Comments
Description
Transcript
Progress Reports of Groups
!"#$ N.%&'()*+, !"#$!/ Progress Reports of Groups 314 / Information Technology Group 567894 / Energy Technology Group :;4 / Medical Technology Group <=>?@ABC4 / Supramolecules and Self-Assembly Group DEFG?DEHIJK4 / Nanomaterials and Nanodevices Group L>MN?OP4 / Quantum Theory and Computation Group -. 21 /012 30 !"#$ N.%&'()*+, -. 21 /012 314 1/4 !"#! 56789:;<=>:?@AB:C"D:E"F, GHIJ KL%&MN! ! ! 314OP31QRSTUVWXYZ31[\]^_`abcVLde31fgh'O Pdei$`31QRSjklm&^]WXY`nodepqQR]r0s`tuL8vm 31[\fgh'OPwrx0ry[\]^_az]{|]}~%&`Äl:ÅÇMÉ `ÑÖcVL! ! ÜLá/0]MÉZ.à! âKäde31fgh'! ! ! ãåçéè!BBM92 depq'(,êgSëVdeíìî! !!!!!!BBM92 '(,êgïÑñóò{deíìîï.ôcV{|SP:denoòöõ ïú70ùû6] 2 öeü†°¢0`£{§•¶P§ß§®Lá©™´l{¨≠Æö denoòöeØõ]denoò∞0`±c 2 öeü†°¢0P:99ù(≤≥`Æö ©¥µ 0 0S∂∑)Të∏ 83ù(≤≥`Æö©¥µ 45 0S∂∑)Oπ∫{Lª]¨≠Æ ödenoòöeØSëV 10.5 km ºΩæø,ø¿¡¬h(DSF)√îу`Ñ≈l: ∆«»ø¿¡¬√î…ST®¶nöeØ]denoò∞0P ZÀÃÕsl§®ª Z`°ßŒZl{L! ãåçœè!rde–—öe“”‘’]™´! ÷◊ÿŸ⁄hZ¤‹›êhfifl‡fOw√·ÿ`‚„‰ÂªZOde–—]ÊÁ` t∫{L÷◊ÿŸ⁄hZ¤‹›êhfifl‡f`ËòÈò 19 Í:7 Í]ÎÍÏÌOÓ Ôl{L∆ 1550 nm ST®¶:ÒÚgÛhºÙıP 0.25 eV Oπˆ:öe“`ºÙ cV]S˜º§Yı`¯.l{Löe“º˘Œß∑óòVde–—P 82 %Oπˆ: #˙§de–—]ÊÁS.˚l{L !! ãåç¸è!ø˝,˛ˇ++!"#gTë∏æ!ê‡$%&'·(]ÓÔ! ! ! ! ! ! ! )*+},6O-.`k®¶∆/0123kø˝,˛ˇ+456#h‡]Ó.S.˚l{L ªò`7só8-.*9ø˝,˛ˇ+45`Ó.l: :;)<=>2)!de?ˇ,`@˘l{…: ABO∆/0123CD]ø˝,gŸÚE‡"`F∑l:ø˝,˛ˇ+45]GH`I Jl{L8v:◊e'KL`k®{ åM123!NO&PQRS`Tôl:ªò`k® U1123!˙]VgŸ˛WX`k®{fi",kO&·(]6#h‡`Y.ó8{L! !ãåç;è!gZ)WX[e] \å 'S]^l{ÆödenoòöeØ]_.! ! Rb [eS]^cVÆönoòöeØ`_.cVу`]™´`Ä|{Lab: ∆ 795 nm ]ÆönoòöeØ`_.cV{|ScdZ§V∆ 397.5 nm ]ehfh ö`_.cV{|S·(ghi‹¥º^ LiNbO3 (PPLN-WG) 45`k®{j 2 r k´_`t∫{L45B0` 180lSW∑scVªZOÅ#m 2 mW ]W∑ni` o{Lªò` Type II hiº^‹¥ KTiOPO4 (PPKTP) 45Sp›ó8:6⁄q,! ˇ+rvstSëVu®S¨≠l{Æö`noöeØ]_.`t∫{LÖv:wx m 120000 y]öe]´_`TzO{¶®VL ãåç<è!|}'⁄~‡·(Të∏ġ'⁄h]ÓÔ! ! |}'⁄~‡P◊ÅÇ É–àÑ$%"Öhg]◊eܬ¡"á]r–—4ৠÃ]{|:de31QRá]jkïiâóò¶®Vï:öeŒß|}'⁄~‡á ]st–—ïr®ªZÑäãï宪ZïdzóòVLá©:∆ 1550 nm k]| }'⁄~‡·(]ÓÔ`t∫{L'⁄~‡·(Pç]^éè",⁄¡' âêó 15 nm:˙ 5ú11 µm:∆ó 1.9:3.0:4.9 mmä` BCB ë!íhâ12.8 µmäO ‚„ªÀìÏÌOπVL˙ 8 µm ]'⁄~‡·(P:4à–— ~3 dB:√îäã ~2 dB / mm `¯.l{L âÜä31[\fgh'! N.!"#$ H21 %&_'%(.doc 2/4 ! )!*+,!"-#$./0123%"45&6'()785*+9,-! !"#$%&'()*+,-./01234!56789:;<=;>?@/1!"# $AB>CDEFGHIJ(KLMNOPQDRSTU/VWXV1#YZ![IJS\ ]^D_`PaNb.+DWGdFeCo c(defghijk>Zl^DmAn!"opq1 mrnstutvwx(y)ABSTU/VWTbFeCo zc({|}~VW XV1ÄÅts Radboud )$1ÇÉ4Ñ York )$Ö.(Üáàâäã>Cå1#YZEç é![èpjkêjëí(ìîn\].mïn\ñ>)*+~óMòôö1õ(úBS Physical Review Letters ù>0êû/VW ü ü †2°¢£ü :./;021<=23"46'9ѧ•¶ßÑ®u©•KL! EF™´Ñ#¨≠SÆØ>ѧ•¶ßÑ®u©•KLNO+∞ѱ≤≥.¥=n+µ∂S r∑VW∏π∫#$ABªº>CDΩæø¿º OPA S¡¬/18 √ƒ≈XP> 235 nm∆ 1600 nm (Ωæ«»P… Àà 100 fs (çÕŒEF™´Ñ#Sœ–NO./VWõö> —_¥=n+∞ѱ≤µ∂S 9 √Æ≈XP>r“1![f”5(‘t’÷’ß◊ÿKLM NOPQDRSTU/VWjŸ1GdFeCo ⁄->¤/’ß◊ÿΩæ 420nm >‹›Dfifl! ‡1‘t’#·Œ‚„5SÆØ./V‰ÂnKLSÊÁ/0“DW (2-c)ü ËÈÑÍ◊´(ûÎÏÌSÓ^DÔÒÚº±t’Û◊¶Ùı({ú ! 45>6789?:;.<@1A=BNano Dent Array: NDAC7>D?@AB67 ECDEBSelf-Assembled spherical small Silica Particles layer:SASPCFGH1IF96 7JKA=.LGHIMN O6789?<@1PQ#JRS.T7 UVW9?@K L45&.XYMN1EOZP;?1<M?@AB [<.XYQ\MN]R) SiO2 :;? Ar ^_SQ`M7 abcde?fg145T 14 nm 989?<@1A= NDA ?[\MNOËȈ≠SÓ^D±t’Û◊¶>˜1Uh_VQ`W.XYXYi. VjMN67ECDZW?[\4 Si A=f]?@ABMNECDZWDBSASPC? :;.<@1PQ#JRSA=[\#$P09HI ^[\?kl7m_Z` 18 nm 967ECDE?noIZWDap[\@1qr.\sM NObZW4.Ll tT7 c.m_Z` 14 nm 9uvw;AxdMN67ECDZW9efyghMtl1O ! B2-dCPQ#JRSA=1<.X1"-bZWQ\zc9i{ ! f|67:;JK?<@1PQ#JRS?A}rMt<l1qr.X1"-bZ WQ\zc]9~.LGAjHI?kÄNO SASP f][ÅMN FePt 67"-b ZWQOT7mkH[\4 Si A=f][ÅMNlm.no7m_ZWÇ`T 29.6 nm FG 14.8 nm ]pqM7ZWÉzcT 0.16 FG 0.74 T particles/inch2 ]rrMÑis MNO (2-e) tul21<|Ö ! vÜ9s[wxy|ÖvÜ9JK.XY{GÑyH1qr7áG.7vÜ9z{ |}9à?s[@1~W?EZJREÄQ.XYâMNO ZWOvÜ9äÅJK ?ÇÉ@1qr.XY7>ãZW?åV.s[M7FL74ÑZW9Öc?|ÖZ W9Öc9 65ç.Üpápàépè1qr?âMNOsât7>ãZW9à?s[ @1äãrMt7|Ö2./01tul28MåQP6r|ÖZWr9çéèê7 åQP69QO9ëí?ìîM7qê?ëGF.MNO ! ÜN7A}ïíWñó^òô(9{öõúùrû 2 g9ì5>HHIü?†°7 ¢îMt:;#Q•¶9ßñ2§R®?Q\àéH 4 gó©-9åQP69 ò™QO9,-rßñ2c9´¨?kÄNO ! ≠Oôbc9\9Æö! BnCíW'%`;R#! ! ! ! ! ! ! '%õú./01"=9ùû-?Ø∞@1íWü†õú9°¢£4.±à≤Hí ! WCVR≥R?§5@1N•9¥µäã9¶8?kÄNO\ )ß*+,pT72õú ®°∂./01∑∏òU©9>ã2WHπ™?<lt7∑∏òUJ∫;9íW´L N.!"#$ H21 %&_'%(.doc 3/4 )*+,!-./0123456789: ;<=>?@-ABCDEF"GHIJ*+ KLMN@O+P./5QB#$RS%&TUVJ7W)X@-A2Y/G!Z1 B"#@'$*[\]^_(2)`56[abT*3c2de%fUVJ7! ghi'%jklTb#! mSn1SojkG+,p!"#$%&'()*+,-(./0123(45670 89:;<=>?@ABC>DEFGHIJKLM(2-a)NO0PQRSTUVG>!"+ !"#$%&'()*+,-(4#WXF$Y>N*JKZJ0(2-b)N%&'(([\ FG]0)*(DEVG^(4+F,]JK(2-c), (2-d)NO0_-`12,-aIA(b cdePfgU67FG]0(2-e)NO89:#;<(./#;<^(0h1ihN*JK! ! 2KUjkTlmnoDE 3-1 H21 3 6 p 4 5 0 6 7 a q r e s m Radboud ) $ a ( t u n o D E h 0 t u 8 9 MORIS2009 >v@A Best poster Awards F&:IJK 3-2 H21 3 9 p 11 ;<wN045067vx=0qres Radboud )$0yz{l York )$0 >y? Konstanz )$0Q|@(A$@BCDgIoffe E}67DEFa(tunoGH~ Ih0PHYSICAL REVIEW LETTERS ÄVol. 103, P. 117201Å>J2aoÇ>0KSelected for a Viewpoint in PhysicsL>MÉNÑJKZJ05~I>?* Riccardo Hertel OGH>xÖ P Q 1Ü “For faster magnetic switching—destroy and rebuild” h American Physical Society áà “Physics –spotlighting exceptional research-” Viewpoints >RSNÑJ 3-3 H22 3 1 p 29 ;âT;5!"$8 U 170 äDE8K#a!"(|bRg67LãVW XlUfgRm#Yå!XCZylCç(J]([67é\ã>v@A067]^a45 [hèÑ_Ñ`a>bcdefêK 3-4 67045O0NDA (ghijëbcDkíìLPQkl./>O0îlmmghijn ()popq0SASP (|{BrmghstPQkl./>O0îlmmghijn(u ïopq1ñ(vwFóA@ÖK-./0+jk1q@2r2stu&G35'vw 0 xy0z{H|}~4O+56789(@()*+,-/ @:./0612Ä;5 67ZJ0òxO89:#;<>yIA~4O+56789(@Å<=>?/f@ ÇpABC2235QÉJ7 3-5 z{O|} DEFGHIJF ôm>kUö-(õL>úJi)popqanoDEFàùJK 3-6 z{O[û~FÄüÖ†°PrÅÇe(î[bcÉ¢^(Ñ£>yüÖ§ÖY|DÜ fg|áe(à=>?@A)âopqa9~FàùJK ! 475p67! (1) N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express, Vol.17, pp.6275-6282 (2009). (2) D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue and T. Zama, “Photon number resolving detection with high speed and high quantum efficiency’’, Metrologia, vol. 46, pp. S288–S292 (2009). (3)! K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State”, Phys. Rev. Lett., 2009, 103, 117201-(pp. 1-4). (4)! Y. Moriyama, Y. Ashizawa, K. Nakagawa, T. Sako, A. Tsukamoto, and A. Itoh, “Heat Conduction Analysis of Magnetic Recording Media for Thermally Assisted Magnetic Recording”, J. Magn. Soc. Jpn. 2009, 33 (6-2), 517-520. (5)! A. Itoh and A. Tsukamoto, “Hybrid magnetic recording media on FePt grains and selfassembled nano-structured layers”, J. Magn. Soc. Jpn. 2009, 33 (6-2), 507-512. (6)! J. Otsuki, K. Namiki, Y. Arai, M. Amano, H. Sawai, A. Tsukamoto, and T. Hagiwara, “Faceon and Columnar Porphyrin Assemblies at Solid/Liquid Interface on HOPG”, Chem. Lett., N.!"#$ H21 %&_'%(.doc 4/4 2009, 38(6), pp. 570-571. (7)! K. Yoshino, F. Chino, A. Tsukamoto and A. Itoh, “Coercivity of TbFeCo/FePt Grain Composite Films” , J. Magn. Soc. Jpn. 2009, 33, 212-215. (8) Yuichi Moriyama, Kojun Ogasawara, Yoshito Ashizawa, Katsuji Nakagawa, and Akiyoshi Itoh, “Heat Conduction Analysis of Magnetic Recording Media in Optical Near-Field for Thermally Assisted Magnetic Recording”, Special Issue of Nihon University CST 2008 Annual Conference -Report of RISTNU-, Vol. 52, No.3, pp. 47-50, Mar. 18, 2009. Information Technology Group Shuichiro Inoue, Katsuji Nakagawa, Akiyoshi Itho, Arata Tsukamoto, Takeshi Kuwamoto and Hideomi Hasiba ! Ultimate communication security and information storage! ! ! Our information group is trying to develop two ultimate technologies. One is the ultimate secure communication and another is the ultimate information storage. Quantum information group has developed high-efficiency entangled photon-pair sources at 1550 nm, photon number resolving detectors with high quantum efficiency and high energy resolution at 1550 nm, 400 nm-wide Si waveguides, photonic crystals of Ti thin layer with square air gaps on a silicone on an insulator substrate, polarization-entangled photon pair sources resonant with a transition in rubidium atom, and surface plasmon-polariton waveguides and couplers. We will combine these technologies to realize quantum repeaters. On the other hand, a high-speed recording and huge capacity for storage are extremely precious to our society. The phenomenon of a photo-induced magnetization applying a femto-second laser, which was revealed by our members, suggested a possibility to dramatically improve the high-speed recording of information technology. Besides, utilizing nano-technology fabrication for a near-field antenna and recording materials, huge capacity will be achieved. Gdx(Fe87.5Co12.5)100-x as a rare-earth transition metal alloy film was studied. Optical Parametric Amplifier (OPA), which is supported by the project, was installed to probe the phenomena from 0.5 to 5 eV in energy. Substrates with nanostructured surface were fabricated to improve a high density recording prospects in active collaboration with Supermolecules and Self-Assembly Group. We also analyzed the thermal interdiffusion of patterned recording media with thermally assisted. The particle structure of the recording media is effective to enhance memory density for the thermally assisted recording. We began to study analyzing the field which was close to electrode when a circular polarized light was exposed for the purpose to effectively utilize the optical induced magnetization as high-speed recording in a local region. !"#$ N.%&'()*+, -. 21 /012 314 1/1 Information Storage A high-speed recording and huge capacity for storage are extremely precious to our society. The phenomenon of an photo-induced magnetization applying a femto-second laser, which was revealed by our members[1], suggested a possibility to dramatically improve the high-speed recording of information technology. Besides, utilizing nano-technology fabrication for a near-field antenna and recording materials, huge capacity will be achieved. Fig. 1 Compositional depend1) Ultra Fast Information Recording To carry out a ence of damping parameter search for highly susceptible materials to the photo-induced and precession frequency f. magnetization, all-optical pump-probe system employing an amplified Ti:Sapphire laser was built. It was conformed that the ultra-fast dynamic behavior was measurable and can #3 #1 #2 extract the damping property by the system, as shown in Fig. 1. Gdx(Fe87.5Co12.5)100-x as a rare-earth transition metal alloy film was fabricated. Optical Parametoric Amplifier (OPA), Fig. 2 An example of thermally which is supported by the project, was installed to probe the analysis heated by a near field phenomena from 0.5 to 5 eV in energy. Collaborated work optical light. with Radboud univ. was awarded in international conference MORIS2009. 2) Ultra High Density Recording Media Substrates with nano-structured surface were fabricated to improve a high density recording prospects in active collaboration with Supramolecules and Self-Assembly Group. A nano-structured substrate was fabricated by self-assemble phenomena of silica nano-particles, on which FePt particles fabricated. The results were presented as an invited talk in international conference MORIS2009. The magnetic characteristics of fabricated magnetic materials on the nano-structured substrate will be analyzed by the high sensitive magnetic force microscope which is supported by the project. 3) Thermally Assisted Recording We analyzed the thermal inter-diffusion of patterned recording media with thermally assisted recording as shown in Fig. 2, which was presented in an international conference and would be published. The particle structure of the recording media is effective to enhance memory density for the thermally assisted recording. The preparation for surface plasmon antenna is in progress for the recording a tiny magnetic domain on magnetic materials. We also begun to study analyzing the filed which was close to electrode when a circular polarized light was exposed for the purpose to effectively utilize the optical induced magnetization as high-speed recording in a local region. Reference [1] C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing: Phys. Rev. Lett., 99, 047601 (2007). !"#$ N.%&'()*+, -. 21 /012 1/1 !"#$%&! 34567#897:;<=7>"?@7ABCD! ! !!EFGHIJKLMNOPQRS7TUVUMWXPYZS[\]M^_`abcdU7 WXMefghi7jklMmn%&Po_pRZqrMstuvUwx! !!yMGz{Po_yX|uPQRS}7pRZ~ÄPoÅSÇÉPÑÅw7ÖÜáÜà âL'RwäãåáÜçéPoÅS7yMGz{Po_yX|uè10 µL h–1 cm–1êbëíd Uwèìîïñóìîòôöõk7úùêxGg.ûüPo_yX|uPYZS7†y]à °¢RwyX£§g•P|uRwyXࣶßi_®l©7yX|u™à 40%´¨ßi_® lb©≠wx'()*+,Po_mn%&M.Æ©^_x! !!Ø∞±≤≥∞PQRS7¥µg.Äà∂O∑_®lPo∏7®Uv©πÇÉ∫Åwìîõ ªLJ©MºgbΩæÇÉPÑ∏7ø\ïño∏¿]b¡Uw¬√0öÜáLƒI+áL≥ ∞7¬≈ñ'(,Ü∆±«7¬±»…∆] »À≥∞àÃ|RwxÕŒœ7 »À≥∞M LaFe1–xNixO3 PQRS}7–íS Ni —™M“Z≈”Ñ≥∞àg.∑_®lb©≠7®M≥∞ ©‘t¬Z±»…∆’à÷Rwx! !!◊ÿ,Ÿ⁄+¤‹Po_›X´fiEF±≤Mfl’‡·M‚„à{‰∑_wíPÂÊRw7 ◊J◊ÿ,Ÿ⁄+ôÜâKÁ⁄'„Ë«MÈ~Íà7±DÎLÏÌÓÔÖ◊Lèìîï ñóìîòôöõk7ÒÚêPoÅS~Rwx! ! Energy Technology Group Yasuo Asada, Joe Otsuki, Nobuyuki Nishimiya, Takuya Hashimoto, and Sachiko Matsushita For the use of solar light energy, an encouraging progress is being made on each aspect. In addition, new development is being made with combinations of respective aspects and collaboration with other groups. Hydrogen evolution was observed at a high rate of 10 µL h–1 cm–1 with a highly lanthanum-doped titanium dioxide film, which was made possible by a new fabrication procedure (Suzuki, Nanomaterials and Nanodevices Group). For hydrogen evolution by photosynthetic bacteria, the amount of evolved hydrogen increased by 40% by using a water-proof hydrogen storage material. This is a nice example of collaboration through the project. For materials for fuel cells, newly employed solution-phase synthesis has made it possible to mix ingredients at the nanoscale, which in turn produced better quality materials than conventional ones, which includes high-strength interconnector materials, highly homogeneous proton conducting materials, and highly conductive air electrode materials. For the air electrode material, the highest conductivity for LaFe1–xNixO3 was recorded owing to the homogeneous mixing at nanoscale.! A prototype of a nanostructure designed to have a full photonic band gap was prepared with electron beam lithography (Hashiba, Nanomaterials and Nanodevices Group) in the aim of revealing the mechanism behind high efficiencies of dye-sensitized solar cells with photonic crystal structures. ! !"#$ N.%&'()*+, -. 21 /012 345 1/3 !"#! ! 6789:, 67;, <=>?, @"AB, CDE, FGH9:, =IHJ! KLM! 345NOPQRST$SU1V$WXYZ[\%&]^_`4abcdefW] KLagh_ 4 i_jklN%&]mndXopq rs tu%&'()*+,avwexyz.TzQ]{|}Z^~S`4_ÄÅÇÉ<=S CDS=IS@"S#ÑSÖGSÜáSàâSäãSåSãçSéèê! ! f_jklOPëíìîWïeT$Qñ]óòôpöõ_újù'Wïe%&Npqûü _ †t° ¢£TzQv§•¶_ßz®]z.}©ûüTzQa§e^`4S~ëìî_™k ´¨≠]KLW}dXopqgh Æ i_Ø∞±≤TzQz.a≥ò¥µNvòopq! (∂) DNA ¢£xyTzQa§e^`4ëP~ëìî_∑∏! πL∫ªºv§•¶_∫ªºΩ_πLæø_∑∏Wz.TzQ_¿¡]¬Xopq (√) [ƒ≈∆k'W_«»%&a§e Pyrrole […a peπ£ÀFTzQ_z. DNA ¢£TzQ_ Pyrrole [ïÃaπ£ÕÀF[]iweŒœ]¨≠}dXopq (–) FRET ó|_—|a§òß“_”‘∂’÷a§e◊ÿŸ¢£Œœ_¨≠ TzQ⁄¤i±‹i›oYdõndfiefl¥‡N^]·iweŒœ]¨≠}opq (‚) `4a„•i‰ÄÅÇ_ÂeTzQavweëQÊÁSËÈÇ_ÍÎ! ! TzQ]ÏYdÌPËÈNïXWflÓoÔµqë_Ê]ÒÚPËÈÇ]Û¢}opq Ù/0ımˆ}ZfWı˜.}ZfWı¶_¯˘M! ∂êπLWïe∫ªº]·iweZn∫ªº˙˚¸_ó.W∫ªº_˝˛ˇÁaiXd!" #$W⁄µ#$N%&La'Úe≥ò¥‡](,S)*ÊQN¬XP9á]+,≠-./q! Nature 458:505-8 2009. Genomics 93:130-9 2009. J Hum Genet 54:450-6 2009. Molec Carcin ./é. √êDNA „zTzQaÀF[]ÀwPDNA ˝˛Õ0fiïÃ_yÅ]1YZyÅLTzQ_ z.a≥ò¥µNXopq(ú,2˝˛34íW_ßz®P5(k∆[6_ÀFŒœ]¨≠q ! Tetrahedron Letters. 50:7288-7292 2009. ! BBRC ./78é! 9: PCT/JP2009/62054 –êDNA „zTzQOP¢£æø⁄ 8 ;[<0_ZnP(,◊ÿŸN_9=>?w]¢£ pe§@aß“_TzQ⁄»A∫ªº]¢£}P¶fNõndfi]≠peŒœ]¨≠éNpq ‚ê¨≠é_ DNA „zTzQOPB?aëíW}d_¿¡⁄¬CDdXïXTzQNÂòP ¶_ËÈÇWëQÊÁ]ÍÎ}dXeqÊQEF∆N_ÊÁSGHËÈÇ⁄Û¢IDdXeq ! Biopharm & Drug Dispos 30:81-9 2009. J Chromatogr B 877:1070-6 2009. Bio. Pharm. Bull. 32:921-7 2009. Molecular Therapy advanced online 2009. Cancer Science in press 2009. 9 : PCT/JP2009/066108 PCT/JP2009/057801 ! Js ^◊ÿŸavwe9KLï∫ªºLMNO]{|}Z~v§•`4É=IS67 É8êSPèSQRS67É;êS@"SCDSFGSãçSRajeeveSåSSTSU DSVWSXQSYGSZ7S[WSä\S#ÑSÜáSàâSéèê]^≠_`‘2! !!⁄µ∫ªº_LMÉ⁄µm¬6_∂+a∆Wïe∫ªº⁄LÓefWêÕ^bc∫ªº_ deÉ⁄µm¬6_fEk`Wïe∫ªº⁄g‰ïefWêO⁄ µ#$a9KLN!"#$ aO·≤DïXhTNpq⁄µ◊ÿŸÖ_f_hT]∫ªº_ DNA ]¢£peTzQ]{ |}d»i}P⁄µ#$]!"#$±≤·jweZn_0fikëÉ⁄µ#$?w⁄fiYd· Óe§@apeÍôkëê]z.}opqI≤af_kë⁄©^∫ªº_≠l]bcpe É^∫ªº⁄ôd‰e_]bÓeê§@aVm]FÓdXopq9a[n_opqrNöÌ !"#$ N.%&'()*+, -. 21 /012 345 2/3 60789:;<7=>?@ABCDEFG:MYCN HIJKLM7NOPQR 100 ST UVWXIYZ[7\]:^_`ab[cdHeXfghiPj]klFImno p/0qrset^Hqu.et^Hqv[wxy!MYCN KLM['(z{|}~GKL MÄ`ÅÇnY}~F\]:@ABCDEFVÉeXImno^[}~P DNA ÑÖÜÖ á`àâÖ.:äã[ÜÖáF MYCN VÉ@ABCDEPåIXZ:MYCN çKLM[ Ä`éèe:MYCN KLMêë`íìnY^H7îíï_metomtñç?ó[VÉ} ~ Her2 PònY Her2 çKLMÄéèÜÖáZô.emeto! The Journal of Antibiotics. 62:339-41 2009. öõ PCT/JP2009/066111 ú 25 ù!"ûü7l$† '°)¢ £§•¶§£ß)®© -. 21 / 11 ™! ! ´¨ ≠ÆØ$4∞H±≤{°£, X Æ≥¥µ∂[∑ÖP∏Yπt?∫4∞[sªº8Ω ºæø¿¡Ω¿¬M¿8Ωº√ø¿≥ƒ¿≈∆¿«»¿… ¿»À¿Ã"¿ÕŒ¿œ–¿ —“”¿‘’¿÷¿Rajeeve¿◊ÿ¿Ÿ⁄¿¤≈¿‹–¿›fi¿#™¿fl‡¿·‚¿„ ƒ øº ‰ ¿ π  ¿ Ê Ÿ ¿ Œ „ Á Ë È % Í¿ # Î Á Ï Ì Ó # $ ÍøRavindra Pandey ºRoswell Park Cancer Instituteø! ! çPònY≠`ÔetáÒÜ$4∞:≠Ø$4∞ ÚÛÙ G:≠ıˆ˜á¯F\Y˘˙,˘ ˚£ºß¶˘¸˚£˝˛ˇ?óø7:!"#$[≠P∏]%&ï_:CD'˜`(n)˜* +`,-.n^Hå∏/v[ÜÖá77lCDPj]0m_1nI˜¯`ÔeX7lCD 23`4P567Y∫4∞Fnoe8e:≠[Hó99:˜[çPG;<Fn7:∆‡[7 l1=>‡?PG<@m7lo"%&FG!"#$Fªet!"#$[AB[±≤{°£ , C Æ`Ôe:∆‡7lCDPònYπDE¥ÆØ$4∞`ªnY^H`FdHemno! p/0qrset^Hqu.et^Hqv[wxy!ÄG:çHIJKLHeXMNúOPQ i„ºRF[ST˜7îíU-ø[ÜÖá`7lCDPVW<:ÜÖá„[XM[YZ[` ItA#$E¥Æ≥¥`\J^HF:7lCD7V]éè`&^n^H7îíï_XIm no^_G:X Æ^_`0[abFˇ[cPdeçCD`!fghPnY∫4∞[ª[i j˜`(nZ[F#klmï_XImnomt:!"#$[ E¥ÆØ$4∞[πDÜÖ áZÖ.ï_:no[hiPj]klFImno! ! p¨ KLMÄVœ` PNAºq'rst* øÜÖáFíìnYJKµ∂[ªºÕŒ¿u Œ¿8Ωº√ø¿-–¿»Àø! ! q'rst*º ÚvwxÚyz{|}y!v~Äy|!w|}øGÅÇPq'rsÉÑ`ÖÜet: Ûvw 1 ávw PàtÉÑ`ÜâäMF:Ûvw 1 ávw `êëöãdPíìemno^[ÜÖá`IY ^HF:ÄetKLM[ ávw `íìnY^H7.åmnoçéPöãd?KLMÄG∏ 9è6_XIYÄêF:ëíGKLMÄP∏YçéJK∞[ª`FdHeXImnoa bP:8ìî[XïFQñd60789JK7óò?X˜ô¶söõ(£ú7ùûü¯E †°åF\Y^HP¢Fe:nçéFÄnY £§Ú••¶ß PònY Úvw `Ö.e®©emno! p/0qrset^Hqu.et^Hqv[wxy!™®öùûü¯E†°åCDF\Y §• CDPåIXG £§Ú••¶ß [Äå∏/hi´¨[®©„FnoÛvw ÑÖÜÖáP∏YJK∫ 4GU≠Æ86´F\ØXImn7 ávw `cdHnY^HGnÜÖáFGF@m7loÚvw ÜÖáG^[∞`±J^H7.åYij˜`;e:p<lmï_Y%&Fno! ! 5HeX[)â! ß˚ô≤s≤{õ¸£≥! ™ 1¥2 ù:%&9†`\ØXImno !"#$ N.%&'()*+, -. 21 /012 345 3/3 Medical Technology Group Motoichiro Takahashi, Satoru Takahashi, Shigemichi Kosinaga, Yoshiaki Matsumoto, Noboru Fukuda, Koichiro Kano and Hiroki Nagase Molecular Therapy against Cancer 1. Development of Molecules for Cancer Diagnosis and Therapy Our understanding of functional genetic research associated with cancer therapy used to be based almost entirely on the analysis of random combinations of either multiple- or single-targeted post-transcriptional products. Recent advances in developing a therapeutic strategy against cancer, however, have allowed us to target a specific gene or multiple genes using an antibody and RNAi strategy. It may also be possible to establish another designable multi-targeted approach in a tumorspecific manner by means of pre-transcriptional targets, such as the double-stranded genomic DNA using nucleic acid binding chemicals. The object of this research is, therefore, to develop and evaluate a novel target DNA recognition approach using Pyrrole-Imidazole (PI) polyamide molecules or its conjugates for safe administration, diagnosis and therapy in cancer patients. 2. DNA Binding Molecules for Amplified Oncogene Detection and Silencing The automatic PI polyamide synthesis system has been established and is providing PI polyamides identifying and down-regulating the target amplified oncogenes for cancer diagnosis and therapy, respectively. For instance, we developed PI poliamide recognizing MYCN gene promoter, where MYCN expression enhancer binding sites are located and frequently amplified in unfavorable neurobalstomas. The molecules successfully downregulate MYCN expression and induce growth inhibition in neuroblastoma cells. Molecules may also visualize MYCN amplified neuroblastoma cells using the PI polyamide conjugated with a fluorescent dye. 3. Development of a Novel Radiation Dynamic Therapy against Cancer Cells in Internal Organs Photodynamic therapy is a non-invasive therapy injecting a photosensitive drug to the patient, which sensitizes cells to the effects of light and tends to stay specifically in cancer cells. A beam of laser light is then focused on the tumor which kills the cancer cells. The therapeutic approach limits to cancers located on skin or surface of a limited internal organs. Since PDT drug tends to stay only in cancer cells, PDT drug can be used for cancer cell imaging. A PDT chemical, which is under clinical phase II trials as a cancer cell imaging agent, has been tested for radiation induced non-invasive cancer PDT therapy in internal or metastatic cancer cells. A mono-wave length coherent X-ray has induced cell growth inhibition in PDT drug treated cancer cells. This is a promising approach for patients with a metastatic progressive cancer. 4. Peptide Nucleic Acid Molecules for Over-expressed Genes for Disease Diagnosis and Therapy Peptide Nucleic Acid (PNA) molecule is a nucleic acid analog in which the sugar phosphate backbone of natural nucleic acid has been replaced by a synthetic peptide backbone. PNA molecules have been considered as promising anti-gene and antisense agents for gene silencing and as stable drug delivery molecules for molecular therapy. We will try using this molecule for detection of disease specific mRNA expression and developing a new strategy for differential diagnosis of disease. We focused on primary aldosteronism, which is a curable cause of hypertention and a condition usually caused by adrenal tumors or hyperplasia. We try determining adrenal tumor cells which should express a disease specific CYP11B2 mRNA by using PNA molecules. Publications: Nature 458:505-8 2009. Genomics 93:130-9 2009. J Hum Genet 54:450-6 2009. Tetrahedron Letters. 50:7288-7292 2009. Biopharm & Drug Dispos 30:81-9 2009. J Chromatogr B 877:1070-6 2009. Bio. Pharm Bull 32:921-7 2009. The Journal of Antibiotics. 62:339-41 2009. Molecular Therapy advance online 2009. Cancer Science in press 2009. !"#$ N.%&'()*+, -. 21 /012 3456789:;! 1/2 !"#$%&'()! <=>?@<ABC@#DE@F"G@HIJ5 *+,- ./ 01!2345! ! "%&'()*+,KLMN@OPQRSTUVKWX3456789:;YZ@OP[ \]^N@_`abcd]e6f5ghijklmn$op]GqrstuvwxyzK@ {|}~QKÄÅwÇXÉYÑÖÜRMáàRxyzKâMNäã^@åçKZ"'() *+,kéè,'ê,YWXë"kík_ì1v@_îïñóyv@_òôv;]öõwúK@ 3456789:;ù7kGqzxûéñktüw†°Ç¢]KWX£§IK•¶ñy'k ß®©™w´¨ÇX£! 6+789:;<23=>?@! $AB$CD89:;! ! 3≠ú0¨ÆKØÇX∞±RÄÅK≤≥@1 Tbit/inch2 k≠ú0¨Æk%&}ßÄ¥^ââ WX}@µk∂∑KZ∏πYK∫MªºkΩæ}WX£"%&Z@¢øw¿¡^@¬RX≠ ú0¨Æk∂∑@ÇR√ƒ 2 Tbit/inch2 §ÉklmijK≈∆ÇX«kYWX£»/@#q… ì1¨ÆKØÇX%&4 KLMN@`aÀÃwÕÇXŒœ¨Æ–—}“†åøNMX£" %&YZ`a”‘yñ’´ÀÃwÕÇXŒœ–—w÷X◊ÿ]^N@789:/Ÿ⁄¥∑¤ w‹›^fi.^fl3≠ú0R`aÀÃw‡·KÕÇXx‚'„y,O‰k‹›wÂÊ^@ä ãÇX«kYWX£¢k†QwÁ.ÇXflË@ 1) ≠45ÈÍñk789:¥ 3 ÎÏÌúÓÔ’´ 2) `aÀÃÒÚÛfi.›x‚'„y,! O‰koÄ 3) ≠ú0¨Æ–—fi.›ŒœÙıˆ˜¯5fi.˘k˙› K≤≥3≠ú0ì1¨Æk¬RXÄÅw˚X£ ! ¢k¸Y@-. 21 /0Z@`a˝˛ˇ!"#$(15nm § I)k‡·ÀÃwÕÇXx‚'„y,k%.vw&—†']^@ #$Q`a!(w‡·KÕÇXO‰)Nano Dent Array: NDA*@ +,78Ÿ⁄`a-û./) Self-Assembled spherical small Fig. SEM image of NDA (Nano Dent Array) surface. Silica Particles layer:SASP*ÖçRX01k`aÀÃO‰Kâ 2äã^fl£ $EF89:;! ! G^M45k78ŸhdwoÄ^@45„3ñYk78ŸhÀÃ@µk4˛`Èê+R5 ®w6çÖKÇX]]«K@N.%&'()*+,k%&7]köõK≤8N@îïñóy@ òô@ì1˘k˙›wäã^NMX£&—QKZ@! 1)!"#<%&GHIJK>LM><"#NO9P<QR! 2)!%&GHSTUVWXYZ[9\:]^_`ab<`cde! 3) DNA K<%&GH< FRET ]^_fghIi<Xj<kHlH-KâMNäã^NMX£ ! -. 9: /0Z@4;ñ<ê.y=—]M>?ñ@Aû‚B @C(-éD‚k≤>R-·k<A”+E450F}Gâk Ò˛H‚wZåI¢JKfik¥hbk78Ÿh5®KâM Näã^@LMk¶ñy'}NOKPQV@RS,‚ïñT ˜UY4;ñ<ê.y=—kVWw_XXv¢]K.Y^fl£ ! ! πfl@Ò’S(Sw«âG^M˛û)èZ=—wh.^ fl£[w\]^_¸Y¢øçk=—]`añ,˛H‚ wbh ÇX]@˛û)èZc`añ,kdew\]345=—}f .ÇX£˛û)èZ(SZeghi]^N@`añ,(SZ [jÄfk–]^Nlm^@[jf.n˙KoàRp5q® !"#$ N.%&'()*+, -. 21 /012 3456789:;! 2/2 <=>?@ABCDE@FGHIJKLFEMNOPQRSTEUVW<XYZCB[S\ E]^_D`_Uab%&<cd someone LeeNf.gGhYijklCm^Enog[ ^Mpqkl_D ! rsLUDNA StuvwxLyz^M{fZC|(}~ÄÅÇ}~ÉÑÖÄÜLáW SJà^MUâäfã_tuSå^@yz^_[ç]éèjZCB[L?ãMUS/N êSë íkìCB[Sîx[^M FRET (fluorescence resonance energy transfer)SïñZCB[Sóò _Dôö;õúhL?ãMùûkl_7üf.L†òCáWJà°¢[£C|(}~IJK Sf.^_D !"#$%&'! ! §•¶~}'ß®U789:©L?ãM™´klC©f¨SñEMUáW≠ÆØ∞±≤≥ H=>ëíSî¥^MECD! ! -. µ∂ /0®U∞±≤≥H=>ëíL∑∏£UàPNSπ∫ªºCΩÖæ*~ØΩ( Ü{øS¿¡L?äX\^$¬ß12^U`_U≤√©$ƒ|}Ń≈∆«L?äUXN π∫ªºL?C=>ëíLa^MU»…, À+{øHNÃÕ=Œ<œ–ZC—“”<‘C B[S’hGL^_D! ! BlhH%&.Œ®U÷◊ÿLŸEM⁄îklMŸäU-. 21 /0ß®U¤‹›fi< 4 fl‘äU‡· 1 fl®U!"$o‚„¬! 45‰ÂÊ+Â()}Á 174 ËȬÁ 31 Í%&¬ GhßU`_ 1 fl®Î÷HÏ Ìƒ#$GhH¤‹ß‘ã_DÓHÔU÷$¬ 4 flU÷◊ $¬ 4 fl®$° 4 /YÒÚLÛÙ 2 /YL?CıHß‘äU"$$YˆH˜¯=Œ<˘˙L #çEB[<˚òCD ! ;◊H%&¸˝[^MU"/0®U˛Vˇ!LŸéC7Xx"#$üH%&'’L FEM ()¶~}'[H*+£,-%&ÒÚL./≈0Àæ1ƒSTã_D§•¶~}'ßX\^ _+((2ƒ3ƒL?C7X$üH4”©L5^67.~S89ZCB[< ßçU"Ê}: La^M®÷$¬X; 2 flU÷◊$¬X; 2 flS"$ÛÙ<=#$>Y[$°Y<T‡? «ß‘äU%&4üL?C˜¯x@ASB4LCCB[<ßçCıH[óòCD !()$%&'! ! DE~”F45ß‘CÉÑ (L-GH) (PLLA) ®UFE{ø©0SIZCB[ßJhlME C<UPLLA {øHtëL?äK }+£L≤M”SNZB[ßaO<P_lMECD ! PLLA »QR}LÕS≤ˇSTUZCB[ßUPLLA HL≤M”<X%^U»QR}VWH‚ü X‚Y<Z @LΩƒ,(}~ ßçC?‡L£C (Fig.1) D^G^£ <hU%[H[B\U1 ]^x£»QR}Gh #ç£ !_SPF 2 ]^x£`aXUÓlbíHcdK[£C æ},£eß®èf^_ 12gh®£EDÓBßU"' ()*+,ß®U1 ]^x£cdKGhUF]cdßU GFi+LcdÕSkl_ PLLA _jaS™´^UÓH L≤M”SklUÕS≤ˇ◊ßHmn‚üHÕS XUk hL®UÓHoñSpiCB[Sîx[ZCD ! -. 21 /0ß®UqrstuvwHx´S\yòU.ƒ'ƒ£eHzY¨4'L?ãM {hlC L-GHS7Â:}LvÚUBlS|VU}~fokìCB[ßF45Ä©^_ PLLA Hf.SpiUîx[ZC PLLA Hf.L.Å^_D Supramolecules and Self-Assembly Group Hiroki Ikake, Akiyoshi Itoh, Joe Otsuki, Arata Tsukamoto, and Sachiko Matsushita The goal of the supramolecules and self-assembly group is to develop advanced technologies on nanomaterials and nanostructures and to supply these technologies to the application-oriented groups, i.e., the information, energy, and medical groups, thus strongly promoting networking among these groups on diverse fields. !"#$ N.%&'()*+, -. 21 /012 345673489:;< 1/7 !"#$%!"&'()*! =>?,! @ABC,! DEFG,! HIJK,! LMNO,! P"QRSTUVWSXYZ +,-.! /0 +,12! 3456[\]^S_`abcS_de,fg+hicS_@abjkcS_lmabnopocS_qr stu56cS_34vowxcS_y9xz{|g'}~mcS_Ä(ÅÇ}~mcS_Ébzg,cS _ÑÖÜáàabcâäãå\]^Sç$á.SéèêëçS34ÅÇíìS'îïñ'(ó;Sò ôöõéôúùûü†56á.ùSÅÇ°¢ù䣧•†¶ß®©ô3456™û´¨^SÅÇ≠ÆS 5Ø∞±≤≥\Éb¥$µ∂ûü†n8∑Å∏S∞π\∫ªm\ºΩ^æ7Éb5Øä≠ø•†¶ß ô3456[\æ7Éb¿á¡¬ô√$ƒ≠øä≈∆«»\]^S"%&ô… ÀÃ\]^ÕŒ•†S œ1S–—∑{oS“”û‘’•†÷◊ôSÿŸ⁄¤S∞±ùSµ∂S‹›fiflo‹‡xù䣧• †¶·©ûS‚„de,fg+⁄¤S@‰`Â~⁄¤SæÊ;ÁËÈSÍÈÎÏÌÓÔ⁄¤S34 óxÒoÚfl:ºÛS•Ùû@¨ıˆ˜∫¯†õéô⁄¤S89:;£§û˘˙^S‚]¨√$£Q û«˚¸˝‚ƒº˛ˇ‹oïä!.•†¶! 30 +,45! !"#$6! "#b$%&Ô'æ()$%ûü†@‰7*+Ê;,Ùô-.hiÅÇ≠Æä≤/]S 01ºhiÅÇô2ç34í5∫#67Ø3867Øû9˙†:;ä≠ø]S<–—∑{o<=ô@ >0?¤#@⁄¤äAB\]÷⁄¤ô@ÿŸçô÷◊ôÅÇCDôEFäø©Gû•†¶ ! H`Â~ m∫ı´GΩ÷SIJKLM5ÑÖLNO‹'f+p:z [qrstu56û´¨^SB6ºà4P ¤QüRàhiP¤ä°.]SsÈST3#bzo'ûüΩ^ üU@¨`Â~í5‰0äVE]S ` Â~§WÿÅä≠ø•†¶ßô56™û´¨^56ÅÇS#bÅÇSÿŸô4Xä ≠ø•†¶·©ûS <œ1<=ôàªæb§lÓY89:;Zô[’ô÷◊ô«\8opä]†¶ ^ÑÖËç534 _bûQ`†abæûcd·®÷efl.7gh2çäiΩ÷ËÈô≠jkl7mánjWåäæ$ ƒúùûüΩ^≠ø]SæCDËÈÏÌ7Ô89:;䣧•†¶ !"&'()6! "‚]¨34ÅÇ°¢ù䣧]S89:;°¢ZôJ£äQߺo¶34óx ÒoÚfl:°¢ô«\˛ˇ\]^Svowx34pfioq334(gzä-r3smƒûj)•†˛ ˇäts•†¶Huvº34ÅÇw.˛ˇ\]^‘’·®†'îïñû´¨^S aæ,nxîdyù ûü†'îïñôz{ÅÇô|}~ÉÄçä≤W]S'îïñl.7CDùäts•†¶^8ç' îïñûQ`†Ébæ$Wåä≤Å]<Ébµ∂7∞π<=\Ç¥]^SÉbæ$ôÉ≠ÑÖÃä≠ ø•†¶ÜÄ(ÅÇ}~mä’¨÷}~má÷à`Â~}~mÉbzg,äꘈâä THz ãæ' îïñådÉbçg,89:;䣧]S<œ1<=ôÉbœ189:;û[’•†¶éèÜêæ˛ ˇSàªæbY˛ˇäë´<œ1<=\ëÇ¥]S&íô3489:;Ù¯†lmabnopo∫ ªìîä`ûïñ•†ÿÅäªab34∞±˛ˇÙ≠ø•†¶ 70 +,89:;<=>?@AB ! =>ô.óòvowxºÛôy9xz{|g'}~mä34pfioq334(gzÅÇç]&ôa ƒºöõ5zo'úàÑÖùûäü†°†ß\ûüU&‚„ºóxÒo3sm$¢ä°.]89:; 畆˛ˇôtsäVE]^¨†£ÑÖäùû·°÷vowx34pfioq䧕¶'(oqß0® ô©F™´ûÜá]÷34¡¬ô86óxÒo°.3&ªãôFu¨È{û≠:ÆØxx·®÷vo wx34d∞:9oZ±3≤≥äöõ5\]^zo']÷Üá¶34,îx);pûüUæóxÒo 3¥UôóxÒoä°.•†˛ˇäYµ]^¨†£∂/0àFu¨Èãôvowx34d∞:9o≠ :ÆØxxûQ¨^≤≥ôöõ5zo'ûüΩ^l.∫∑Œ·®†∏ó∫¯†ß\äı]÷£á÷ floπæô∫}ª'ûüΩ^&vowx34pfioq3(gzôl.êº\.ΩôìîäCDÙæ† ß\∫øø]÷£vowx34pfioqûùû·®†ÑÖô+K\]^&nØq8x¿bû¡3fg ¬∑\¨Ω÷>8Ø56ëùûÙæ†ß\ä√]÷£ß®©ô>8ØÑÖùûvowx34pfioq äƒb{¥ß0®ô'(oq\]^’¨†ß\ûüU&34¡¬û≈`†>8Ø3∆8Ø 7«8Ø0 !"#$ N.%&'()*+, -. 21 /012 345673489:;< 2/7 =>?@ABCDEFGHIJKLMNOPQRKSTDUVW(TiO2)?XYZ[\]^_`Fab cKLMdefghXTDiNjklm5?@nBopqrstFucLMNvwRxhKSLRd yWVW(La)Fz{'cKLMdef|}X?abdef~@nÄFucLMNÅÇQRÉNÑLa ?ÖÜ{z{'defá=>DàxàâhÑäãåI]çé9è+?.êBëíD]ì|îIïñÉS óLI'yòôöõúè;ù{ûü†åFrhx°¢s£§•¶ßd TiO2:La F.íàÉSLRd® ©™´X? Xe yW'(AM1.5¨100mW)F≠ÆàÉMJ?~ØÅj∞FGHàÑLa N±≤≥¥d]~ Ø?Åj]µLws∂ñÉNÑLa ?≤≥∞N 70at∑Mh∏π∫dªh≤≥∞dºhx 20 at%≤≥¥ 2 ? 10 Ωæ0?~ØÅj 10 µl/h7cm Fø¿àÉSâÉó?¥ pH ¡¬#àxºfÑOH •?√ƒ¡ ¿≈wRÉS! ! ª∆?.\«»…… /dÀÃØÕŒàÉ œ–—“”‘’ N÷ »◊ÿ ?Ÿ⁄¤‹›fi0 !fl F‡·LMNÅÇQ Rx‚ãÑ“” ?„‰ÂÊÁË>F¡·Ÿ⁄¤ÈN‰ÍdÇÎQRxJxºfÑÏÌI]ÓÔŸ⁄¤È MàxTD5ªfiŸ⁄¤ÈdÒÚcK56ÛFÙ.àxhKSª∆]ÑL?e∏s56ÛdºhxÑ œ–—“”‘’ Mıˆ?çéÙ˜F‡· œ–¯˘˙—“”˚ ºe¸˝˛ˇ¯˘"!"“"“”‘’!˝!#œ–$!%&"d'(àÉS»……◊ /d œ–—“”˚ ? !fl ]÷ )!ÿ IïKM12QRÉNÑó?*?%&I]Ñœ–—“”˚ +,? !fl d … ∂w -ÿ æ0 M.w·JN/wRxhÉSóLIÑó?01F¢w∂dcKÉ≈dÑ234560d7¡#Js8 9F:;KM<;wRK œ– ?=>àÉ?@Fq.àÑó?[\d·hxABÉSó?ç\ÑLRâ Id12QRxhK !fl!?.w·J]Ñ?@?πD$∞CDdeK¡?IïKLMNE∂ñÉSâÉÑ ˝˛ˇ“"“”‘’ I]!˛ˇ“ FN œ–— FMıkÙ˜FMfÑ˛ˇ ?ˆGFHIJÂØ ! IÕŒcKM “”˚ FdK >Nz{'QRxŸ⁄¤dsKM<;wRxhKSª∆?qLàÉ˝˛ˇ…M◊œ–…M)“"“”‘’ ? !fl ] »◊ÿ Iï fÑäã12QRxhKNdOBxPQR∂ñÉNÑŸ⁄¤ÄrdSàxTUsßGVWCX?YZ F[ñÉSó?ç\Ñ !fl dº\KßGVWCX?fi0]^˝#$fl»_#!"]˘¯M)`_ÿ IïfÑ…ÿ dº\Kß G V W CX]÷ »◊` M h ∏ π ∫ d ª h _ aNFbÉSQwdÑ ˝˛ˇ¯˘"%&"“"“”‘’ d càx]Ñ ˝˛ˇ…M◊%&…M)“"“”‘’!N÷ d…ÿ IŸ⁄¤FucLMFÇÎàÉS"56?Ÿ⁄¤]âef?gè{'∂w ]12QRxºwhÑij?ç\IïKS! kl?.\«mnCDıopWFÄràÉ.íå?qÅ r:sWÜ{t5u;,v'wÕstFr hÉxyv'st¨z≈xÁåN{HQRK `|“” Ôëí?j.stdÄrNOPQRKCDıo' yòôpWd·hxwÕqźe¸ó?}DYZF~≈ÉSL?å]Ñ'yòôKÄMóRdef ŵQRK+Ç({ùW ÉiIÑÑKÖÜef≥á7ÆÎQRKLMF}àMàÑ'yòôFâäd Ÿãád≥ácKLMN|îIïfÑ'yòôj.GMÄåF@çcKLMIÑ•éè?êëí? RìBefî6s'yòôúyï{V?ñóN|îMsKSò/0]Ñijd~Øaôöõ `|úˇ“”ùû ?ªá.í?üL†°d}DàÉCDıo'yòôpW?qÅF¢;ÑpW?£‹§•d·hx7¶ DF~≈ÉSâÉÑßß.íåd·hxÑ®3©7˚™–’´|¨û|≠Æ” ØM?∞I±≤D?≥¥FqµàÉS ∂n±i^∑'yò∏:zöÈFÄràÉπ∫ê?qÅ rCDıopWÄrdeKªjºΩ?ˆ·M àxÑıwÕIj.7ÆÎQRKCD'yò∏:zæ #;À*(ôÃ+ø?¿¡7öÈ¥dº\KC ¬√çö≥êFƒràÉπ∫êX≈?qÅF~≈ÉSò/0]xy^_@X∆?¤«F¢;Ñ »…» Ö Üdº\K@X GMÑ}dπ∫êÜ?ªÀ0D?É≈?£‹§•?7¶DF[ñÉSæÃÕŒœ• –—Γ¨»……” / - ‘’CDıo'yòôpWdeK÷◊zÿ^_X≈Ÿø⁄n¤‹CXådeK± Kz'yòô≈?qÅr‹kÉ‹k›≈^∑FlcK'yò∏:zFH∫fidj.7fl‡|îs'y òôj.åMàxѤ‹CXæ !ù“øådeK'yòôÄåFqÅàÑ}DYZF~≈ÉSL? å]Ñ'yòôd‡YcKKzsàdH∫fid'yòôFj.IJKLMN}àIÑâÉ‹kÉ‹k ›≈^∑FlcKLM∂wÑ'yòôfi0Fß·Q‚KLMdeK „…» X≈stè?ÄrNOPQR xhKSò/0Ñ!ù“ 5W‰3ÂdC¬¤ÊFÁ.cKLMdeK'yòô?j.[E?ËßF†Ï àÑÏÌÑ%…ÈÍÎ ∂w?}ÏÌÓ?ÔF~≈xhKæÒ#7l%&ÚM?Ûı%&øS! Ùı?.\«|"!£§•¶ß? Ψ_ù¨ YZFrhxÑ®{ˆW0@d˜V4{èFrhxÑ D$¬ ¯.ê˝Î»˘"ådx ˛˙%` .êF[ñÉS}H?®:y4‰˚F¸˝.êQ‚KÉ≈dÑ+˛K>ù{ û{F.êÂd≠ÆàÉS!–´–û ˇ!;"+,èefÑ}d ……û´Ñ¯)……û´ ? “„œ ≠ÆN[\fiIï ñÉS≠ÆàshXöÑõ#Ñ$¤ÈÑ%&? ˛˙%` N'Ìàx.êàѯ( )J?®:yè*+?| îDFu,àxhÉS ……û´˘“„œ I]Ñ˝¯)$…"$!˝¯…$◊"$!˝”$-"$!˝¯¯$)"$!˝¯…$("? ( )Jѯ)……û´˘ !"#$ N.%&'()*+, -. 21 /012 345673489:;< 3/7 =>? @ABCDEFGHF!CDGFIHF!CJFKHL M NO@BPQRSTUVW6XYZ [\]^ _.`abc=>? d eLf:ghijklLmnWXoPpqrstbcuuH!vwxCyz;7{|:}wxHX;~Ä ab [uÅÇÉ[u ÑÖXBÜáà,âä}Xãåb çIG éèÜêàBëía DììÉî Lï0@8jñ}ó. òabcôöõúùBÑÖûürvwxûüX†°¢°B£§•¶Bߧ•¶aBçIG p®.`Xk labcÑÖC£§WHBvwxCߧWHL©™B`´¨ DGG!ìì!L≠Æ çIG _8jñ}óØ∞à∞ ±X†≤≥R.`abc¥µà∂´å çIG ∑∏_vwxπà∫.`abcªØBÑÖCߧWHBvw xC£§WHL©™BÑÖûüπ@ çIG LºΩæ_#øà¿¡ab_Bvwxπ@AB∑∏r≠ÆL çIG _ºΩaB]?¬çIG LªZ_vwx√Xƒ≈abcûü•¶abÑÖà8jñ}óP∆«»@B¥µ à… à≠Æ çIG p®Xyz;7{|:}wx√àƒ≈´À∆Ãr_@±bc! uuuH!çÕÇÅM AwŒœ Œ–qXoP56@ô—BçÕ ;ñ}“”Xw‘à’tRkl@±∆c÷◊abÿœWvŸL;ñ}“ ”XB‘ü@LœŒV⁄¤‹›fiãXflaRBw‘à’tRklP∆bùàBçÕÇÅM Läñć·‚ âòXfi„abc‰ÂÊ ÁËBûüÈÍBÂÎ>>Ê Ïõö;i'¬ig;ÌÓXûüàYtbÔp® çÕÇÅM ò_BÕ¬FÒ¬FÚ¬üπÛÙı:ˆÑÖπ@äñć·‚â.`aRå∆Ãr_˜õtbc! ! u¯H!~â;|z˘z˙÷C˚?ÊH¸˝XãåR ?Ò=˛ÅMÉçÒ=˛ÅM ˇ!∏Xfi„abcfi„abˇ!∏A çÒ=˛ÅMCç=ÅHX Ku"u#îB?Ò=˛ÅMC?=ÅHX K$"u#î ⁄›à.òaB†°X DE Á%—&abCCç=ÅHKC?=ÅHKHDE @ô∆cÂÎ>>Ê ÏB‰ÂÊ ÁËB'!∏(ñ}óà’—BÇ )*-+WXoPp®WL,åˇ!∏ÌÓ _.`abÃrX-.abc[Õ^uÅMC[^ÅHCDGMH/0L'!∏(ñ}ó’—BòLü1!∏√2_ ÑÖL3rª4aü1;,|;X5ús_ö.`aRå∆Ãr_˜õtbcÛig:,ñz+∫ÈÍ ´°,6sˇ!∏ÌÓ_7.´°bÃr_˜õtbcªØB [^ÅCDDMH/0L'!∏(ñ}ó’—B ç=Å8DGG9Bç=Å8GDG9!ÉÉ![^Å8DDG9L Ç NOL“∞:;_<=aB#>u" _.`aRå∆Ãr_˜õtbc ç=Å L #>u" A E ◊.ò?õö.`a@ABCXDE çÒ=˛ÅÇFG _HI@ô∆ÃrABç=Å Ô◊òL.ò pq’—˜õtRå∆cJbBCGGÇHKÕÒLL ñz+LS3øA GFGKMr¥µàp®WL’åò_7.´ °Rå∆Ãr_˜õtbc! NOL.qPÔªQ∏BÔªw∏3489:;X‡zRz{àBSTUfiVÔªQ∏WBæ∏Qfl XXYZP∆[\QT]^Á^BSTUÙ_,`+p®à’∆aAb5VcdweB Ç"ì f∏(z ÄzLwxgfiB^Îh iÔªQ∏jΩkLlmnXopP∆c ðömnLBSTUÙ_,`+p ®Aq¶$rstu∏vwrLxy%&B Ç"ì f∏(zÄzLwxgfiA ¶z$r#{|vwrLx y%&@ô∆cDF!Ù_,`+p®} ç~[˛É"[!æ∏{,LÔªQ∏WB·hÄ}[\T]^Á^B aAb5VcdweÅÇ ^Îh iÔªQ∏jΩkãÙ_,`+p®P[ÅÉ ÑÖπ@ ^u XãåR]` IMG"ì ãÙ_,`+p®~Äz}Lfi.à.ÑabcðX@Ö´À ç~[˛É"[!æ∏{,XÜá ab?BàT@]` IMG"ì âäLÙ_,âãåç};XéèaBÙ_,`+p®Lê6Xëíabc w∏ìîïXãåb DGG"ì ñ[\ózòôC34i+4()zHX-öaBEGG"ì øLˆâã`õúX ãåbi;,ã[\T]^L~Äz}Xù.´ÀbcÃL [\ózAû#$üû%&†:à°P∆¢ £Xfi.P∆ѧrs∆cÇF!f∏(zÄzLwxgfiP•g;ÑÖπà GGìì L34¶‚' ß$ w xi;,¢£Lfi.Bê®f∏X®ãabéèXù©c!DGG™Îh iéè´L̨c! ≈"L.qP≠ÆüõØ∞L±Ó≤LbùB≥¥àµa∂Säåâ¶z∑¤–∏XYZπU@Ö5 V∫£weA∏X IGGªºt@fiU´À∆ÃràΩæP∆cÃLbùà 34;øzâ@L¿™_YZ @±∆Üê¡X™.Ø¡à¬ã abc"/0A√∞56’—∫ƒW_µ°b≈£L™.à.Ñabc ∆U« raRASÿ0:}ÄzÄå+Äz≈£@ô∆ ?ÒD¬!¬"çÒ![Õ"çÕÅM B»6s§A:…}TwU KÒç˛D¬! !ÅM¬#BSwŒÀT0XYZ ?Ò=˛D¬!]u!ÅM L™.à.Ñabc)/0AðöX®ãab∫£w eLfi„X¢Ã∆c! Õ{L.qPŒ/0AðJ@à@Öçhõú ç˛ÅÇ rðXœz;rab@A–—56raR“ö °Rå∆ ç˛ÅǬÕÅÇ πÜUX”‘àaRBðöL56LπUBòB34∑∏’àZåRBQ$V W6r÷◊|z˘zQàÿŸ´°b@A⁄Ω7– —Z‘ÅÇÙ_,¤‹hzZ‘’LY›V%&Xfi åflðö56LÙ_,âãåç};ƒWX‡öõàabcðà’tRπ·%&‚V„ÅljL ÂLѧπù_´°bÊÃL%&pqLªrAÁËLÈqraRÍûabÊJbflÎÏL`ÌQWS Ó0ÔaÍQ56XÒPQ∂ ]uÅflÕÅÇfl]uŬÕÅÇ ´πÜULÙ_,âãåç};ƒWr÷◊| z˘zQÿŸZ‘X%&aflðö56LÙ_,âãåç};LÑ"ƒWX‡öõàab F!ðà !"#$ N.%&'()*+, -. 21 /012 345673489:;< 4/7 =>?@A%&BCDEFGHIHJKLMNOPQRSH%&.TUVWXYZ[H\]^_?` a_Qb! ! cdH.Te#fgU`hOiQjkjlm,nopqr6stuvgwxyz{_|}9~Ä ;@UÅÇOi|É5ÑÖÜnáàâopäãåvçé?Zèê:ë~)Öví>QìZèêÑî ïñHóòví>QôHöpõ0úùûü†X|qr6t°U¢£§•†v¶_Qìhß|®©H• †U™´iQp$¨H≠ÆØví>?é§ì! ! ∞@H=±U®©H%&.TX≤/0H%&BCv≥¥µ.∂§∑Tv∏?é§ìπ/0xyXS PyH%&.Tv∫ª™´i?|ºΩ£æçú89:;ØUø¿Q%&v¡¬∂§ì! !"!#$%&'($)*+! √ƒ ≈∆N«Ø»… Övæç_Q.ÀÃvÕ`_|}3Œ7œ–—“”‘’÷‘◊ÿŸ ⁄^H¤ñ‹›Ø Hfifl‡ñ·§ì! ‚ƒ ≈∆N„‰ÂÊ'ÄÜÁ:Ë™wvæç_QÈkjpÍHÕ`víé|ÎÏÌÓÔÒ{ ÚY‚ÛÛÙ / ı ˆ˜«Ø»…'Äܯ ˇƒ ÖU=§˘n˙˚¸˝pͲv{Ú_Qì! !"#êN ‚ÛÛÙ /$%$&/π#&Ì'(;)~`a*v˜mÑ+l,'Äܯ)*+, H`-^9:.ëÖ/ÑÖ0™1Hæç˛U2é?3*_Qì ! ,"!-./0! 4 !5U=6789†N:é{OPQ;<u=>?@A=.Bl'C+):Ë ¨DπEFG 56UHé?YI6£JKLM2=FJ∑NLM xyOPNQï;Ñ~RSTÃU=6UÀvV.∂ §ìSH^WY9ï+=6XUÀHYN EZ[\ú%êË~'N]^^£§QMY=6!é789_ ?`0vBa ∂ROyUY bcúde1<fHJVp ê`-gfi{89:;1H æçHQMHJK8~)v ∏§R! G ≈∆NÕ`_Q «Ø'ÄܯU=6dhi ïj~ <fHkl^m‰_ ?nZop™@vUÀØ_Y OPN.À_Q qrpsâ nnZ`-tuÀ^∫ª™ ´i?89:;Øvv§ R! wQ|xˆNÕ`_Qpy z{Zop7|}~Mú "NÕ`_Q Cr ¨{Ø53 4ãÄêv:Ö)~Åi+ )~^_?ÇM%É89: ;1HæçvBa∂ì ! ! D! OPNÕ`_Q@A ÏÑ}~ÖÖ34Ü,~/úáàNÕ`_Q}:Äâäãåçé9wg9w}~ÖÖ34Ü,~/v èÖê~ú%ëíT,ÄÖ);)£ì189:;Ø∂§ìcdH9:.Á~)~^Hî™vïñ∂§ì ! ! ! ! ! ! ! ! !"#$ N.%&'()*+, -. 21 /012 345673489:;< 5/7 Nanomaterials and Nonodevices Group Kaoru Suzuki, Yoshiki Takano, Tomohiko Asai, Nobuyuki Iwata, Hideomi Hashiba, Takuya Hashimoto, Shigeru Chaen and Shosuke Mochizuki 1. Summary This group aims at fabrication of nanomaterials and nanodevices for high functional applications such as electric circuits, biosensor, superconductors, EUV light source, field effect transistor, quantum dot terahertz single photon detector, solid oxide fuel cells, new photo-memory, and bio-nanomotor by using fundamental techniques of nano-process, fabrication of nano-materials, analysis of nano-level structure and analysis by nano-technique. 2. Achievement Prof. K. Suzuki : Carbon nanotubes (CNTs) and nanofibers (CNFs) have attracted great interest due to their novel electrical, optical, and mechanical properties. These materials are promising candidates for a large variety of nanodevices, such as electric circuits, biosensors, and optical components by wide band gap, Eg(carbon)>5.6 eV, semiconductor effect. In our research, we discovered CNF wiring between one pair of needle-shaped carbons (NSCs) border on carbon nanorods (CNRs), and metal included CNTs. CNF-wired NSCs and metal included CNTs are now sometimes grown on a silicon substrate with metal catalyst through thermal decomposition in ethanol at temperatures from 973 K to 1273 K by joule-heat with a DC power supply. As such, they can easily be used for the doping of impurities such as phosphorus of the Group 15 and sulfur of Group 16 by addition in ethanol. However, one of the problems in the development of practical applications is controlling the position of CNFs on the substrate. In order to irradiate the Ar-ion laser and contain the sulfur in ethanol, we realized to encourage and position restrict the position growth of CNFs and NSCs. Metal encapsulated carbon nano-tube has been synthesized at a meshes for transmission electron microscopy or foils of metal by thermal decomposition method in ethanol. We approached synthesis of carbon nano-tube include in several types of metal, e.g. iron, nickel, and molybdenum. When the silicon substrate was heated up about 1150 – 1300 K, the metal encapsulated carbon nano-tube were synthesized on mesh of molybdenum, foil of iron, and foil of nickel. The hydrogen yield on water decomposition with the lanthanum doped titanium dioxide thin films on quartz substrate that apply the photo catalytic reaction have been studied for fuel cell. were number of problems to the improvement. However, there Therefore, we improved highly efficient hydrogen evolution under controlled condition of plasma assisted pulsed laser deposition method with non-sintered heavily La doped TiO2 target. It was measured to yield about 10 µl/h7cm2 hydrogen gas form TiO:La(70 at%) film under visible light (Xe lamp, AM1.5, 100 mW/cm2) irradiation. Prof. Y. Takano: Since the discovery of high Tc superconductivity in (LaO1-xFx)FeAs in 2008, many researches on the iron-based superconductors have been carried out. Before this second superconductivity fever, it was reported that (LaO)FeP became superconducting at about 4 K. However, several research groups reported different Tc in (LaO)FeP. Thus, the electrical properties of LaOFeP is still controversial. Takano has considered that the stoichiometry of the sample is important to determine the electrical properties. Then, he has prepared single phase samples of La1-xOFeP using the special heat treatment and measured their structural, electrical and magnetic properties. These results indicated that the off-stoichiometry in (LaO)FeP is the origin of the scattering of Tc. Takano has succeeded to prepare almost single phase samples of (Sr1-xRxF)FeAs (R=La, Nd). The superconducting transition temperature Tc of (Sr0.6La0.4F)FeAs is 26.1 K. The value of the temperature derivative of the upper critical magnetic field (dHc2/dT) at Tc is -1.4 T/K and the estimated value of Hc2 at 0 K becomes 26 T. Takano has firstly succeeded to prepare superconducting (Sr1-xNdxF)FeAs. The superconducting transition temperature Tc of (Sr0.6La0.4F)FeAs are about 30 K. The evaluation of its superconducting properties is under progress. F.T. Lec. T. Asai : 1. Development of high-speed film deposition technique by magnetized coaxial plasma gun; MCPG has been applied for new metallic thin film deposition technique using a magnetized coaxial plasma gun (MCPG). This method enables application of high-melting-point metals (e.g., Ti, Zr …) which had been a limited method of ion beam assisted deposition etc. The optimized design of MCPG for film deposition has been !"#$ N.%&'()*+, -. 21 /012 345673489:;< 6/7 developed and initial experiments have been performed in this fiscal year. Commercialization of the developed technique has also been analyzed with Plasmionique Inc., Canada. 2. Repetitive operation and merging of Spheromak for VUV light source; An ionized plasmoid generated by MCPG tends to be relaxed into force-free equilibrium called “spheromak” in the conductive metallic chamber. Counter injection of spheromaks is followed by magnetic reconnection event which heats the plasma itself by dissipation of magnetic energy into plasma energy. This new technique for light source has been tested by vacuum UV spectroscopy and possibility for VUV light source has been confirmed. (Patent Pending) 3. Electrodeless plasma source using rotating magnetic field; Steadily operated plasma source using rotating magnetic field (RMF) technique has been studied aiming to the applications of light source and reaction chamber. High efficiency technology by the application of magnetic circuit has been developed and patent application has been prepared. (Collaboration with Dr. M. Inomoto, University of Tokyo) F.T. Lec. N. Iwata is studying : i) The SWNTs were grown by alcohol chemical vapor deposition (ACCVD) method on quartz substrate with Co/Mo catalysts. In order to grow SWNTs with specific chirality, free electron laser (FEL) was irradiated during growth. From the results of Raman spectra, the irradiation of 800nm and 1400 nm FEL was effective. Possible chiral indices, that included both of metallic and semiconducting SWNTs growth, of approximately 15 without FEL irradiation was reduced to 5, which was semiconducting (14,0), (10,6), (9,7), (11,4), (10,5) indices in the case of 800 nm-FEL, and to 3, which was also semiconducting (14,0), (10,6), (9,7) indices in the case of 1400 nm-FEL. Those results revealed that the FEL irradiation was effective method to control chirality of SWNTs. ii) Gold (source and drain electrodes) sputtered SiO2/Si substrate was dipped with a speed of 1mm/s from C60 saturated toluene solution. In advance of the dipping, the surface of the substrate and Au electrodes was treated into hydrophilic or hydrophobic. Needle like C60 crystal grew on substrate along the dipping direction, and C60 particle grew on Au electrode with the treatment of hydrophilic substrate and hydrophobic Au electrode. In the case of hydrophobic substrate and hydrophilic Au, needle like C60 crystal bridged the gap between Au electrodes. A combination of surface treatment and simple dipping technique achieve the growth of the bridged needle like C60 crystal between Au electrodes. iii) A ferromagnetic domain can be controlled by a spin direction of Cr ion at the interface in ferromagnetic metal / Cr2O3 multilayer. Considering a magnetoelectric effect of Cr2O3, the ferromagnetic domain is controllable by a electric field applied to the Cr2O3. Single crystal Cr2O3 thin film is required for the ferromagnetic domain controllability. From the results of XRD, SPM, RHEED, Cr2O3 thin films epitaxialy grew on r-, a-, c-cut sapphire substrate. iv) LaFeO3(LFO)/CaFeO3(CFO) superlattice was grown by pulsed laser deposition (PLD) method. The superlattice was alternate growth of 7 units of CFO and LFO, and that was repeated for 14 times. From the results of RHEED, XRD, reciprocal space mapping (RSM), superlattice was grown with good quality and two-dimensional smooth surface. The RSM around STO(103) showed that in-plane lattice of the superlattice was compressed to fit to that of substrate. The appearance of satellite peaks indicated that the superlattice was also formed. From the results of RSM around STO(113), CFO grew with twin with the relationship of CFO[100], CFO[010] // STO[110]. The twin started to grow after 4 layer growth, which was confirmed by RHEED and XRD in the CFO monolayer. The full width at half maximum of 0.07º at (002) Bragg reflection of superlattice revealed a good quality growth of the film. Assis. H. Hashiba: Directed Single Photon Emission from CdSe Quantum Dots by TiO2 Photonic Crystals and Si Waveguides is studying. We successfully developed concrete fabrication technique of 150 nm wide metal wires with e-beam lithography. This enables us to fabricate 400 nm-wide lines for Si waveguides. The fine line proves competitiveness of our fabrication technique against many other competitors. with square air gaps on a PCs of Ti thin layer “silicone on an insulator” (SOI) substrate are successfully fabricated. The PC was then oxidized and spun with CdSe Quantum Dots in toluene. Photoluminescence of the sample does not show unidirectional band-gap around 630 nm of wavelength of light in plane direction of the PC. Prof. T. Hashimoto : For development of new solid oxide fuel cells (SOFC) operated below 600 °C, development of new materials is investigated in this study. In order to develop new materials, preparation method employing liquid phase mixing, which can be regarded as nano-scale mixing, has been examined. At present, promising materials such as La1-x-yCaxSryCrO3 with mechanical high strength, uniform BaCe1-xYxO3-! and high electrical conducting LaFe1-xNixO3 have been discovered. !"#$ N.%&'()*+, -. 21 /012 345673489:;< 7/7 Prof. S. Mochizuki : The photoluminescence properties of different pristine CeO2 specimens (bulk crystal, film and nanocrystals) have been firstly studied at different temperatures between 7 K and room temperature. The photo-induced luminescence spectral change has been observed at room temperature for the first time. The phenomenon observed in a vacuum is explained as a photo-induced associative detachment of O2 on the specimen surface, while that observed in O2 gas is explained as a photo-induced dissociative adsorption of O2 on the specimen surface. The photoreduction is accompanied both by a valence number change of cerium ions (Ce4+!Ce3+) and by oxygen defect formation. Such reversible photo-induced phenomena of CeO2 can be applied to light control of the oxygen-storage and oxygen-release processes at metal oxide surfaces. The photoluminescence and photo-induced effect have been also investigated for oxygen storage material (x)CeO2(1x)ZrO2. The observed photoluminescence properties and ultra-violet-laser-light-induced spectral change are explained in terms of both the oxygen defects arising from the deviation from stoichiometry and photo-induced oxygen defects. The photoluminescence properties of pristine NiO and pristine ZrO2 have been clarified in detail for bulk, ceramics and nanocrystal specimens. Prof. S. Chaen : We have constructed expression vectors for 4 kinds of long-wavelength shifted fluorescent proteins. In vitro single molecule imaging of these proteins fixed on a cover glass has been conducted. Each protein exhibits distinctive characteristics upon fluorescence intensity and photo-breaching resistant properties. !"#$ N.%&'()*+, -. 21 /012 3456789: 1/2 !"#$%&'(! ;<=, #>?@A, BCDE, FGHI, JKLM 3456789:NO, PQRSTUTVWXYZ[3456\]^#_`89abcd efghijT[klTme\n, (i) opqrs7#tuVPQRSvopqwx7yz{ |[}~ÄÅÄUTWXYZ[hiÇÉqR5Ñ$ÖsÜ[, áàq56âäz[ãåm eçéhijT, (ii) è@ê53489ëízì{îÄzïñóòôÄóöõúV#_` 89[Zde, UTPQRSVWXYZVùûüji†°Öq¢£[fghijT, §me, (iii) •¶ßzÄ'TV®©a]™e, 34´1¨5ë34≠ÆVØ∞VPQä±≤{Vê5 Vb≥¥µ[∂∑jT[∏ÖTmedi. π∫ÖaO, #>ßzÄ'TJKßzÄ'OPQ RSvªºhiΩæøNVïñwV¿i¡d[f¬m, BCßzÄ'O√ƒ≈∆0V34« V»…z ÄãÀTïñÃÕ[©Œ, ;<ßzÄ'O#≈∆0«Vï4Rœ[g–—ahi. §meFGßzÄ'O346Vb≥ê5[“nø”ijTa]n, 34ä±≤{Vb≥¥µ [∂∑. "/0V‘ßzÄ'V.ûO’øV≠nN÷i. #>ßzÄ' -◊ïñyz{vÿŸ⁄¤‹a›fimØfl‡a~de, ƒ·‚„'„{‰ÂÊ[Zde' „ÁâõâÄËVÈÍf¬[∂™Ø. ÎÏÌÊO, 89Ó0VÔvÒÚNÛÆÙœVıd ƒ·89vˆ˜N÷i. ƒ·fT¯˘fTV˙˚[∂dÛ¸˝v89Ó0V˛ˇN!"a@ # hijT[$%mØ& ' Ø , ( ı)*+,9œ˜v-∏u.edi Cell Broadband Engine(Cell/B.E.)T Graphics Processing Unit (GPU)[ZdeÛïñ/óòôÄóöõVı) Ñ[01m, @2Öa3Zu.i CPU NV89a˙ŒeÛCell/B.E.[âÄ4õ,ÊaáZm Øfl‡O5 150 6ÛGPU [ FDTD ÊaáZmØfl‡O5 10 6Vı)Ñ[•¢mØ. u–a, 78∫v9:[;hifl‡a(ıÓ0qïñ/f¬vˆ˜qâÄËf¬Ê[<=m , "ÌÊ O89Ó0V>?vˆ˜N÷n, @AThiÓ0NBC[ÔNtijTvDu.Ø. JKßzÄ'! EFGaHrIï∫[J~KGIï∫ßÄLMõßV78Nl[OÄP»QƒR<ÊT KGSTÊa]™ef¬m , ›fiwVUw, HrIï∫VIïV[‰ÑmØfl‡V›fiW† œTXwƒ†œ—–, XwƒYZä±≤{ë{≤[ìõßä±≤{Vb≥†œ[\Ø. BCßzÄ' ! ]^ê4a\µi»…z Ä_`ãÀ[a@Öa5fhijT[∏ÖTme, b@cd efa\µisgFV»…z Ähi[_jhiOõ,V_ka~de , j.v.nl~4 mnÁo[fgmØ. pqZd–.etØrlï4stTOuqivQÄízstw[x› hijTa]™e, wyzƒ[{|.ST}~.SaSm , §mejVQÄízstab cÄ34ƒVŤ[∂∑jTa]™e, 2 ï4«V{ÇõsgN÷i 1 {ÉT 3 {ÉsgO, §.Ñ., {|W0âÄË\]^}~W0âÄËaÖü[}~jTvDu.Ø. §me, 3 { ÉsgNO}~wyzƒaW0âÄËÖüa]iÜ[}~jTa]™e , ï4Fá=àLõ óâzV†u:[äµijTvNtiØ∞ , 1 {Ésg]nJãd»…z Ä[}~jTv g–—Tq™Ø. ;<ßzÄ' pqVåWzçL(ãÀV5689NOÛ‘ê4G[rlaé∑óõßzè≤, DMFT vZd–.Ø. m—m, êëœVãdçL(ãÀNOÛê4GFVï4WzvR53a#t ÄíìhiT>îu.i . §jNï/0O, +„{ñÄDMFT(ǃê4—–qi+„{ñÄ [ DMFT a\µióòRK∫NlVô`Tmeé∑ÌÊ)[ZdeÛê4GFVï4Wz[ öõmØ89[∂™ØúùôVØ∞Ûû±ÄËüV†°+Ä(õá=¢[£n›.Øåù ‡ûòz,n§õ[ZdeçL(ãÀ[•mÛ'Ø;¶ß0+„{ñį˘êWÑÊ[Zd eÛDMFT a\µióòRK∫Nl[fdØ&ƒ·89aOÛï/0Û"'()*+,V% !"#$ N.%&'()*+, -. 21 /012 3456789: 2/2 &;<=>?@ 2 ABCD4CPUE16 FGHI PC +JKLBMNO@P89QRST, UV WXY(Z[I\4Z[]^O_`, abI5689<cdef@g4hiI\4VWjk l]mn<opqrjsTS]tu@. vwxyB' \z{M34|1I}~]NÄpÅ]`, KÇÉÑrÖ?_OÜápàâätãåMç éqrjèn]tp. qI{êIëÉLÉxyíÉ,Iìîïñ`, óò]^O_ôöI% &jtef_õ@j, "ú]î3ätùsrOéûI`ü†?tSu@. vw`°¢qI£ §]•¶ß®, ìîïñI©™t´~ät´IZ.].¨?@. ≠@, ÆØî∞W±]≤≥ õ, óò]¥Tf_O@µ∂tìîïñIV∑WàM´s?@. ÆØî∞W±`346I≤ ∏rtpmnt∞π<opj, ∫ª?tOãåIºΩæøî¿rO顬t£§I@√, ≠ ƒ"ú]sØtî≈∆`tef_OtO. ≠@, m«»IøîrW±?_,º… ät34ø îÀÿrOémnt£§]^O_û, ôöI∑O]ÕŒÄpœ–jôöI%&—]“¶ó ò]”Üf_õ@. qI£§I´‘I’÷r?_, ÆØî∞g5I◊fMÿ6Äprõ]3 4ätØŸrOé⁄¤M‹›fiflqrM‡·?@. ÄtÜ›, ‚qpØŸjkl]„eO“ ét‰VÂiIÊOÁË]øîÈMÍÀ?@{ê]`, ÆØî∞W±`sØ]◊f_û“O rO霖<op. qIœ–]≤≥O_ÎÏyÌ]ÓO_ÔtåÈ}~M”éqr]“u _, óò]^ÒpÆØî∞W±I}~`ØŸ 1 <‚qpÚÛ]Àîef_O@qrjsTS rtu@. :r?_IÙı ˆ˜¯BI˘˙ ! 3456789:<`˚/0, ¸˝ST%&—M˛ˇ?!"Iˆ˜¯BM˘˙?@. #$—%&v! Q' () (#*#$+$%&,-(ÉY.G%&ˆÉLB) §/ %¢0{J1É}2%°¢I3§ 4! %-. 21 / 7 5 1 !(6) 16 æ 40 }“¶ {7 %!"#$5+$˝ 89:;< 1 => 131 ? #$—%@A! BC () (!"g4«%&˘DEZ FBGBHπÍIxyB') §/ %JU0FBGB{KI∆$L 4! %-. 21 / 11 5 16 !(5) 16 æ 40 }“¶ {7 %!"#$5+$˝ 89:;< 1 => CST MBy NΩ%&^“O%&P›êÜQ #R-ST%JU0\zô~VI˘D: S. Ohnuki, R. Ohsawa, and T. Yamasaki, “EM Scattering from Rectangular Cylinders with Various Wedge Cavities and Bumps,” IEICE Trans. Electron. (in press).; S. Ohnuki, T. Mochizuki, and T. Yamasaki, “Error Prediction of the Point Matching Method for EM scattering from a Conducting Rectangular Cylinder,” IEEJ Trans., vol. 129, no. 10, 2009. #R-Kw(|1:)%W„XYZ]^Òp'J[ÎÉÎBCIó\´~¯AGÉY¯I] 87^_: H22 ,%;`a; -. 21 /0]bc?@dUe%20 f (4/9, 4/14, 4/21, 4/28, 5/12, 5/19, 5/26, 6/2,6/13, 6/30, 7/23, 8/4, 8/28, 9/5, 9/29, 10/14, 11/10, 12/3, 12/16, 12/24) #R-gv(|1:)%2h0ÍIIbù7ijklI^_: H22 ,%;`a #R-m"(|1:)%2h0ÍIIbù: H22 ,%;`a #R-#5(n}47opßq:)%¯A\rI\Ã}sI´~: H22 ,%;`a Quantum Theory and Computation Group Hiroshi Ishida, Shinichiro Ohnuki, Tokuei Sako, Kazuo Fujikawa and Tsuneki Yamasaki