...

硬X 線集光ビームを用いた高分解能回折顕微法の

by user

on
Category: Documents
16

views

Report

Comments

Transcript

硬X 線集光ビームを用いた高分解能回折顕微法の
d X üWõr[€ðp¢½‚ªð\ñÜ°÷@Ì
J­Æ»Ì«ˆW]
Ÿ´K¶
v
|
åãåwåw@Hw¤†È
®t“eBA¤†Z“^[
0841 åã{csRcu 2_1
§565_
X üñÜ°÷@ÍRq[Œ“g X üUÆʊñœvZðgÝ‡í¹½Œ“YŒX X ü°÷@Å èCdq°
÷¾ÅÍÏ@ª¢ïÈú¢Ž¿Ìdq§xªzð‚óÔªð\ÅÏ@Å«éÆ¢¤Á·ðÂB{¤†ÅÍC‚¸xS½
Ë~‰[ÉæÁÄ`¬³ê邧xd X üWõr[€ðìgµ½‚ªð\ñÜ°÷@ðJ­µCâimL…[u±qð
gÁ½f‚“XgŒ[V‡“À±É¨¢Ä¢Ełªð\ 3 nm ðB¬µ½BŸ¢ãõ¹ X ü©RdqŒ[U[ðõ¹Æ
µÄp¢é±ÆņÉIÈ X üñÜ°÷@ªÀ»·éÆúÒ³êéB
1. ͶßÉ
Å«éÆ·éB±ÌÆ«C\ª“ûÅϪ³êéU­x
ÍtóÔðGo‹g…Å¡ØÁ½fÊÅÌ\¢öqÌñæ
X ü°÷¾Í X ü̂¢§ß«ÆZg·«ðˆ©µC
Éäá·éBX üñÜ°÷@łªð\ðB¬·éÉÍC
ú¢Ž¿Ìà”\¢ðñjóÅÏ@Å«éû@ƵÄL­
X üg·Fl ÆϪU­xÌÅåUpFumax Å\³ê
p¢çêÄ¢éBÁÉCßNÌúËõÈwɨ¢ÄC»Ì
é l/{2 sin (2umax )} ª¬³¢±ÆÉÁ¦ÄCʊñœv
ZpIÈiWÍÚoµ¢BêûC´qªð\ðB¬µÄ¢
ZÌêӫ̂¢±Æªv³êéB·Èí¿CÀ±IÉ
édq°÷¾Æä×éÆ X ü°÷¾ÍóÔªð\ÌÊÅ
͂¢ S/N äł q ñÜ­xf[^ðªè·é±ÆªK
å«ÈxêðÆÁÄ«½B±êÍCX üªdqüÆä×
vÅ éBµ©µÈªçCPorod ¥Åmçêéæ¤ÉC¬
Ä»ÌisûüðϦé±Æª¢ïC·Èí¿CD꽌
pU­xÍ q ÌxLæÉäáµÄ¸Š·é½ßC‚ªð
“Yðì»·é±Æª¢ïÅ é±ÆÉNö·éB±Ìâ
\ðB¬·é½ßÉÍC‚t‰bNX§xÌRq[Œ“g
èðñðµÄC´IÉ X üg·öx̪ð\ðB¬Â
X üªKvÆÈéB±êÜÅäXÌsÁÄ«½ SPring­8
\È̪C{eÅq×é X üñÜ°÷@Å éB
Ì BL29XUL ÅÌÀ±ÅÍCs“z[‹XŠbgðÊß
X üñÜ°÷@ÍCŒ“YÌãíèÉRq[Œ“g X
µ½ X üðgpµÄ«½ªCt‰bNX§xÍ\ªÆÍ
üUÆʊñœvZðp¢éBX üñÜ°÷@Ì´
¾¦È¢Bá¦ÎC5 keV ÌPF X üðgÁÄ}CN
É¢ÄÍC¼ìCÎìÌÚ×ÈðàL–1)ª éÌÅ»
[g‹TCYÌà®÷±qðªè·éê‡C20_30 nm
¿çðQƵĸ«½¢BX üñÜ°÷@ÌðjÍär
ÌóÔªð\ð¾éÌÉC1 žÔöxÌ X üÆ˪Kv
Ió­C1999NÌ Miao çÌñ2)ª_@ÆÈÁÄC¢E
Å Á½B
†ÌúËõ{ÝÅÀ±ªsíêéæ¤ÉÈèC±êÜŽ
­ÌñªÈ³êÄ«½BMÒÍ2006N ©ç¼ìçÆ
3. X üWõr[€ðp¢½ñÜ°÷@
¤¯Å SPring­8 ɨ¢Ä X üñÜ°÷@̤†ðJn
µCʊñœA‹SŠY€3) C•uJ­CÞ¿Èw4)C¶
¨wžp5)ƝL­¤†ðWJµÄ«½B
ù¶ÌúËõ¹ðgÁÄC‚t‰bNX§xÌ X üð
¾éBêÌû@ª X üðWõ·é±ÆÅ éBúËõp
{eÅÍCÁÉÅßsÁÄ«½S½Ë~‰[Éæè`¬
Ìã\IÈWõõwfqƵÄCS½ËWõ~‰[CüÜ
³êéd X üWõr[€ð˜pµ½‚ªð\ñÜ°÷@
Œ“YCtŒl‹][“vŒ[gÈǪmçêC±êçð
ÌJ­É¢ÄÐîµCŸ¢ãõ¹ÖÌWJðÜß½«ˆ
˜pµ½ñÜ°÷@Í·Åɽ”ñ³êÄ¢éBRobin­
W]É¢ÄÅãÉq×éB
son ç Í C S ½ Ë ~ ‰ [ Å W õ µ ½ X ü ð p ¢ é ± Æ
ÅCà®im‹»©çÌRq[Œ“gu‰bOñÜp^[
2. X üñÜ°÷@̂óÔªð\»
“ÌR“g‰Xgªüã·é±Æðñµ½6) BSchroer
çÍCü܌“YÅWõµ½ X üðCàim±qÉÆË
Ž¿ÉÆ˳êé X üðPF½ÊgƵCŽ¿ª÷¬
µC»ÌOûU­xðªèµC5 nm ªð\Ŏ¿œð
Å 1 ñUß—ªKpÅ«CŽ¿Éæé X üzûª³‹
Ķµ½7)B±êçÌÀ±ÅÍCǧŽ¿ðWõ_ÉÝu
188
œ úËõ May 2010 Vol.23 No.3
X üWõZpÁW ¡ d X üWõr[€ðp¢½‚ªð\ñÜ°÷@ÌJ­Æ»Ì«ˆW]
µCŽ¿Ö̽ÊgƾðzèµÄ¢éBêûCNugent
çÍCWõ_©ç£ê½tŒl‹ÌæɎ¿ðzuµCô
½wIÔÌñÜ­xƾ”ÌzO‰€f[^ð¯žÉ
æ¾·é±ÆÅCœÄ¶ÌêÓ«ªüã·é±Æð¦µ
½8) B±Ìû@ÍCñǧ¨Ì̪èɞpÅ«CÞç
ÍC ÁÉ ±Ì û@ ð Keyhole Imaging9) Æ ¼t ¯½ BÜ
½Cǧ¨ÌÉÀè³êÈ¢û@ƵÄYêÄÍÈçÈ¢
̪CPtychography10) Å èCŽ¿ðRq[Œ“g X ü
r[€Å–¸µC–¸ÌÛÉdÈéÌæðÀóÔS©Æµ
ĈpµC–¸µ½ÍÍ̎¿œðÄ\¬·éBPfeiŠer
Fig. 1
Schematic view of source, elliptical mirror, and slit arrange­
ment in the present simulation. x and z correspond to the
horizontal and vertical directions, respectively.
çÍ][“vŒ[gÉæèWõ³ê½ X ür[€ðgÁ
½ Ptychography ªèðs¢Cüǵ½ Ptychography p
ʊñœA‹SŠY€ÉæèCŽ¿œÌÄ\¬Æ¯žÉv
[uõÌg®ê̸§»ðñµ½11) BܽC²­Å
ßCKeyhole Imaging Æ Ptychography ðg݇í¹ÄC
XÈéʊñœvZÌû©«üãðÚwµ½è@àñij
ê½12)B
4. S½Ë~‰[ÉæèWõµ½d X ü
r[€ðp¢½‚ªð\ñÜ°÷@Ì
J­
4.1
Fig. 2 Photon density proˆles of x rays focused by ˆrst and second
mirrors in Table 1, which are calculated one dimensionally in
the vertical and horizontal directions when cross­slit sizes are
10, 50, 80, and 120 mm in arrangement drawn in Fig. 1.
g®õwV~…Œ[V‡“ÉæéÀ»Â\«¤
†13)
X üS½ËWõ~‰[ͼÌWõfqÆä×ÄCWõ
Å éB±Ì~‰[ÍCŠàC÷¬WõX|bg`¬ÉÁ
ø¦Ì‚¢±ÆªÁ·Å éBKirkpatrick­BaeziKBj
»µ½‚ NA ~‰[ÆÍÙÈèCzIÈgÊ`¬ÉÁ
~‰[14)ÍC2 ‡ÌÈ~`ó~‰[©çÈé 2 Ÿ³Wõf
»µ½á NA ~‰[Å éƾ¦éB
qÅ èCKB ~‰[Éæè÷¬TCYÉWõ³ê½‚t
Fig. 1 Í V ~ … Œ [ V ‡ “ Ì T ª } Å é B X ü Í 8
‰bNX§xÌúËõ X ü͖¸^ X ü°÷¾Ìv[
keV Ì®SPFC·Èí¿CžÔRq[Œ“X·Í³À
uõƵÄæ­p¢çêéBñÜ°÷@ªèɁßçêé
åƵ½Bõ¹ÍJIXõ¹ÆµCõ¹­xð‚¼ûü 6
X üÍt‰bNX§x̂¢±ÆÉÁ¦ÄCŽ¿TCY
mmC…½ûü301 mm ̝ÌKEXªziA“W…Œ[^
ƯöxÌóÔRq[Œ“X·ðLµÄ¢éKvª éB
oûÅÌdqr[€TCYðzèjÅ^¦½Bõ¹©çº
WõÉæèRq[Œ“gÈ X ür[€ð`¬·éÉÍC
¬52 m ÉNXXŠbgiõwnb`àÌNXXŠb
ñÜÀEÅWõµÈ¯êÎÈçÈ¢BSPring­8 Ìæ¤È
gðzèjðzuµCXŠbg©çñ48 m º¬iÀ±n
”ªIÉRq[Œ“gÈ X üðp¢ÄñÜÀEÉߢW
b` 2jÉ~‰[ðzuµ½Bõ¹e_©ç­·é X ü
õðÀ»·éÉÍC¼zIÈõ¹ÌTCYð\ªÉ¬³­
…Êgð`d³¹CϪ_ÅÍõ¹e_ÉRˆ·é X ü
·éKvª èC»Ì‹ÊCWõÉñ^·é X üª²­
Ì­xÌaðvZµ½B
Í©ÆÈÁĵܤB¤†Jn–‰CäXÍCʽµÄ
Fig. 2 ÉWõ_ÅÌõq§xªzð¦·Bõq§xÍC
SPring­8 ÅWõµÄgÓ¡Ì éhñÜ°÷@À±ªs
NXXŠbgÊuÅÌõq§xÅKi»³êĨèCc
¦éÌ©É¢Ä^âÉvÁÄ¢½B»±ÅCg®õwV
²ÌlÍCNXXŠbgÊuÉηéõq§x̝ÁÌ
~…Œ[V‡“ÉæèC‚ªð\ñÜ°÷@ÌÀ»Â\«
„‡ÉΞ·éBNXXŠbgÌJûTCYÉæç¸C
🢷é±Æɵ½B
¼l 1 mm öxÉWõ³êé±Æªª©éBܽCN
SPring­8 Ì BL29XUL15) Å õ ¹© çñ 100 m £ ê ½À
XXŠbgÌJûTCYðå«­·é±ÆÅCWõÉñ^
±nb` 2 É KB ~‰[ðÝu·é±ÆðzèµCŸÌ
·éõq”ªÁµCÅ_ÅÌõq§xªÁµÄ¢­±
@ Wõ_Ìt‰bN
–ðl¶µÄ KB ~‰[ðÝvµ½Bò
ƪª©éBܽC~‰[ÌJûTCYª`100 mm Å X§xªå«­Èéæ¤Éô½wIk¬{¦ðå«­·éB
é±Æ©çCXŠbgJûTCYð100 mm ÈãƵÄà
A ~‰[ÖÌ X üÎüËp𬳭µC©Â\Êe³Ì
ò
õq§xÌå«ÈϻͩçêÈ©Á½B±±ÅCÚ·
¬³È~‰[Æ·é±ÆÅ~‰[©çÌñ¶Uð}¦éB
׫_ÍC‚¼ûüͅ½ûüÉä×Ä 1 …öõq§x
Table 1 ÍCÝvµ½ 2 ‡ÌÈ~~‰[ÌÝvp‰[^
ªå«¢Æ¢¤±ÆÅ éB±êÍC‚¼C…½ûüÅõ
úËõ May 2010 Vol.23 No.3 œ 189
Table 1
Parameter of designed elliptical mirrors
First mirror
Second mirror
1.30
113
1.05
90
Focal lengthimmj
Length of major axisimj
600
48.600
495
48.600
Length of minor axisimmj
6.708
4.880
Maximum glancing angleimradj
Acceptance widthimmj
Fig. 3
Double­slit interval dependence of visibility calculated in the
vertical and horizontal directions. The center of the double
slit is on the optical axis.
¹TCYªÙÈé±ÆÉRˆµÄ¢éB
ŸÉWõ_ÅÌóÔRq[Œ“XÉ¢IJ׽BFig.
1 ɦ·æ¤ÉWõ_É̈́“OXŠbgðzuµCãû
Å Ì ± Â È © ç Fringe visibility ð v Z µ ½ B Fig. 3 É
Fringe visibility ̄“OXŠbgÔu˶«ð¦·B‚
¼C…½ûüÆàÉC48 m ã¬ÌNXXŠbgÌJû
TCY̝ÁƤÉCWõr[€àÌóÔRq[Œ“Xª
Fig. 4
Appearance of elliptical mirrors fabricated by EEM tech­
nique.
Fig. 5
Appearance of coherent x­ray diŠraction microscope with
KB mirrors at BL29XUL in SPring­8.
ặéBܽC…½ûü͂¼ûüÆä×ÄRq[Œ“
XÌẪ°˜Å éB±êàCWõõq§xƯlÉõ
¹TCYÉÖWµÄ¢éBܽC„“OXŠbgÔuª`
1.5 mm ð´¦éÆ Fringe visibility ÌÏ»ª¡GÉÈéB
±êÍCWõC“r[€üèÌTe‰Cg¬ªÌe¿É
æéB
ÈãÌV~…Œ[V‡“‹ÊæèC2 ‡Ì~‰[ðgÝ
í¹Ä 2 Ÿ³Wõ·êÎCWõa`1 mm ÅCõq§x
ð”S{öxÜŝÁÅ«éƾ¦éBܽCNXXŠ
bgªWõr[€àÌ X üõq§xÆóÔRq[Œ“X
ð§ä·éð„ðS¢CNXXŠbgðKØÈJûTC
YÆ·é±ÆÅCWõr[€aȺÌTCYŽ¿ÉóÔI
ÉRq[Œ“gÈ X üðÆËÅ«é±Æªª©éBµ©
µÈªçC2 …Èãt‰bNX§xðÁ³¹éÉÍCŽ
xÉwüµ½BFig. 4 É~‰[ÌOϨæÑ`óë·ªz
¿TCYª`200 nm ȺÅÈ¢ÆRq[Œ“gÆË·é
ð¦·B~‰[Ì޿͇¬ÎpÅ èC~‰[LøÌæ
±Æª¢ïÅ éB·Èí¿CWõr[€aæè\ª¬³
Í 5 mm~90 mm Å èC`óë· 1 nmiP_VjC\Êe
ÈTCYŽ¿ÅȯêÎCWõµÄgÓ¡Ì éÀ±hÍ
³0.11 nmiRMSjÅ éBX üÎüËpð`1 mrad Æ
s¦È¢Æ¾¦éB
Èéæ¤ÉÝvµÄ¢é½ßC\ÊÉà®R[eB“O¹
¸É`10 keV Ì X üÉ¢Ä99÷Èã̂¢½Ë¦ª¾
4.2
KB
~‰[ðõ¦½ñÜ°÷@•uÌJ­16)
çêéB
KB ~‰[ðgÁçxÉ X üðWõ·éÉÍC
±Ì~‰[ðõ¦½Wõ†jbgðñÜ°÷@•uÉg
z`óÉß­C‚¢ X ü½Ë¦ðàÁ½~‰[Å éK
ݞÝC‚ªð\ñÜ°÷@•uð\zµ½BFig. 5 ɕ
vª éBæÁÄCoˆéÀè`óë·C\Êe³Ì¬³
uÌOÏð¦·BKB ~‰[ðõ¦½Wõ†jbgðåC
¢~‰[Å é±Æª]ܵ¢BåãåwÌRà³öÌO
†ÉÝuµCJvg“‹ðʵÄC^ó`ƒ“o[àÅ
‹[vÅJ­³ê½ Elastic Emission Machining (EEM)
X üÍWõ³êéBWõ_ÉCT“v‹ðzuµC»Ì
Zp17) ÍC`óë·C\Êe³ðim[g‹I[_[
OûU­xðŽ¿©çñ 1 m º¬ÉÝu³êé¼ÚB
ÜŬ³­·é±ÆÌÅ«éæúIÈÁHZpÅ èC»
œ^ CCD ŸoíiPrinceton Instruments PI_LCX1300j
ÝC”®ïÐWFCebN18)©ç EEM ÁHÉæè컵
Ūè·éB
½~‰[i¤i¼FOSAKA MIRRORjðwü·é±Æ
ªÅ«éBäXÍCTable 1 ÌfUC“Ì~‰[ð2008N
190
œ úËõ May 2010 Vol.23 No.3
X üWõZpÁW ¡ d X üWõr[€ðp¢½‚ªð\ñÜ°÷@ÌJ­Æ»Ì«ˆW]
Fig. 6
4.3
(a) Experimental setup for coherent x­ray diŠraction pattern
measurements of silver nanocube using x rays focused by KB
mirrors. The nanocube was placed at the center of the beam
waist. (b) Intensity distribution proˆle along vertical and
horizontal directions of the focused beam. The proˆle was
derived by diŠerentiating the x­ray absorption distribution
of the gold wires at 250 nm intervals. (c) SEM image of sil­
ver nanocubes.
âimL…[uðp¢½‚ªð\ñÜ°÷@Ìf
‚“XgŒ[V‡“À±19)
J­µ½‚ªð\ñÜ°÷@•uðp¢½f‚“Xg
Fig. 7
(a) Coherent diŠraction pattern of silver nanocube in 1251
~1251 pixels. q is deˆned as q2 sin (U/2)/l, where U is
the scattering angle and l is the x­ray wavelength. (b) Ex­
panded image of the area inside the square in (a). (c) q de­
pendence, along the white line indicated in (a), of photon
numbers detected at one pixel of the CCD detector for the
high­q diŠraction measurement.
Œ[V‡“À±ð SPring­8 Ì BL29XUL ÉÄsÁ½BŽ
¿ÉÍ|ŠI[‹Ò³@Éæè컳ê½200 nm ȺÌ
imL…[uðHºµCǧµ½imL…[uÌÊuÀW
TCYÌâimL…[u±qðp¢½20) B±ÌâimL
ðXP[‰[‹ÚÌõw°÷¾Éæèˆèµ½B»ÌÊu
…[uÍP‹»Å èC\ÊÍ´qŒx‹Å½ŠÈ{100}
ÀWð³ÉCimL…[uÉ X üWõr[€ðÆ˵
ÊÅ\¬³êéB3 ÍÅq×½æ¤ÉC200 nm ȺÌT
½BimL…[u©çÌU X ü­xð CCD ŸoíŪ
CYÌǧŽ¿ðªè·éê‡CWõÉæét‰bNX§
èµCU­xªÅåÆÈéêŠC·Èí¿CFig. 6(a)Ì
x̝ÁðúÒÅ«éBFig. 6(a)ÉÀ±zuð¦·BWõ
}ü}É éæ¤ÉCimL…[uªWõr[€Ì†SÆ
r[€vt@C‹ªè̽ßÌàC„[൭Íâi
Èéæ¤Ézuµ½B±ÌÆ«CWõr[€aæèimL
mL…[uðÀiXe[WÉæèWõ_Ézu·é±Æª
…[uÌTCYª\ªÉ¬³¢½ßCUàʊàêlÈ
Å«éBSi111Ìñ‹»ªõíÉæè X üGl‹M[ð12
½ÊgÉæÁÄƾ³êéÆߗūéB
keV ÉPF»µC~‰[æè50 m ã¬ÉÝu³êéN
ñÜp^[“ªèÍ CCD Ì_Ci~bNŒ“Wª\ª
XXŠbgÌJûð100 mm Ƶ½BFig. 6(b)ɏC„[
ÅÈ¢½ßCág”Æ‚g”ɪ¯Äªè³êC»ê¼ê
XLƒ“@ÉÄvªµ½…½ûüC‚¼ûüÌWõvt
X üÆ˞ÔÍ100bC800bÅ Á½BܽCr[€X
@C‹ð¦·B¼ûüÆà¼lÅ`1 mm ÉWõÅ«Ä
gbvŪèÅ«È¢ÌæÌê”ÍCñÜp^[“̆S
¢éBWõr[€X|bgðñŸ³ÌKEVA“ªzƼ
ÎÌ«ð˜pµÄ⮳ê½BFig. 7(a)ÍCÀ±Å¾çê
è·éÆCWõ_ɨ¯ét‰bNX§xÍ`1.0~104
½âimL…[uÌñÜp^[“Å éB\šóÌÁ_Í
ph/s/nm2 Å éÆ©Ïàçê½BFig. 6(c)ÉâimL
lªág”©ç‚g”ÌæÉLÑÄ¢é̪ª©éB±Ì
…[u̖¸^dq°÷¾œð¦·B`ƒ[WAbvh~
p^[“ÍCõw̳ȑÉÈçK¸ÚÁÄ¢éé`Jû
̽ßÉJ[{“ðö…µ½ SiN “uŒ“`bvÉâ
©çÌt‰E“z[t@[ñÜp^[“Ư¶Å éB»
úËõ May 2010 Vol.23 No.3 œ 191
mFig. 8(c)nB±êÜÅ X üñÜ°÷@ÅÍC10 nm ð´¦
éªð\7,24) ªñ³êÄ¢éªC±Ì 3 nm ªð\Í»
êçðãñé¢Eł̪ð\Å éB
5. ÜÆßÆ«ˆW]
{eÅÍCS½Ë~‰[ÉæèWõµ½d X ür[€
ð˜pµ½‚ªð\ñÜ°÷@ÌJ­É¢ÄÐîµ½B
¡ñÌâimL…[u̪èÅÍCŠeߗÌKpÅ«é
Fig. 8
(a) Projection image of the sliver nanocube reconstructed
from the diŠraction pattern in Fig. 7(a) in which a line scan
through an edge shown in the inset demonstrates the resolu­
tion of `3 nm. The reconstructed image is normalized by
the maximum value of image intensities and is displayed in
gray scale. (b) Phase retrieval transfer function (PRTF) for
the reconstructed image of (a). The half­period resolution
of the image of (a) is 3.0 nm, where the PRTF drops to a
value of 1/e. (c) SEM image of the silver nanocube.
ÍÍÅ Á½½ßCPêtŒ[€ÌñÜ­xf[^©çÌ
ñŸ³œÌÄ\¬ªÂ\Å Á½B¡ãCæè‚g”Ìæ
ÌñÜf[^ðæ赤ê‡ÍCGo‹g…ÌȦðl¶
µÈ¯êÎÈçÈ¢BæÁÄCñŸ³Ä\¬œðæ¾·é
ê‡CŽ¿ð÷¬pxñ]³¹C¡”ÌtŒ[€f[^ð
ûW·é±ÆÅCtóÔÌ é½fÊÅÌ­xf[^ð\
z·éKvª éBMÒ̎ZÉæéÆC»óÌ SPring­
8 Ìõ¹«\CŸoí«\ÅCŽ¿ÆµÄâimL…[u
±qðp¢êÎ sub­nm óÔªð\ðB¬Å«éBµ©µ
Ì­xªzÍ sinc ֔ÌñæÉ]¤±ÆªmçêÄ¢éB
ȪçC‚§xÅPƒÈ`ó̱qðp¢ÄóÔªð\Ì
Fig. 7(b)ÍñÜp^[“̆S”ªðgåµ½àÌÅ üãðÚw·±ÆæèC{è@ðˆ©µ½žp¤†ðÏÉ
èC†S̕¢Ìæªr[€Xgbv¨æÑ~‰[©çÌ
Iɋs·é±Æ±»dvÅ éÆMÒÍl¦éB´qª
ñ¶UÉæèCimL…[u©çÌñÜ­xðªèÅ«
ð\ðB¬µÄ¢édq°÷¾ÆÌ·Ê»ð}é½ßÉC
È©Á½ÌæÅ éB†SXybN‹ÍCŽ¿ÌO`ÉÖ
{°÷@ÌÁ·Å éudq§xvâucªzviu‰b
·éîñð½­ÜñŨèCr[€XgbvÉæéf[^
O½Ëð˜pµ½ê‡jÌèÊ]¿ªÂ\Æ¢Á½_ðˆ
‡@Ì檆SXybN‹Ì†ÉûÜÁÄ¢é±ÆªCê
©µ½C“pNgÌ éžp¤†ðWJµÄ¢«½¢B»
ÓIÈœÄ ¶ðs¤ã ÅdvÅ é±Æªm çêÄ¢
ÝC`ó§ä‡¬@Éæè컳ê½à®im±qÌOŸ
é21) B ±Ì ñÜp ^[ “Í TË» Ìð ð ž½µ Ĩ
³Ï@ðsÁĨèCdq§xªzðèÊ·é±ÆÉæÁ
èCMŠ«Ì‚¢œÄ¶ðs¤±ÆªÅ«éBܽCFig.
ÄC`ó§ä‡¬vZX́JjY€Ìð¾Éæègñ
7(c)Í Fig. 7(a)̂g”ÌæÌñÜ­xªzÌfÊŠŢéBܽCu‰bOñÜð˜pµ½à®Þ¿à”Ìc
èCc²ª800bÌ X üÆËşo³ê½õq”Å éB
êÌC[W“OÉàæègñÅ¢éB
ñÜ­xª145 mm|1 tßÅ 5 ÂÌõqªÏª³êĨ
{¤†ÅÍCǧ¨ÌÉ X ü½ÊgðƾµCOûU
èC±êÍñÜp^[“ª`3 nm Ì\¢ðªðÅ«½±
­xðªè·éñÜ°÷@ðÐîµ½ªC»ÝCPty­
ÆðÓ¡·éB
chography â Keyhole imaging Æ ¢ Á ½ Ç § ¨ Ì É À è
ŸÉCñÜp^[“©çŽ¿œÌÄ\¬ðsÁ½BŽ¿
œÌÄ\¬ÉÍ Hybrid Input Output
³êÈ¢è@ÌJ­ª·ñÅ éB±Ìæ¤ÈªèÌê
A‹SŠY€22)ðp
‡CŽ¿Æ¾õª½ÊgÅÈ¢½ßC 究ßÆË֔
¢½B”­¶Éæè쬵½ 5 Ẩ“_€Èdq§
ðˆè·é©CʊñœvZÌßöÅÆË֔̄èðð
xªz©ço­µC»ê¼êÉ¢ÄÄ\¬ðs¢C»ê
±o·éKvª éB¶¨Ž¿Ìæ¤Éy³fÅ\¬³ê
çð½Ï»·é±ÆÅÅIIȎ¿œð¾½BFig. 8(a)ª
éUÌÌê‡CŽ¿œÌÄ\¬ª¢ïƳêÄ«½ªC
Ä\¬³ê½œÅ èCâimL…[uÌlp¢`ðmF
¢ÅßC¶¨Ž¿Å ÁÄàèÊIœÄ¶ªÂ\Å é
Å«éB¡ñ̪èÅÍCÅåUpxª 1‹
öxŠƢ¤ñªÈ³ê½25) B¡ãC~‰[õwnÉæéd
èCGo‹g…ð½ÊÅߗūé½ßCŠeߗðKp
X üWõr[€ðgÁÄC±Ìæ¤ÈªèªÇ±ÜÅK
Å«éB·Èí¿C¾çê½Ä\¬œÍâimL…[uÌ
pÂ\Å éÌ©Ÿ¢·éKvª éÅ ë¤B
dq§xªz̊eœÆÝȹéB±ÌÄ\¬œÉÍCî
»ÝCŸ¢ãõ¹ÆµÄ X ü©RdqŒ[U[{ݪ
óŦµÄ éÊuÉo“v\¢ðmFÅ«éBêûC
SLAC, DESY, SPring­8 Ś݆ŠéBñÜ°÷@Í X
Fig. 8(b)ɯ¶imL…[uÌ SEM œð¦·ªC¯¶o
ü©RdqŒ[U[ðp¢êÎCóÔªð\CžÔªð\
“v\¢ðmFÅ«éBÄ\¬œÌGbWÌfÊð²×½
ÌÊŻ̫\ªòôIÉüã·é±ÆªúÒ³êÄ¢éB
ƱëCGbWªð\Í`3 nm Å Á½BܽCʊñ
SLAC ÅÍ2009Nx©çî X ü©RdqŒ[U[̆[
œÌMŠ«ð\·ÊŠñœ`B֔ðgÁ½ðÍ23) ɨ
U[˜pÀ±ªJn³êĨèC·ÅÉEB‹Xâim‹
¢ÄàC3 nm ªð\ðB¬µÄ¢é±ÆðmFÅ«½
»ÌV“O‹V‡bgªèªsíêCL]ȋʪ¾çê
192
œ úËõ May 2010 Vol.23 No.3
X üWõZpÁW ¡ d X üWõr[€ðp¢½‚ªð\ñÜ°÷@ÌJ­Æ»Ì«ˆW]
½Æ·¢Ä¢éBߢ«ˆCú{Ìd X ü©RdqŒ[
U [ ð OSAKA MIRROR Å W õ µ C † É I È X ü C
[W“OÀ±ªÀ»·é±ÆðèÁÄ¢éB
Ó«
{eÅq×½ X üñÜ°÷@̤†ÍC»w¤†Š
d¤†ŠúËõÈw‡¤†Z“^[ÌÎìNçZ“
^[·C¼ìg¥êC¤†õCžsåwåw@Hw¤†È
16)
17)
18)
19)
̼´pêY³öCåãåwåw@Hw¤†ÈÌRàal
³öÌO‹[vÆ̤¯¤†ÉæéàÌÅ éBúËõ˜
p À ± Í CSPring­8 Ì  » w ¤ † Š êp r [ € ‰ C “
BL29XUL ð˜pµÄsíê½B
åãåwåw@¶ÌÃ
ì¹lNi»FxmÊjCvÛplNi»FF”»YjCç
ÇãNCåÎVNi»FŒžåwåw@jÉÍúËõÀ±
20)
21)
22)
23)
ðT|[gµÄ¸¢½BS©ç´Óð\µã°éBܽC
{¤†ÍCÈwZpU»²®ïÌÏõ–Æuá褆ÒÌ
©§I¤†Â«®õ£ivvO‰€¨æÑÈw¤†ïá
褆 A Ìx‡ÌºC‹s³ê½B
Ql¶£
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
¼ìg¥CÎìNçFúËõ 19, 3_14 (2006).
J. Miao, P. Charalambous, J. Kirz and D. Sayre: Nature
(London) 400, 342_344 (1999).
Y. Takahashi, Y. Nishino and T. Ishikawa: Phys. Rev. A 76,
033822 (2007).
Y. Takahashi, Y. Nishino, T. Ishikawa and E. Matsubara:
Appl. Phys. Lett. 90, 184105 (2007).
Y. Nishino, Y. Takahashi, N. Imamoto, T. Ishikawa and K.
Maeshima: Phys. Rev. Lett. 102, 018101 (2009).
I. Robinson, F. PfeiŠer, I. Vartanyants, Y. Sun and Y. Xia:
Opt. Express 11, 2329 (2003).
C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommel, A.
Schropp, A. Schwab, S. Stephan, M. Burghammer, S.
Schoder and C. Riekel: Phys. Rev. Lett. 101, 090801 (2008).
G. J. Williams, H. M. Quiney, B. B. Dhal, C. Q. Tran, K. A.
Nugent, A. G. Peele, D. Paterson and M. D. de Jonge: Phys.
Rev. Lett. 97, 025506 (2006).
B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G.
Peele, M. A. Pfeifer, M. de Jonge and I. McNulty: Nat. Phys.
4, 394 (2008).
J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F.
PfeiŠer, O. Bunk, C. David, K. Jeˆmovs and I. Johnson:
Phys. Rev. Lett. 98, 034801 (2007).
P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David and
F. PfeiŠer: Science 321, 379_
382 (2008).
D. J. Vine, G. J. Williams, B. Abbey, M. A. Pfeifer, J. N.
Clark, M. D. de Jonge, I. McNulty, A. G. Peele and K. A.
Nugent: Phys. Rev. A 80, 063823 (2009).
Y. Takahashi, Y. Nishino, H. Mimura, R. Tsutsumi, H.
Kubo, T. Ishikawa and K. Yamauchi: J. Appl. Phys. 105,
083106 (2009).
P. Kirkpatrick and A. V. Baez: J. Opt. Soc. Am. 38, 766
(1948).
K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N.
Kawamura, M. Suzuki and T. Ishikawa: Nucl. Instrum.
24)
25)
Methods Phys. Res. A: 467_468, 686_
689 (2001); see also
BL29XUL outline in SPring­8 website http://www.spring8.
or.jp.
Y. Takahashi, R. Tsutsumi, H. Kubo, Y. Nishino, H.
Mimura, S. Matsuyama, T. Ishikawa and K. Yamauchi: Proc.
SRI2009 (submitted).
K. Yamauchi, H. Mimura, K. Inagaki and Y. Mori: Rev. Sci.
Instrum. 73, 111_
117 (2002).
http://www.j­tec.co.jp/
Y. Takahashi, Y. Nishino, R. Tsutsumi, H. Kubo, H.
Furukawa, H. Mimura, S. Matsuyama, N. Zettsu, E. Mat­
subara, T. Ishikawa and K. Yamauchi: Phys. Rev. B 80,
054103 (2009).
Y. Sun and Y. Xia: Science 298, 2176_2179 (2002).
J. Miao, Y. Nishino, Y. Kohmura, B. Johnson, C. Song, S. H.
Risbud and T. Ishikawa: Phys. Rev. Lett. 95, 085503 (2005).
J. R. Fienup: Appl. Opt. 21, 2758_
2769 (1982).
H. N. Chapman, A. Barty, M. J. Bogan, S. Boutet, M. Frank,
S. P. Hau_Riege, S. Marchesini, B. W. Woods, S. Bajt, W.
H. Benner, R. A. London, E. Plonjes, M. Kuhlmann, R.
Treusch, S. Dusterer, T. Tschentscher, J. R. Schneider, E.
Spiller, T. Moller, C. Bostedt, M. Hoener, D. A. Shapiro, K.
O. Hodgson, D. V. D. Spoel, F. Burmeister, M. Bergh, C.
Chaleman, G. Huldt, M. M. Seibert, F. R. N. C. Maia, R. W.
Lee, A. Szoke, N. Timneanu and J. Hajdu: Nat. Phys. 2, 839_
843 (2006).
J. Miao, T. Ishikawa, E. H. Anderson and K. O. Hodgson:
Phys. Rev. B 67, 174104 (2003).
K. Giewekemeyera, P. Thibault, S. Kalb‰eisch, A. Beerlink,
C. M. Kewish, M. Dierolf, F. PfeiŠer and T. Salditta: Proc.
Natl. Acad. Sci. USA 107, 529_534 (2010).
œ ˜ÒÐî œ
ü´K¶
åãåwåw@Hw¤†ÈÁCutií
Îj
»w¤†Šd¤†Š qõ¤†õ
i“±j
ºÉ§§åw‚xYÆÈwZp¤†Š
ÁCuti“±j
E­mail: takahashi—wakate.frc.eng.osaka­u.ac.jp
êåFRq[Œ“g X üõwCʊñ
œCX ü\¢ðÍ
mªðn
2002N 3 ŽŒkåwåw@Hw¤†È
CmÛöC¹C2004N 9 Ž¯Žmãú
Û öC ¹ CŽ mi H wjFú Ô Zk C
2002N 4 Ž_2004N 9 Žú{wpU»ï
Áʤ†õ DC1C2004N10Ž_2005N 3
Žú{wpU»ïÁʤ†õ PDC2005
N 4 Ž_2007N 3 Ž»w¤†Š îb
È w Á Ê ¤ † õ C 2007 N 4 Ž æ è »
EB¯N 4 Žæ蝻w¤†Šd¤
†Š qõ¤†õi“±jC2010N 2 Ž
æèºÉ§§åw‚xYÆÈwZp¤†
Š ÁCuti“±j
B
úËõ May 2010 Vol.23 No.3 œ 193
Development of high­resolution diŠraction
microscopy using focused hard X­ray beam
and a perspective
Yukio TAKAHASHI
Frontier Research Center, Graduate School of Engineering, Osaka University,
2_1_1 Yamada­oka, Suita 565_0862, Japan
Abstract X­ray diŠraction microscopy is a lensless x­ray microscopy combining coherent X­ray scattering
and phase retrieval calculation, allowing to visualize the electron density distribution of thick objects with a
high spatial resolution because of its high penetration power and short wavelength. In this study, we deve­
loped the high­resolution diŠraction microscope using hard X­rays focused by total re‰ection mirrors, and real­
ized a 3 nm spatial resolution in the demonstration experiment using the silver nanocube as a sample. By using
X­ray free electron lasers, ultimate x­ray diŠraction microscopy will realize by using focused hard X­ray free
electron lasers.
194
œ úËõ May 2010 Vol.23 No.3
Fly UP