Comments
Description
Transcript
硬X 線集光ビームを用いた高分解能回折顕微法の
d X üWõr[ðp¢½ªð\ñÜ°÷@Ì Jƻ̫W] ´K¶ v | åãåwåw@Hw¤È ®teBA¤Z^[ 0841 åã{csRcu 2_1 §565_ X üñÜ°÷@ÍRq[g X üUÆÊñvZðgÝí¹½YX X ü°÷@Å èCdq° ÷¾ÅÍÏ@ª¢ïÈú¢¿Ìdq§xªzðóÔªð\ÅÏ@Å«éÆ¢¤Á·ðÂB{¤ÅÍC¸xS½ Ë~[ÉæÁÄ`¬³êé§xd X üWõr[ðìgµ½ªð\ñÜ°÷@ðJµCâimL [u±qð gÁ½fXg[VÀ±É¨¢Ä¢EŪð\ 3 nm ðB¬µ½B¢ãõ¹ X ü©Rdq[U[ðõ¹Æ µÄp¢é±ÆÅÉIÈ X üñÜ°÷@ªÀ»·éÆúÒ³êéB 1. ͶßÉ Å«éÆ·éB±ÌÆ«C\ªûÅϪ³êéUx ÍtóÔðGog Å¡ØÁ½fÊÅÌ\¢öqÌñæ X ü°÷¾Í X üÌ¢§ß«ÆZg·«ð©µC Éäá·éBX üñÜ°÷@Ūð\ðB¬·éÉÍC ú¢¿Ìà\¢ðñjóÅÏ@Å«éû@ƵÄL X üg·Fl ÆϪUxÌÅåUpFumax Å\³ê p¢çêÄ¢éBÁÉCßNÌúËõÈwɨ¢ÄC»Ì é l/{2 sin (2umax )} ª¬³¢±ÆÉÁ¦ÄCÊñv ZpIÈiWÍÚoµ¢BêûC´qªð\ðB¬µÄ¢ ZÌêÓ«Ì¢±Æªv³êéB·Èí¿CÀ±IÉ édq°÷¾Æä×éÆ X ü°÷¾ÍóÔªð\ÌÊŠ͢ S/N äÅ q ñÜxf[^ðªè·é±ÆªK å«ÈxêðÆÁÄ«½B±êÍCX üªdqüÆä× vÅ éBµ©µÈªçCPorod ¥Åmçêéæ¤ÉC¬ Ä»ÌisûüðϦé±Æª¢ïC·Èí¿CDê½ pUxÍ q ÌxLæÉäáµÄ¸·é½ßCªð Yðì»·é±Æª¢ïÅ é±ÆÉNö·éB±Ìâ \ðB¬·é½ßÉÍCtbNX§xÌRq[g èðñðµÄC´IÉ X üg·öx̪ð\ðB¬Â X üªKvÆÈéB±êÜÅäXÌsÁÄ«½ SPring8 \È̪C{eÅq×é X üñÜ°÷@Å éB Ì BL29XUL ÅÌÀ±ÅÍCsz[XbgðÊß X üñÜ°÷@ÍCYÌãíèÉRq[g X µ½ X üðgpµÄ«½ªCtbNX§xÍ\ªÆÍ üUÆÊñvZðp¢éBX üñÜ°÷@Ì´ ¾¦È¢Bá¦ÎC5 keV ÌPF X üðgÁÄ}CN É¢ÄÍC¼ìCÎìÌÚ×ÈðàL1)ª éÌÅ» [gTCYÌà®÷±qðªè·éêC20_30 nm ¿çðQƵĸ«½¢BX üñÜ°÷@ÌðjÍär ÌóÔªð\ð¾éÌÉC1 ÔöxÌ X üÆ˪Kv IóC1999NÌ Miao çÌñ2)ª_@ÆÈÁÄC¢E Å Á½B ÌúËõ{ÝÅÀ±ªsíêéæ¤ÉÈèC±êÜŽ ÌñªÈ³êÄ«½BMÒÍ2006N ©ç¼ìçÆ 3. X üWõr[ðp¢½ñÜ°÷@ ¤¯Å SPring8 ɨ¢Ä X üñÜ°÷@̤ðJn µCÊñASY3) CuJCÞ¿Èw4)C¶ ¨wp5)ÆL¤ðWJµÄ«½B ù¶ÌúËõ¹ðgÁÄCtbNX§xÌ X üð ¾éBêÌû@ª X üðWõ·é±ÆÅ éBúËõp {eÅÍCÁÉÅßsÁÄ«½S½Ë~[Éæè`¬ Ìã\IÈWõõwfqƵÄCS½ËWõ~[CüÜ ³êéd X üWõr[ðpµ½ªð\ñÜ°÷@ YCtl][v[gÈǪmçêC±êçð ÌJÉ¢ÄÐîµC¢ãõ¹ÖÌWJðÜß½« pµ½ñÜ°÷@Í·Åɽñ³êÄ¢éBRobin W]É¢ÄÅãÉq×éB son ç Í C S ½ Ë ~ [ Å W õ µ ½ X ü ð p ¢ é ± Æ ÅCà®im»©çÌRq[gubOñÜp^[ 2. X üñÜ°÷@ÌóÔªð\» ÌRgXgªüã·é±Æðñµ½6) BSchroer çÍCüÜYÅWõµ½ X üðCàim±qÉÆË ¿ÉÆ˳êé X üðPF½ÊgƵC¿ª÷¬ µC»ÌOûUxðªèµC5 nm ªð\Å¿ð Å 1 ñUߪKpÅ«C¿Éæé X üzûª³ Ķµ½7)B±êçÌÀ±ÅÍCǧ¿ðWõ_ÉÝu 188 úËõ May 2010 Vol.23 No.3 X üWõZpÁW ¡ d X üWõr[ðp¢½ªð\ñÜ°÷@ÌJƻ̫W] µC¿Ö̽ÊgƾðzèµÄ¢éBêûCNugent çÍCWõ_©ç£ê½tlÌæÉ¿ðzuµCô ½wIÃÌñÜxƾÌzOf[^ð¯É æ¾·é±ÆÅCĶÌêÓ«ªüã·é±Æ𦵠½8) B±Ìû@ÍCñǧ¨Ì̪èÉpÅ«CÞç ÍC ÁÉ ±Ì û@ ð Keyhole Imaging9) Æ ¼t ¯½ BÜ ½Cǧ¨ÌÉÀè³êÈ¢û@ƵÄYêÄÍÈçÈ¢ ̪CPtychography10) Å èC¿ðRq[g X ü r[ŸµC¸ÌÛÉdÈéÌæðÀóÔS©Æµ ÄpµC¸µ½ÍÍÌ¿ðÄ\¬·éBPfeier Fig. 1 Schematic view of source, elliptical mirror, and slit arrange ment in the present simulation. x and z correspond to the horizontal and vertical directions, respectively. çÍ][v[gÉæèWõ³ê½ X ür[ðgÁ ½ Ptychography ªèðs¢Cüǵ½ Ptychography p ÊñASYÉæèC¿ÌÄ\¬Æ¯Év [uõÌg®ê̸§»ðñµ½11) BܽC²Å ßCKeyhole Imaging Æ Ptychography ðgÝí¹ÄC XÈéÊñvZÌû©«üãðÚwµ½è@àñij ê½12)B 4. S½Ë~[ÉæèWõµ½d X ü r[ðp¢½ªð\ñÜ°÷@Ì J 4.1 Fig. 2 Photon density proles of x rays focused by rst and second mirrors in Table 1, which are calculated one dimensionally in the vertical and horizontal directions when crossslit sizes are 10, 50, 80, and 120 mm in arrangement drawn in Fig. 1. g®õwV~ [VÉæéÀ»Â\«¤ 13) X üS½ËWõ~[ͼÌWõfqÆä×ÄCWõ Å éB±Ì~[ÍCàC÷¬WõX|bg`¬ÉÁ ø¦Ì¢±ÆªÁ·Å éBKirkpatrickBaeziKBj »µ½ NA ~[ÆÍÙÈèCzIÈgÊ`¬ÉÁ ~[14)ÍC2 ÌÈ~`ó~[©çÈé 2 ³Wõf »µ½á NA ~[Å éƾ¦éB qÅ èCKB ~[Éæè÷¬TCYÉWõ³ê½t Fig. 1 Í V ~ [ V Ì T ª } Å é B X ü Í 8 bNX§xÌúËõ X ü͸^ X ü°÷¾Ìv[ keV Ì®SPFC·Èí¿CÔRq[X·Í³À uõƵÄæp¢çêéBñÜ°÷@ªèÉßçêé åƵ½Bõ¹ÍJIXõ¹ÆµCõ¹xð¼ûü 6 X üÍtbNX§xÌ¢±ÆÉÁ¦ÄC¿TCY mmC ½ûü301 mm ÌÌKEXªziAW [^ ƯöxÌóÔRq[X·ðLµÄ¢éKvª éB oûÅÌdqr[TCYðzèjÅ^¦½Bõ¹©çº WõÉæèRq[gÈ X ür[ð`¬·éÉÍC ¬52 m ÉNXXbgiõwnb`àÌNXXb ñÜÀEÅWõµÈ¯êÎÈçÈ¢BSPring8 Ìæ¤È gðzèjðzuµCXbg©çñ48 m º¬iÀ±n ªIÉRq[gÈ X üðp¢ÄñÜÀEÉߢW b` 2jÉ~[ðzuµ½Bõ¹e_©ç·é X ü õðÀ»·éÉÍC¼zIÈõ¹ÌTCYð\ªÉ¬³ Êgð`d³¹CϪ_ÅÍõ¹e_ÉR·é X ü ·éKvª èC»ÌÊCWõÉñ^·é X üª² ÌxÌaðvZµ½B Í©ÆÈÁĵܤB¤JnCäXÍCʽµÄ Fig. 2 ÉWõ_ÅÌõq§xªzð¦·Bõq§xÍC SPring8 ÅWõµÄgÓ¡Ì éhñÜ°÷@À±ªs NXXbgÊuÅÌõq§xÅKi»³êĨèCc ¦éÌ©É¢Ä^âÉvÁÄ¢½B»±ÅCg®õwV ²ÌlÍCNXXbgÊuÉηéõq§xÌÁÌ ~ [VÉæèCªð\ñÜ°÷@ÌÀ»Â\« ÉηéBNXXbgÌJûTCYÉæç¸C ð¢·é±Æɵ½B ¼l 1 mm öxÉWõ³êé±Æªª©éBܽCN SPring8 Ì BL29XUL15) Å õ ¹© çñ 100 m £ ê ½À XXbgÌJûTCYðå«·é±ÆÅCWõÉñ^ ±nb` 2 É KB ~[ðÝu·é±ÆðzèµCÌ ·éõqªÁµCÅ_ÅÌõq§xªÁµÄ¢± @ Wõ_ÌtbN ðl¶µÄ KB ~[ðÝvµ½Bò ƪª©éBܽC~[ÌJûTCYª`100 mm Å X§xªå«Èéæ¤Éô½wIk¬{¦ðå«·éB é±Æ©çCXbgJûTCYð100 mm ÈãƵÄà A ~[ÖÌ X üÎüËp𬳵C©Â\Êe³Ì ò õq§xÌå«ÈϻͩçêÈ©Á½B±±ÅCÚ· ¬³È~[Æ·é±ÆÅ~[©çÌñ¶Uð}¦éB ׫_ÍC¼ûüÍ ½ûüÉä×Ä 1 öõq§x Table 1 ÍCÝvµ½ 2 ÌÈ~~[ÌÝvp[^ ªå«¢Æ¢¤±ÆÅ éB±êÍC¼C ½ûüÅõ úËõ May 2010 Vol.23 No.3 189 Table 1 Parameter of designed elliptical mirrors First mirror Second mirror 1.30 113 1.05 90 Focal lengthimmj Length of major axisimj 600 48.600 495 48.600 Length of minor axisimmj 6.708 4.880 Maximum glancing angleimradj Acceptance widthimmj Fig. 3 Doubleslit interval dependence of visibility calculated in the vertical and horizontal directions. The center of the double slit is on the optical axis. ¹TCYªÙÈé±ÆÉRµÄ¢éB ÉWõ_ÅÌóÔRq[XÉ¢IJ׽BFig. 1 ɦ·æ¤ÉWõ_ÉÍOXbgðzuµCãû Å Ì ± Â È © ç Fringe visibility ð v Z µ ½ B Fig. 3 É Fringe visibility ÌOXbgÔu˶«ð¦·B ¼C ½ûüÆàÉC48 m ã¬ÌNXXbgÌJû TCYÌÁƤÉCWõr[àÌóÔRq[Xª Fig. 4 Appearance of elliptical mirrors fabricated by EEM tech nique. Fig. 5 Appearance of coherent xray diraction microscope with KB mirrors at BL29XUL in SPring8. ặéBܽC ½ûüͼûüÆä×ÄRq[ XÌẪ°Å éB±êàCWõõq§xƯlÉõ ¹TCYÉÖWµÄ¢éBܽCOXbgÔuª` 1.5 mm ð´¦éÆ Fringe visibility ÌÏ»ª¡GÉÈéB ±êÍCWõCr[üèÌTeCg¬ªÌe¿É æéB ÈãÌV~ [VÊæèC2 Ì~[ðgÝ í¹Ä 2 ³Wõ·êÎCWõa`1 mm ÅCõq§x ðS{öxÜÅÁÅ«éƾ¦éBܽCNXX bgªWõr[àÌ X üõq§xÆóÔRq[X ð§ä·éððS¢CNXXbgðKØÈJûTC YÆ·é±ÆÅCWõr[aȺÌTCY¿ÉóÔI ÉRq[gÈ X üðÆËÅ«é±Æªª©éBµ© µÈªçC2 ÈãtbNX§xðÁ³¹éÉÍC xÉwüµ½BFig. 4 É~[ÌOϨæÑ`óë·ªz ¿TCYª`200 nm ȺÅÈ¢ÆRq[gÆË·é ð¦·B~[Ì޿ͬÎpÅ èC~[LøÌæ ±Æª¢ïÅ éB·Èí¿CWõr[aæè\ª¬³ Í 5 mm~90 mm Å èC`óë· 1 nmiP_VjC\Êe ÈTCY¿ÅȯêÎCWõµÄgÓ¡Ì éÀ±hÍ ³0.11 nmiRMSjÅ éBX üÎüËpð`1 mrad Æ s¦È¢Æ¾¦éB Èéæ¤ÉÝvµÄ¢é½ßC\ÊÉà®R[eBO¹ ¸É`10 keV Ì X üÉ¢Ä99÷ÈãÌ¢½Ë¦ª¾ 4.2 KB ~[ðõ¦½ñÜ°÷@uÌJ16) çêéB KB ~[ðgÁħxÉ X üðWõ·éÉÍC ±Ì~[ðõ¦½WõjbgðñÜ°÷@uÉg z`óÉßC¢ X ü½Ë¦ðàÁ½~[Å éK ÝÝCªð\ñÜ°÷@uð\zµ½BFig. 5 É vª éBæÁÄCoéÀè`óë·C\Êe³Ì¬³ uÌOÏð¦·BKB ~[ðõ¦½WõjbgðåC ¢~[Å é±Æª]ܵ¢BåãåwÌRà³öÌO ÉÝuµCJvgðʵÄC^ó`o[àÅ [vÅJ³ê½ Elastic Emission Machining (EEM) X üÍWõ³êéBWõ_ÉCTvðzuµC»Ì Zp17) ÍC`óë·C\Êe³ðim[gI[_[ OûUxð¿©çñ 1 m º¬ÉÝu³êé¼ÚB ÜŬ³·é±ÆÌÅ«éæúIÈÁHZpÅ èC» ^ CCD oíiPrinceton Instruments PI_LCX1300j ÝC®ïÐWFCebN18)©ç EEM ÁHÉæè컵 Ūè·éB ½~[i¤i¼FOSAKA MIRRORjðwü·é±Æ ªÅ«éBäXÍCTable 1 ÌfUCÌ~[ð2008N 190 úËõ May 2010 Vol.23 No.3 X üWõZpÁW ¡ d X üWõr[ðp¢½ªð\ñÜ°÷@ÌJƻ̫W] Fig. 6 4.3 (a) Experimental setup for coherent xray diraction pattern measurements of silver nanocube using x rays focused by KB mirrors. The nanocube was placed at the center of the beam waist. (b) Intensity distribution prole along vertical and horizontal directions of the focused beam. The prole was derived by dierentiating the xray absorption distribution of the gold wires at 250 nm intervals. (c) SEM image of sil ver nanocubes. âimL [uðp¢½ªð\ñÜ°÷@Ìf Xg[VÀ±19) Jµ½ªð\ñÜ°÷@uðp¢½fXg Fig. 7 (a) Coherent diraction pattern of silver nanocube in 1251 ~1251 pixels. q is dened as q2 sin (U/2)/l, where U is the scattering angle and l is the xray wavelength. (b) Ex panded image of the area inside the square in (a). (c) q de pendence, along the white line indicated in (a), of photon numbers detected at one pixel of the CCD detector for the highq diraction measurement. [VÀ±ð SPring8 Ì BL29XUL ÉÄsÁ½B ¿ÉÍ|I[Ò³@Éæè컳ê½200 nm ÈºÌ imL [uðHºµCǧµ½imL [uÌÊuÀW TCYÌâimL [u±qðp¢½20) B±ÌâimL ðXP[[ÚÌõw°÷¾Éæèèµ½B»ÌÊu [uÍP»Å èC\ÊÍ´qxŽÈ{100} ÀWð³ÉCimL [uÉ X üWõr[ðÆ˵ ÊÅ\¬³êéB3 ÍÅq×½æ¤ÉC200 nm ȺÌT ½BimL [u©çÌU X üxð CCD oíŪ CYÌǧ¿ðªè·éêCWõÉæétbNX§ èµCUxªÅåÆÈéêC·Èí¿CFig. 6(a)Ì xÌÁðúÒÅ«éBFig. 6(a)ÉÀ±zuð¦·BWõ }ü}É éæ¤ÉCimL [uªWõr[ÌSÆ r[vt@Cªè̽ßÌàC[àµÍâi Èéæ¤Ézuµ½B±ÌÆ«CWõr[aæèimL mL [uðÀiXe[WÉæèWõ_Ézu·é±Æª [uÌTCYª\ªÉ¬³¢½ßCUàÊàêlÈ Å«éBSi111Ìñ»ªõíÉæè X üGlM[ð12 ½ÊgÉæÁÄƾ³êéÆßÅ«éB keV ÉPF»µC~[æè50 m ã¬ÉÝu³êéN ñÜp^[ªèÍ CCD Ì_Ci~bNWª\ª XXbgÌJûð100 mm Ƶ½BFig. 6(b)ÉC[ ÅÈ¢½ßCágÆgɪ¯Äªè³êC»ê¼ê XL@ÉÄvªµ½ ½ûüC¼ûüÌWõvt X üÆËÔÍ100bC800bÅ Á½BܽCr[X @Cð¦·B¼ûüÆà¼lÅ`1 mm ÉWõÅ«Ä gbvŪèÅ«È¢ÌæÌêÍCñÜp^[ÌS ¢éBWõr[X|bgðñ³ÌKEVAªzƼ ÎÌ«ðpµÄ⮳ê½BFig. 7(a)ÍCÀ±Å¾çê è·éÆCWõ_ɨ¯étbNX§xÍ`1.0~104 ½âimL [uÌñÜp^[Å éB\óÌÁ_Í ph/s/nm2 Å éÆ©Ïàçê½BFig. 6(c)ÉâimL lªág©çgÌæÉLÑÄ¢é̪ª©éB±Ì [u̸^dq°÷¾ð¦·B`[WAbvh~ p^[ÍCõw̳ÈÉÈçK¸ÚÁÄ¢éé`Jû ̽ßÉJ[{ðö µ½ SiN u`bvÉâ ©çÌtEz[t@[ñÜp^[Ư¶Å éB» úËõ May 2010 Vol.23 No.3 191 mFig. 8(c)nB±êÜÅ X üñÜ°÷@ÅÍC10 nm ð´¦ éªð\7,24) ªñ³êÄ¢éªC±Ì 3 nm ªð\Í» êçðãñé¢EÅ̪ð\Å éB 5. ÜÆßÆ«W] {eÅÍCS½Ë~[ÉæèWõµ½d X ür[ ðpµ½ªð\ñÜ°÷@ÌJÉ¢ÄÐîµ½B ¡ñÌâimL [u̪èÅÍCeßÌKpÅ«é Fig. 8 (a) Projection image of the sliver nanocube reconstructed from the diraction pattern in Fig. 7(a) in which a line scan through an edge shown in the inset demonstrates the resolu tion of `3 nm. The reconstructed image is normalized by the maximum value of image intensities and is displayed in gray scale. (b) Phase retrieval transfer function (PRTF) for the reconstructed image of (a). The halfperiod resolution of the image of (a) is 3.0 nm, where the PRTF drops to a value of 1/e. (c) SEM image of the silver nanocube. ÍÍÅ Á½½ßCPêt[ÌñÜxf[^©çÌ ñ³ÌÄ\¬ªÂ\Å Á½B¡ãCæègÌæ ÌñÜf[^ðæ赤êÍCGog ÌȦðl¶ µÈ¯êÎÈçÈ¢BæÁÄCñ³Ä\¬ðæ¾·é êC¿ð÷¬pxñ]³¹C¡Ìt[f[^ð ûW·é±ÆÅCtóÔÌ é½fÊÅÌxf[^ð\ z·éKvª éBMÒÌZÉæéÆC»óÌ SPring 8 Ìõ¹«\Coí«\ÅC¿ÆµÄâimL [u ±qðp¢êÎ subnm óÔªð\ðB¬Å«éBµ©µ ÌxªzÍ sinc ÖÌñæÉ]¤±ÆªmçêÄ¢éB ȪçC§xÅPÈ`ó̱qðp¢ÄóÔªð\Ì Fig. 7(b)ÍñÜp^[ÌSªðgåµ½àÌÅ üãðÚw·±ÆæèC{è@𩵽p¤ðÏÉ èCSÌ¢Ìæªr[Xgbv¨æÑ~[©çÌ IÉs·é±Æ±»dvÅ éÆMÒÍl¦éB´qª ñ¶UÉæèCimL [u©çÌñÜxðªèÅ« ð\ðB¬µÄ¢édq°÷¾ÆÌ·Ê»ð}é½ßÉC È©Á½ÌæÅ éBSXybNÍC¿ÌO`ÉÖ {°÷@ÌÁ·Å éudq§xvâucªzviub ·éîñð½ÜñŨèCr[XgbvÉæéf[^ O½Ëðpµ½êjÌèÊ]¿ªÂ\Æ¢Á½_ð @ÌæªSXybNÌÉûÜÁÄ¢é±ÆªCê ©µ½CpNgÌ ép¤ðWJµÄ¢«½¢B» ÓIÈÄ ¶ðs¤ã ÅdvÅ é±Æªm çêÄ¢ ÝC`ó§ä¬@Éæè컳ê½à®im±qÌO é21) B ±Ì ñÜp ^[ Í TË» Ìð ð ½µ Ĩ ³Ï@ðsÁĨèCdq§xªzðèÊ·é±ÆÉæÁ èCM«Ì¢Ä¶ðs¤±ÆªÅ«éBܽCFig. ÄC`ó§ä¬vZXÌJjYÌð¾Éæègñ 7(c)Í Fig. 7(a)ÌgÌæÌñÜxªzÌfÊŠŢéBܽCubOñÜðpµ½à®Þ¿àÌc èCc²ª800bÌ X üÆËÅo³ê½õqÅ éB êÌC[WOÉàæègñÅ¢éB ñÜxª145 mm|1 tßÅ 5 ÂÌõqªÏª³êĨ {¤ÅÍCǧ¨ÌÉ X ü½ÊgðƾµCOûU èC±êÍñÜp^[ª`3 nm Ì\¢ðªðÅ«½± xðªè·éñÜ°÷@ðÐîµ½ªC»ÝCPty ÆðÓ¡·éB chography â Keyhole imaging Æ ¢ Á ½ Ç § ¨ Ì É À è ÉCñÜp^[©ç¿ÌÄ\¬ðsÁ½B¿ ÌÄ\¬ÉÍ Hybrid Input Output ³êÈ¢è@ÌJª·ñÅ éB±Ìæ¤ÈªèÌê ASY22)ðp C¿Æ¾õª½ÊgÅÈ¢½ßC 究ßÆËÖ ¢½B¶Éæè쬵½ 5 ÂÌ_Èdq§ ðè·é©CÊñvZÌßöÅÆËÖÌèðð xªz©çoµC»ê¼êÉ¢ÄÄ\¬ðs¢C»ê ±o·éKvª éB¶¨¿Ìæ¤Éy³fÅ\¬³ê çð½Ï»·é±ÆÅÅIIÈ¿ð¾½BFig. 8(a)ª éUÌÌêC¿ÌÄ\¬ª¢ïƳêÄ«½ªC Ä\¬³ê½Å èCâimL [uÌlp¢`ðmF ¢ÅßC¶¨¿Å ÁÄàèÊIĶªÂ\Å é Å«éB¡ñ̪èÅÍCÅåUpxª 1 öxŠƢ¤ñªÈ³ê½25) B¡ãC~[õwnÉæéd èCGog ð½ÊÅßÅ«é½ßCeßðKp X üWõr[ðgÁÄC±Ìæ¤ÈªèªÇ±ÜÅK Å«éB·Èí¿C¾çê½Ä\¬ÍâimL [uÌ pÂ\Å éÌ©¢·éKvª éÅ ë¤B dq§xªzÌeÆÝȹéB±ÌÄ\¬ÉÍCî »ÝC¢ãõ¹ÆµÄ X ü©Rdq[U[{ݪ óŦµÄ éÊuÉov\¢ðmFÅ«éBêûC SLAC, DESY, SPring8 ÅÝÅ éBñÜ°÷@Í X Fig. 8(b)ɯ¶imL [uÌ SEM 𦷪C¯¶o ü©Rdq[U[ðp¢êÎCóÔªð\CÔªð\ v\¢ðmFÅ«éBÄ\¬ÌGbWÌfÊð²×½ ÌÊŻ̫\ªòôIÉüã·é±ÆªúÒ³êÄ¢éB ƱëCGbWªð\Í`3 nm Å Á½BܽCÊñ SLAC ÅÍ2009Nx©çî X ü©Rdq[U[Ì[ ÌM«ð\·Êñ`BÖðgÁ½ðÍ23) ɨ U[pÀ±ªJn³êĨèC·ÅÉEBXâim ¢ÄàC3 nm ªð\ðB¬µÄ¢é±ÆðmFÅ«½ »ÌVOVbgªèªsíêCL]Èʪ¾çê 192 úËõ May 2010 Vol.23 No.3 X üWõZpÁW ¡ d X üWõr[ðp¢½ªð\ñÜ°÷@ÌJƻ̫W] ½Æ·¢Ä¢éBߢ«Cú{Ìd X ü©Rdq[ U [ ð OSAKA MIRROR Å W õ µ C É I È X ü C [WOÀ±ªÀ»·é±ÆðèÁÄ¢éB Ó« {eÅq×½ X üñÜ°÷@̤ÍC»w¤ d¤úËõÈw¤Z^[ÌÎìNçZ ^[·C¼ìg¥êC¤õCsåwåw@Hw¤È 16) 17) 18) 19) ̼´pêY³öCåãåwåw@Hw¤ÈÌRàal ³öÌO[vÆ̤¯¤ÉæéàÌÅ éBúËõ p À ± Í CSPring8 Ì » w ¤ êp r [ C BL29XUL ðpµÄsíê½B åãåwåw@¶Ìà ì¹lNi»FxmÊjCvÛplNi»FF»YjCç ÇãNCåÎVNi»Fåwåw@jÉÍúËõÀ± 20) 21) 22) 23) ðT|[gµÄ¸¢½BS©ç´Óð\µã°éBܽC {¤ÍCÈwZpU»²®ïÌÏõÆuáè¤ÒÌ ©§I¤Â«®õ£ivvO¨æÑÈw¤ïá è¤ A Ìx̺Cs³ê½B Ql¶£ 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) ¼ìg¥CÎìNçFúËõ 19, 3_14 (2006). J. Miao, P. Charalambous, J. Kirz and D. Sayre: Nature (London) 400, 342_344 (1999). Y. Takahashi, Y. Nishino and T. Ishikawa: Phys. Rev. A 76, 033822 (2007). Y. Takahashi, Y. Nishino, T. Ishikawa and E. Matsubara: Appl. Phys. Lett. 90, 184105 (2007). Y. Nishino, Y. Takahashi, N. Imamoto, T. Ishikawa and K. Maeshima: Phys. Rev. Lett. 102, 018101 (2009). I. Robinson, F. Pfeier, I. Vartanyants, Y. Sun and Y. Xia: Opt. Express 11, 2329 (2003). C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schoder and C. Riekel: Phys. Rev. Lett. 101, 090801 (2008). G. J. Williams, H. M. Quiney, B. B. Dhal, C. Q. Tran, K. A. Nugent, A. G. Peele, D. Paterson and M. D. de Jonge: Phys. Rev. Lett. 97, 025506 (2006). B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge and I. McNulty: Nat. Phys. 4, 394 (2008). J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeier, O. Bunk, C. David, K. Jemovs and I. Johnson: Phys. Rev. Lett. 98, 034801 (2007). P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David and F. Pfeier: Science 321, 379_ 382 (2008). D. J. Vine, G. J. Williams, B. Abbey, M. A. Pfeifer, J. N. Clark, M. D. de Jonge, I. McNulty, A. G. Peele and K. A. Nugent: Phys. Rev. A 80, 063823 (2009). Y. Takahashi, Y. Nishino, H. Mimura, R. Tsutsumi, H. Kubo, T. Ishikawa and K. Yamauchi: J. Appl. Phys. 105, 083106 (2009). P. Kirkpatrick and A. V. Baez: J. Opt. Soc. Am. 38, 766 (1948). K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki and T. Ishikawa: Nucl. Instrum. 24) 25) Methods Phys. Res. A: 467_468, 686_ 689 (2001); see also BL29XUL outline in SPring8 website http://www.spring8. or.jp. Y. Takahashi, R. Tsutsumi, H. Kubo, Y. Nishino, H. Mimura, S. Matsuyama, T. Ishikawa and K. Yamauchi: Proc. SRI2009 (submitted). K. Yamauchi, H. Mimura, K. Inagaki and Y. Mori: Rev. Sci. Instrum. 73, 111_ 117 (2002). http://www.jtec.co.jp/ Y. Takahashi, Y. Nishino, R. Tsutsumi, H. Kubo, H. Furukawa, H. Mimura, S. Matsuyama, N. Zettsu, E. Mat subara, T. Ishikawa and K. Yamauchi: Phys. Rev. B 80, 054103 (2009). Y. Sun and Y. Xia: Science 298, 2176_2179 (2002). J. Miao, Y. Nishino, Y. Kohmura, B. Johnson, C. Song, S. H. Risbud and T. Ishikawa: Phys. Rev. Lett. 95, 085503 (2005). J. R. Fienup: Appl. Opt. 21, 2758_ 2769 (1982). H. N. Chapman, A. Barty, M. J. Bogan, S. Boutet, M. Frank, S. P. Hau_Riege, S. Marchesini, B. W. Woods, S. Bajt, W. H. Benner, R. A. London, E. Plonjes, M. Kuhlmann, R. Treusch, S. Dusterer, T. Tschentscher, J. R. Schneider, E. Spiller, T. Moller, C. Bostedt, M. Hoener, D. A. Shapiro, K. O. Hodgson, D. V. D. Spoel, F. Burmeister, M. Bergh, C. Chaleman, G. Huldt, M. M. Seibert, F. R. N. C. Maia, R. W. Lee, A. Szoke, N. Timneanu and J. Hajdu: Nat. Phys. 2, 839_ 843 (2006). J. Miao, T. Ishikawa, E. H. Anderson and K. O. Hodgson: Phys. Rev. B 67, 174104 (2003). K. Giewekemeyera, P. Thibault, S. Kalbeisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeier and T. Salditta: Proc. Natl. Acad. Sci. USA 107, 529_534 (2010). ÒÐî ü´K¶ åãåwåw@Hw¤ÈÁCutií Îj »w¤d¤ qõ¤õ i±j ºÉ§§åwxYÆÈwZp¤ ÁCuti±j Email: takahashiwakate.frc.eng.osakau.ac.jp êåFRq[g X üõwCÊñ CX ü\¢ðÍ mªðn 2002N 3 kåwåw@Hw¤È CmÛöC¹C2004N 9 ¯mãú Û öC ¹ C mi H wjFú Ô Zk C 2002N 4 _2004N 9 ú{wpU»ï Áʤõ DC1C2004N10_2005N 3 ú{wpU»ïÁʤõ PDC2005 N 4 _2007N 3 »w¤ îb È w Á Ê ¤ õ C 2007 N 4 æ è » EB¯N 4 æè»w¤d¤ qõ¤õi±jC2010N 2 æèºÉ§§åwxYÆÈwZp¤ ÁCuti±j B úËõ May 2010 Vol.23 No.3 193 Development of highresolution diraction microscopy using focused hard Xray beam and a perspective Yukio TAKAHASHI Frontier Research Center, Graduate School of Engineering, Osaka University, 2_1_1 Yamadaoka, Suita 565_0862, Japan Abstract Xray diraction microscopy is a lensless xray microscopy combining coherent Xray scattering and phase retrieval calculation, allowing to visualize the electron density distribution of thick objects with a high spatial resolution because of its high penetration power and short wavelength. In this study, we deve loped the highresolution diraction microscope using hard Xrays focused by total reection mirrors, and real ized a 3 nm spatial resolution in the demonstration experiment using the silver nanocube as a sample. By using Xray free electron lasers, ultimate xray diraction microscopy will realize by using focused hard Xray free electron lasers. 194 úËõ May 2010 Vol.23 No.3