࢀࡓࠋ ࡅ࡞࠸㔞࡛࠶ࡿࠋᅵࡢ࠺⿄౪⤥⨨ࡘ࠸࡚ࡣ㸪ᅵࡢ ㅰ ㎡ ᮏ◊✲ࡣᏱᐂ⯟✵◊✲㛤Ⓨᶵᵓ (JAXA) ࡢඹྠ◊✲ࡋ࡚⾜ࢃࢀࡓࠋࣟ࣎ࢵࢺࡢ㐠⏝ࢩࢼࣜ࢜ࡢ⟇ᐃࡸ◊✲㛤Ⓨయࡢ᪉ྥᛶ ࡘ࠸࡚㸪᭷ேᏱᐂ⎔ቃ⏝࣑ࢵࢩࣙࣥᮏ㒊ࡢୖ㔝ᾈྐẶ㸪࠾ࡼࡧ◊✲㛤Ⓨᮏ㒊ࡢす⏣ಙ୍㑻Ặᩘከࡃࡢຓゝࢆ㡬࠸ࡓࠋࡲࡓ㐲ᚰᶍ ᆺᐇ㦂ࡘ࠸࡚ࡣ㸪ᮾி㒔ᕷᏛࡢᮎᨻ┤ᩍᤵ࠾ࡼࡧࡑࡢ◊✲ᐊ࣓ࣥࣂ࣮ࡢ༠ຊࢆ㡬࠸࡚ᐇࡉࢀࡓࠋࡇࡇグࡋ࡚ㅰពࢆ⾲ࡍࠋ 71 東急建設技術研究所報No.38 ཧ⪃ᩥ⊩ 1) M. Okumura, Y. Ohashi, et al.: “Lunar Base Construction Using the Reinforce Earth Method with Geotextile,” Proc. ASCE Space’94, Vol. 2, pp. 1106–1115, 1994. 2) J. Kaplicky and D. Nixon: “A Surface-Assembled Superstructure Envelope System to Support Regolith Mass-Shielding for an Initial- 3) Eagle Engineering: “Lunar Surface Construction & Assembly Equipment Study,” EEI Report, No. 88–194, 1988. 4) M. Okumura, Y. Ohashi, et al.: “Foundation Slab for Lunar Base Construction,” Proc. ASCE Space’94, Vol. 2, pp. 1128–1137, 1994. 5) Y. Nakamura: “Shallow moonquakes,” Proc. 11th Lunar and Planetary Science Conf., Vol. 3, pp. 1847–1853, 1980. 6) H. Kanamori, S. Udagawa, et al.: “Properties of lunar soil simulant manufactured in Japan,” Proc. ASCE Space’98, 462–468, 1998. 7) W. D. Carrier, G. R. Olhoeft and W. Mendell: “Physical Properties of the Lunar Surface,” Lunar Sourcebook, Cambridge University Press, 1991. Operational-Capability Lunar Base,” Lunar Bases and Space Activities of the 21st Century, Lunar and Planetary Institute, pp. 375–380, 1985. 8) T. Kobayashi, H. Ochiai, et al.: “Load-settlement Characteristics of Japanese Lunar Soil Simulant in Partial Gravity,” Space Resources Roundtable VIII, pp. 37–38, 2006. 9) H. Matsuoka, S. Liu: “A New Earth Reinforcement Method Using Soilbags,” Taylor & Francis, 2005. 10) L. D. Fuglsang and N. K. Ovesen: “The application of the theory of modeling to centrifuge studies,” Centrifuge in Soil Mechanics, Taylor & Francis, pp. 119–38, 1988. EXPERIMENTAL VERIFICATION OF LUNAR TEXTILE METHOD WHICH PROTECTS A MOON BASE D. Inoue, Y. Yanagihara, and K. Numakami A lunar base is required to stay people on the moon and to perform manned lunar exploration efficiently. In order to build the lunar base, "Burying" is one of the important works. We propose the method for covering lunar base using a regolith and robot technologies. Our robot builds retaining walls around the base by in-situ packaging and stacking of regolith sandbags. Our method has three advantages; 1) Its simple task suitable for robotization, 2) A lightweight and less materials enable the cost reduction of the interplanetary transportation, 3) There is no need for deep excavation that is technicallydifficult work. These advantages minimize the risk of the extravehicular activity for efficient construction of a lunar base. In this study, we confirmed the design and performance of mission-critical equipment. In order to design the sandbag configuration, we analyze static model of the sandbag stacks based on the earth pressure theory. Then, it confirmed by the 1/40 scale centrifuge test. Based on the result, the sandbag packaging mechanism was designed. It was implemented to 1/10 scale prototype robot, and its construction accuracy and construction speed were evaluated experimentally. These studies validated our construction method proposed. 72