...

電qGl M[¹失XyNg をpいた Cu/Al2O3(0001)界ÊのÇ所

by user

on
Category: Documents
23

views

Report

Comments

Transcript

電qGl M[¹失XyNg をpいた Cu/Al2O3(0001)界ÊのÇ所
ú{à®wï æ 69 ª æ 1 †(2005)86_89
ÁWuimR[eB“Ov
dqGl‹M[¹¸XyNg‹ðp¢½
Cu/Al2O3(0001)EÊÌNJ»w‹‡óÔðÍ
²Xؒv1,Þ
a û Æ N2
¼ i Ž u2
R { „ v4
 R ³ ›3
ô ´ Y ê2
c † ^ å3
1Œžåwåw@Hwn¤†È}eŠA‹HwêU
2Œžåwåw@Hwn¤†È‡¤†@\
3YÆZp‡¤†ŠÖ¼Z“^[†rL^XGl‹M[¤†”å
4Œžåwåw@VÌæn¬Èw¤†È¨¿nêU
J. Japan Inst. Metals, Vol. 69, No. 1 (2005), pp. 86_89
Special Issue on Nano_Coating
Ý 2005 The Japan Institute of Metals
ELNES Analysis of Local Electronic Structures at Cu/Al2O3(0001) Interface
Takeo Sasaki1,Þ, Teruyasu Mizoguchi2, Katsuyuki Matsunaga2, Shingo Tanaka3,
Takahisa Yamamoto4, Masanori Kohyama3 and Yuichi Ikuhara2
1Department
of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo 113_
8656
2Institute
of Engineering Innovation, The University of Tokyo, Tokyo 113_8656
3Research
Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, Osaka 563_8577
4Department
of Advanced Materials Science, The University of Tokyo, Chiba 277_8651
High_
resolution transmission electron microscopy (HRTEM) observation was performed for a Cu/Al2O3(0001) interface
fabricated by a pulsed laser deposition method to investigate the orientation relationship and atomic structure. The interface elec­
tronic structure was studied by nano_probe electron energy loss spectroscopy (EELS), and the obtained electron energy loss near
edge structure (ELNES) was analyzed by the first_principles calculations. It was found that Cu was epitaxially oriented to the
Al2O3(0001) surface, and the following orientation relationship was observed: (111)Cu//(0001)Al2O3, [1 ˜10]Cu//[1 ˜100]Al2O3. The
experimental O_
K ELNES exhibited a shoulder before the main peak, which was consistent with the theoretical spectrum for the
interface. The shoulder is thought to originate from the Cu_
O interaction across the interface.
(Received September 6, 2004; Accepted October 12, 2004)
Keywords: Cu/Al2O3 interface, atomic structure, chemical bonding states, high_
resolution transmission electron microscopy, electron
energy loss spectroscopy, first_principles calculation, energy loss near edge structure
Þ¿ÉÍlXÈYÁ³fªÜÜêÄ¢éãC»ÌgDà¡G
1.

¾
ȽßCà®/_»¨EÊɨ¯é‹‡ðxz·ép‰[
^̊oÉÍ¢ïðº¤Dµ½ªÁÄCܸǭ§ä³ê½
à®Æ_»¨Ì¡‡ÍMÕÁR[eB“OCÅÌ_»¨R
à®/_»¨‚f‹EÊðp¢CãLÌp‰[^ðŠo·
¿drCdqÀ•Þ¿CG}ÈÇÌæ[Þ¿ÉdvÈð„ð
éè@ªLpÅ é3)D·Èí¿C±êç‚f‹EÊðÎÛ
ʽµÄ¢éD±êçÞ¿Ì@BIE@\I«¿Íà®/_
ƵC§ß^dq°÷¾@â_vZ@Éæé]¿EðÍð
»¨EÊɨ¯é÷×\¢¨æы‡óÔÉå«­e¿³ê
s¤±ÆÉæÁÄCEÊɨ¯é‹‡óÔÌ{¿ð¾ç©É
éDá¦ÎCqóp¨æÑ­dpKX^[r“G“W“Ép
·é±ÆªCEÊÌÝvwjð¾é½ßÌÐÆÂÌLøÈA
¢çêÄ¢éR[eB“O޿͂·EÒ³µÍCÈÇÌß
v[`Å éD
“È«ºÅgp³êé½ßCMžÍâsƒ¨³fÌÎÍÈ
±êÜÅíXÌà®/_»¨EÊÌ´q\¢É¢ÄC‚
ÇÉNö·éEÊÍ­£E„êÉæèC«\ò»âõ½áº
ªð\§ß^dq°÷¾@(HRTEM)Æ}‹`X‰CX@É
ªø«N±³êé±ÆªâèÆÈÁÄ¢é1,2) D³çɂ@
æé HRTEM œV~…Œ[V‡“ðp¢½¤†ªsíêÄ
\ÈÞ¿ÌÝvwjð¾éÉÍEÊÁ«ðüã³¹é±Æª
«½3_6)D±êçÌè@ðp¢êÎÀ±œÆV~…Œ[V‡
dvÅ èCà®/_»¨EÊɨ¯é÷×\¢âNJIÈ
“œÆÌärŸ¢ÉæèEÊÌ´q\¢âI[´qíð¾ç
‹‡óÔ̝ðªKvÅ éDµ©µCÀÛÌR[eB“O
©É·é±ÆªÅ«éDêûCimdqüv[uðp¢½
ތžåwåw@¶(Graduate Student, The University of Tokyo)
ƼÚIÉÖA·é»w‹‡óÔÉ¢ÄÌîñª¾çêé
dqGl‹M[¹¸ªõ(EELS)ZpÌüãÉæèEÊ­x
æ
1
†
87
dqGl‹M[¹¸XyNg‹ðp¢½ Cu/Al2O3(0001)EÊÌNJ»w‹‡óÔðÍ
æ¤ÉÈèC»êððÍ·é_vZ@àJ­³êÄ«½D
óÔ§x(PDOS)CLød×C¤L‹‡d×ð©ÏàÁ½D
á¦Î Scheu çÍ Cu/Al2O3 EÊÌ EELS ªèðs¢C¾
¸kÉ»w‹‡óÔððÍ·é½ßÉC125 _Ì k _ÅvZ
çê½XyNg‹Ìzû[ßT÷×\¢(ELNES)ðZ‹t
ðsÁ½DȨC{¤†Åp¢½ OLCAO @¨æÑ ELNES
R“VXe“g»³êĢȢ½dUvZðp¢Äð͵
_vZÉ¢ÄÍCQl¶£ 10 ¨æÑ 12 ÉÚµ­q×
½7)Dµ©µÈªçC±Ì_vZè@ÍÀªXyNg‹Ì
çêÄ¢éD
Ä»«ª«¢±ÆªwE³êÄ¢éD±êÍ EELS ªèž
ÌEÊÌãNóÔª_vZàÉl¶³êĢȢ½ßÅ éDÅIIÉÍCÀ±IÉQƨ¿©çÌXyNg‹Æär
Ÿ¢ðs¤gtB“K[vŠ“ghÉæéè«IÈðßɯ
ÜÁĨèCEÊÌÚ×È»w‹‡óÔ;ç©É³êÄ¢
3.
‹Ê¨æÑl@
3.1
HRTEM Ï@¨æÑ EELS ªè
Fig. 1 ÉEÊæè¾çê½ HRTEM œð¦·DEÊÍ´
qŒx‹Å½RÅ èCA‚‹t@XŠÈÇÌæ 2 ŠÍ¶
È¢D
»±Å{¤†ÅÍC±êÜÅsíê½ Cu/Al2O3(0001)E
ÊÌ HRTEM ¨æÑ EELS ðÍ8,9)ÉÁ¦ÄàkóEøÊð
l¶µ½ ELNES Ìæ괝vZðs¢CEÊÌNJIÈ»
ݵĢȢ±Æªª©éDdqñÜðÍ̋ʩç Cu Æ
Al2O3 ÌÔÉÍ
(111)Cu//(0001)Al O , [1 ˜10]Cu//[1 ˜100]Al O
2
3
2
3
(1)
w‹‡óÔðèÊIÉðÍ·é±ÆðÚIƵ½D
Æ¢¤ûÊÖWª¶Ý·é±Æªª©Á½DܽCEÊÉÍ
2.
`¬³êÄ¢éƾ¦éD±Ìñ®‡EÊÍ_fI[EÊÅ
~XtBbg]ʪÏ@³êĢȢ±Æ©çñ®‡Eʪ
û
@
é±Æª±êÜÅÌ HRTEM œV~…Œ[V‡“Éæé
Œ[U[AuŒ[V‡“@ðp¢Ä Al2O3(0001)P‹»î
ðÍ©çmF³êÄ¢é8,9) DܽC±ÌÏ@Égpµ½‹
C Å Cu ðö…µCCu/Al2O3 (0001)‚f‹EÊ
ÂãÉ 800‹
œð(ftH[JXÊ_5 nmCŽ¿úÝ 4.5 nm)ɨ¢ÄC
Ìì»ðsÁ½DHRTEM ÉæéEÊÌ´q\¢Ï@ÉÍ
HRTEM œÌ’¢X|bgÍ Cu ¨æÑ O J‰€ÉΞµ
ú { d q » JEM _4010 (Á ¬ d ³ 400 kV C _ ª ð \ 0.15
Ä¢éD±êæèCFig. 1 ̺}ɦ·æ¤É O ̼ãÉ
nm)ðgpµ½DfÊÏ@pŽ¿Í 15 mm ÜÅ@B¤µ
Cu ªÊu·é on_top TCgÆC»¤ÅÈ¢ hollow TCg
½ãCCI“¤(Á¬d³ 4.0 kV)ð{·±ÆŲ»µ
ªEÊɈÁÄüúIɶݷé±Æªª©éD
½DêûCEELS XyNg‹ÌªèÉÍdEúo^ªÍdq
±Ìñ ®‡EÊÌ Ú×Èdq óÔððÍ ·é½ßÉ C
°÷¾ TOPCON » EM_002BF(Á¬d³ 200 kVC_ªð
EELS ªèðsÁ½DFig. 2(a), (b)É»ê¼ê Cu/Al2O3
\ 0.18 nm)ðgpµ½Ddqñ܂[hðp¢Ä 1.5 nm È
E Ê ¼ ã ¨ æ Ñ Al2O3 ± à æ è ª è ³ ê ½ O _K [ Ì
ºÌdqüv[uðŽ¿ÉÆ˵CEELS XyNg‹Ìª
è(GATAN » ENFINA XyNg[^)ðsÁ½DȨC
EELS XyNg‹ÌGl‹M[ªð\Í 1.2 eV Å èC±
ÌlÍ[Xs[N̼lS©çªèµ½D
ELNES ̝_vZ¨æÑ»w‹‡óÔðÍÉÍCæê´
o“hv Z@ÌêíÅ é OLCAO(Orthogonalized Li­
near Combinations of Atomic Orbital)@10)ðp¢½CܽC
Cu/Al2O3 EÊÌ\¢ÅK»ÍCæ괝[|e“Vƒ‹
(PWPP)@ðp¢Ä Tanaka çÉæÁÄsí꽋ÊðQÆ
µ½11)DELNES ̝_vZÅÍdqÌJÚɺÁĶ¶é
àkóEÌøÊðæèüêéKvª éDo“hvZɨ¢
ÄÍX[p[Z‹ðOŸ³ÉüúIÉJèÔ·½ßC”\´
qöxÌX[p[Z‹ðp¢½ê‡CàkóEð±üµ½´
qÔ̗£ªß­C»êç̊Ýìpª³‹Å«È­ÈéD
»Ì½ßCOLCAO @Éæé ELNES _vZɨ¢ÄÍC
Tanaka çÌvZÉp¢çê½ 33 ´qÌX[p[Z‹ðC2
~2~1 {µ½ 132 ´q©çÈéX[p[Z‹ðp¢½Dd
qóÔÌZ‹tR“VXe“gvZÍ k _ 1 _ÅsÁ½D
îêóÔÆàkóEðÜÞIóÔÌdqóÔvZðƧÉs
¢CJÚGl‹M[ÌvZlͼóÔÌSGl‹M[·©ç
ß½D_XyNg‹ÌvZÍ k _ 8 _Ås¢CàkO
¹©çñèLO¹ÖÌdqÌJÚm¦ð¼lS 2 eV ÌK
EX֔ðp¢Äu[hj“Oµ½12)D
ܽCEÊßTÌ»w‹‡ð¾ç©É·é½ßÉCOL­
CAO @ðp¢Ä}ŠP“Ì»w‹‡óÔðÍðs¢C”ª
Fig. 1 HRTEM image of the Cu/Al2O3(0001) interface. In­
sets are enlarged HRTEM images of both hollow and on_top
sites, where the atomic configurations are superimposed.
88
ú { à ® w ï (2005)
Fig. 2 Experimental O_K ELNES from (a) the Cu/Al2O3
(0001) interface and (b) Al2O3 bulk.
æ
69
ª
Fig. 3 Theoretical O_K ELNES from (a) the Cu/Al2O3
(0001) interface and (b) Al2O3 bulk. The interface ELNES was
calculated based on the first nearest neighbor oxygen to the in­
terface, which is shown in (c) the relaxed stable Cu/Al2O3 in­
terface.
ELNES ð ¦ · D 538 eV ß T Ì  C “ s [ N Ì á G l ‹
M[¤É¨¢ÄXyNg‹`óªÙÈÁĨèC±àXyN
g‹ÆÌär©çEÊÌXyNg‹ÉÍÎüŦµ½V‡‹
_[ª¶Ý·é±Æªª©Á½D
3.2
ELNES _vZ¨æÑ»w‹‡óÔðÍ
À±Å¾ç ê½V‡‹ _[ÌN¹ ðð¾·é ½ßÉÍ
ELNES Ìæ괝vZðs¤Kvª éDêûÅCãqÌ
æ¤ÉÀÛÌ Cu/Al2O3 EÊÍ on_top, hollow TCg̬Ý
µ½EÊÅ èC_vZűÌæ¤È·üú\¢ðæèµ
¤±ÆÍ¢ïÅ éD»±ÅCTanaka çÍ Cu Ìiqè”
ðñ 7÷gå³¹é±ÆÅCO ´qÌ on_top ¨æÑ hollow
TCgÉ Cu ª¶Ý·é O I[ÊÌ Cu/Al2O3 ‚f‹EÊð
\zµ½DܽCÞçÍ PWPP @ÉæÁļ‚f‹ð\¢
ÅK»µCEʋ‡Gl‹M[Ì]¿ðsÁ½‹ÊChollow
TCgÌûª on_top TCgæèEʋ‡Gl‹M[ªå«
­CÅàÀèÅ é±Æð¾ç©ÉµÄ¢é11)D
»±Å{¤†ÅÍCÅÀèÈ hollow TCgÌ O I[Ê\
¢‚f‹ð˜pµÄCELNES ̝_vZðsÁ½DvZÉ
Í PWPP @žçê½X[p[Z‹ð 2~2~1 {µ½ 132
´q©çÈéX[p[Z‹ðp¢½DFig. 3(a), (b)É»ê
¼ê Cu/Al2O3 EʼãÌ_f¨æÑ Al2O3 ±àÌ O_K [
Fig. 4 PDOS curves of (a) the Cu/Al2O3(0001) interface and
(b) Al2O3 bulk. The highest occupied levels are set at 0 eV.
ÌvZ ELNES ð¦·DȨCFig. 3(c)É_üÌÛŦµ
½_fÉεÄvZµ½XyNg‹ª Fig. 3(a)ɦ³êÄ
¢éEÊÌ ELNES Å éDFig. 2(a), (b)ÌÀ±ªèž
ELNES ͨ¿†Ì PDOS Ì`óð½fµÄ¢éÌÅCEÊ
çê½EÊCAl2O3 ±àÌXyNg‹ÌᢪǭĻ³ê
æè¾çê½ÀªEvZ ELNES ɨ¯éV‡‹_[o»Ì
Ä¢é±Æªª©éD·Èí¿CÀª‹ÊƯlÉEÊÌX
N¹ÍCCu ´qÆ̊ÝìpÉæé`±Ñà”ÅÌ_f
yNg‹ÉÍÎüŦµ½V‡‹_[ª¶Ý·é±Æª¾ç
PDOS `óÌÏ»ÉæéàÌÅ éƄª³êéD
©ÆÈÁ½D
³çÉC}ŠP“Ìdq§xðÍ@ðp¢Ä Cu ´qÌL
Fig. 4(a), (b)É»ê¼ê Cu/Al2O3 EʨæÑ Al2O3 ±
ødרæѤL‹‡d×ðvZµ½DEÊæêwÌ Cu ´
àÌ PDOS ð¦·DAl2O3 ±àɨ¢ÄÍC6 eV ÙÇÌo
qɨ¯éLød×Í{0.49, Cu_O Ô̤L‹‡d×Í
“hMƒbvª¶ÝµÄ¢é±Æªª©éDȨCAl2O3 Ì
0.14 Å é±Æªª©Á½DLødת³ÌlÆÈÁÄ¢
_vZÅÍo“hMƒbvªÀ±l 8.7 eV13) æèá­©
é±ÆÍCCu/Al2O3 EÊɨ¢Ä Cu ©ç O ÖÌd×Ús
Ïàçêé±ÆªmçêÄ¢é14)DêûCCu/Al2O3 EÊÉ
ª¶¶Ä¢é±Æð¦µÄ¢éD¯lÌè@ÅvZµ½
¨¢ÄCAl2O3 Ìo“hMƒbv†É Cu O¹ð嬪Ʒ
Cu2O o‹NÌLødרæÑ Cu_O Ô̤L‹‡d×Í»
éo“hªo»µÄ¢éDܽC0`10 eV ßTÅ Cu O¹
ê¼ê{0.32, 0.37 Å Á½DEÊæêwÌ Cu ´qÌLø
Æ̬¬ÉæèCO ¬ªªÏ»µÄ¢é±Æªª©éD
d × Í Cu2O o ‹ N Ì » ê æ è à å « ¢ ± Æ © ç C Cu /
1
æ
†
dqGl‹M[¹¸XyNg‹ðp¢½ Cu/Al2O3(0001)EÊÌNJ»w‹‡óÔðÍ
Al2O3 EÊæêwÌ Cu ´qÆ O ÔÉÍCCu2O àÌ Cu_O
89
ELNES ɨ¯éV‡‹_[o»ÌN¹ÆÈÁÄ¢é±Æª
æèà­ÅÈCI“‹‡ª¶¶Ä¢é±Æª¾ç©ÆÈÁ½D
ª©Á½DܽCEÊɨ¢Ä Cu ©ç O Öd×Úsª¶¶
à®/_»¨EÊɨ¯éEʋ‡ÌN¹ÆµÄñijê
ĨèCCI“‹‡«Æ¤L‹‡«à í¹Â Cu_O ‹‡
Ģ龜|e“Vƒ‹‚f‹15) ɨ¢ÄÍC_»¨†Ì
ª Cu/Al2O3 EÊÅ`¬³êÄ¢é±Æªª©Á½D
CI“ª`¬·éÃdêÉæÁÄதÉdqÌĪzâª
ɪ¶¶CதªCI“»·éD»Ì‹ÊCà®__»¨
{¤†ÍCuÞ¿imeNmW[vO‰€/imR[e
ÔÉCI“‹‡ª`¬³êéÆl¦çêéDEÊæêwÌ
B“OZpvWFNgvÌêÂƵÄCNEDO ©çÏõ
Cu Æ O ÌÔÉÍd×ÚsÉNö·éCI“‹‡ª¶¶Ä¢
ðó¯ÄÀ{µ½D{¤†Ìê”ÍC21 ¢I COE vO‰
é½ßC±Ì‹Ê;œ|e“Vƒ‹‚f‹Éæè\ª³ê
€u»wðîÕÆ·éq…[}“}eŠA‹n¬vÉæéà
é‹ÊÆêvµÄ¢éDêûÅCãLÌ ELNES ɨ¯éV
ÌÅ éD
‡‹_[Ìo»ÍCEÊÅÌ Cu_O O¹¬¬Ì¶Ýð¦µÄ
¨èCCu/Al2O3 EÊÅÍCI“‹‡«¾¯ÅÈ­¤L‹‡
¶
£
«à í¹Â Cu_O ‹‡ª`¬³êÄ¢é±Æª¾ç©Æ
ÈÁ½D±êç̋ÊæèCCu_O ÔÌCI“‹‡¨æѤ
L‹‡ª Cu/Al2O3(0001)EȨ̂…«ÉdvÈð„ðʽ
µÄ¢éàÌÆl¦çêéD
4.
‹
_
{¤†ÅÍCŒ[U[AuŒ[V‡“@Éæè컵½
Cu/Al2O3(0001)EÊÌ HRTEM Ï@ðs¢CEÊÌ´q\
¢ðð͵½DܽCEELS ªè¨æÑ ELNES ̝_vZ
ÉæèEÊÌNJIÈ»w‹‡óÔð²×½D»Ì‹ÊCÈ
ºÌm©ª¾çê½D
P
ò
‚f‹EÊðp¢½ HRTEM Ï@̋ÊCCu/Al2O3
EÊÉÍ(111)Cu//(0001)Al O , [1 ˜10]Cu//[1 ˜100]Al O ÌûÊÖ
2
3
2
3
Wª¶ÝµC_fI[ÊÌEʪ`¬³êÄ¢éDܽC±
ÌEÊÍ O ̼ãÉ Cu ªÊu·é on_top TCgÆC»¤
ÅÈ¢ hollow TCgª¬Ý·éñ®‡EÊÅ éD
Q
ò
Cu / Al2O3 E Ê © ç Ì À ª X y N g ‹ É ¨ ¯ é
ELNES ÉÍV‡‹_[ª`¬³êé±Æªª©Á½D±ê
Íæ괝@Éæé_XyNg‹vZÉæÁÄàÄ»³êC
Cu/Al2O3 EÊÉÁLȋ‡óÔÉRˆ·éàÌÅ éÆl
¦çêéD
R
ò
vZÉæè¾çê½EÊßTÌóÔ§xÌðÍðsÁ
½DCu/Al2O3 EÊÌ`±Ñà”ɨ¢ÄÍCCu O¹Æ O
O¹Ì¬¬ª¶¶Ä¢é±Æª¾ç©ÆÈèCÀªE_
1) P. K. Wright and A. G. Evans: Curr. Opin. Solid State Mater.
265.
Sci. 4(1999) 255_
2) A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and
F. S. Pettit: Prog. Mater. Sci. 46(2001) 505_553.
3) Y. Ikuhara and P. Pirouz: Micros. Res. Techniq. 40(1998) 206_
241.
4) G. Necker and W. Marder: Philos. Mag. Lett. 58(1988) 205_
212.
5) F. Ernst, P. Pirouz and A. H. Heuer: Philos. Mag. A 63(1991)
259_277.
6) J. Mayer, G. Gutekunst, G. M äobus, J. Dura, C. P. Flynn and M.
R äuhle: Acta Metall. Mater. 40(1992) S217_S225.
7) C. Scheu, G. Dehm and M. R äuhle: Philos. Mag. A 78(1998)
439_
465.
8) T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto
584.
and Y. Ikuhara: Sci. Technol. Adv. Mater. 4(2003) 575_
9) T. Sasaki, T. Mizoguchi, K. Matsunaga, S. Tanaka, T.
Yamamoto, M. Kohyama and Y. Ikuhara: Appl. Surf. Sci.
(2005) in press.
10) W. Y. Ching: J. Am. Ceram. Soc. 73(1990) 3135.
11) S. Tanaka, R. Yang, M. Kohyama, T. Sasaki, K. Matsunaga and
1977.
Y. Ikuhara: Mater. Trans. 45(2004) 1973_
12) Detailed methods for ELNES calculation are described in follow­
ing papers. T. Mizoguchi, I. Tanaka and H. Adachi: Materia
213; S._D. Mo and W. Y. Ching: Phys.
Japan 42(2003) 207_
Rev. B 62(2000) 7901_7907; T. Mizoguchi, I. Tanaka, S.
Yoshioka, M. Kunisu, T. Yamamoto and W. Y. Ching: Phys.
Rev. B 70(2004) 045103; T. Mizoguchi, T. Yamamoto, T.
Suga, M. Kunisu, I. Tanaka and H. Adachi: Mater. Trans.
45(2004) 2023_2025.
13) M. L. Bortz and R. H. French: App. Phys. Lett. 55(1989) 1955_
1957.
14) K. Matsunaga, T. Tanaka, T, Yamamoto and Y Ikuhara: Phys.
Rev. B 68(2003) 085110.
15) P. W. Tasker and A. M. Stoneham: J. Chimie Phys. 84(1987)
149_
155.
Fly UP