Comments
Description
Transcript
電qGl M[¹失XyNg をpいた Cu/Al2O3(0001)界ÊのÇ所
ú{à®wï æ 69 ª æ 1 (2005)86_89 ÁWuimR[eBOv dqGlM[¹¸XyNgðp¢½ Cu/Al2O3(0001)EÊÌÇ»wóÔðÍ ²XØv1,Þ a û Æ N2 ¼ i u2 R { v4 R ³ 3 ô ´ Y ê2 c ^ å3 1åwåw@Hwn¤È}eAHwêU 2åwåw@Hwn¤È¤@\ 3YÆZp¤Ö¼Z^[rL^XGlM[¤å 4åwåw@VÌæn¬Èw¤È¨¿nêU J. Japan Inst. Metals, Vol. 69, No. 1 (2005), pp. 86_89 Special Issue on Nano_Coating Ý 2005 The Japan Institute of Metals ELNES Analysis of Local Electronic Structures at Cu/Al2O3(0001) Interface Takeo Sasaki1,Þ, Teruyasu Mizoguchi2, Katsuyuki Matsunaga2, Shingo Tanaka3, Takahisa Yamamoto4, Masanori Kohyama3 and Yuichi Ikuhara2 1Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo 113_ 8656 2Institute of Engineering Innovation, The University of Tokyo, Tokyo 113_8656 3Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, Osaka 563_8577 4Department of Advanced Materials Science, The University of Tokyo, Chiba 277_8651 High_ resolution transmission electron microscopy (HRTEM) observation was performed for a Cu/Al2O3(0001) interface fabricated by a pulsed laser deposition method to investigate the orientation relationship and atomic structure. The interface elec tronic structure was studied by nano_probe electron energy loss spectroscopy (EELS), and the obtained electron energy loss near edge structure (ELNES) was analyzed by the first_principles calculations. It was found that Cu was epitaxially oriented to the Al2O3(0001) surface, and the following orientation relationship was observed: (111)Cu//(0001)Al2O3, [1 10]Cu//[1 100]Al2O3. The experimental O_ K ELNES exhibited a shoulder before the main peak, which was consistent with the theoretical spectrum for the interface. The shoulder is thought to originate from the Cu_ O interaction across the interface. (Received September 6, 2004; Accepted October 12, 2004) Keywords: Cu/Al2O3 interface, atomic structure, chemical bonding states, high_ resolution transmission electron microscopy, electron energy loss spectroscopy, first_principles calculation, energy loss near edge structure Þ¿ÉÍlXÈYÁ³fªÜÜêÄ¢éãC»ÌgDà¡G 1. ¾ ȽßCà®/_»¨EÊɨ¯éðxz·ép[ ^ÌoÉÍ¢ïðº¤Dµ½ªÁÄCܸǧä³ê½ à®Æ_»¨Ì¡ÍMÕÁR[eBOCÅÌ_»¨R à®/_»¨fEÊðp¢CãLÌp[^ðo· ¿drCdqÀÞ¿CG}ÈÇÌæ[Þ¿ÉdvÈðð éè@ªLpÅ é3)D·Èí¿C±êçfEÊðÎÛ Ê½µÄ¢éD±êçÞ¿Ì@BIE@\I«¿Íà®/_ ƵC§ß^dq°÷¾@â_vZ@Éæé]¿EðÍ𠻨EÊɨ¯é÷×\¢¨æÑóÔÉå«e¿³ê s¤±ÆÉæÁÄCEÊɨ¯éóÔÌ{¿ð¾ç©É éDá¦ÎCqóp¨æÑdpKX^[rGWÉp ·é±ÆªCEÊÌÝvwjð¾é½ßÌÐÆÂÌLøÈA ¢çêÄ¢éR[eBOÞ¿Í·EÒ³µÍCÈÇÌß v[`Å éD È«ºÅgp³êé½ßCMÍâs¨³fÌÎÍÈ ±êÜÅíXÌà®/_»¨EÊÌ´q\¢É¢ÄC ÇÉNö·éEÊÍ£EêÉæèC«\ò»âõ½áº ªð\§ß^dq°÷¾@(HRTEM)Æ}`XCX@É ªø«N±³êé±ÆªâèÆÈÁÄ¢é1,2) D³çÉ@ æé HRTEM V~ [Vðp¢½¤ªsíêÄ \ÈÞ¿ÌÝvwjð¾éÉÍEÊÁ«ðüã³¹é±Æª «½3_6)D±êçÌè@ðp¢êÎÀ±ÆV~ [V dvÅ èCà®/_»¨EÊɨ¯é÷×\¢âÇIÈ ÆÌär¢ÉæèEÊÌ´q\¢âI[´qíð¾ç óÔÌðªKvÅ éDµ©µCÀÛÌR[eBO ©É·é±ÆªÅ«éDêûCimdqüv[uðp¢½ Þåwåw@¶(Graduate Student, The University of Tokyo) ƼÚIÉÖA·é»wóÔÉ¢ÄÌîñª¾çêé dqGlM[¹¸ªõ(EELS)ZpÌüãÉæèEÊx æ 1 87 dqGlM[¹¸XyNgðp¢½ Cu/Al2O3(0001)EÊÌÇ»wóÔðÍ æ¤ÉÈèC»êððÍ·é_vZ@àJ³êÄ«½D óÔ§x(PDOS)CLød×C¤Ld×ð©ÏàÁ½D á¦Î Scheu çÍ Cu/Al2O3 EÊÌ EELS ªèðs¢C¾ ¸kÉ»wóÔððÍ·é½ßÉC125 _Ì k _ÅvZ çê½XyNgÌzû[ßT÷×\¢(ELNES)ðZt ðsÁ½DȨC{¤Åp¢½ OLCAO @¨æÑ ELNES RVXeg»³êĢȢ½dUvZðp¢Äð͵ _vZÉ¢ÄÍCQl¶£ 10 ¨æÑ 12 ÉÚµq× ½7)Dµ©µÈªçC±Ì_vZè@ÍÀªXyNgÌ çêÄ¢éD Ä»«ª«¢±ÆªwE³êÄ¢éD±êÍ EELS ªè ÌEÊÌãNóÔª_vZàÉl¶³êĢȢ½ßÅ éDÅIIÉÍCÀ±IÉQƨ¿©çÌXyNgÆär ¢ðs¤gtBK[vghÉæéè«IÈðßɯ ÜÁĨèCEÊÌÚ×È»wóÔ;ç©É³êÄ¢ 3. ʨæÑl@ 3.1 HRTEM Ï@¨æÑ EELS ªè Fig. 1 ÉEÊæè¾çê½ HRTEM ð¦·DEÊÍ´ qxŽRÅ èCAt@XÈÇÌæ 2 Ͷ È¢D »±Å{¤ÅÍC±êÜÅsíê½ Cu/Al2O3(0001)E ÊÌ HRTEM ¨æÑ EELS ðÍ8,9)ÉÁ¦ÄàkóEøÊð l¶µ½ ELNES Ìæê´vZðs¢CEÊÌÇIÈ» ݵĢȢ±Æªª©éDdqñÜðÍÌÊ©ç Cu Æ Al2O3 ÌÔÉÍ (111)Cu//(0001)Al O , [1 10]Cu//[1 100]Al O 2 3 2 3 (1) wóÔðèÊIÉðÍ·é±ÆðÚIƵ½D Æ¢¤ûÊÖWª¶Ý·é±Æªª©Á½DܽCEÊÉÍ 2. `¬³êÄ¢éƾ¦éD±Ìñ®EÊÍ_fI[EÊÅ ~XtBbg]ʪÏ@³êĢȢ±Æ©çñ®Eʪ û @ é±Æª±êÜÅÌ HRTEM V~ [VÉæé [U[Au[V@ðp¢Ä Al2O3(0001)P»î ðÍ©çmF³êÄ¢é8,9) DܽC±ÌÏ@Égpµ½ C Å Cu ðö µCCu/Al2O3 (0001)fEÊ ÂãÉ 800 ð(ftH[JXÊ_5 nmC¿úÝ 4.5 nm)ɨ¢ÄC Ìì»ðsÁ½DHRTEM ÉæéEÊÌ´q\¢Ï@ÉÍ HRTEM Ì¢X|bgÍ Cu ¨æÑ O JÉε ú { d q » JEM _4010 (Á ¬ d ³ 400 kV C _ ª ð \ 0.15 Ä¢éD±êæèCFig. 1 ̺}ɦ·æ¤É O ̼ãÉ nm)ðgpµ½DfÊÏ@p¿Í 15 mm ÜÅ@B¤µ Cu ªÊu·é on_top TCgÆC»¤ÅÈ¢ hollow TCg ½ãCCI¤(Á¬d³ 4.0 kV)ð{·±ÆŲ»µ ªEÊÉÁÄüúIɶݷé±Æªª©éD ½DêûCEELS XyNg̪èÉÍdEúo^ªÍdq ±Ìñ ®EÊÌ Ú×Èdq óÔððÍ ·é½ßÉ C °÷¾ TOPCON » EM_002BF(Á¬d³ 200 kVC_ªð EELS ªèðsÁ½DFig. 2(a), (b)É»ê¼ê Cu/Al2O3 \ 0.18 nm)ðgpµ½DdqñÜ[hðp¢Ä 1.5 nm È E Ê ¼ ã ¨ æ Ñ Al2O3 ± à æ è ª è ³ ê ½ O _K [ Ì ºÌdqüv[uð¿ÉÆ˵CEELS XyNg̪ è(GATAN » ENFINA XyNg[^)ðsÁ½DȨC EELS XyNgÌGlM[ªð\Í 1.2 eV Å èC± ÌlÍ[Xs[N̼lS©çªèµ½D ELNES Ì_vZ¨æÑ»wóÔðÍÉÍCæê´ ohv Z@ÌêíÅ é OLCAO(Orthogonalized Li near Combinations of Atomic Orbital)@10)ðp¢½CܽC Cu/Al2O3 EÊÌ\¢ÅK»ÍCæê´[|eV (PWPP)@ðp¢Ä Tanaka çÉæÁÄsíê½ÊðQÆ µ½11)DELNES Ì_vZÅÍdqÌJÚɺÁĶ¶é àkóEÌøÊðæèüêéKvª éDohvZɨ¢ ÄÍX[p[ZðO³ÉüúIÉJèÔ·½ßC\´ qöxÌX[p[Zðp¢½êCàkóEð±üµ½´ qÔÌ£ªßC»êçÌÝìpª³Å«ÈÈéD »Ì½ßCOLCAO @Éæé ELNES _vZɨ¢ÄÍC Tanaka çÌvZÉp¢çê½ 33 ´qÌX[p[ZðC2 ~2~1 {µ½ 132 ´q©çÈéX[p[Zðp¢½Dd qóÔÌZtRVXegvZÍ k _ 1 _ÅsÁ½D îêóÔÆàkóEðÜÞIóÔÌdqóÔvZðƧÉs ¢CJÚGlM[ÌvZlͼóÔÌSGlM[·©ç ß½D_XyNgÌvZÍ k _ 8 _Ås¢CàkO ¹©çñèLO¹ÖÌdqÌJÚm¦ð¼lS 2 eV ÌK EXÖðp¢Äu[hjOµ½12)D ܽCEÊßTÌ»wð¾ç©É·é½ßÉCOL CAO @ðp¢Ä}PÌ»wóÔðÍðs¢Cª Fig. 1 HRTEM image of the Cu/Al2O3(0001) interface. In sets are enlarged HRTEM images of both hollow and on_top sites, where the atomic configurations are superimposed. 88 ú { à ® w ï (2005) Fig. 2 Experimental O_K ELNES from (a) the Cu/Al2O3 (0001) interface and (b) Al2O3 bulk. æ 69 ª Fig. 3 Theoretical O_K ELNES from (a) the Cu/Al2O3 (0001) interface and (b) Al2O3 bulk. The interface ELNES was calculated based on the first nearest neighbor oxygen to the in terface, which is shown in (c) the relaxed stable Cu/Al2O3 in terface. ELNES ð ¦ · D 538 eV ß T Ì C s [ N Ì á G l M[¤É¨¢ÄXyNg`óªÙÈÁĨèC±àXyN gÆÌär©çEÊÌXyNgÉÍÎüŦµ½V _[ª¶Ý·é±Æªª©Á½D 3.2 ELNES _vZ¨æÑ»wóÔðÍ À±Å¾ç ê½V _[ÌN¹ ðð¾·é ½ßÉÍ ELNES Ìæê´vZðs¤Kvª éDêûÅCãqÌ æ¤ÉÀÛÌ Cu/Al2O3 EÊÍ on_top, hollow TCgÌ¬Ý µ½EÊÅ èC_vZűÌæ¤È·üú\¢ðæèµ ¤±ÆÍ¢ïÅ éD»±ÅCTanaka çÍ Cu Ìiqè ðñ 7÷gå³¹é±ÆÅCO ´qÌ on_top ¨æÑ hollow TCgÉ Cu ª¶Ý·é O I[ÊÌ Cu/Al2O3 fEÊð \zµ½DܽCÞçÍ PWPP @ÉæÁļfð\¢ ÅK»µCEÊGlM[Ì]¿ðsÁ½ÊChollow TCgÌûª on_top TCgæèEÊGlM[ªå« CÅàÀèÅ é±Æð¾ç©ÉµÄ¢é11)D »±Å{¤ÅÍCÅÀèÈ hollow TCgÌ O I[Ê\ ¢fðpµÄCELNES Ì_vZðsÁ½DvZÉ Í PWPP @žçê½X[p[Zð 2~2~1 {µ½ 132 ´q©çÈéX[p[Zðp¢½DFig. 3(a), (b)É»ê ¼ê Cu/Al2O3 EʼãÌ_f¨æÑ Al2O3 ±àÌ O_K [ Fig. 4 PDOS curves of (a) the Cu/Al2O3(0001) interface and (b) Al2O3 bulk. The highest occupied levels are set at 0 eV. ÌvZ ELNES ð¦·DȨCFig. 3(c)É_üÌÛŦµ ½_fÉεÄvZµ½XyNgª Fig. 3(a)ɦ³êÄ ¢éEÊÌ ELNES Å éDFig. 2(a), (b)ÌÀ±ªèž ELNES ͨ¿Ì PDOS Ì`óð½fµÄ¢éÌÅCEÊ çê½EÊCAl2O3 ±àÌXyNgÌᢪÇÄ»³ê æè¾çê½ÀªEvZ ELNES ɨ¯éV_[o»Ì Ä¢é±Æªª©éD·Èí¿CÀªÊƯlÉEÊÌX N¹ÍCCu ´qÆÌÝìpÉæé`±ÑàÅÌ_f yNgÉÍÎüŦµ½V_[ª¶Ý·é±Æª¾ç PDOS `óÌÏ»ÉæéàÌÅ éƪ³êéD ©ÆÈÁ½D ³çÉC}PÌdq§xðÍ@ðp¢Ä Cu ´qÌL Fig. 4(a), (b)É»ê¼ê Cu/Al2O3 EʨæÑ Al2O3 ± ødרæѤLd×ðvZµ½DEÊæêwÌ Cu ´ àÌ PDOS ð¦·DAl2O3 ±àɨ¢ÄÍC6 eV ÙÇÌo qɨ¯éLød×Í{0.49, Cu_O Ô̤Ld×Í hMbvª¶ÝµÄ¢é±Æªª©éDȨCAl2O3 Ì 0.14 Å é±Æªª©Á½DLødת³ÌlÆÈÁÄ¢ _vZÅÍohMbvªÀ±l 8.7 eV13) æèá© é±ÆÍCCu/Al2O3 EÊɨ¢Ä Cu ©ç O ÖÌd×Ús Ïàçêé±ÆªmçêÄ¢é14)DêûCCu/Al2O3 EÊÉ ª¶¶Ä¢é±Æð¦µÄ¢éD¯lÌè@ÅvZµ½ ¨¢ÄCAl2O3 ÌohMbvÉ Cu O¹ð嬪Ʒ Cu2O oNÌLødרæÑ Cu_O Ô̤Ld×Í» éohªo»µÄ¢éDܽC0`10 eV ßTÅ Cu O¹ ê¼ê{0.32, 0.37 Å Á½DEÊæêwÌ Cu ´qÌLø Æ̬¬ÉæèCO ¬ªªÏ»µÄ¢é±Æªª©éD d × Í Cu2O o N Ì » ê æ è à å « ¢ ± Æ © ç C Cu / 1 æ dqGlM[¹¸XyNgðp¢½ Cu/Al2O3(0001)EÊÌÇ»wóÔðÍ Al2O3 EÊæêwÌ Cu ´qÆ O ÔÉÍCCu2O àÌ Cu_O 89 ELNES ɨ¯éV_[o»ÌN¹ÆÈÁÄ¢é±Æª æèàÅÈCIª¶¶Ä¢é±Æª¾ç©ÆÈÁ½D ª©Á½DܽCEÊɨ¢Ä Cu ©ç O Öd×Úsª¶¶ à®/_»¨EÊɨ¯éEÊÌN¹ÆµÄñijê ĨèCCI«Æ¤L«à í¹Â Cu_O Ä¢é¾|eVf15) ɨ¢ÄÍC_»¨Ì ª Cu/Al2O3 EÊÅ`¬³êÄ¢é±Æªª©Á½D CIª`¬·éÃdêÉæÁÄதÉdqÌĪz⪠ɪ¶¶CதªCI»·éD»ÌÊCà®__»¨ {¤ÍCuÞ¿imeNmW[vO/imR[e ÔÉCIª`¬³êéÆl¦çêéDEÊæêwÌ BOZpvWFNgvÌêÂƵÄCNEDO ©çÏõ Cu Æ O ÌÔÉÍd×ÚsÉNö·éCIª¶¶Ä¢ ðó¯ÄÀ{µ½D{¤ÌêÍC21 ¢I COE vO é½ßC±ÌÊ;|eVfÉæè\ª³ê u»wðîÕÆ·éq [}}eAn¬vÉæéà éÊÆêvµÄ¢éDêûÅCãLÌ ELNES ɨ¯éV ÌÅ éD _[Ìo»ÍCEÊÅÌ Cu_O O¹¬¬Ì¶Ýð¦µÄ ¨èCCu/Al2O3 EÊÅÍCI«¾¯ÅȤL ¶ £ «à í¹Â Cu_O ª`¬³êÄ¢é±Æª¾ç©Æ ÈÁ½D±êçÌÊæèCCu_O ÔÌCI¨æѤ Lª Cu/Al2O3(0001)EȨ̂ «ÉdvÈððʽ µÄ¢éàÌÆl¦çêéD 4. _ {¤ÅÍC[U[Au[V@Éæè컵½ Cu/Al2O3(0001)EÊÌ HRTEM Ï@ðs¢CEÊÌ´q\ ¢ðð͵½DܽCEELS ªè¨æÑ ELNES Ì_vZ ÉæèEÊÌÇIÈ»wóÔð²×½D»ÌÊCÈ ºÌm©ª¾çê½D P ò fEÊðp¢½ HRTEM Ï@ÌÊCCu/Al2O3 EÊÉÍ(111)Cu//(0001)Al O , [1 10]Cu//[1 100]Al O ÌûÊÖ 2 3 2 3 Wª¶ÝµC_fI[ÊÌEʪ`¬³êÄ¢éDܽC± ÌEÊÍ O ̼ãÉ Cu ªÊu·é on_top TCgÆC»¤ ÅÈ¢ hollow TCgª¬Ý·éñ®EÊÅ éD Q ò Cu / Al2O3 E Ê © ç Ì À ª X y N g É ¨ ¯ é ELNES ÉÍV_[ª`¬³êé±Æªª©Á½D±ê Íæê´@Éæé_XyNgvZÉæÁÄàÄ»³êC Cu/Al2O3 EÊÉÁLÈóÔÉR·éàÌÅ éÆl ¦çêéD R ò vZÉæè¾çê½EÊßTÌóÔ§xÌðÍðsÁ ½DCu/Al2O3 EÊÌ`±Ñàɨ¢ÄÍCCu O¹Æ O O¹Ì¬¬ª¶¶Ä¢é±Æª¾ç©ÆÈèCÀªE_ 1) P. K. Wright and A. G. Evans: Curr. Opin. Solid State Mater. 265. Sci. 4(1999) 255_ 2) A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit: Prog. Mater. Sci. 46(2001) 505_553. 3) Y. Ikuhara and P. Pirouz: Micros. Res. Techniq. 40(1998) 206_ 241. 4) G. Necker and W. Marder: Philos. Mag. Lett. 58(1988) 205_ 212. 5) F. Ernst, P. Pirouz and A. H. Heuer: Philos. Mag. A 63(1991) 259_277. 6) J. Mayer, G. Gutekunst, G. M äobus, J. Dura, C. P. Flynn and M. R äuhle: Acta Metall. Mater. 40(1992) S217_S225. 7) C. Scheu, G. Dehm and M. R äuhle: Philos. Mag. A 78(1998) 439_ 465. 8) T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto 584. and Y. Ikuhara: Sci. Technol. Adv. Mater. 4(2003) 575_ 9) T. Sasaki, T. Mizoguchi, K. Matsunaga, S. Tanaka, T. Yamamoto, M. Kohyama and Y. Ikuhara: Appl. Surf. Sci. (2005) in press. 10) W. Y. Ching: J. Am. Ceram. Soc. 73(1990) 3135. 11) S. Tanaka, R. Yang, M. Kohyama, T. Sasaki, K. Matsunaga and 1977. Y. Ikuhara: Mater. Trans. 45(2004) 1973_ 12) Detailed methods for ELNES calculation are described in follow ing papers. T. Mizoguchi, I. Tanaka and H. Adachi: Materia 213; S._D. Mo and W. Y. Ching: Phys. Japan 42(2003) 207_ Rev. B 62(2000) 7901_7907; T. Mizoguchi, I. Tanaka, S. Yoshioka, M. Kunisu, T. Yamamoto and W. Y. Ching: Phys. Rev. B 70(2004) 045103; T. Mizoguchi, T. Yamamoto, T. Suga, M. Kunisu, I. Tanaka and H. Adachi: Mater. Trans. 45(2004) 2023_2025. 13) M. L. Bortz and R. H. French: App. Phys. Lett. 55(1989) 1955_ 1957. 14) K. Matsunaga, T. Tanaka, T, Yamamoto and Y Ikuhara: Phys. Rev. B 68(2003) 085110. 15) P. W. Tasker and A. M. Stoneham: J. Chimie Phys. 84(1987) 149_ 155.