...

Progress Reports of Groups

by user

on
Category: Documents
58

views

Report

Comments

Transcript

Progress Reports of Groups
!"#$ N.%&'()*+,
!"#$!/ Progress Reports of Groups
314 / Information Technology Group
567894 / Energy Technology Group
:;4 / Medical Technology Group
<=>?@ABC4 / Supramolecules and Self-Assembly Group
DEFG?DEHIJK4 / Nanomaterials and Nanodevices Group
L>MN?OP4 / Quantum Theory and Computation Group
-. 21 /012
30
!"#$ N.%&'()*+,
-. 21 /012
314
1/4
!"#!
56789:;<=>:?@AB:C"D:E"F, GHIJ
KL%&MN!
! ! 314OP31QRSTUVWXYZ31[\]^_`abcVLde31fgh'O
Pdei$`31QRSjklm&^]WXY`nodepqQR]r0s`tuL8vm
31[\fgh'OPwrx0ry[\]^_az]{|]}~%&`Äl:ÅÇMÉ
`ÑÖcVL!
!
ÜLá/0]MÉZ.à!
âKäde31fgh'!
! ! ãåçéè!BBM92 depq'(,êgSëVdeíìî!
!!!!!!BBM92 '(,êgïÑñóò{deíìîï.ôcV{|SP:denoòöõ
ïú70ùû6] 2 öeü†°¢0`£{§•¶P§ß§®Lá©™´l{¨≠Æö
denoòöeØõ]denoò∞0`±c 2 öeü†°¢0P:99ù(≤≥`Æö
©¥µ 0 0S∂∑)Të∏ 83ù(≤≥`Æö©¥µ 45 0S∂∑)Oπ∫{Lª]¨≠Æ
ödenoòöeØSëV 10.5 km ºΩæø,ø¿¡¬h(DSF)√îу`Ñ≈l:
∆«»ø¿¡¬√î…ST®¶nöeØ]denoò∞0P ZÀÃÕsl§®ª
Z`°ßŒZl{L!
ãåçœè!rde–—öe“”‘’]™´!
÷◊ÿŸ⁄hZ¤‹›êhfifl‡fOw√·ÿ`‚„‰ÂªZOde–—]ÊÁ`
t∫{L÷◊ÿŸ⁄hZ¤‹›êhfifl‡f`ËòÈò 19 Í:7 Í]ÎÍÏÌOÓ
Ôl{L∆ 1550 nm ST®¶:ÒÚgÛhºÙıP 0.25 eV Oπˆ:öe“`ºÙ
cV]S˜º§Yı`¯.l{Löe“º˘Œß∑óòVde–—P 82 %Oπˆ:
#˙§de–—]ÊÁS.˚l{L
!! ãåç¸è!ø˝,˛ˇ++!"#gTë∏æ!ê‡$%&'·(]ÓÔ!
! ! ! ! ! ! )*+},6O-.`k®¶∆/0123kø˝,˛ˇ+456#h‡]Ó.S.˚l{L
ªò`7só8-.*9ø˝,˛ˇ+45`Ó.l: :;)<=>2)!de?ˇ,`@˘l{…:
ABO∆/0123CD]ø˝,gŸÚE‡"`F∑l:ø˝,˛ˇ+45]GH`I
Jl{L8v:◊e'KL`k®{ åM123!NO&PQRS`Tôl:ªò`k®
U1123!˙]VgŸ˛WX`k®{fi",kO&·(]6#h‡`Y.ó8{L!
!ãåç;è!gZ)WX[e] \å 'S]^l{ÆödenoòöeØ]_.!
! Rb [eS]^cVÆönoòöeØ`_.cVу`]™´`Ä|{Lab:
∆ 795 nm ]ÆönoòöeØ`_.cV{|ScdZ§V∆ 397.5 nm ]ehfh
ö`_.cV{|S·(ghi‹¥º^ LiNbO3 (PPLN-WG) 45`k®{j 2 r
k´_`t∫{L45B0` 180lSW∑scVªZOÅ#m 2 mW ]W∑ni`
o{Lªò` Type II hiº^‹¥ KTiOPO4 (PPKTP) 45Sp›ó8:6⁄q,!
ˇ+rvstSëVu®S¨≠l{Æö`noöeØ]_.`t∫{LÖv:wx
m 120000 y]öe]´_`TzO{¶®VL
ãåç<è!|}'⁄~‡·(Të∏ġ'⁄h]ÓÔ!
! |}'⁄~‡P◊ÅÇ É–àÑ$%"Öhg]◊eܬ¡"á]r–—4à§
Ã]{|:de31QRá]jkïiâóò¶®Vï:öeŒß|}'⁄~‡á
]st–—ïr®ªZÑäãï宪ZïdzóòVLá©:∆ 1550 nm k]|
}'⁄~‡·(]ÓÔ`t∫{L'⁄~‡·(Pç]^éè",⁄¡'
âêó 15 nm:˙ 5ú11 µm:∆ó 1.9:3.0:4.9 mmä` BCB ë!íhâ12.8 µmäO
‚„ªÀìÏÌOπVL˙ 8 µm ]'⁄~‡·(P:4à–— ~3 dB:√îäã
~2 dB / mm `¯.l{L
âÜä31[\fgh'!
N.!"#$ H21 %&_'%(.doc 2/4
! )!*+,!"-#$./0123%"45&6'()785*+9,-!
!"#$%&'()*+,-./01234!56789:;<=;>?@/1!"#
$AB>CDEFGHIJ(KLMNOPQDRSTU/VWXV1#YZ![IJS\
]^D_`PaNb.+DWGdFeCo c(defghijk>Zl^DmAn!"opq1
mrnstutvwx(y)ABSTU/VWTbFeCo zc({|}~VW
XV1ÄÅts Radboud )$1ÇÉ4Ñ York )$Ö.(Üáàâäã>Cå1#YZEç
é![èpjkêjëí(ìîn\].mïn\ñ>)*+~óMòôö1õ(úBS
Physical Review Letters ù>0êû/VW
ü ü †2°¢£ü :./;021<=23"46'9ѧ•¶ßÑ®u©•KL!
EF™´Ñ#¨≠SÆØ>ѧ•¶ßÑ®u©•KLNO+∞ѱ≤≥.¥=n+µ∂S
r∑VW∏π∫#$ABªº>CDΩæø¿º OPA S¡¬/18 √ƒ≈XP> 235 nm∆
1600 nm (Ωæ«»P… Àà 100 fs (çÕŒEF™´Ñ#Sœ–NO./VWõö>
—_¥=n+∞ѱ≤µ∂S 9 √Æ≈XP>r“1![f”5(‘t’÷’ß◊ÿKLM
NOPQDRSTU/VWjŸ1GdFeCo ⁄->¤/’ß◊ÿΩæ 420nm >‹›Dfifl!
‡1‘t’#·Œ‚„5SÆØ./V‰ÂnKLSÊÁ/0“DW
(2-c)ü ËÈÑÍ◊´(ûÎÏÌSÓ^DÔÒÚº±t’Û◊¶Ùı({ú
! 45>6789?:;.<@1A=BNano Dent Array: NDAC7>D?@AB67
ECDEBSelf-Assembled spherical small Silica Particles layer:SASPCFGH1IF96
7JKA=.LGHIMN O6789?<@1PQ#JRS.T7 UVW9?@K
L45&.XYMN1EOZP;?1<M?@AB [<.XYQ\MN]R) SiO2
:;? Ar ^_SQ`M7 abcde?fg145T 14 nm 989?<@1A=
NDA ?[\MNOËȈ≠SÓ^D±t’Û◊¶>˜1Uh_VQ`W.XYXYi.
VjMN67ECDZW?[\4 Si A=f]?@ABMNECDZWDBSASPC?
:;.<@1PQ#JRSA=[\#$P09HI ^[\?kl7m_Z` 18 nm
967ECDE?noIZWDap[\@1qr.\sM NObZW4.Ll tT7
c.m_Z` 14 nm 9uvw;AxdMN67ECDZW9efyghMtl1O
! B2-dCPQ#JRSA=1<.X1"-bZWQ\zc9i{
! f|67:;JK?<@1PQ#JRS?A}rMt<l1qr.X1"-bZ
WQ\zc]9~.LGAjHI?kÄNO SASP f][ÅMN FePt 67"-b
ZWQOT7mkH[\4 Si A=f][ÅMNlm.no7m_ZWÇ`T 29.6 nm
FG 14.8 nm ]pqM7ZWÉzcT 0.16 FG 0.74 T particles/inch2 ]rrMÑis
MNO
(2-e) tul21<|Ö
! vÜ9s[wxy|ÖvÜ9JK.XY{GÑyH1qr7áG.7vÜ9z{
|}9à?s[@1~W?EZJREÄQ.XYâMNO ZWOvÜ9äÅJK
?ÇÉ@1qr.XY7>ãZW?åV.s[M7FL74ÑZW9Öc?|ÖZ
W9Öc9 65ç.Üpápàépè1qr?âMNOsât7>ãZW9à?s[
@1äãrMt7|Ö2./01tul28MåQP6r|ÖZWr9çéèê7
åQP69QO9ëí?ìîM7qê?ëGF.MNO
! ÜN7A}ïíWñó^òô(9{öõúùrû 2 g9ì5>HHIü?†°7
¢îMt:;#Q•¶9ßñ2§R®?Q\àéH 4 gó©-9åQP69
ò™QO9,-rßñ2c9´¨?kÄNO
!
≠Oôbc9\9Æö!
BnCíW'%`;R#! ! !
! ! ! ! '%õú./01"=9ùû-?Ø∞@1íWü†õú9°¢£4.±à≤Hí !
WCVR≥R?§5@1N•9¥µäã9¶8?kÄNO\ )ß*+,pT72õú
®°∂./01∑∏òU©9>ã2WHπ™?<lt7∑∏òUJ∫;9íW´L
N.!"#$ H21 %&_'%(.doc 3/4
)*+,!-./0123456789: ;<=>?@-ABCDEF"GHIJ*+
KLMN@O+P./5QB#$RS%&TUVJ7W)X@-A2Y/G!Z1
B"#@'$*[\]^_(2)`56[abT*3c2de%fUVJ7!
ghi'%jklTb#!
mSn1SojkG+,p!"#$%&'()*+,-(./0123(45670
89:;<=>?@ABC>DEFGHIJKLM(2-a)NO0PQRSTUVG>!"+
!"#$%&'()*+,-(4#WXF$Y>N*JKZJ0(2-b)N%&'(([\
FG]0)*(DEVG^(4+F,]JK(2-c), (2-d)NO0_-`12,-aIA(b
cdePfgU67FG]0(2-e)NO89:#;<(./#;<^(0h1ihN*JK!
!
2KUjkTlmnoDE
3-1 H21 3 6 p 4 5 0 6 7 a q r e s m Radboud ) $ a ( t u n o D E h 0 t u 8 9
MORIS2009 >v@A Best poster Awards F&:IJK
3-2 H21 3 9 p 11 ;<wN045067vx=0qres Radboud )$0yz{l York )$0
>y? Konstanz )$0Q|@(A$@BCDgIoffe E}67DEFa(tunoGH~
Ih0PHYSICAL REVIEW LETTERS ÄVol. 103, P. 117201Å>J2aoÇ>0KSelected
for a Viewpoint in PhysicsL>MÉNÑJKZJ05~I>?* Riccardo Hertel OGH>xÖ
P Q 1Ü “For faster magnetic switching—destroy and rebuild” h American Physical
Society áà “Physics –spotlighting exceptional research-” Viewpoints >RSNÑJ
3-3 H22 3 1 p 29 ;âT;5!"$8 U 170 äDE8K#a!"(|bRg67LãVW
XlUfgRm#Yå!XCZylCç(J]([67é\ã>v@A067]^a45
[hèÑ_Ñ`a>bcdefêK
3-4 67045O0NDA (ghijëbcDkíìLPQkl./>O0îlmmghijn
()popq0SASP (|{BrmghstPQkl./>O0îlmmghijn(u
ïopq1ñ(vwFóA@ÖK-./0+jk1q@2r2stu&G35'vw 0
xy0z{H|}~4O+56789(@()*+,-/ @:./0612Ä;5
67ZJ0òxO89:#;<>yIA~4O+56789(@Å<=>?/f@
ÇpABC2235QÉJ7
3-5 z{O|} DEFGHIJF ôm>kUö-(õL>úJi)popqanoDEFàùJK
3-6 z{O[û~FÄüÖ†°PrÅÇe(î[bcÉ¢^(Ñ£>yüÖ§ÖY|DÜ
fg|áe(à=>?@A)âopqa9~FàùJK
!
475p67!
(1) N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication
wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express,
Vol.17, pp.6275-6282 (2009).
(2) D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S.
Inoue and T. Zama, “Photon number resolving detection with high speed and high quantum
efficiency’’, Metrologia, vol. 46, pp. S288–S292 (2009).
(3)! K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, D. Hinzke, U. Nowak, R. Chantrell, A.
Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast Path for Optical Magnetization
Reversal via a Strongly Nonequilibrium State”, Phys. Rev. Lett., 2009, 103, 117201-(pp. 1-4).
(4)! Y. Moriyama, Y. Ashizawa, K. Nakagawa, T. Sako, A. Tsukamoto, and A. Itoh, “Heat
Conduction Analysis of Magnetic Recording Media for Thermally Assisted Magnetic
Recording”, J. Magn. Soc. Jpn. 2009, 33 (6-2), 517-520.
(5)! A. Itoh and A. Tsukamoto, “Hybrid magnetic recording media on FePt grains and selfassembled nano-structured layers”, J. Magn. Soc. Jpn. 2009, 33 (6-2), 507-512.
(6)! J. Otsuki, K. Namiki, Y. Arai, M. Amano, H. Sawai, A. Tsukamoto, and T. Hagiwara, “Faceon and Columnar Porphyrin Assemblies at Solid/Liquid Interface on HOPG”, Chem. Lett.,
N.!"#$ H21 %&_'%(.doc 4/4
2009, 38(6), pp. 570-571.
(7)! K. Yoshino, F. Chino, A. Tsukamoto and A. Itoh, “Coercivity of TbFeCo/FePt Grain
Composite Films” , J. Magn. Soc. Jpn. 2009, 33, 212-215.
(8) Yuichi Moriyama, Kojun Ogasawara, Yoshito Ashizawa, Katsuji Nakagawa, and Akiyoshi Itoh,
“Heat Conduction Analysis of Magnetic Recording Media in Optical Near-Field for Thermally
Assisted Magnetic Recording”, Special Issue of Nihon University CST 2008 Annual
Conference -Report of RISTNU-, Vol. 52, No.3, pp. 47-50, Mar. 18, 2009.
Information Technology Group
Shuichiro Inoue, Katsuji Nakagawa, Akiyoshi Itho, Arata Tsukamoto, Takeshi Kuwamoto
and Hideomi Hasiba
! Ultimate communication security and information storage! ! ! Our information group is trying
to develop two ultimate technologies. One is the ultimate secure communication and another is the
ultimate information storage.
Quantum information group has developed high-efficiency entangled photon-pair sources at 1550 nm,
photon number resolving detectors with high quantum efficiency and high energy resolution at 1550
nm, 400 nm-wide Si waveguides, photonic crystals of Ti thin layer with square air gaps on a silicone
on an insulator substrate, polarization-entangled photon pair sources resonant with a transition in
rubidium atom, and surface plasmon-polariton waveguides and couplers. We will combine these
technologies to realize quantum repeaters.
On the other hand, a high-speed recording and huge capacity for storage are extremely precious to
our society. The phenomenon of a photo-induced magnetization applying a femto-second laser, which
was revealed by our members, suggested a possibility to dramatically improve the high-speed
recording of information technology. Besides, utilizing nano-technology fabrication for a near-field
antenna and recording materials, huge capacity will be achieved. Gdx(Fe87.5Co12.5)100-x as a rare-earth
transition metal alloy film was studied. Optical Parametric Amplifier (OPA), which is supported by the
project, was installed to probe the phenomena from 0.5 to 5 eV in energy. Substrates with nanostructured surface were fabricated to improve a high density recording prospects in active
collaboration with Supermolecules and Self-Assembly Group. We also analyzed the thermal interdiffusion of patterned recording media with thermally assisted. The particle structure of the recording
media is effective to enhance memory density for the thermally assisted recording. We began to study
analyzing the field which was close to electrode when a circular polarized light was exposed for the
purpose to effectively utilize the optical induced magnetization as high-speed recording in a local
region.
!"#$ N.%&'()*+,
-. 21 /012
314
1/1
Information Storage
A high-speed recording and
huge capacity for storage are extremely precious to our
society. The phenomenon of an photo-induced magnetization
applying a femto-second laser, which was revealed by our
members[1], suggested a possibility to dramatically improve
the high-speed recording of information technology. Besides,
utilizing nano-technology fabrication for a near-field antenna
and recording materials, huge capacity will be achieved.
Fig. 1 Compositional depend1) Ultra Fast Information Recording
To carry out a ence of damping parameter
search for highly susceptible materials to the photo-induced and precession frequency f.
magnetization, all-optical pump-probe system employing an
amplified Ti:Sapphire laser was built. It was conformed that
the ultra-fast dynamic behavior was measurable and can
#3 #1
#2
extract the damping property by the system, as shown in Fig.
1. Gdx(Fe87.5Co12.5)100-x as a rare-earth transition metal alloy
film was fabricated. Optical Parametoric Amplifier (OPA), Fig. 2 An example of thermally
which is supported by the project, was installed to probe the analysis heated by a near field
phenomena from 0.5 to 5 eV in energy. Collaborated work optical light.
with Radboud univ. was awarded in international conference MORIS2009.
2) Ultra High Density Recording Media
Substrates with nano-structured surface were
fabricated to improve a high density recording prospects in active collaboration with
Supramolecules and Self-Assembly Group. A nano-structured substrate was fabricated by
self-assemble phenomena of silica nano-particles, on which FePt particles fabricated. The
results were presented as an invited talk in international conference MORIS2009. The magnetic
characteristics of fabricated magnetic materials on the nano-structured substrate will be
analyzed by the high sensitive magnetic force microscope which is supported by the project.
3) Thermally Assisted Recording
We analyzed the thermal inter-diffusion of patterned
recording media with thermally assisted recording as shown in Fig. 2, which was presented in
an international conference and would be published. The particle structure of the recording
media is effective to enhance memory density for the thermally assisted recording. The
preparation for surface plasmon antenna is in progress for the recording a tiny magnetic domain
on magnetic materials. We also begun to study analyzing the filed which was close to electrode
when a circular polarized light was exposed for the purpose to effectively utilize the optical
induced magnetization as high-speed recording in a local region.
Reference
[1] C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing:
Phys. Rev. Lett., 99, 047601 (2007).
!"#$ N.%&'()*+,
-. 21 /012
1/1
!"#$%&!
34567#897:;<=7>"?@7ABCD!
!
!!EFGHIJKLMNOPQRS7TUVUMWXPYZS[\]M^_`abcdU7
WXMefghi7jklMmn%&Po_pRZqrMstuvUwx!
!!yMGz{Po_yX|uPQRS}7pRZ~ÄPoÅSÇÉPÑÅw7ÖÜáÜà
âL'RwäãåáÜçéPoÅS7yMGz{Po_yX|uè10 µL h–1 cm–1êbëíd
Uwèìîïñóìîòôöõk7úùêxGg.ûüPo_yX|uPYZS7†y]à
°¢RwyX£§g•P|uRwyXࣶßi_®l©7yX|u™à 40%´¨ßi_®
lb©≠wx'()*+,Po_mn%&M.Æ©^_x!
!!Ø∞±≤≥∞PQRS7¥µg.Äà∂O∑_®lPo∏7®Uv©πÇÉ∫Åwìîõ
ªLJ©MºgbΩæÇÉPÑ∏7ø\ïño∏¿]b¡Uw¬√0öÜáLƒI+áL≥
∞7¬≈ñ'(,Ü∆±«7¬±»…∆] »À≥∞àÃ|RwxÕŒœ7 »À≥∞M
LaFe1–xNixO3 PQRS}7–íS Ni —™M“Z≈”Ñ≥∞àg.∑_®lb©≠7®M≥∞
©‘t¬Z±»…∆’à÷Rwx!
!!◊ÿ,Ÿ⁄+¤‹Po_›X´fiEF±≤Mfl’‡·M‚„à{‰∑_wíPÂÊRw7
◊J◊ÿ,Ÿ⁄+ôÜâKÁ⁄'„Ë«MÈ~Íà7±DÎLÏÌÓÔÖ◊Lèìîï
ñóìîòôöõk7ÒÚêPoÅS~Rwx!
!
Energy Technology Group
Yasuo Asada, Joe Otsuki, Nobuyuki Nishimiya, Takuya Hashimoto, and Sachiko Matsushita
For the use of solar light energy, an encouraging progress is being made on each aspect. In addition,
new development is being made with combinations of respective aspects and collaboration with other
groups.
Hydrogen evolution was observed at a high rate of 10 µL h–1 cm–1 with a highly lanthanum-doped
titanium dioxide film, which was made possible by a new fabrication procedure (Suzuki,
Nanomaterials and Nanodevices Group). For hydrogen evolution by photosynthetic bacteria, the
amount of evolved hydrogen increased by 40% by using a water-proof hydrogen storage material. This
is a nice example of collaboration through the project.
For materials for fuel cells, newly employed solution-phase synthesis has made it possible to mix
ingredients at the nanoscale, which in turn produced better quality materials than conventional ones,
which includes high-strength interconnector materials, highly homogeneous proton conducting
materials, and highly conductive air electrode materials. For the air electrode material, the highest
conductivity for LaFe1–xNixO3 was recorded owing to the homogeneous mixing at nanoscale.!
A prototype of a nanostructure designed to have a full photonic band gap was prepared with
electron beam lithography (Hashiba, Nanomaterials and Nanodevices Group) in the aim of revealing
the mechanism behind high efficiencies of dye-sensitized solar cells with photonic crystal structures.
!
!"#$ N.%&'()*+,
-. 21 /012
345 1/3
!"#! !
6789:, 67;, <=>?, @"AB, CDE, FGH9:, =IHJ!
KLM! 345NOPQRST$SU1V$WXYZ[\%&]^_`4abcdefW]
KLagh_ 4 i_jklN%&]mndXopq
rs tu%&'()*+,avwexyz.TzQ]{|}Z^~S`4_ÄÅÇÉ<=S
CDS=IS@"S#ÑSÖGSÜáSàâSäãSåSãçSéèê!
! f_jklOPëíìîWïeT$Qñ]óòôpöõ_újù'Wïe%&Npqûü
_ †t° ¢£TzQv§•¶_ßz®]z.}©ûüTzQa§e^`4S~ëìî_™k
´¨≠]KLW}dXopqgh Æ i_Ø∞±≤TzQz.a≥ò¥µNvòopq!
(∂) DNA ¢£xyTzQa§e^`4ëP~ëìî_∑∏!
πL∫ªºv§•¶_∫ªºΩ_πLæø_∑∏Wz.TzQ_¿¡]¬Xopq
(√) [ƒ≈∆k'W_«»%&a§e Pyrrole […a
peπ£ÀFTzQ_z.
DNA ¢£TzQ_ Pyrrole [ïÃaπ£ÕÀF[]iweŒœ]¨≠}dXopq
(–) FRET ó|_—|a§òß“_”‘∂’÷a§e◊ÿŸ¢£Œœ_¨≠
TzQ⁄¤i±‹i›oYdõndfiefl¥‡N^]·iweŒœ]¨≠}opq
(‚) `4a„•i‰ÄÅÇ_ÂeTzQavweëQÊÁSËÈÇ_ÍÎ!
!
TzQ]ÏYdÌPËÈNïXWflÓoÔµqë_Ê]ÒÚPËÈÇ]Û¢}opq
Ù/0ımˆ}ZfWı˜.}ZfWı¶_¯˘M!
∂êπLWïe∫ªº]·iweZn∫ªº˙˚¸_ó.W∫ªº_˝˛ˇÁaiXd!"
#$W⁄µ#$N%&La'Úe≥ò¥‡](,S)*ÊQN¬XP9á]+,≠-./q!
Nature 458:505-8 2009.
Genomics 93:130-9 2009.
J Hum Genet 54:450-6 2009. Molec Carcin ./é.
√êDNA „zTzQaÀF[]ÀwPDNA ˝˛Õ0fiïÃ_yÅ]1YZyÅLTzQ_
z.a≥ò¥µNXopq(ú,2˝˛34íW_ßz®P5(k∆[6_ÀFŒœ]¨≠q !
Tetrahedron Letters. 50:7288-7292 2009. ! BBRC ./78é! 9: PCT/JP2009/62054
–êDNA „zTzQOP¢£æø⁄ 8 ;[<0_ZnP(,◊ÿŸN_9=>?w]¢£
pe§@aß“_TzQ⁄»A∫ªº]¢£}P¶fNõndfi]≠peŒœ]¨≠éNpq
‚ê¨≠é_ DNA „zTzQOPB?aëíW}d_¿¡⁄¬CDdXïXTzQNÂòP
¶_ËÈÇWëQÊÁ]ÍÎ}dXeqÊQEF∆N_ÊÁSGHËÈÇ⁄Û¢IDdXeq !
Biopharm & Drug Dispos 30:81-9 2009. J Chromatogr B 877:1070-6 2009. Bio. Pharm. Bull. 32:921-7 2009.
Molecular Therapy advanced online 2009. Cancer Science in press 2009. 9 : PCT/JP2009/066108
PCT/JP2009/057801
!
Js ^◊ÿŸavwe9KLï∫ªºLMNO]{|}Z~v§•`4É=IS67
É8êSPèSQRS67É;êS@"SCDSFGSãçSRajeeveSåSSTSU
DSVWSXQSYGSZ7S[WSä\S#ÑSÜáSàâSéèê]^≠_`‘2!
!!⁄µ∫ªº_LMÉ⁄µm¬6_∂+a∆Wïe∫ªº⁄LÓefWêÕ^bc∫ªº_
deÉ⁄µm¬6_fEk`Wïe∫ªº⁄g‰ïefWêO⁄ µ#$a9KLN!"#$
aO·≤DïXhTNpq⁄µ◊ÿŸÖ_f_hT]∫ªº_ DNA ]¢£peTzQ]{
|}d»i}P⁄µ#$]!"#$±≤·jweZn_0fikëÉ⁄µ#$?w⁄fiYd·
Óe§@apeÍôkëê]z.}opqI≤af_kë⁄©^∫ªº_≠l]bcpe
É^∫ªº⁄ôd‰e_]bÓeê§@aVm]FÓdXopq9a[n_opqrNöÌ
!"#$ N.%&'()*+,
-. 21 /012
345 2/3
60789:;<7=>?@ABCDEFG:MYCN HIJKLM7NOPQR 100 ST
UVWXIYZ[7\]:^_`ab[cdHeXfghiPj]klFImno
p/0qrset^Hqu.et^Hqv[wxy!MYCN KLM['(z{|}~GKL
MÄ`ÅÇnY}~F\]:@ABCDEFVÉeXImno^[}~P DNA ÑÖÜÖ
á`àâÖ.:äã[ÜÖáF MYCN VÉ@ABCDEPåIXZ:MYCN çKLM[
Ä`éèe:MYCN KLMêë`íìnY^H7îíï_metomtñç?ó[VÉ}
~ Her2 PònY Her2 çKLMÄéèÜÖáZô.emeto!
The Journal of Antibiotics. 62:339-41 2009. öõ PCT/JP2009/066111 ú 25 ù!"ûü7l$† '°)¢
£§•¶§£ß)®© -. 21 / 11 ™!
!
´¨ ≠ÆØ$4∞H±≤{°£, X Æ≥¥µ∂[∑ÖP∏Yπt?∫4∞[sªº8Ω
ºæø¿¡Ω¿¬M¿8Ωº√ø¿≥ƒ¿≈∆¿«»¿… ¿»À¿Ã"¿ÕŒ¿œ–¿
—“”¿‘’¿÷¿Rajeeve¿◊ÿ¿Ÿ⁄¿¤≈¿‹–¿›fi¿#™¿fl‡¿·‚¿„
ƒ øº ‰ ¿ π  ¿ Ê Ÿ ¿ Œ „ Á Ë È % Í¿ # Î Á Ï Ì Ó # $ ÍøRavindra Pandey
ºRoswell Park Cancer Instituteø!
! çPònY≠`ÔetáÒÜ$4∞:≠Ø$4∞ ÚÛÙ G:≠ıˆ˜á¯F\Y˘˙,˘
˚£ºß¶˘¸˚£˝˛ˇ?óø7:!"#$[≠P∏]%&ï_:CD'˜`(n)˜*
+`,-.n^Hå∏/v[ÜÖá77lCDPj]0m_1nI˜¯`ÔeX7lCD
23`4P567Y∫4∞Fnoe8e:≠[Hó99:˜[çPG;<Fn7:∆‡[7
l1=>‡?PG<@m7lo"%&FG!"#$Fªet!"#$[AB[±≤{°£
, C Æ`Ôe:∆‡7lCDPònYπDE¥ÆØ$4∞`ªnY^H`FdHemno!
p/0qrset^Hqu.et^Hqv[wxy!ÄG:çHIJKLHeXMNúOPQ
i„ºRF[ST˜7îíU-ø[ÜÖá`7lCDPVW<:ÜÖá„[XM[YZ[`
ItA#$E¥Æ≥¥`\J^HF:7lCD7V]éè`&^n^H7îíï_XIm
no^_G:X Æ^_`0[abFˇ[cPdeçCD`!fghPnY∫4∞[ª[i
j˜`(nZ[F#klmï_XImnomt:!"#$[ E¥ÆØ$4∞[πDÜÖ
áZÖ.ï_:no[hiPj]klFImno!
!
p¨ KLMÄVœ` PNAºq'rst* øÜÖáFíìnYJKµ∂[ªºÕŒ¿u
Œ¿8Ωº√ø¿-–¿»Àø!
! q'rst*º ÚvwxÚyz{|}y!v~Äy|!w|}øGÅÇPq'rsÉÑ`ÖÜet: Ûvw 1
ávw PàtÉÑ`ÜâäMF:Ûvw 1 ávw `êëöãdPíìemno^[ÜÖá`IY
^HF:ÄetKLM[ ávw `íìnY^H7.åmnoçéPöãd?KLMÄG∏
9è6_XIYÄêF:ëíGKLMÄP∏YçéJK∞[ª`FdHeXImnoa
bP:8ìî[XïFQñd60789JK7óò?X˜ô¶söõ(£ú7ùûü¯E
†°åF\Y^HP¢Fe:nçéFÄnY £§Ú••¶ß PònY Úvw `Ö.e®©emno!
p/0qrset^Hqu.et^Hqv[wxy!™®öùûü¯E†°åCDF\Y §•
CDPåIXG £§Ú••¶ß [Äå∏/hi´¨[®©„FnoÛvw ÑÖÜÖáP∏YJK∫
4GU≠Æ86´F\ØXImn7 ávw `cdHnY^HGnÜÖáFGF@m7loÚvw
ÜÖáG^[∞`±J^H7.åYij˜`;e:p<lmï_Y%&Fno!
!
5HeX[)â! ß˚ô≤s≤{õ¸£≥! ™ 1¥2 ù:%&9†`\ØXImno
!"#$ N.%&'()*+,
-. 21 /012
345 3/3
Medical Technology Group
Motoichiro Takahashi, Satoru Takahashi, Shigemichi Kosinaga, Yoshiaki Matsumoto, Noboru
Fukuda, Koichiro Kano and Hiroki Nagase
Molecular Therapy against Cancer
1. Development of Molecules for Cancer Diagnosis and Therapy
Our understanding of functional genetic research associated with cancer therapy used to be
based almost entirely on the analysis of random combinations of either multiple- or single-targeted
post-transcriptional products. Recent advances in developing a therapeutic strategy against cancer,
however, have allowed us to target a specific gene or multiple genes using an antibody and RNAi
strategy. It may also be possible to establish another designable multi-targeted approach in a tumorspecific manner by means of pre-transcriptional targets, such as the double-stranded genomic DNA
using nucleic acid binding chemicals. The object of this research is, therefore, to develop and evaluate
a novel target DNA recognition approach using Pyrrole-Imidazole (PI) polyamide molecules or its
conjugates for safe administration, diagnosis and therapy in cancer patients.
2. DNA Binding Molecules for Amplified Oncogene Detection and Silencing
The automatic PI polyamide synthesis system has been established and is providing PI
polyamides identifying and down-regulating the target amplified oncogenes for cancer diagnosis and
therapy, respectively. For instance, we developed PI poliamide recognizing MYCN gene promoter,
where MYCN expression enhancer binding sites are located and frequently amplified in unfavorable
neurobalstomas. The molecules successfully downregulate MYCN expression and induce growth
inhibition in neuroblastoma cells. Molecules may also visualize MYCN amplified neuroblastoma cells
using the PI polyamide conjugated with a fluorescent dye.
3. Development of a Novel Radiation Dynamic Therapy against Cancer Cells in Internal Organs
Photodynamic therapy is a non-invasive therapy injecting a photosensitive drug to the patient,
which sensitizes cells to the effects of light and tends to stay specifically in cancer cells. A beam of
laser light is then focused on the tumor which kills the cancer cells. The therapeutic approach limits to
cancers located on skin or surface of a limited internal organs. Since PDT drug tends to stay only in
cancer cells, PDT drug can be used for cancer cell imaging. A PDT chemical, which is under clinical
phase II trials as a cancer cell imaging agent, has been tested for radiation induced non-invasive cancer
PDT therapy in internal or metastatic cancer cells. A mono-wave length coherent X-ray has induced
cell growth inhibition in PDT drug treated cancer cells. This is a promising approach for patients with
a metastatic progressive cancer.
4. Peptide Nucleic Acid Molecules for Over-expressed Genes for Disease Diagnosis and Therapy
Peptide Nucleic Acid (PNA) molecule is a nucleic acid analog in which the sugar phosphate
backbone of natural nucleic acid has been replaced by a synthetic peptide backbone. PNA molecules
have been considered as promising anti-gene and antisense agents for gene silencing and as stable
drug delivery molecules for molecular therapy. We will try using this molecule for detection of disease
specific mRNA expression and developing a new strategy for differential diagnosis of disease. We
focused on primary aldosteronism, which is a curable cause of hypertention and a condition usually
caused by adrenal tumors or hyperplasia. We try determining adrenal tumor cells which should express
a disease specific CYP11B2 mRNA by using PNA molecules.
Publications: Nature 458:505-8 2009.
Genomics 93:130-9 2009.
J Hum Genet 54:450-6 2009. Tetrahedron Letters.
50:7288-7292 2009. Biopharm & Drug Dispos 30:81-9 2009. J Chromatogr B 877:1070-6 2009. Bio. Pharm Bull 32:921-7
2009. The Journal of Antibiotics. 62:339-41 2009. Molecular Therapy advance online 2009. Cancer Science in press 2009.
!"#$ N.%&'()*+,
-. 21 /012
3456789:;! 1/2
!"#$%&'()!
<=>?@<ABC@#DE@F"G@HIJ5
*+,- ./ 01!2345!
! "%&'()*+,KLMN@OPQRSTUVKWX3456789:;YZ@OP[
\]^N@_`abcd]e6f5ghijklmn$op]GqrstuvwxyzK@
{|}~QKÄÅwÇXÉYÑÖÜRMáàRxyzKâMNäã^@åçKZ"'()
*+,kéè,'ê,YWXë"kík_ì1v@_îïñóyv@_òôv;]öõwúK@
3456789:;ù7kGqzxûéñktüw†°Ç¢]KWX£§IK•¶ñy'k
ß®©™w´¨ÇX£!
6+789:;<23=>?@!
$AB$CD89:;!
! 3≠ú0¨ÆKØÇX∞±RÄÅK≤≥@1 Tbit/inch2 k≠ú0¨Æk%&}ßÄ¥^ââ
WX}@µk∂∑KZ∏πYK∫MªºkΩæ}WX£"%&Z@¢øw¿¡^@¬RX≠
ú0¨Æk∂∑@ÇR√ƒ 2 Tbit/inch2 §ÉklmijK≈∆ÇX«kYWX£»/@#q…
ì1¨ÆKØÇX%&4 KLMN@`aÀÃwÕÇXŒœ¨Æ–—}“†åøNMX£"
%&YZ`a”‘yñ’´ÀÃwÕÇXŒœ–—w÷X◊ÿ]^N@789:/Ÿ⁄¥∑¤
w‹›^fi.^fl3≠ú0R`aÀÃw‡·KÕÇXx‚'„y,O‰k‹›wÂÊ^@ä
ãÇX«kYWX£¢k†QwÁ.ÇXflË@
1) ≠45ÈÍñk789:¥ 3 ÎÏÌúÓÔ’´
2) `aÀÃÒÚÛfi.›x‚'„y,! O‰koÄ
3) ≠ú0¨Æ–—fi.›ŒœÙıˆ˜¯5fi.˘k˙›
K≤≥3≠ú0ì1¨Æk¬RXÄÅw˚X£
! ¢k¸Y@-. 21 /0Z@`a˝˛ˇ!"#$(15nm §
I)k‡·ÀÃwÕÇXx‚'„y,k%.vw&—†']^@
#$Q`a!(w‡·KÕÇXO‰)Nano Dent Array: NDA*@
+,78Ÿ⁄`a-û./) Self-Assembled spherical small Fig. SEM image of NDA (Nano
Dent Array) surface.
Silica Particles layer:SASP*ÖçRX01k`aÀÃO‰Kâ
2äã^fl£
$EF89:;!
! G^M45k78ŸhdwoÄ^@45„3ñYk78ŸhÀÃ@µk4˛`Èê+R5
®w6çÖKÇX]]«K@N.%&'()*+,k%&7]köõK≤8N@îïñóy@
òô@ì1˘k˙›wäã^NMX£&—QKZ@!
1)!"#<%&GHIJK>LM><"#NO9P<QR!
2)!%&GHSTUVWXYZ[9\:]^_`ab<`cde!
3) DNA K<%&GH< FRET ]^_fghIi<Xj<kHlH-KâMNäã^NMX£
! -. 9: /0Z@4;ñ<ê.y=—]M>?ñ@Aû‚B
@C(-éD‚k≤>R-·k<A”+E450F}Gâk
Ò˛H‚wZåI¢JKfik¥hbk78Ÿh5®KâM
Näã^@LMk¶ñy'}NOKPQV@RS,‚ïñT
˜UY4;ñ<ê.y=—kVWw_XXv¢]K.Y^fl£ !
! πfl@Ò’S(Sw«âG^M˛û)èZ=—wh.^
fl£[w\]^_¸Y¢øçk=—]`añ,˛H‚ wbh
ÇX]@˛û)èZc`añ,kdew\]345=—}f
.ÇX£˛û)èZ(SZeghi]^N@`añ,(SZ
[jÄfk–]^Nlm^@[jf.n˙KoàRp5q®
!"#$ N.%&'()*+,
-. 21 /012
3456789:;! 2/2
<=>?@ABCDE@FGHIJKLFEMNOPQRSTEUVW<XYZCB[S\
E]^_D`_Uab%&<cd someone LeeNf.gGhYijklCm^Enog[
^Mpqkl_D
! rsLUDNA StuvwxLyz^M{fZC|(}~ÄÅÇ}~ÉÑÖÄÜLáW
SJà^MUâäfã_tuSå^@yz^_[ç]éèjZCB[L?ãMUS/N êSë
íkìCB[Sîx[^M FRET (fluorescence resonance energy transfer)SïñZCB[Sóò
_Dôö;õúhL?ãMùûkl_7üf.L†òCáWJà°¢[£C|(}~IJK
Sf.^_D
!"#$%&'!
! §•¶~}'ß®U789:©L?ãM™´klC©f¨SñEMUáW≠ÆØ∞±≤≥
H=>ëíSî¥^MECD!
! -. µ∂ /0®U∞±≤≥H=>ëíL∑∏£UàPNSπ∫ªºCΩÖæ*~ØΩ(
Ü{øS¿¡L?äX\^$¬ß12^U`_U≤√©$ƒ|}Ń≈∆«L?äUXN
π∫ªºL?C=>ëíLa^MU»…, À+{øHNÃÕ=Œ<œ–ZC—“”<‘C
B[S’hGL^_D!
! BlhH%&.Œ®U÷◊ÿLŸEM⁄îklMŸäU-. 21 /0ß®U¤‹›fi< 4
fl‘äU‡· 1 fl®U!"$o‚„¬! 45‰ÂÊ+Â()}Á 174 ËȬÁ 31 Í%&¬
GhßU`_ 1 fl®Î÷HÏ Ìƒ#$GhH¤‹ß‘ã_DÓHÔU÷$¬ 4 flU÷◊
$¬ 4 fl®$° 4 /YÒÚLÛÙ 2 /YL?CıHß‘äU"$$YˆH˜¯=Œ<˘˙L
#çEB[<˚òCD
! ;◊H%&¸˝[^MU"/0®U˛Vˇ!LŸéC7Xx"#$üH%&'’L FEM
()¶~}'[H*+£,-%&ÒÚL./≈0Àæ1ƒSTã_D§•¶~}'ßX\^
_+((2ƒ3ƒL?C7X$üH4”©L5^67.~S89ZCB[< ßçU"Ê}:
La^M®÷$¬X; 2 flU÷◊$¬X; 2 flS"$ÛÙ<=#$>Y[$°Y<T‡?
«ß‘äU%&4üL?C˜¯x@ASB4LCCB[<ßçCıH[óòCD
!()$%&'!
! DE~”F45ß‘CÉÑ (L-GH) (PLLA) ®UFE{ø©0SIZCB[ßJhlME
C<UPLLA {øHtëL?äK }+£L≤M”SNZB[ßaO<P_lMECD
! PLLA »QR}LÕS≤ˇSTUZCB[ßUPLLA
HL≤M”<X%^U»QR}VWH‚ü X‚Y<Z
@LΩƒ,(}~ ßçC?‡L£C (Fig.1) D^G^£
<hU%[H[B\U1 ]^x£»QR}Gh #ç£
!_SPF 2 ]^x£`aXUÓlbíHcdK[£C
æ},£eß®èf^_ 12gh®£EDÓBßU"'
()*+,ß®U1 ]^x£cdKGhUF]cdßU
GFi+LcdÕSkl_ PLLA _jaS™´^UÓH
L≤M”SklUÕS≤ˇ◊ßHmn‚üHÕS XUk
hL®UÓHoñSpiCB[Sîx[ZCD
! -. 21 /0ß®UqrstuvwHx´S\yòU.ƒ'ƒ£eHzY¨4'L?ãM
{hlC L-GHS7Â:}LvÚUBlS|VU}~fokìCB[ßF45Ä©^_
PLLA Hf.SpiUîx[ZC PLLA Hf.L.Å^_D
Supramolecules and Self-Assembly Group
Hiroki Ikake, Akiyoshi Itoh, Joe Otsuki, Arata Tsukamoto, and Sachiko Matsushita
The goal of the supramolecules and self-assembly group is to develop advanced technologies on
nanomaterials and nanostructures and to supply these technologies to the application-oriented groups,
i.e., the information, energy, and medical groups, thus strongly promoting networking among these
groups on diverse fields.
!"#$ N.%&'()*+,
-. 21 /012
345673489:;< 1/7
!"#$%!"&'()*!
=>?,! @ABC,! DEFG,! HIJK,! LMNO,! P"QRSTUVWSXYZ
+,-.!
/0 +,12!
3456[\]^S_`abcS_de,fg+hicS_@abjkcS_lmabnopocS_qr
stu56cS_34vowxcS_y9xz{|g'}~mcS_Ä(ÅÇ}~mcS_Ébzg,cS
_ÑÖÜáàabcâäãå\]^Sç$á.SéèêëçS34ÅÇíìS'îïñ'(ó;Sò
ôöõéôúùûü†56á.ùSÅÇ°¢ù䣧•†¶ß®©ô3456™û´¨^SÅÇ≠ÆS
5Ø∞±≤≥\Éb¥$µ∂ûü†n8∑Å∏S∞π\∫ªm\ºΩ^æ7Éb5Øä≠ø•†¶ß
ô3456[\æ7Éb¿á¡¬ô√$ƒ≠øä≈∆«»\]^S"%&ô…
ÀÃ\]^ÕŒ•†S
œ1S–—∑{oS“”û‘’•†÷◊ôSÿŸ⁄¤S∞±ùSµ∂S‹›fiflo‹‡xù䣧•
†¶·©ûS‚„de,fg+⁄¤S@‰`Â~⁄¤SæÊ;ÁËÈSÍÈÎÏÌÓÔ⁄¤S34
óxÒoÚfl:ºÛS•Ùû@¨ıˆ˜∫¯†õéô⁄¤S89:;£§û˘˙^S‚]¨√$£Q
û«˚¸˝‚ƒº˛ˇ‹oïä!.•†¶!
30 +,45!
!"#$6! "#b$%&Ô'æ()$%ûü†@‰7*+Ê;,Ùô-.hiÅÇ≠Æä≤/]S
01ºhiÅÇô2ç34í5∫#67Ø3867Øû9˙†:;ä≠ø]S<–—∑{o<=ô@
>0?¤#@⁄¤äAB\]÷⁄¤ô@ÿŸçô÷◊ôÅÇCDôEFäø©Gû•†¶ ! H`Â~
m∫ı´GΩ÷SIJKLM5ÑÖLNO‹'f+p:z [qrstu56û´¨^SB6ºà4P
¤QüRàhiP¤ä°.]SsÈST3#bzo'ûüΩ^ üU@¨`Â~í5‰0äVE]S `
Â~§WÿÅä≠ø•†¶ßô56™û´¨^56ÅÇS#bÅÇSÿŸô4Xä ≠ø•†¶·©ûS
<œ1<=ôàªæb§lÓY89:;Zô[’ô÷◊ô«\8opä]†¶
^ÑÖËç534
_bûQ`†abæûcd·®÷efl.7gh2çäiΩ÷ËÈô≠jkl7mánjWåäæ$
ƒúùûüΩ^≠ø]SæCDËÈÏÌ7Ô89:;䣧•†¶
!"&'()6! "‚]¨34ÅÇ°¢ù䣧]S89:;°¢ZôJ£äQߺo¶34óx
ÒoÚfl:°¢ô«\˛ˇ\]^Svowx34pfioq334(gzä-r3smƒûj)•†˛
ˇäts•†¶Huvº34ÅÇw.˛ˇ\]^‘’·®†'îïñû´¨^S aæ,nxîdyù
ûü†'îïñôz{ÅÇô|}~ÉÄçä≤W]S'îïñl.7CDùäts•†¶^8ç'
îïñûQ`†Ébæ$Wåä≤Å]<Ébµ∂7∞π<=\Ç¥]^SÉbæ$ôÉ≠ÑÖÃä≠
ø•†¶ÜÄ(ÅÇ}~mä’¨÷}~má÷à`Â~}~mÉbzg,äꘈâä THz ãæ'
îïñådÉbçg,89:;䣧]S<œ1<=ôÉbœ189:;û[’•†¶éèÜêæ˛
ˇSàªæbY˛ˇäë´<œ1<=\ëÇ¥]S&íô3489:;Ù¯†lmabnopo∫
ªìîä`ûïñ•†ÿÅäªab34∞±˛ˇÙ≠ø•†¶
70 +,89:;<=>?@AB
! =>ô.óòvowxºÛôy9xz{|g'}~mä34pfioq334(gzÅÇç]&ôa
ƒºöõ5zo'úàÑÖùûäü†°†ß\ûüU&‚„ºóxÒo3sm$¢ä°.]89:;
畆˛ˇôtsäVE]^¨†£ÑÖäùû·°÷vowx34pfioq䧕¶'(oqß0®
ô©F™´ûÜá]÷34¡¬ô86óxÒo°.3&ªãôFu¨È{û≠:ÆØxx·®÷vo
wx34d∞:9oZ±3≤≥äöõ5\]^zo']÷Üá¶34,îx);pûüUæóxÒo
3¥UôóxÒoä°.•†˛ˇäYµ]^¨†£∂/0àFu¨Èãôvowx34d∞:9o≠
:ÆØxxûQ¨^≤≥ôöõ5zo'ûüΩ^l.∫∑Œ·®†∏ó∫¯†ß\äı]÷£á÷
floπæô∫}ª'ûüΩ^&vowx34pfioq3(gzôl.êº\.ΩôìîäCDÙæ†
ß\∫øø]÷£vowx34pfioqûùû·®†ÑÖô+K\]^&nØq8x¿bû¡3fg
¬∑\¨Ω÷>8Ø56ëùûÙæ†ß\ä√]÷£ß®©ô>8ØÑÖùûvowx34pfioq
äƒb{¥ß0®ô'(oq\]^’¨†ß\ûüU&34¡¬û≈`†>8Ø3∆8Ø 7«8Ø0
!"#$ N.%&'()*+,
-. 21 /012
345673489:;< 2/7
=>?@ABCDEFGHIJKLMNOPQRKSTDUVW(TiO2)?XYZ[\]^_`Fab
cKLMdefghXTDiNjklm5?@nBopqrstFucLMNvwRxhKSLRd
yWVW(La)Fz{'cKLMdef|}X?abdef~@nÄFucLMNÅÇQRÉNÑLa
?ÖÜ{z{'defá=>DàxàâhÑäãåI]çé9è+?.êBëíD]ì|îIïñÉS
óLI'yòôöõúè;ù{ûü†åFrhx°¢s£§•¶ßd TiO2:La F.íàÉSLRd®
©™´X? Xe yW'(AM1.5¨100mW)F≠ÆàÉMJ?~ØÅj∞FGHàÑLa N±≤≥¥d]~
Ø?Åj]µLws∂ñÉNÑLa ?≤≥∞N 70at∑Mh∏π∫dªh≤≥∞dºhx 20 at%≤≥¥
2
? 10 Ωæ0?~ØÅj 10 µl/h7cm Fø¿àÉSâÉó?¥ pH ¡¬#àxºfÑOH •?√ƒ¡
¿≈wRÉS!
! ª∆?.\«»…… /dÀÃØÕŒàÉ œ–—“”‘’ N÷ »◊ÿ ?Ÿ⁄¤‹›fi0 !fl F‡·LMNÅÇQ
Rx‚ãÑ“” ?„‰ÂÊÁË>F¡·Ÿ⁄¤ÈN‰ÍdÇÎQRxJxºfÑÏÌI]ÓÔŸ⁄¤È
MàxTD5ªfiŸ⁄¤ÈdÒÚcK56ÛFÙ.àxhKSª∆]ÑL?e∏s56ÛdºhxÑ
œ–—“”‘’ Mıˆ?çéÙ˜F‡· œ–¯˘˙—“”˚ ºe¸˝˛ˇ¯˘"!"“"“”‘’!˝!#œ–$!%&"d'(àÉS»……◊ /d
œ–—“”˚ ? !fl ]÷ )!ÿ IïKM12QRÉNÑó?*?%&I]Ñœ–—“”˚ +,? !fl d … ∂w -ÿ æ0
M.w·JN/wRxhÉSóLIÑó?01F¢w∂dcKÉ≈dÑ234560d7¡#Js8
9F:;KM<;wRK œ– ?=>àÉ?@Fq.àÑó?[\d·hxABÉSó?ç\ÑLRâ
Id12QRxhK !fl!?.w·J]Ñ?@?πD$∞CDdeK¡?IïKLMNE∂ñÉSâÉÑ
˝˛ˇ“"“”‘’ I]!˛ˇ“ FN œ–— FMıkÙ˜FMfÑ˛ˇ ?ˆGFHIJÂØ ! IÕŒcKM “”˚ FdK
>Nz{'QRxŸ⁄¤dsKM<;wRxhKSª∆?qLàÉ˝˛ˇ…M◊œ–…M)“"“”‘’ ? !fl ] »◊ÿ Iï
fÑäã12QRxhKNdOBxPQR∂ñÉNÑŸ⁄¤ÄrdSàxTUsßGVWCX?YZ
F[ñÉSó?ç\Ñ !fl dº\KßGVWCX?fi0]^˝#$fl»_#!"]˘¯M)`_ÿ IïfÑ…ÿ dº\Kß
G V W CX]÷ »◊` M h ∏ π ∫ d ª h _ aNFbÉSQwdÑ
˝˛ˇ¯˘"%&"“"“”‘’ d càx]Ñ
˝˛ˇ…M◊%&…M)“"“”‘’!N÷ d…ÿ IŸ⁄¤FucLMFÇÎàÉS"56?Ÿ⁄¤]âef?gè{'∂w
]12QRxºwhÑij?ç\IïKS!
kl?.\«mnCDıopWFÄràÉ.íå?qÅ r:sWÜ{t5u;,v'wÕstFr
hÉxyv'st¨z≈xÁåN{HQRK `|“” Ôëí?j.stdÄrNOPQRKCDıo'
yòôpWd·hxwÕqźe¸ó?}DYZF~≈ÉSL?å]Ñ'yòôKÄMóRdef
ŵQRK+Ç({ùW ÉiIÑÑKÖÜef≥á7ÆÎQRKLMF}àMàÑ'yòôFâäd
Ÿãád≥ácKLMN|îIïfÑ'yòôj.GMÄåF@çcKLMIÑ•éè?êëí?
RìBefî6s'yòôúyï{V?ñóN|îMsKSò/0]Ñijd~Øaôöõ `|úˇ“”ùû
?ªá.í?üL†°d}DàÉCDıo'yòôpW?qÅF¢;ÑpW?£‹§•d·hx7¶
DF~≈ÉSâÉÑßß.íåd·hxÑ®3©7˚™–’´|¨û|≠Æ” ØM?∞I±≤D?≥¥FqµàÉS
∂n±i^∑'yò∏:zöÈFÄràÉπ∫ê?qÅ rCDıopWÄrdeKªjºΩ?ˆ·M
àxÑıwÕIj.7ÆÎQRKCD'yò∏:zæ #;À*(ôÃ+ø?¿¡7öÈ¥dº\KC
¬√çö≥êFƒràÉπ∫êX≈?qÅF~≈ÉSò/0]xy^_@X∆?¤«F¢;Ñ »…» Ö
Üdº\K@X
GMÑ}dπ∫êÜ?ªÀ0D?É≈?£‹§•?7¶DF[ñÉSæÃÕŒœ•
–—Γ¨»……” / - ‘’CDıo'yòôpWdeK÷◊zÿ^_X≈Ÿø⁄n¤‹CXådeK±
Kz'yòô≈?qÅr‹kÉ‹k›≈^∑FlcK'yò∏:zFH∫fidj.7fl‡|îs'y
òôj.åMàxѤ‹CXæ !ù“øådeK'yòôÄåFqÅàÑ}DYZF~≈ÉSL?
å]Ñ'yòôd‡YcKKzsàdH∫fid'yòôFj.IJKLMN}àIÑâÉ‹kÉ‹k
›≈^∑FlcKLM∂wÑ'yòôfi0Fß·Q‚KLMdeK „…» X≈stè?ÄrNOPQR
xhKSò/0Ñ!ù“ 5W‰3ÂdC¬¤ÊFÁ.cKLMdeK'yòô?j.[E?ËßF†Ï
àÑÏÌÑ%…ÈÍÎ ∂w?}ÏÌÓ?ÔF~≈xhKæÒ#7l%&ÚM?Ûı%&øS!
Ùı?.\«|"!£§•¶ß? Ψ_ù¨ YZFrhxÑ®{ˆW0@d˜V4{èFrhxÑ D$¬
¯.ê˝Î»˘"ådx ˛˙%` .êF[ñÉS}H?®:y4‰˚F¸˝.êQ‚KÉ≈dÑ+˛K>ù{
û{F.êÂd≠ÆàÉS!–´–û ˇ!;"+,èefÑ}d ……û´Ñ¯)……û´ ? “„œ ≠ÆN[\fiIï
ñÉS≠ÆàshXöÑõ#Ñ$¤ÈÑ%&? ˛˙%` N'Ìàx.êàѯ( )J?®:yè*+?|
îDFu,àxhÉS ……û´˘“„œ I]Ñ˝¯)$…"$!˝¯…$◊"$!˝”$-"$!˝¯¯$)"$!˝¯…$("? ( )Jѯ)……û´˘
!"#$ N.%&'()*+,
-. 21 /012
345673489:;< 3/7
=>? @ABCDEFGHF!CDGFIHF!CJFKHL M NO@BPQRSTUVW6XYZ [\]^ _.`abc=>? d
eLf:ghijklLmnWXoPpqrstbcuuH!vwxCyz;7{|:}wxHX;~Ä
ab [uÅÇÉ[u ÑÖXBÜáà,âä}Xãåb çIG éèÜêàBëía DììÉî Lï0@8jñ}ó.
òabcôöõúùBÑÖûürvwxûüX†°¢°B£§•¶Bߧ•¶aBçIG p®.`Xk
labcÑÖC£§WHBvwxCߧWHL©™B`´¨ DGG!ìì!L≠Æ çIG _8jñ}óØ∞à∞
±X†≤≥R.`abc¥µà∂´å çIG ∑∏_vwxπà∫.`abcªØBÑÖCߧWHBvw
xC£§WHL©™BÑÖûüπ@ çIG LºΩæ_#øà¿¡ab_Bvwxπ@AB∑∏r≠ÆL çIG
_ºΩaB]?¬çIG LªZ_vwx√Xƒ≈abcûü•¶abÑÖà8jñ}óP∆«»@B¥µ
à…
à≠Æ çIG p®Xyz;7{|:}wx√àƒ≈´À∆Ãr_@±bc! uuuH!çÕÇÅM AwŒœ
Œ–qXoP56@ô—BçÕ ;ñ}“”Xw‘à’tRkl@±∆c÷◊abÿœWvŸL;ñ}“
”XB‘ü@LœŒV⁄¤‹›fiãXflaRBw‘à’tRklP∆bùàBçÕÇÅM Läñć·‚
âòXfi„abc‰ÂÊ ÁËBûüÈÍBÂÎ>>Ê Ïõö;i'¬ig;ÌÓXûüàYtbÔp®
çÕÇÅM ò_BÕ¬FÒ¬FÚ¬üπÛÙı:ˆÑÖπ@äñć·‚â.`aRå∆Ãr_˜õtbc! !
u¯H!~â;|z˘z˙÷C˚?ÊH¸˝XãåR ?Ò=˛ÅMÉçÒ=˛ÅM ˇ!∏Xfi„abcfi„abˇ!∏A
çÒ=˛ÅMCç=ÅHX Ku"u#îB?Ò=˛ÅMC?=ÅHX K$"u#î ⁄›à.òaB†°X DE Á%—&abCCç=ÅHKC?=ÅHKHDE
@ô∆cÂÎ>>Ê ÏB‰ÂÊ ÁËB'!∏(ñ}óà’—BÇ )*-+WXoPp®WL,åˇ!∏ÌÓ
_.`abÃrX-.abc[Õ^uÅMC[^ÅHCDGMH/0L'!∏(ñ}ó’—BòLü1!∏√2_
ÑÖL3rª4aü1;,|;X5ús_ö.`aRå∆Ãr_˜õtbcÛig:,ñz+∫ÈÍ
´°,6sˇ!∏ÌÓ_7.´°bÃr_˜õtbcªØB [^ÅCDDMH/0L'!∏(ñ}ó’—B
ç=Å8DGG9Bç=Å8GDG9!ÉÉ![^Å8DDG9L Ç NOL“∞:;_<=aB#>u" _.`aRå∆Ãr_˜õtbc
ç=Å L #>u" A E ◊.ò?õö.`a@ABCXDE çÒ=˛ÅÇFG _HI@ô∆ÃrABç=Å Ô◊òL.ò
pq’—˜õtRå∆cJbBCGGÇHKÕÒLL ñz+LS3øA GFGKMr¥µàp®WL’åò_7.´
°Rå∆Ãr_˜õtbc!
NOL.qPÔªQ∏BÔªw∏3489:;X‡zRz{àBSTUfiVÔªQ∏WBæ∏Qfl
XXYZP∆[\QT]^Á^BSTUÙ_,`+p®à’∆aAb5VcdweB Ç"ì f∏(z
ÄzLwxgfiB^Îh iÔªQ∏jΩkLlmnXopP∆c ðömnLBSTUÙ_,`+p
®Aq¶$rstu∏vwrLxy%&B Ç"ì f∏(zÄzLwxgfiA ¶z$r#{|vwrLx
y%&@ô∆cDF!Ù_,`+p®} ç~[˛É"[!æ∏{,LÔªQ∏WB·hÄ}[\T]^Á^B
aAb5VcdweÅÇ ^Îh iÔªQ∏jΩkãÙ_,`+p®P[ÅÉ ÑÖπ@ ^u XãåR]`
IMG"ì ãÙ_,`+p®~Äz}Lfi.à.ÑabcðX@Ö´À ç~[˛É"[!æ∏{,XÜá
ab?BàT@]` IMG"ì âäLÙ_,âãåç};XéèaBÙ_,`+p®Lê6Xëíabc
w∏ìîïXãåb DGG"ì ñ[\ózòôC34i+4()zHX-öaBEGG"ì øLˆâã`õúX
ãåbi;,ã[\T]^L~Äz}Xù.´ÀbcÃL [\ózAû#$üû%&†:à°P∆¢
£Xfi.P∆ѧrs∆cÇF!f∏(zÄzLwxgfiP•g;ÑÖπà GGìì L34¶‚' ß$ w
xi;,¢£Lfi.Bê®f∏X®ãabéèXù©c!DGG™Îh iéè´L̨c!
≈"L.qP≠ÆüõØ∞L±Ó≤LbùB≥¥àµa∂Säåâ¶z∑¤–∏XYZπU@Ö5
V∫£weA∏X IGGªºt@fiU´À∆ÃràΩæP∆cÃLbùà 34;øzâ@L¿™_YZ
@±∆Üê¡X™.Ø¡à¬ã abc"/0A√∞56’—∫ƒW_µ°b≈£L™.à.Ñabc
∆U« raRASÿ0:}ÄzÄå+Äz≈£@ô∆
?ÒD¬!¬"çÒ![Õ"çÕÅM B»6s§A:…}TwU
KÒç˛D¬! !ÅM¬#BSwŒÀT0XYZ ?Ò=˛D¬!]u!ÅM L™.à.Ñabc)/0AðöX®ãab∫£w
eLfi„X¢Ã∆c!
Õ{L.qPŒ/0AðJ@à@Öçhõú ç˛ÅÇ rðXœz;rab@A–—56raR“ö
°Rå∆ ç˛ÅǬÕÅÇ πÜUX”‘àaRBðöL56LπUBòB34∑∏’àZåRBQ$V
W6r÷◊|z˘zQàÿŸ´°b@A⁄Ω7– —Z‘ÅÇÙ_,¤‹hzZ‘’LY›V%&Xfi
åflðö56LÙ_,âãåç};ƒWX‡öõàabcðà’tRπ·%&‚V„ÅljL
ÂLѧπù_´°bÊÃL%&pqLªrAÁËLÈqraRÍûabÊJbflÎÏL`ÌQWS
Ó0ÔaÍQ56XÒPQ∂ ]uÅflÕÅÇfl]uŬÕÅÇ ´πÜULÙ_,âãåç};ƒWr÷◊|
z˘zQÿŸZ‘X%&aflðö56LÙ_,âãåç};LÑ"ƒWX‡öõàab F!ðà
!"#$ N.%&'()*+,
-. 21 /012
345673489:;< 4/7
=>?@A%&BCDEFGHIHJKLMNOPQRSH%&.TUVWXYZ[H\]^_?`
a_Qb!
! cdH.Te#fgU`hOiQjkjlm,nopqr6stuvgwxyz{_|}9~Ä
;@UÅÇOi|É5ÑÖÜnáàâopäãåvçé?Zèê:ë~)Öví>QìZèêÑî
ïñHóòví>QôHöpõ0úùûü†X|qr6t°U¢£§•†v¶_Qìhß|®©H•
†U™´iQp$¨H≠ÆØví>?é§ì!
! ∞@H=±U®©H%&.TX≤/0H%&BCv≥¥µ.∂§∑Tv∏?é§ìπ/0xyXS
PyH%&.Tv∫ª™´i?|ºΩ£æçú89:;ØUø¿Q%&v¡¬∂§ì!
!"!#$%&'($)*+!
√ƒ
≈∆N«Ø»…
Övæç_Q.ÀÃvÕ`_|}3Œ7œ–—“”‘’÷‘◊ÿŸ ⁄^H¤ñ‹›Ø
Hfifl‡ñ·§ì!
‚ƒ
≈∆N„‰ÂÊ'ÄÜÁ:Ë™wvæç_QÈkjpÍHÕ`víé|ÎÏÌÓÔÒ{
ÚY‚ÛÛÙ / ı ˆ˜«Ø»…'Äܯ
ˇƒ
ÖU=§˘n˙˚¸˝pͲv{Ú_Qì!
!"#êN ‚ÛÛÙ /$%$&/π#&Ì'(;)~`a*v˜mÑ+l,'Äܯ)*+,
H`-^9:.ëÖ/ÑÖ0™1Hæç˛U2é?3*_Qì !
,"!-./0!
4
!5U=6789†N:é{OPQ;<u=>?@A=.Bl'C+):Ë ¨DπEFG
56UHé?YI6£JKLM2=FJ∑NLM xyOPNQï;Ñ~RSTÃU=6UÀvV.∂
§ìSH^WY9ï+=6XUÀHYN EZ[\ú%êË~'N]^^£§QMY=6!é789_
?`0vBa ∂ROyUY
bcúde1<fHJVp
ê`-gfi{89:;1H
æçHQMHJK8~)v
∏§R!
G
≈∆NÕ`_Q
«Ø'ÄܯU=6dhi
ïj~ <fHkl^m‰_
?nZop™@vUÀØ_Y
OPN.À_Q qrpsâ
nnZ`-tuÀ^∫ª™
´i?89:;Øvv§ R!
wQ|xˆNÕ`_Qpy
z{Zop7|}~Mú
"NÕ`_Q Cr ¨{Ø53
4ãÄêv:Ö)~Åi+
)~^_?ÇM%É89:
;1HæçvBa∂ì !
! D! OPNÕ`_Q@A
ÏÑ}~ÖÖ34Ü,~/úáàNÕ`_Q}:Äâäãåçé9wg9w}~ÖÖ34Ü,~/v
èÖê~ú%ëíT,ÄÖ);)£ì189:;Ø∂§ìcdH9:.Á~)~^Hî™vïñ∂§ì !
!
!
!
!
!
!
!
!"#$ N.%&'()*+,
-. 21 /012
345673489:;< 5/7
Nanomaterials and Nonodevices Group
Kaoru Suzuki, Yoshiki Takano, Tomohiko Asai, Nobuyuki Iwata, Hideomi Hashiba,
Takuya Hashimoto, Shigeru Chaen and Shosuke Mochizuki
1. Summary
This group aims at fabrication of nanomaterials and nanodevices for high functional applications such as
electric circuits, biosensor, superconductors, EUV light source, field effect transistor, quantum dot terahertz
single photon detector, solid oxide fuel cells, new photo-memory, and bio-nanomotor by using fundamental
techniques of nano-process, fabrication of nano-materials, analysis of nano-level structure and analysis by
nano-technique.
2. Achievement
Prof. K. Suzuki :
Carbon nanotubes (CNTs) and nanofibers (CNFs) have attracted great interest due to their
novel electrical, optical, and mechanical properties.
These materials are promising candidates for a large
variety of nanodevices, such as electric circuits, biosensors, and optical components by wide band gap,
Eg(carbon)>5.6 eV,
semiconductor effect.
In our research, we discovered CNF wiring between one pair of
needle-shaped carbons (NSCs) border on carbon nanorods (CNRs), and metal included CNTs.
CNF-wired
NSCs and metal included CNTs are now sometimes grown on a silicon substrate with metal catalyst through
thermal decomposition in ethanol at temperatures from 973 K to 1273 K by joule-heat with a DC power supply.
As such, they can easily be used for the doping of impurities such as phosphorus of the Group 15 and sulfur of
Group 16 by addition in ethanol.
However, one of the problems in the development of practical applications is
controlling the position of CNFs on the substrate.
In order to irradiate the Ar-ion laser and contain the sulfur in
ethanol, we realized to encourage and position restrict the position growth of CNFs and NSCs.
Metal
encapsulated carbon nano-tube has been synthesized at a meshes for transmission electron microscopy or foils of
metal by thermal decomposition method in ethanol.
We approached synthesis of carbon nano-tube include in
several types of metal, e.g. iron, nickel, and molybdenum.
When the silicon substrate was heated up about
1150 – 1300 K, the metal encapsulated carbon nano-tube were synthesized on mesh of molybdenum, foil of iron,
and foil of nickel. The hydrogen yield on water decomposition with the lanthanum doped titanium dioxide thin
films on quartz substrate that apply the photo catalytic reaction have been studied for fuel cell.
were number of problems to the improvement.
However, there
Therefore, we improved highly efficient hydrogen evolution
under controlled condition of plasma assisted pulsed laser deposition method with non-sintered heavily La doped
TiO2 target.
It was measured to yield about 10 µl/h7cm2 hydrogen gas form TiO:La(70 at%) film under
visible light (Xe lamp, AM1.5, 100 mW/cm2) irradiation.
Prof. Y. Takano: Since the discovery of high Tc superconductivity in (LaO1-xFx)FeAs in 2008, many
researches on the iron-based superconductors have been carried out. Before this second superconductivity fever,
it was reported that (LaO)FeP became superconducting at about 4 K. However, several research groups reported
different Tc in (LaO)FeP. Thus, the electrical properties of LaOFeP is still controversial. Takano has considered
that the stoichiometry of the sample is important to determine the electrical properties. Then, he has prepared
single phase samples of La1-xOFeP using the special heat treatment and measured their structural, electrical and
magnetic properties. These results indicated that the off-stoichiometry in (LaO)FeP is the origin of the scattering
of Tc. Takano has succeeded to prepare almost single phase samples of (Sr1-xRxF)FeAs (R=La, Nd). The
superconducting transition temperature Tc of (Sr0.6La0.4F)FeAs is 26.1 K. The value of the temperature derivative
of the upper critical magnetic field (dHc2/dT) at Tc is -1.4 T/K and the estimated value of Hc2 at 0 K becomes 26
T. Takano has firstly succeeded to prepare superconducting (Sr1-xNdxF)FeAs. The superconducting transition
temperature Tc of (Sr0.6La0.4F)FeAs are about 30 K. The evaluation of its superconducting properties is under
progress.
F.T. Lec. T. Asai : 1. Development of high-speed film deposition technique by magnetized coaxial plasma
gun; MCPG has been applied for new metallic thin film deposition technique using a magnetized coaxial plasma
gun (MCPG). This method enables application of high-melting-point metals (e.g., Ti, Zr …) which had been a
limited method of ion beam assisted deposition etc. The optimized design of MCPG for film deposition has been
!"#$ N.%&'()*+,
-. 21 /012
345673489:;< 6/7
developed and initial experiments have been performed in this fiscal year. Commercialization of the developed
technique has also been analyzed with Plasmionique Inc., Canada. 2. Repetitive operation and merging of
Spheromak for VUV light source; An ionized plasmoid generated by MCPG tends to be relaxed into force-free
equilibrium called “spheromak” in the conductive metallic chamber. Counter injection of spheromaks is
followed by magnetic reconnection event which heats the plasma itself by dissipation of magnetic energy into
plasma energy. This new technique for light source has been tested by vacuum UV spectroscopy and possibility
for VUV light source has been confirmed. (Patent Pending) 3. Electrodeless plasma source using rotating
magnetic field; Steadily operated plasma source using rotating magnetic field (RMF) technique has been studied
aiming to the applications of light source and reaction chamber. High efficiency technology by the application of
magnetic circuit has been developed and patent application has been prepared. (Collaboration with Dr. M.
Inomoto, University of Tokyo)
F.T. Lec. N. Iwata is studying : i) The SWNTs were grown by alcohol chemical vapor deposition (ACCVD)
method on quartz substrate with Co/Mo catalysts. In order to grow SWNTs with specific chirality, free electron
laser (FEL) was irradiated during growth. From the results of Raman spectra, the irradiation of 800nm and
1400 nm FEL was effective. Possible chiral indices, that included both of metallic and semiconducting SWNTs
growth, of approximately 15 without FEL irradiation was reduced to 5, which was semiconducting (14,0), (10,6),
(9,7), (11,4), (10,5) indices in the case of 800 nm-FEL, and to 3, which was also semiconducting (14,0), (10,6),
(9,7) indices in the case of 1400 nm-FEL. Those results revealed that the FEL irradiation was effective method
to control chirality of SWNTs. ii) Gold (source and drain electrodes) sputtered SiO2/Si substrate was dipped
with a speed of 1mm/s from C60 saturated toluene solution. In advance of the dipping, the surface of the
substrate and Au electrodes was treated into hydrophilic or hydrophobic. Needle like C60 crystal grew on
substrate along the dipping direction, and C60 particle grew on Au electrode with the treatment of hydrophilic
substrate and hydrophobic Au electrode. In the case of hydrophobic substrate and hydrophilic Au, needle like
C60 crystal bridged the gap between Au electrodes. A combination of surface treatment and simple dipping
technique achieve the growth of the bridged needle like C60 crystal between Au electrodes. iii) A
ferromagnetic domain can be controlled by a spin direction of Cr ion at the interface in ferromagnetic metal /
Cr2O3 multilayer. Considering a magnetoelectric effect of Cr2O3, the ferromagnetic domain is controllable by
a electric field applied to the Cr2O3. Single crystal Cr2O3 thin film is required for the ferromagnetic domain
controllability. From the results of XRD, SPM, RHEED, Cr2O3 thin films epitaxialy grew on r-, a-, c-cut
sapphire substrate. iv) LaFeO3(LFO)/CaFeO3(CFO) superlattice was grown by pulsed laser deposition (PLD)
method. The superlattice was alternate growth of 7 units of CFO and LFO, and that was repeated for 14 times.
From the results of RHEED, XRD, reciprocal space mapping (RSM), superlattice was grown with good quality
and two-dimensional smooth surface. The RSM around STO(103) showed that in-plane lattice of the
superlattice was compressed to fit to that of substrate. The appearance of satellite peaks indicated that the
superlattice was also formed. From the results of RSM around STO(113), CFO grew with twin with the
relationship of CFO[100], CFO[010] // STO[110]. The twin started to grow after 4 layer growth, which was
confirmed by RHEED and XRD in the CFO monolayer. The full width at half maximum of 0.07º at (002)
Bragg reflection of superlattice revealed a good quality growth of the film.
Assis. H. Hashiba: Directed Single Photon Emission from CdSe Quantum Dots by TiO2 Photonic Crystals
and Si Waveguides is studying.
We successfully developed concrete fabrication technique of 150 nm wide
metal wires with e-beam lithography. This enables us to fabricate 400 nm-wide lines for Si waveguides. The fine
line proves competitiveness of our fabrication technique against many other competitors.
with square air gaps on a
PCs of Ti thin layer
“silicone on an insulator” (SOI) substrate are successfully fabricated. The PC was
then oxidized and spun with CdSe Quantum Dots in toluene. Photoluminescence of the sample does not show
unidirectional band-gap around 630 nm of wavelength of light in plane direction of the PC.
Prof. T. Hashimoto : For development of new solid oxide fuel cells (SOFC) operated below 600 °C,
development of new materials is investigated in this study. In order to develop new materials, preparation
method employing liquid phase mixing, which can be regarded as nano-scale mixing, has been examined. At
present, promising materials such as La1-x-yCaxSryCrO3 with mechanical high strength, uniform BaCe1-xYxO3-!
and high electrical conducting LaFe1-xNixO3 have been discovered.
!"#$ N.%&'()*+,
-. 21 /012
345673489:;< 7/7
Prof. S. Mochizuki : The photoluminescence properties of different pristine CeO2 specimens (bulk crystal,
film and nanocrystals) have been firstly studied at different temperatures between 7 K and room temperature.
The photo-induced luminescence spectral change has been observed at room temperature for the first time. The
phenomenon observed in a vacuum is explained as a photo-induced associative detachment of O2 on the
specimen surface, while that observed in O2 gas is explained as a photo-induced dissociative adsorption of O2 on
the specimen surface. The photoreduction is accompanied both by a valence number change of cerium ions
(Ce4+!Ce3+) and by oxygen defect formation. Such reversible photo-induced phenomena of CeO2 can be
applied to light control of the oxygen-storage and oxygen-release processes at metal oxide surfaces. The
photoluminescence and photo-induced effect have been also investigated for oxygen storage material (x)CeO2(1x)ZrO2. The observed photoluminescence properties and ultra-violet-laser-light-induced spectral change are
explained in terms of both the oxygen defects arising from the deviation from stoichiometry and photo-induced
oxygen defects. The photoluminescence properties of pristine NiO and pristine ZrO2 have been clarified in
detail for bulk, ceramics and nanocrystal specimens.
Prof. S. Chaen : We have constructed expression vectors for 4 kinds of long-wavelength shifted fluorescent
proteins. In vitro single molecule imaging of these proteins fixed on a cover glass has been conducted. Each
protein exhibits distinctive characteristics upon fluorescence intensity and photo-breaching resistant properties.
!"#$ N.%&'()*+,
-. 21 /012
3456789: 1/2
!"#$%&'(!
;<=, #>?@A, BCDE, FGHI, JKLM
3456789:NO, PQRSTUTVWXYZ[3456\]^#_`89abcd
efghijT[klTme\n, (i) opqrs7#tuVPQRSvopqwx7yz{
|[}~ÄÅÄUTWXYZ[hiÇÉqR5Ñ$ÖsÜ[, áàq56âäz[ãåm
eçéhijT, (ii) è@ê53489ëízì{îÄzïñóòôÄóöõúV#_`
89[Zde, UTPQRSVWXYZVùûüji†°Öq¢£[fghijT, §me,
(iii) •¶ßzÄ'TV®©a]™e, 34´1¨5ë34≠ÆVØ∞VPQä±≤{Vê5
Vb≥¥µ[∂∑jT[∏ÖTmedi. π∫ÖaO, #>ßzÄ'TJKßzÄ'OPQ
RSvªºhiΩæøNVïñwV¿i¡d[f¬m, BCßzÄ'O√ƒ≈∆0V34«
V»…z ÄãÀTïñÃÕ[©Œ, ;<ßzÄ'O#≈∆0«Vï4Rœ[g–—ahi.
§meFGßzÄ'O346Vb≥ê5[“nø”ijTa]n, 34ä±≤{Vb≥¥µ
[∂∑.
"/0V‘ßzÄ'V.ûO’øV≠nN÷i.
#>ßzÄ'
-◊ïñyz{vÿŸ⁄¤‹a›fimØfl‡a~de, ƒ·‚„'„{‰ÂÊ[Zde'
„ÁâõâÄËVÈÍf¬[∂™Ø. ÎÏÌÊO, 89Ó0VÔvÒÚNÛÆÙœVıd
ƒ·89vˆ˜N÷i. ƒ·fT¯˘fTV˙˚[∂dÛ¸˝v89Ó0V˛ˇN!"a@
# hijT[$%mØ& ' Ø , ( ı)*+,9œ˜v-∏u.edi
Cell Broadband
Engine(Cell/B.E.)T Graphics Processing Unit (GPU)[ZdeÛïñ/óòôÄóöõVı)
Ñ[01m, @2Öa3Zu.i CPU NV89a˙ŒeÛCell/B.E.[âÄ4õ,ÊaáZm
Øfl‡O5 150 6ÛGPU [ FDTD ÊaáZmØfl‡O5 10 6Vı)Ñ[•¢mØ. u–a,
78∫v9:[;hifl‡a(ıÓ0qïñ/f¬vˆ˜qâÄËf¬Ê[<=m , "ÌÊ
O89Ó0V>?vˆ˜N÷n, @AThiÓ0NBC[ÔNtijTvDu.Ø.
JKßzÄ'!
EFGaHrIï∫[J~KGIï∫ßÄLMõßV78Nl[OÄP»QƒR<ÊT
KGSTÊa]™ef¬m , ›fiwVUw, HrIï∫VIïV[‰ÑmØfl‡V›fiW†
œTXwƒ†œ—–, XwƒYZä±≤{ë{≤[ìõßä±≤{Vb≥†œ[\Ø.
BCßzÄ'
! ]^ê4a\µi»…z Ä_`ãÀ[a@Öa5fhijT[∏ÖTme, b@cd
efa\µisgFV»…z Ähi[_jhiOõ,V_ka~de , j.v.nl~4
mnÁo[fgmØ. pqZd–.etØrlï4stTOuqivQÄízstw[x›
hijTa]™e, wyzƒ[{|.ST}~.SaSm , §mejVQÄízstab
cÄ34ƒVŤ[∂∑jTa]™e, 2 ï4«V{ÇõsgN÷i 1 {ÉT 3 {ÉsgO,
§.Ñ., {|W0âÄË\]^}~W0âÄËaÖü[}~jTvDu.Ø. §me, 3 {
ÉsgNO}~wyzƒaW0âÄËÖüa]iÜ[}~jTa]™e , ï4Fá=àLõ
óâzV†u:[äµijTvNtiØ∞ , 1 {Ésg]nJãd»…z Ä[}~jTv
g–—Tq™Ø.
;<ßzÄ'
pqVåWzçL(ãÀV5689NOÛ‘ê4G[rlaé∑óõßzè≤, DMFT
vZd–.Ø. m—m, êëœVãdçL(ãÀNOÛê4GFVï4WzvR53a#t
ÄíìhiT>îu.i . §jNï/0O, +„{ñÄDMFT(ǃê4—–qi+„{ñÄ
[ DMFT a\µióòRK∫NlVô`Tmeé∑ÌÊ)[ZdeÛê4GFVï4Wz[
öõmØ89[∂™ØúùôVØ∞Ûû±ÄËüV†°+Ä(õá=¢[£n›.Øåù
‡ûòz,n§õ[ZdeçL(ãÀ[•mÛ'Ø;¶ß0+„{ñį˘êWÑÊ[Zd
eÛDMFT a\µióòRK∫Nl[fdØ&ƒ·89aOÛï/0Û"'()*+,V%
!"#$ N.%&'()*+,
-. 21 /012
3456789: 2/2
&;<=>?@ 2 ABCD4CPUE16 FGHI PC +JKLBMNO@P89QRST, UV
WXY(Z[I\4Z[]^O_`, abI5689<cdef@g4hiI\4VWjk
l]mn<opqrjsTS]tu@.
vwxyB'
\z{M34|1I}~]NÄpÅ]`, KÇÉÑrÖ?_OÜápàâätãåMç
éqrjèn]tp. qI{êIëÉLÉxyíÉ,Iìîïñ`, óò]^O_ôöI%
&jtef_õ@j, "ú]î3ätùsrOéûI`ü†?tSu@. vw`°¢qI£
§]•¶ß®, ìîïñI©™t´~ät´IZ.].¨?@. ≠@, ÆØî∞W±]≤≥
õ, óò]¥Tf_O@µ∂tìîïñIV∑WàM´s?@. ÆØî∞W±`346I≤
∏rtpmnt∞π<opj, ∫ª?tOãåIºΩæøî¿rO顬t£§I@√, ≠
ƒ"ú]sØtî≈∆`tef_OtO. ≠@, m«»IøîrW±?_,º… ät34ø
îÀÿrOémnt£§]^O_û, ôöI∑O]ÕŒÄpœ–jôöI%&—]“¶ó
ò]”Üf_õ@. qI£§I´‘I’÷r?_, ÆØî∞g5I◊fMÿ6Äprõ]3
4ätØŸrOé⁄¤M‹›fiflqrM‡·?@. ÄtÜ›, ‚qpØŸjkl]„eO“
ét‰VÂiIÊOÁË]øîÈMÍÀ?@{ê]`, ÆØî∞W±`sØ]◊f_û“O
rO霖<op. qIœ–]≤≥O_ÎÏyÌ]ÓO_ÔtåÈ}~M”éqr]“u
_, óò]^ÒpÆØî∞W±I}~`ØŸ 1 <‚qpÚÛ]Àîef_O@qrjsTS
rtu@.
:r?_IÙı
ˆ˜¯BI˘˙
! 3456789:<`˚/0, ¸˝ST%&—M˛ˇ?!"Iˆ˜¯BM˘˙?@.
#$—%&v! Q' () (#*#$+$%&,-(ÉY.G%&ˆÉLB)
§/
%¢0{J1É}2%°¢I3§
4!
%-. 21 / 7 5 1 !(6) 16 æ 40 }“¶
{7
%!"#$5+$˝ 89:;< 1 => 131 ?
#$—%@A! BC () (!"g4«%&˘DEZ FBGBHπÍIxyB')
§/
%JU0FBGB{KI∆$L
4!
%-. 21 / 11 5 16 !(5) 16 æ 40 }“¶
{7
%!"#$5+$˝ 89:;< 1 => CST MBy
NΩ%&^“O%&P›êÜQ
#R-ST%JU0\zô~VI˘D: S. Ohnuki, R. Ohsawa, and T. Yamasaki, “EM Scattering
from Rectangular Cylinders with Various Wedge Cavities and Bumps,” IEICE Trans. Electron. (in press).; S.
Ohnuki, T. Mochizuki, and T. Yamasaki, “Error Prediction of the Point Matching Method for EM scattering
from a Conducting Rectangular Cylinder,” IEEJ Trans., vol. 129, no. 10, 2009.
#R-Kw(|1:)%W„XYZ]^Òp'J[ÎÉÎBCIó\´~¯AGÉY¯I]
87^_: H22 ,%;`a; -. 21 /0]bc?@dUe%20 f (4/9, 4/14, 4/21, 4/28, 5/12,
5/19, 5/26, 6/2,6/13, 6/30, 7/23, 8/4, 8/28, 9/5, 9/29, 10/14, 11/10, 12/3, 12/16, 12/24)
#R-gv(|1:)%2h0ÍIIbù7ijklI^_: H22 ,%;`a
#R-m"(|1:)%2h0ÍIIbù: H22 ,%;`a
#R-#5(n}47opßq:)%¯A\rI\Ã}sI´~: H22 ,%;`a
Quantum Theory and Computation Group
Hiroshi Ishida, Shinichiro Ohnuki, Tokuei Sako, Kazuo Fujikawa and Tsuneki Yamasaki
Fly UP