Comments
Description
Transcript
023051010008 - Doors
THE SCIENCE AND ENGINEERING REVIEW OF DOSHISHA UNIVERSITY, VOL. 51, NO. 1 April 2010 Contribution for Sputtering Due to Undeveloped Collision Cascade Takahiro KENMOTSU (Received March 4, 2010) The existing theoretical models for sputtering are derived from the general Boltzmann transport equation based on the well developed collision cascade. Experimental results have indicated that the theories describe sputtering phenomenon well in high energy, and nearly unity mass ratio of the projectile to the targetile. However, the collision cascades do not developed well in low-energy and/or light ion injections into metal targets. The reason for observing the deviation from theories is considered in these cases. In order to quantify the deviation, a Monte Carlo simulation code ACAT has been used to calculate sputtering due to low energy and/or light ions incidences. The ACAT code numerically calculates trajectories of atoms colliding in an amorphous target based on the binary collision approximation. The ACAT results have indicated that energy distributions of sputtered atoms were different from Thompson-Sigmund theory due to low-energy light ions incidence. .H\ZRUGsputtering, collision cascade, Monte Carlo simulation ࣮࣮࢟࣡ࢻ㸸ࢫࣃࢵࢱࣜࣥࢢ㸪⾪✺࢝ࢫࢣ࣮ࢻ㸪ࣔࣥࢸ࣭࢝ࣝࣟࢩ࣑࣮ࣗࣞࢩࣙࣥ ᑡᩘᅇ⾪✺ᶵᵓࡼࡿࢫࣃࢵࢱࣜࣥࢢ⌧㇟ࡢᐤ ᐤ ᣢ ㈗ᘯ ᅾ㸪ⷧ⭷స〇 㸪ᚤ㔞ศᯒ ࡞ࡢᕤᴗศ㔝ᗈࡃ 㸯㸬ࡣࡌࡵ 㐠ື࢚ࢿࣝࢠ࣮ࢆࡶࡗࡓ⢏Ꮚࡀᅛయࢱ࣮ࢤࢵ ᛂ⏝ࡉࢀ࡚࠸ࡿ㸬ࡲࡓ㸪᰾⼥ྜᐇ㦂⨨ࡢቨᮦᩱ㸱 ࢺ⾲㠃ࡽධᑕࡍࡿ㸪ࢱ࣮ࢤࢵࢺཎᏊ⾪✺ࡍࡿ ࡸ㸪↷᫂ᶵჾࡢᨺ㟁ࡢ㟁ᴟࡢᦆ⪖㸲࡞ࡶ㸪ࢫࣃ ࡇࡼࡗ࡚㊴ཎᏊࢆ⏕ᡂࡍࡿ㸬⏕ᡂࡉࢀࡓ㊴ ࢵࢱࣜࣥࢢࡼࡗ࡚ᘬࡁ㉳ࡇࡉࢀࡿࡇࡀ▱ࡽࢀ ཎᏊࡣධᑕ⢏Ꮚྠࡌാࡁࢆࡋ㸪ูࡢࢱ࣮ࢤࢵࢺཎ ࡚࠸ࡿ㸬 Ꮚ⾪✺ࡍࡿࡇࡼࡗ࡚᪂ࡓ㊴ཎᏊࢆ⏕ࡳ ࢫࣃࢵࢱࣜࣥࢢࡢཎᅉࡣ㸪㐠ື࢚ࢿࣝࢠ࣮ࢆࡶ ฟࡍ㸬ࡇࡢᅛయෆ࡛ࡢ⾪✺ࡢ㐃㙐ࡢࡇࢆ⾪✺࢝ࢫ ࡗࡓධᑕ⢏Ꮚࡀࢱ࣮ࢤࢵࢺ↷ᑕࡉࢀࡿࡇࡼ ࢣ࣮ࢻ࠸࠸㸪ࡇࡢ⾪✺࢝ࢫࢣ࣮ࢻࡀࢱ࣮ࢤࢵࢺ⾲ ࡗ࡚⏕ࡳฟࡉࢀࡿ⾪✺࢝ࢫࢣ࣮ࢻࡀᅛయ⾲㠃࡛Ⓨ 㠃ࡲ࡛Ⓨ㐩ࡋ㸪⾲㠃᪉ྥࢱ࣮ࢤࢵࢺཎᏊࡀࡣࡌࡁ 㐩ࡍࡿࡇࡼࡿ㸬⌧ᅾࡲ࡛ࡢࡇࢁ㸪ࡇࡢࢫࣃࢵ ฟࡉࢀࡓࡁ㸪ࡑࡢ㊴ཎᏊࡀ⾲㠃⤖ྜ࢚ࢿࣝࢠ࣮ ࢱࣜࣥࢢ⌧㇟ᑐࡍࡿ⌮ㄽⓗ࡞ྲྀࡾᢅ࠸ࡣ㸪༑ศ⾪ ࡼࡾࡁ࡞࢚ࢿࣝࢠ࣮ࢆࡶࡗ࡚࠸ࡿሙྜ㸪ࢱ࣮ࢤࢵ ✺࢝ࢫࢣ࣮ࢻࡀⓎ㐩ࡋࡓሙྜᑐࡋ࡚ࡔࡅ᭷ຠ࡛ ࢺཎᏊࡣᅛయ⾲㠃ࡽᨺฟࡉࢀࡿ㸬ࡇࡢ⌧㇟ࢆࢫࣃ ࠶ࡾ 㸪ධᑕ࢚ࢿࣝࢠ࣮ࡀప࠸ሙྜࡸ㸪ධᑕ⢏Ꮚࡀ ࢵࢱࣜࣥࢢ࠸࠺㸬ࡇࡢࢫࣃࢵࢱࣜࣥࢢ⌧㇟ࡣ⌧ Ỉ⣲ཎᏊ࡞ࡢ㍍࢜ࣥࡢሙྜࡣ㸪ࡇࡢ⾪✺࢝ࢫࢣ *Department of Biomedical Engineering Telephone: +81-774-65-6687, E-mail: [email protected] 58 ) ( 少数回衝突機構によるスパッタリング現象への寄与 59 య⾪✺㏆ఝ ࣮ࢻࡀ༑ศⓎ㐩ࡏࡎ㸪ࡑࡢሙྜࡢࢫࣃࢵࢱࣜࣥࢢ ࢫࣃࢵࢱࣜࣥࢢゎᯒࢥ࣮ࢻ ACAT ࡣ๓㏙ࡢ㏻ ⌧㇟ࡣ⌮ㄽⓗண ࡉࢀࡿࡿ⯙࠸␗࡞ࡿࡶࡢ ࡾࣔࣥࢸ࢝ࣝࣟἲࢆᇶ㸪ᅛయෆࡢཎᏊ⾪✺㛵ࡋ ⪃࠼ࡽࢀࡿ㸬 ᮏ◊✲࡛ࡣ㸪⾪✺࢝ࢫࢣ࣮ࢻࡀ༑ศⓎ㐩ࡋ࡞࠸ ࡚ 2 య⾪✺㏆ఝ 9)ࢆ᥇⏝ࡋ࡚࠸ࡿ㸬⢏Ꮚࡀᅛయෆ పධᑕ࢚ࢿࣝࢠ࣮㸪㍍࢜ࣥࢫࣃࢵࢱࣜࣥࢢࡘ࠸ ධᑕࡉࢀࡿ㸪⾪✺࢝ࢫࢣ࣮ࢻࡤࢀࡿ⾪✺㐃㙐 ࡚㸪ࢫࣃࢵࢱࣜࣥࢢゎᯒࢥ࣮ࢻ ACAT ࢆ⏝࠸࡚㸪ࢫ ࡀ㉳ࡇࡿ㸬2 య⾪✺㏆ఝࡣ㸪Fig. 2 ♧ࡉࢀࡿࡼ࠺ ࣃࢵࢱࣜࣥࢢᑐࡍࡿᑡᩘᅇ⾪✺ࡢᐤࡘ࠸࡚ 㐠ືࡋ࡚࠸ࡿ⢏Ꮚ㟼Ṇࡋ࡚࠸ࡿᶆⓗཎᏊࡢ 2 ゎᯒࢆ⾜࠸㸪⌮ㄽࡢ㐪࠸ࢆ᳨ドࡋࡓ㸬 ࡘࡢࡳࢆ⪃៖ࡋ㸪ཎᏊ⾪✺ࢆᶍᨃࡍࡿ㸬2 య⾪✺㏆ ఝࡣ㸪ධᑕ⢏Ꮚࡢ㐠ື࢚ࢿࣝࢠ࣮E ࡀᩘⓒ eV ௨ୖ 㸬ࢫࣃࢵࢱࣜࣥࢢゎᯒࢥ࣮ࢻ $&$7 ࡛ࡼ࠸㏆ఝࢆ࠼ࡿ࠸ࢃࢀ࡚࠸ࡿ㸬୍᪉㸪ධᑕ࢚ ࢫࣃࢵࢱࣜࣥࢢࡢࢩ࣑࣮ࣗࣞࢩࣙࣥゎᯒ㛵 ࢿࣝࢠ࣮ࡀ 100 eV ௨ୗࡢప࢚ࢿࣝࢠ࣮࡛ࡣ㸪ධᑕ ࡋ࡚㸪⌧ᅾࡲ࡛ 2 య⾪✺㏆ఝἲࣔࣥࢸ࢝ࣝࣟἲ ⢏Ꮚࡢ࿘ࡾ࠶ࡿࢱ࣮ࢤࢵࢺཎᏊࡽࡢᐤࡀ↓ ࢆࡶࡋࡓࢩ࣑࣮ࣗࣞࢩࣙࣥࢥ࣮ࢻࡀᗄࡘ㛤 ど࡛ࡁ࡞ࡃ࡞ࡾ㸪㏆ఝࡣᝏࡃ࡞ࡿ㸬 Ⓨࡉࢀ࡚࠾ࡾ㸪ࢫࣃࢵࢱࣜࣥࢢ㔞࡞ከࡃࡢ᭷⏝ ࡞ࢹ࣮ࢱࡀ⏕ᡂࡉࢀ࡚࠸ࡿ 6) 㸬௦⾲ⓗ࡞ࡶࡢ ⾪✺ᚋࡢ࢚ࢿࣝࢠ࣮ E㸫T ACAT ࢥ࣮ࢻ 㸦Atomic Collision in Amorphous 7) Target㸧㸪TRIM ࢥ࣮ࢻ 8)㸦Transport in Material㸧 ࡀᣲࡆࡽࢀࡿ㸬௨ୗ㸪ᅇゎᯒ⏝࠸ࡓ ACAT ධᑕ⢏Ꮚࡢ㌶㊧ ධᑕ࢚ࢿࣝࢠ࣮ E ᐇ㦂⣔ࡢᩓゅ T ࢥ࣮ࢻࣔࢹࣝࡢせ࡞㒊ศࢆㄝ᫂ࡍࡿ㸬 ACAT ࢥ࣮ࢻࡣ㸪Fig. 1 ♧ࡍࡼ࠺ࢱ࣮ࢤࢵ ⾪✺ಀᩘ p ࢺࢆ 1 ㎶ R0㸦=N-1/3㸧ࡢࣘࢽࢵࢺࢭࣝศࡋ㸪ࣘ 42 㸦㔜ᚰ⣔ࡢᩓゅ 4 㸧 ࢽࢵࢺࢭࣝᩘࢆ⏝࠸࡚ࢱ࣮ࢤࢵࢺཎᏊࢆ 1 ࡘ ᐇ㦂⣔ࡢ㊴ゅ I ࣛࣥࢲ࣒㓄⨨ࡉࡏ㸪ࣔࣝࣇࢫ㸦㠀⤖ᬗ㸧ࢱ࣮ ࢱ࣮ࢤࢵࢺཎᏊࡢ ࢤࢵࢺࢆᵓᡂࡍࡿ㸬ࡇࡇ࡛㸪N ࡣࢱ࣮ࢤࢵࢺࡢᩘᐦ ึᮇ⨨ ㊴⢏Ꮚࡢ࢚ࢿࣝࢠ࣮ T Fig. 2. Binary collision approximation. ᗘ㸦atoms/cm3㸧࡛࠶ࡿ㸬 2 య⾪✺㏆ఝࡼࡿ㔜ᚰ⣔ࡢᩓゅ 4 ࡣ㸪ḟᘧ ධᑕ࢜ࣥ ࡛ᐃ⩏ࡉࢀࡿ㸬 f ³> @ 1 4 S 2 p r 2 g r dr (1) r0 ࡇࡇ࡛㸪p ࡣ⾪✺ᚄᩘ㸬r ࡣཎᏊ㛫㊥㞳㸪r0 ࡣ᭱㏆᥋ ㊥㞳࡛࠶ࡾ㸪㏆᪥Ⅼࡶࡤࢀ㸪g (r0 ) 0 ࢆ‶ࡓࡍ㸬 ࡇࢀࡽࢆᶍᘧⓗ Fig. 2 ♧ࡍ㸬Fig. 2 ୰ T ࡣᩓ ᚋࢱ࣮ࢤࢵࢺཎᏊࡀᚓࡿ㐠ື࢚ࢿࣝࢠ࣮࡛࠶ࡿ㸬 ࡋࡓࡀࡗ࡚㸪ᩓᚋࡢධᑕ⢏Ꮚࡢ࢚ࢿࣝࢠ࣮ࡣ E㸫 R0 T ࡛࠼ࡽࢀࡿ㸬ࡲࡓ㸪㛵ᩘ g(r)ࡣ Fig. 1. Unite Cell model (ACAT). 1 g (r ) 59 ) ( ª p 2 V (r ) º 2 «1 2 » E r »¼ «¬ r (2) 剣持貴弘 60 ࡛࠼ࡽࢀࡿ㸬ࡇࡇ࡛㸪V(r)ࡣཎᏊ㛫࣏ࢸࣥࢩࣕࣝ Moriere ࡢ㐽ⶸ㛵ᩘ 12)ࢆ⏝࠸ࡓ㸬 ࡛ ACAT ࢥ࣮ࢻ࡛ࡣ㸪᩺ຊ࣏ࢸࣥࢩࣕࣝࡢࡳࡀ⪃៖ ࡉࢀࡿ㸬ཎᏊ㛫࣏ࢸࣥࢩࣕࣝ㛵ࡋ࡚ࡣ㸪ḟ⠇࡛ヲ (1) Moliere ࣏ࢸࣥࢩࣕࣝ I x Mol ࡋࡃ㏙ࡿ㸬 ࡇࡇ࡛㸪r ࡣཎᏊ㛫㊥㞳࡛࠶ࡿ㸬ࡲࡓ x ᘧ㸦2㸧୰ࡢ Er ࡣ┦ᑐ࢚ࢿࣝࢠ࣮࡛㸪 § A · ¸E ¨ © A 1¹ Er r a ࡛࠶ࡾ㸪 ࢆ⏝࠸ࡿ㸬ZBL( Ziegler㸪Biersak, Littmark)࣏ࢸࣥࢩ ᐃ⩏ࡉࢀࡿ㸬ࡇࡇ࡛㸪㉁㔞ẚ A ࡣ㸪ධᑕ⢏Ꮚࡢ㉁ ࣕࣝ 13)௨እࡣ㸪ࡇࡢ Firsov ࡢ㐽ⶸ㛗ࡉࢆ⏝࠸ࡿ㸬 M 2 M1 ࡛ ࠶ࡿ㸬ᘧ㸦1㸧ࡽᚓࡽࢀࡿ㔜ᚰ⣔ࡢᩓゅ 4 ࡽ㸪 (2) Kr-C (Krupyon-Carbon)࣏ࢸࣥࢩࣕࣝ 14) ᐇ㦂ᐊ⣔ࡢᩓゅ T ㊴࢚ࢿࣝࢠ࣮T ࡣ㸪 I x Kr C T T A sin 4 1 A cos 4 tan 1 4A A 12 (8) 㐽ⶸ㛗ࡉ a ࡣᘧ㸦7㸧࡛࠼ࡽࡿ Firsov ࡢ㐽ⶸ㛗ࡉ (3) 㔞 M1 ᶆⓗ⢏Ꮚࡢ㉁㔞 M2 ࡢẚ࡛㸪A 0.35e 0.3 x 0.55e 1.2 x 0.10e 6.0 x §4· E sin ¨ ¸ ©2¹ 0.1909451e 0.278544 x 0.473674e 0.63717 x 0.0.335381e 1.919249 x (4) (5) (9) (3) ࢰ࣐࣮ࣥࣇ࢙ࣝࢺ࣏ࢸࣥࢩࣕࣝ 15) 1 x 1441 3 ® ¯ I x som ࡞ࡿ㸬 O ½¾¿ c 3 ࡢ㛵ಀࡀ࠶ࡾ㸪 O ࡇࡇ࡛㸪 cO (10) 0.8034 ࡛࠶ࡿ㸬 ཎᏊ㛫ຊ࣏ࢸࣥࢩࣕࣝ ACAT ࢥ࣮ࢻ࡛ࡣ㸪ཎᏊ㛫స⏝ࡍࡿ᩺ຊࢆホ (4) ZBL ࣏ࢸࣥࢩࣕࣝ ౯ࡍࡿ 2 య㛫࣏ࢸࣥࢩࣕࣝࡋ࡚㸪ࢺ࣮࣐ࢫ࣭ࣇ࢙ ࣑ࣝࣔࢹࣝࡼࡿ㐽ⶸࢡ࣮࣏ࣟࣥࢸࣥࢩࣕࣝ 10)ࢆ ᥇⏝ࡍࡿ㸬ཎᏊ␒ྕ Z1㸪Z2 ࡢ 2 ࡘࡢཎᏊ㛫ാࡃ᩺ Ziegler㸪Biersak, Littmark ࡼࡗ࡚ᥦࡉࢀࡓ ཎᏊ㛫ຊ࣏ࢸࣥࢩ࡛ࣕࣝ㸪௨ୗ࡛ᐃ⩏ࡉࢀࡿ㸬 I x ZBL 0.028171e 0.20162 x 0.28022e 0.4029 x 0.50986e 0.94229 x 0.18175e 3.1998 x ຊ࣏ࢸࣥࢩࣕࣝࡣ㸪 (11) 2 Z1 Z 2 e § r · I¨ ¸ r ©a¹ V (r ) (6) ࡇࡇ࡛㸪㐽ⶸ㛗ࡉ a ࡣḟᘧ࡛ᐃ⩏ࡉࢀࡿ㸬 ࡛ᐃ⩏ࡉࢀࡿ㸬ࡇࡇ࡛㸪 I r a ࡣ㐽ⶸ㛵ᩘ࡛㸪a ࡣ a 㐽ⶸ㛗ࡉ(Å)࡛࠶ࡾ㸪Firsov11)ࡼࡗ࡚ a 0.4658 Z 11 2 23 Z 21 2 (7 ) ࠼ࡽࢀ࡚࠸ࡿ㸬ཎᏊ᰾ࡢṇ㟁Ⲵࡀ㸪࿘ࡾᏑᅾ Z 0.4658 0.23 1 Z 20.23 (12) 23 ᐃ⩏ࡋ࡚⏝࠸ࡿ㸬 (5) AMLJ㸦Averaged Modified Lenz-Jensen 㸧࣏ࢸࣥ ࢩࣕࣝ 16) ࡍࡿ㟁Ꮚࡢ㈇㟁Ⲵࡼࡗ࡚㐽ⶸࡉࢀࡿຠᯝࢆྲྀࡾ I x AMLJ ධࢀࡓᙧ࡞ࡗ࡚࠸ࡿ㸬ࡋࡓࡀࡗ࡚㸪ཎᏊ㛫ࡢ㊥㞳 exp D 1 x D 2 x 3 2 D 3 x 2 (13) ࡀ㞳ࢀ࡚࠸ࡿሙྜࡣཎᏊ᰾ࡢṇ㟁Ⲵࡣ㟁Ꮚࡢ㈇㟁 Ⲵ㐽ⶸࡉࢀ㸪⾪✺┦ᡭࡢཎᏊࡽࡳࡿ୰ᛶぢ ࡇࡇ࡛㸪 D j j 1, 2, 3 ࡣḟᘧ࡛ᐃ⩏ࡉࢀࡿ㸬 ࠼㸪ẁࠎཎᏊ㛫㊥㞳ࡀ㏆࡙ࡃࡘࢀ㐽ⶸࡢຠᯝࡀ ῶᑡࡋ࡚࠸ࡃ㸬 (14) (15) D 1 1.706 Z 10.307 Z 20.307 㐽ⶸ㛵ᩘࡘ࠸࡚ࡣ㸪ከࡃࡢ㛵ᩘᙧࡀᥦࡉࢀ ࡚࠾ࡾ㸪ACAT ࢥ࣮ࢻ࡛ࡣ㸪௨ୗࡢ 5 ࡘࡢ㐽ⶸ㛵ᩘ ࢆ᥇⏝ࡍࡿࡇࡀ࡛ࡁࡿ㸬ᮏ◊✲࠾࠸࡚ࡣ㸪 60 ) ( D2 0.916 Z 10.169 Z 20.169 23 少数回衝突機構によるスパッタリング現象への寄与 D3 0.244 Z 10.0418 Z 20.0418 ࡇࡇ࡛㸪 x { r a B ࡛࠶ࡾ㸪 a B 2 61 㜼Ṇ᩿㠃✚ࢆ s ZBL (E ) ࡍࡿ㸪ධᑕ⢏Ꮚࡀࢱ࣮ࢤ (16) ࢵࢺ୰ࢆ 'x ࡔࡅ㐍ࡴ㛫ኻ࠺㟁Ꮚⓗ࢚ࢿࣝࢠ࣮ᦆ 0.529 Å㸦࣮࣎ ኻ 'E ࡣ㸪 'E ༙ᚄ㸧ࢆ⏝࠸ࡿ㸬 Ns ZBL ( E )'x (19) ⾲ࡉࢀࡿ㸬 ࢚ࢿࣝࢠ࣮ᦆኻ 㐠ືࡋ࡚࠸ࡿ⢏Ꮚࡀ㟼Ṇࡋ࡚࠸ࡿࢱ࣮ࢤࢵࢺ ࢫࣃࢵࢱࣜࣥࢢ㔞ࡢホ౯ᘧ ཎᏊ⾪✺ࡍࡿࡇࡼࡿ㐠ື࢚ࢿࣝࢠ࣮ࡢᦆኻ ACAT ࢥ࣮ࢻ࡛ィ⟬ࡉࢀࡓࢫࣃࢵࢱࣜࣥࢢ ࡣ㸪⾪✺ࡢ๓ᚋ࡛㐠ື࢚ࢿࣝࢠ࣮㐠ື㔞ࡀಖᏑࡉ 㔞ࡢጇᙜᛶࢆ᳨ドࡍࡿࡓࡵ㸪⤖ᯝࢆᐇ㦂ࢹ࣮ࢱ㸪ཬ ࢀࡿᙎᛶ⾪✺ࡼࡿࡶࡢ㸪㐠ື㔞ࡀಖᏑࡉࢀ࡞࠸ ࡧᐇ㦂ࢹ࣮ࢱࢆࡼࡃ⌧ࡍࡿࡇ࡛▱ࡽࢀࡿ 㠀ᙎᛶ⾪✺ࡀ࠶ࡿ㸬ᙎᛶ⾪✺ࡼࡗ࡚㸪ࢱ࣮ࢤࢵ Yamamura ➼ࡼࡗ࡚ᥦࡉࢀࡓබᘧ ࢺཎᏊ࠼ࡿ࢚ࢿࣝࢠ࣮ࡣᘧ㸦5㸧࡛࠼ࡽࢀࡿ㸬 ㍑ࡋࡓ㸬ࡇࡢࢫࣃࢵࢱࣜࣥࢢබᘧࡣ㸪ᆶ┤ධᑕࡢࢫ 㠀ᙎᛶ⾪✺ࡣ㸪㟁Ꮚⓗ࢚ࢿࣝࢠ࣮ᦆኻࡶゝࢃࢀ㸪 ࣃࢵࢱࣜࣥࢢ㔞ࢆホ౯ࡋ㸪⥺ᙧ࢝ࢫࢣ࣮ࢻ⌮ㄽ 5) ධᑕ࢚ࢿࣝࢠ࣮ࡀࡁࡃ࡞ࡿࡘࢀ࡚ࢱ࣮ࢤࢵࢺ ࡽᑟࢀࡿ㛵ᩘᙧ㸪ᐇ㦂ࢹ࣮ࢱࢆᇶỴࡵࡽࢀ ཎᏊࡢཎᏊ᰾ࡢࡲࢃࡾᏑᅾࡍࡿ㟁Ꮚ⣔㸪ບ㉳࣭ ࡓࣇࢵࢸࣥࢢࣃ࣓࣮ࣛࢱࢆྵࡴ༙⌮ㄽ༙ᐇ㦂 㟁㞳࠸࠺㐣⛬ࢆ⤒࡚࢚ࢿࣝࢠ࣮ࡀࡉࢀࡿࡼ ᘧ࡛࠶ࡿ㸬ࡇࡢࣇࢵࢸࣥࢢࣃ࣓࣮ࣛࢱ㛵ࡋ࡚ ࠺࡞ࡿ㸬㟁Ꮚ⣔࢚ࢿࣝࢠ࣮ࡀࡉࢀࡿሙྜࡣ㸪 ࡣ㸪ཧ⪃ᩥ⊩ 6)ᩘ್⾲ࡀ࠶ࡾ㸪ࢱ࣮ࢤࢵࢺẖ᭱ 㟁Ꮚࡢ㉁㔞ࡀධᑕ⢏Ꮚẚ࡚ᅽಽⓗᑠࡉ࠸ࡓ 㐺್ࡀ♧ࡉࢀ࡚࠸ࡿ㸬 Yamamura බᘧ࡛࠼ࡽࢀ ࡵ㸪ධᑕ⢏Ꮚࡣ┤㐍ࡍࡿ⪃࠼࡚ࡼ࠸㸬 ࡿࢫࣃࢵࢱࣜࣥࢢ㔞ࡣᘧ㸦20㸧࡛࠼ࡽࢀࡿ㸬 ධᑕ⢏Ꮚࡀࢱ࣮ࢤࢵࢺ୰ࢆ༢㛗ࡉᙜࡓࡾ㐍 ࡴࡢኻ࠺࢚ࢿࣝࢠ࣮ࢆ㜼Ṇ⬟࠸࠸㸪 ³ dE dx N T ( p) 2Spdp Ns ( E ) Y (E) (17) 6)ࡢ⤖ᯝẚ § QD ·° S n ( E ) ½° § E th ·½ ¸® 1 ¨¨ 0.042¨¨ ¸¸¾ ¸ 0.3 ¾® © U s ¹°̄1 *k e H °¿¯ © E ¹¿ s (20) ࡇࡇ࡛㸪Y(E) [atoms/ion]ࡣධᑕ࢚ࢿࣝࢠ࣮E [eV]ࡢ ࡛ᐃ⩏ࡉࢀࡿ㸬ࡇࡇ࡛㸪x ࡣධᑕ⢏Ꮚࡀࢱ࣮ࢤࢵࢺ ࡁࡢࢫࣃࢵࢱࣜࣥࢢ㔞㸪Q㸪s ࡣࢱ࣮ࢤࢵࢺཎ ୰ࢆ㐍ࢇࡔ㛗ࡉ㸪N [atoms/cm ]ࡣࢱ࣮ࢤࢵࢺࡢᩘᐦ Ꮚ౫Ꮡࡍࡿࣃ࣓࣮ࣛࢱ࡛࠶ࡿ㸬ࡲࡓ㸪Us [eV]ࡣࢱ ᗘ࡛㸪T(p)ࡣ⾪✺ಀᩘ p ࠾ࡅࡿ㊴࢚ࢿࣝࢠ࣮㸪 ࣮ࢤࢵࢺཎᏊࡢ⾲㠃⤖ྜ࢚ࢿࣝࢠ࣮࡛㸪㏻ᖖࡣ᪼⳹ s(E) [eV cm ]ࡣ㜼Ṇ᩿㠃✚ࡤࢀࡿ㸬ᘧ㸦17㸧 ࢚ࢿࣝࢠ࣮ࡀ⏝࠸ࡽࢀࡿ㸬Eth [eV]ࡣࢫࣃࢵࢱࣜࣥࢢ ࡣ㸪ᙎᛶ⾪✺ࡼࡿ࢚ࢿࣝࢠ࣮ᦆኻ㸪㠀ᙎᛶ⾪✺ ࡢࡋࡁ࠸್࢚ࢿࣝࢠ࣮࡛㸪 3 2 ࡼࡿ࢚ࢿࣝࢠ࣮ᦆኻࡀྵࡲࢀ࡚࠾ࡾ㸪๓⪅ࢆ᱁ⓗ 㜼Ṇ⬟ dE dx n 㸪ᚋ⪅ࢆ㟁Ꮚⓗ㜼Ṇ⬟ dE dx e E th ࡪ㸬㜼Ṇ⬟ࢆࡇࢀࡽࡘࡢせ⣲ศࡋ࡚⾲ࡍ㸪 dE dx § dE · § dE · ¸ ¸ ¨ ¨ © dx ¹ n © dx ¹ e N s n ( E ) s e E (18) E th ª1 5.7M 1 M 2 º « » uU s J ¬ ¼ for 6.7 J M1 d M 2 (21) M1 t M 2 (22) uU s for ࡞ࡿ㸬 㟁 Ꮚ ⓗ 㜼 Ṇ ⬟ ࡢ ⌮ ㄽ ࡋ ࡚ 㸪 Lindhard 㸪 ࡛ᐃ⩏ࡉࢀࡿ㸬ࡇࡇ࡛㸪Jࡣᙎᛶ⾪✺࠾ࡅࡿ࢚ࢿ Scharff㸪Schiøtt ࡼࡗ࡚ᥦࡉࢀࡓ LSS ࡢ㜼Ṇ⬟ ࣝࢠ࣮⛣⾜ᅉᏊ࡛㸪 7) බᘧ ࡀ᭷ྡ࡛࠶ࡿࡀ㸪ACAT ࢥ࣮ࢻ࠾࠸࡚ࡣ㸪 J Ziegler㸪Biersak, Littmark (ZBL)ࡼࡗ࡚࠼ࡽࢀࡓ ᗈ࠸࢚ࢿࣝࢠ࣮⠊ᅖரࡗ࡚㐺⏝࡛ࡁࡿᐇ㦂ࢹ࣮ ࢱࢆᇶࡋࡓබᘧ 4M 1 M 2 M 1 M 2 2 (23) ࠶ࡿ㸬ࡑࡢࡢࣃ࣓࣮ࣛࢱࡣḟࡢࡼ࠺ᐃ⩏ࡉࢀࡿ㸬 17) ࢆ᥇⏝ࡋ࡚࠸ࡿ㸬ࡇࡢᐇ㦂ᘧࡢ 61 ) ( 剣持貴弘 62 D D §M 0.249¨¨ 2 © M1 §M 0.088¨¨ 2 © M1 · ¸¸ ¹ · ¸¸ ¹ 0.56 ࣮ࡢ Ar+࢜ࣥ, H+࢜ࣥࡋ㸪ࢱ࣮ࢤࢵࢺࡣ㖡ࢆ 0.15 §M · 0.0035¨¨ 2 ¸¸ © M1 ¹ for M 1 d M 2 0.15 §M · 0.165¨¨ 2 ¸¸ © M1 ¹ for M 1 t M 2 㑅ࢇࡔ㸬 (24) 㸬 $U㸫&X ࢫࣃࢵࢱࣜࣥࢢ Fig. 3 㸪Ar+࢜ࣥࢆ㖡ࢱ࣮ࢤࢵࢺ⾲㠃ᑐ ࡋ࡚ᆶ┤ධᑕࡉࡏࡓሙྜࡢ㖡ཎᏊࡢࢫࣃࢵࢱࣜ ࣥࢢ㔞ࡢᐇ㦂ࢹ࣮ࢱ (25) 18-20) 㸪 ACAT ࢹ ࣮ ࢱ 㸪 Yamamura බᘧࡼࡾᚓࡽࢀࡓ⤖ᯝࢆ♧ࡍ㸬Fig. 3 ࡇࡇ࡛㸪M1㸪M2 [a.m.u]ࡣධᑕ⢏Ꮚࢱ࣮ࢤࢵࢺཎ ࡼࡾ㸪ACAT ࢹ࣮ࢱ㸪Yamamura බᘧࡶ㸪ⱝᖸ Ꮚࡢ㉁㔞࡛࠶ࡿ㸬᰾ⓗ㜼Ṇ᩿㠃✚ Sn(E) [eV·Å/cm2] ࡢᕪࡣぢࡽࢀࡿࡀ㸪ᐇ㦂ࢹ࣮ࢱࡢㄗᕪ࡞ࢆ⪃៖ࡍ ࡣ㸪 ࡿ㸪ᐇ㦂ࢹ࣮ࢱࡼࡃ୍⮴ࡋ࡚࠸ࡿ㸬ࡇࡢሙྜ S n E Z 84.78Z 1 Z 2 23 1 Z 22 3 M1 s n (H ) M1 M 2 12 ⏝࠸ࡓ Yamamura බᘧࡢࣇࢵࢸࣥࢢࣃ࣓࣮ࣛ (26) ࢱࡢ್ࡣ㸪Q=1.0㸪W=0.73㸪s=2.5 ࡛࠶ࡿ㸬ࡲࡓ㸪 ACAT ࢥ࣮ࢻ Yamamura බᘧࡘ࠸࡚ࡶ㸪ࡼࡃ ࡛ᐃ⩏ࡉࢀࡿ㸬ࡇࡇ࡛㸪Z1㸪Z2 ࡣධᑕ⢏Ꮚࢱ࣮ࢤ ୍⮴ࡋ࡚࠾ࡾ㸪ࢫࣃࢵࢱࣜࣥࢢ㔞ࡢゎᯒ㛵ࡋ࡚㸪 ࢵࢺཎᏊࡢཎᏊ␒ྕ࡛࠶ࡿ㸬ࡲࡓ㸪⟬᰾ⓗ㜼Ṇ᩿ ACAT ࢥ࣮ࢻ㸪Yamamura බᘧࡶ᭷⏝࡛࠶ࡿ 㠃✚ s n (H ) ࡣ㸪 ⪃࠼ࡽࢀࡿ㸬 s n H 3.441 H ln H 2.718 1 6.355 H H 6.882 H 1.708 M1 u s n (H ) M1 M 2 (27) ࡛࠼ࡽࢀࡿ㸬ࡇࡇ࡛㸪⟬࢚ࢿࣝࢠ࣮ H ࡣ H 0.03255 Z 1 Z 2 Z 12 3 12 Z 22 3 M1 E M1 M 2 (28) ࡛࠶ࡿ㸬ࡲࡓ㸪 * W (29) 1 M 1 7 3 ࡛࠼ࡽࢀ㸪ࣇࢵࢸࣥࢢࣃ࣓࣮ࣛࢱ W ࡣࢱ࣮ ࢤࢵࢺཎᏊ౫Ꮡࡍࡿ㸬ke ࡣ Lindhard ࡢ㟁Ꮚⓗ㜼Ṇ ⬟ಀᩘ࡛࠶ࡾ㸪 ke 0.079 M 1 M 2 3 2 M 13 2 M 21 2 Z Z 12 3 Z 21 2 23 1 Z 22 3 Fig. 3. Sputtering yields of Cu bombarded by Ar+ 34 (30) ions at 0°. ḟ㸪100 eV㸪5 keV ࡢ Ar+࢜ࣥࢆ㖡ࢱ࣮ࢤ ࡛࠶ࡿ㸬 4㸬ゎᯒ⤖ᯝ ࢵࢺᆶ┤ධᑕࡉࡏࡓሙྜࡢࢫࣃࢵࢱ࣮ࡉࢀࡓ ACAT ࢥ࣮ࢻࢆ⏝࠸࡚㸪⾪✺࢝ࢫࢣ࣮ࢻࡀ༑ศ 㖡ཎᏊࡢゅᗘศᕸࢆ ACAT ࢥ࣮ࢻ࡛ゎᯒࡋࡓ⤖ᯝ Ⓨ㐩ࡋ࡞࠸ሙྜ࠾࠸࡚㸪ࢫࣃࢵࢱࣜࣥࢢࡀ⌮ㄽ ࢆ Fig. 4㸪5 ♧ࡍ㸬ࡲࡓ㸪༑ศⓎ㐩ࡋࡓ⾪✺࢝ࢫ ࡢࡼ࠺␗࡞ࡿࢆゎᯒࡋࡓ㸬⾪✺࢝ࢫࢣ࣮ࢻࡀ ࢣ࣮ࢻࡼࡗ࡚ࢫࣃࢵࢱ࣮ࡉࢀࡓࢫࣃࢵࢱ࣮⢏Ꮚ ༑ศⓎ㐩ࡋ࡞࠸ሙྜࡋ࡚㸪ධᑕ⢏Ꮚࢆప࢚ࢿࣝࢠ ࡢゅᗘศᕸࢆ⌧ࡍࡿࡋ࡚⌮ㄽⓗᑟࢀࡿࢥ 62 ) ( 少数回衝突機構によるスパッタリング現象への寄与 ࢧࣥศᕸ 12) ࡶేࡏ࡚♧ࡍ㸬ࢥࢧࣥศᕸࡣᴟゅ 63 Us ࡣࢱ࣮ࢤࢵࢺཎᏊࡢ⾲㠃⤖ྜ࢚ࢿࣝࢠ࣮࡛࠶ࡿ㸬 T㹼T dT 㸪᪉ゅ I㹼I dI ୰ᨺฟࡉࢀࡿ⢏Ꮚ ᑐࡍࡿࢫࣃࢵࢱ⋡ࢆ Y T , I ࡋ࡚㸪 Y (T , I )dTdI v cos TdTdI (31) ࡛⾲ࡉࢀࡿ㸬ࡇࡇ࡛㸪ゅᗘ T ࡣᅛయ⾲㠃ᑐࡋ࡚ᆶ ┤᪉ྥࢆ 0rࡋ㸪ྑഃࢆ 0r㹼90r㸪ᕥഃࢆ 0r 㹼㸫90rࡍࡿ㸬ᅗ୰♧ࡉࢀࡿࢥࢧࣥศᕸࡣ㸪 ゅᗘศᕸࡢᆶ┤ᡂศ୍⮴ࡍࡿࡼ࠺つ᱁ࡋ࡚ ࠶ࡿ㸬ᅗ♧ࡉࢀࡿࡼ࠺㸪 ධᑕ࢚ࢿࣝࢠ࣮ࡀ 1 keV ࡢሙྜࡣ㸪ࡰࢥࢧࣥศᕸ୍⮴ࡋ࡚࠸ࡿࡢᑐ ࡋ࡚㸪100 eV ࡢሙྜࡣ㸪ゅᗘศᕸࡢᆶ┤ᡂศࡀᢚ Fig. 5. Calculated angular distributions of sputtered Cu ࠼ࡽࢀࡓࣥࢲ࣮࣭ࢥࢧࣥศᕸࢆ♧ࡋ࡚࠸ࡿ㸬ࡇ atoms bombarded by 1 keV Ar+ ions at 0°. ࢀࡣධᑕ࢚ࢿࣝࢠ࣮ࡀప࠸ࡓࡵ㸪ᅛయෆ࡛⾪✺࢝ ࡲࡓ㸪ࢺࣥࣉࢯࣥࡢබᘧ࡛࠼ࡽࢀࡿ࢚ࢿࣝࢠ࣮ ࢫࢣ࣮ࢻࡀ༑ศⓎ㐩ࡏࡎ㸪ධᑕ᪉ྥࡢ㐠ື㔞ᡂศࡀ ศᕸࡢࣆ࣮ࢡ࢚ࢿࣝࢠ࣮ࡣ㸪ࢺࣥࣉࢯࣥࡢබᘧࢆ࢚ ከࡃṧࡗ࡚࠸ࡿࡓࡵ࡛࠶ࡿ㸬 ࢿࣝࢠ࣮㛵ࡋ࡚ᚤศࡋ࡚ᴟ್ࢆồࡵࡿࡇ࡛ᚓ ࡽࢀ㸪ࡑࡢ್ࡣ U s 2 ࡞ࡿ㸬ࢱ࣮ࢤࢵࢺࡀ㖡ࡢሙ ྜ㸪⾲㠃⤖ྜ࢚ࢿࣝࢠ࣮ࡣ 3.49 eV ࡛࠶ࡾ㸪⌮ㄽⓗ ண ࡉࢀࡿࣆ࣮ࢡ࢚ࢿࣝࢠ࣮ࡣ 1.75 eV ࡛࠶ࡿ㸬 Fig. 6 ♧ࡉࢀࡿࡼ࠺㸪ධᑕ࢚ࢿࣝࢠ࣮1 keV ࡢ ሙྜࡣ㸪ࢺࣥࣉࢯࣥࡢබᘧࡼࡃྜ⮴ࡋ࡚࠸ࡿࡇ ࡀศࡿ㸬 Fig. 4. Calculated angular distributions of sputtered Cu atoms bombarded by 100 eV Ar+ ions at 0°. ධᑕ࢚ࢿࣝࢠ࣮ࡀప࠸ࡓࡵ㸪⾪✺࢝ࢫࢣ࣮ ࢻࡀⓎ㐩ࡋ࡞࠸ࡇࡢᙳ㡪ࡣ㸪ࢫࣃࢵࢱ࣮⢏Ꮚࡢ࢚ ࢿࣝࢠ࣮ศᕸࡶ⌧ࢀࡿ㸬ゅᗘศᕸྠᵝධᑕ࢚ ࢿࣝࢠ࣮100 eV 1 keV ࡢ Ar+࢜ࣥࢆ㖡ࢱ࣮ࢤ ࢵࢺᆶ┤ධᑕࡉࡏࡓሙྜࡢࢫࣃࢵࢱ࣮ࡉࢀࡓ 㖡ཎᏊࡢ࢚ࢿࣝࢠ࣮ศᕸࢆ ACAT ࢥ࣮ࢻ࡛ゎᯒࡋ ࡓ⤖ᯝࢆ Fig. 6㸪7 ♧ࡍ㸬༑ศⓎ㐩ࡋࡓ⾪✺࢝ࢫ Fig. 6. Calculated energy distributions of sputtered Cu ࢣ࣮ࢻࡼࡗ࡚ࢫࣃࢵࢱ࣮ࡉࢀࡓ⢏Ꮚࡣ⌮ㄽⓗ atoms bombarded by 1 k eV Ar+ ions at 0°. ᑟࢀࡿࢺࣥࣉࢯࣥࡢබᘧ 12) ᚑ࠺ࡇࡀ▱ࡽࢀ ୍᪉㸪100 eV ࡢሙྜࡣ㸪ࢫࣃࢵࢱ࣮⢏Ꮚࡢ㧗࢚ ࡚࠾ࡾ㸪ࢺࣥࣉࢯࣥࡢබᘧࡣ Y ( E )dE v E E U s 3 (32) ࢿࣝࢠ࣮㒊ศࡢ㔞ࡀ㸪ࢺࣥࣉࢯࣥࡢබᘧࡽண ࡉࢀࡿࡶࡢẚ࡚ᑡ࡞࠸㸬ࡇࡢ㐪࠸ࡣ㸪ゅᗘศᕸ ࡞ࡿ㸬 ࡇࡇ࡛㸪E ࡣࢫࣃࢵࢱ࣮⢏Ꮚࡢ࢚ࢿࣝࢠ࣮㸪 ྠᵝ⾪✺࢝ࢫࢣ࣮ࢻࡀⓎ㐩ࡋ࡚࠸࡞࠸ࡇ 63 ) ( 剣持貴弘 64 ㉳ᅉࡍࡿ㸬ࡲࡓ㸪࢚ࢿࣝࢠ࣮ศᕸࡢࣆ࣮ࢡ࢚ࢿࣝࢠ ゅࡀ␗࡞ࡿ㸬⤖ᯝࡋ࡚㸪ᚋ᪉ᩓࡉࢀࡿ㍍࢜ࣥ ࣮ࡣ㸪100 eV㸪1 keV ࡢධᑕ࢚ࢿࣝࢠ࣮ඹ㸪ࢺࣥࣉ ࡢ᪉ྥࡣࣛࣥࢲ࣒࡞ࡾ㸪➼᪉ⓗ࡞ࡿ⪃࠼ࡽࢀ ࢯࣥࡢබᘧࡽண ࡉࢀࡿ 1.75 eV ㏆࠸್ࢆ♧ࡍ㸬 ࡿ㸬ࡋࡓࡀࡗ࡚㸪ᚋ᪉ᩓࡉࢀࡓ㍍࢜ࣥࡼࡗ࡚ ࡋࡓࡀࡗ࡚㸪⾪✺࢝ࢫࢣ࣮ࢻࡀⓎ㐩ࡋ࡞࠸ࡇࡼ ࢫࣃࢵࢱ࣮ࡉࢀࡓࢱ࣮ࢤࢵࢺཎᏊࡣప࢚ࢿࣝࢠ࣮ ࡿ࢚ࢿࣝࢠ࣮ศᕸࡢᙳ㡪ࡣ㸪㧗࢚ࢿࣝࢠ࣮㒊ศࡢ ࡛࠶ࡗ࡚ࡶ㸪ゅᗘศᕸࡢᆶ┤᪉ྥᡂศࡢῶᑡࡣぢࡽ 㔞⌧ࢀࡿ㸬 ࢀ࡞࠸㸬ࡇࡢഴྥࡣධᑕ࢜ࣥࢱ࣮ࢤࢵࢺཎᏊࡢ ㉁㔞ᕪࡀࡁ࠸ሙྜࡸ㸪ධᑕ࢚ࢿࣝࢠ࣮ࡀప࠸ሙྜ 㢧ⴭ࡞ࡿ㸬 Fig. 8. Calculated angular distributions of sputtered Cu Fig. 7. Calculated energy distributions of sputtered Cu atoms bombarded by 100 eV H+ ions at 0°. atoms bombarded by 1 00eV Ar+ ions at 0°. 㸬+㸫&X ࢫࣃࢵࢱࣜࣥࢢ ⾪✺࢝ࢫࢣ࣮ࢻࡀᮍⓎ㐩࡞ࡿࡢࡣ㸪Ỉ⣲࢜ ࣥ࡞ࡢ㍍࢜ࣥࡼࡿࢫࣃࢵࢱࣜࣥࢢࡢሙྜࡶ ྠᵝ࡛࠶ࡿ㸬Fig. 8㸪9 100 eV H+࢜ࣥࢆ㖡ࢱ ࣮ࢤࢵࢺᆶ┤ධᑕࡉࡏࡓሙྜࡢࢫࣃࢵࢱ࣮ࡉ ࢀࡓ㖡ཎᏊࡢゅᗘศᕸ࢚ࢿࣝࢠ࣮ศᕸࢆ♧ࡍ㸬 Fig. 8 ࡛♧ࡉࢀࡿࡼ࠺㸪㍍࡛࢜ࣥࢫࣃࢵࢱ࣮ࡉ ࢀࡓࢱ࣮ࢤࢵࢺཎᏊࡢゅᗘศᕸࡣ㸪100 eV ࡢప࢚ ࢿࣝࢠ࣮ࡶ㛵ࢃࡽࡎࢥࢧࣥ㏆࠸ศᕸࢆ♧ࡍ㸬 ࡇࡢゎᯒ⤖ᯝࡣ㸪Ar+࢜ࣥධᑕࡢሙྜ␗࡞ࡿഴ ྥ࡛࠶ࡿ㸬ࡇࢀࡣ Fig. 10 ♧ࡉࢀࡿࡼ࠺㸪㍍ Fig. 9. Calculated energy distributions of sputtered Cu ࢜ࣥࢫࣃࢵࢱࣜࣥࢢࡢ࣓࢝ࢽࢬ࣒ࡀᑡᩘᅇ⾪✺ atoms bombarded by 100 eV H+ ions at 0°. ࡼࡿࡶࡢ࡛࠶ࡿࡇ㉳ᅉࡍࡿ㸬 ㍍࢜ࣥࢫࣃࢵࢱࣜࣥࢢࡢሙྜ㸪ධᑕ⢏Ꮚࡢ㉁ 㔞ࡀࢱ࣮ࢤࢵࢺཎᏊẚ࡚㍍࠸ࡓࡵࢱ࣮ࢤࢵ ㍍࢜ࣥࢫࣃࢵࢱࣜࣥࢢࡢሙྜࡢ࢚ࢿࣝࢠ࣮ ࢺཎᏊ⾪✺ࡋࡓ㝿ᚋ᪉ᩓࡉࢀࡿ⋡ࡀ㧗ࡃ ศᕸࡣࢺࣥࣉࢯࣥࡢබᘧࡁࡃ␗࡞ࡿ㸬࢚ࢿࣝࢠ ࡞ࡿ㸬ࡇࡢᚋ᪉ᩓࡉࢀࡓ㍍࢜ࣥࡢ᪉ྥࡣ㸪ࢱ ࣮ศᕸࡢࣆ࣮ࢡࢆ࠼ࡿ࢚ࢿࣝࢠ࣮ࡣࢺࣥࣉࢯࣥ ࣮ࢤࢵࢺཎᏊࡢ⾪✺⨨ࡼࡗ࡚ࡁࡃᙳ㡪ࡉࢀ ࡢබᘧ࡛ࡣ 1.75 eV ࡛࠶ࡿࡢᑐࡋ࡚㸪ACAT ࡢ⤖ ࡿࡓࡵ㸪ഹ࡞⾪✺⨨ࡢ㐪࠸࠾࠸࡚ࡶ㸪ᩓ ᯝࡣప࢚ࢿࣝࢠ࣮ഃࢩࣇࢺࡋ࡚࠾ࡾ㸪0.5 eV ㏆ഐ 64 ) ( 少数回衝突機構によるスパッタリング現象への寄与 ࡛࠶ࡿ㸬ࡲࡓ㸪࢚ࢿࣝࢠ࣮ศᕸࡢ㧗࢚ࢿࣝࢠ࣮㒊ศ 65 ࣮ࡶ㸪⌮ㄽⓗண ࡉࢀࡿ್ࡢ༙ศ௨ୗ࡞ࡿ㸬 ࡘ࠸࡚ࡶ㸪ACAT ࢥ࣮ࢻࡢゎᯒࡽᚓࡽࢀࡿศᕸ ㍍࢜ࣥධᑕࡢࢫࣃࢵࢱ࣮⢏Ꮚࡢゅᗘศᕸ ࡣ㸪ࢺࣥࣉࢯࣥࡢබᘧࡀ⦆ࡸῶᑡࡍࡿࡢᑐࡋ㸪 ࡘ࠸࡚ࡣ㸪⾪✺࢝ࢫࢣ࣮ࢻࡀⓎ㐩ࡋ࡞ࡃ࡚ࡶ㸪ᚋ ᛴ⃭ 0 ᮰ࡍࡿ㸬 ᪉ᩓࡉࢀࡿධᑕ⢏Ꮚࡢ㐠ື㔞ࡀ༑ศࣛࣥࢲ࣐ ࢬࡉࢀࡿࡇࡼࡗ࡚Ⓨ㐩ࡋࡓ⾪✺࢝ࢫࢣ࣮ࢻ ྠࡌ⤖ᯝࢆ♧ࡍ㸬ࡋࡋ࡞ࡀࡽ㸪࢚ࢿࣝࢠ࣮ศᕸ ᑐࡋ࡚ࡣ㸪⾪✺࢝ࢫࢣ࣮ࢻࡀⓎ㐩ࡋ࡞࠸ᙳ㡪ࡀ㢧 ⴭ⌧ࢀ㸪⌮ㄽⓗண ࡉࢀࡿࢺࣥࣉࢯࣥࡢබᘧ ࡽࡁࡃእࢀࡓࡶࡢ࡞ࡿ㸬 ᮏ◊✲ࡢ୍㒊ࡣࠕ2008 ᖺᗘྠᚿ♫Ꮫ⌮ᕤᏛ◊✲ ᡤ◊✲ຓᡂ㔠㸦ಶே㸧ࠖࡢᨭࢆཷࡅࡓ㸬ࡇࡇ㸪 グࡋ࡚ㅰពࢆ⾲ࡍࡿ㸬 Fig. 10. Undeveloped collision cascade. ཧ⪃ᩥ⊩ 1) ᑠᯘὒ㸪ⷧ⭷㸦ᇶ♏ࡢࡁࡑ㸧 㸪 㸦᪥หᕤᴗ᪂⪺♫㸪ᮾ ⤖ ⤖ㄽ ி㸪2006㸧 㸪p. 51. ࢫࣃࢵࢱࣜࣥࢢゎᯒࢥ࣮ࢻ ACAT ࢆ⏝࠸࡚㸪 ⾪ ✺࢝ࢫࢣ࣮ࢻࡀ༑ศⓎ㐩ࡋ࡞࠸ሙྜ㸪ࡍ࡞ࢃࡕᑡᩘ ᅇ⾪✺࡛⏕ࡌࡿࢫࣃࢵࢱࣜࣥࢢᐤࡀࡁ࠸ሙྜ 2) R. F. K. Herzog and F. P. Viehböck, “Ion Source for Mass Spectrography”, Phys. Rev. 76, 855-856 (1949). 3) R. Behrisch, B. M. U. Scherzer, “He wall ࡢゎᯒࢆ⾜ࡗࡓ㸬ලయⓗࡣ㸪పධᑕ࢚ࢿࣝࢠ࣮㸪 bombardment and wall erosion in fusion devices”, ཬࡧ㍍࢜ࣥධᑕࢫࣃࢵࢱࣜࣥࢢ⌧㇟ࢆᑐ㇟ Radiat. Eff. 78, 393-403 (1988). ࡋࡓ㸬ࡲࡎ⾪✺࢝ࢫࢣ࣮ࢻࢆࡶࡋࡓ⌮ㄽࡢ㐪 ࠸ࢆゎᯒࡋࡓ㸬ࢫࣃࢵࢱ࣮⢏Ꮚࡢゅᗘศᕸᑐࡋ࡚ 4) ᑠᯘὒ㸪ⷧ⭷㸦ᇶ♏ࡢࡁࡑ㸧 㸪 㸦᪥หᕤᴗ᪂⪺♫㸪ᮾ ி㸪2006㸧 㸪p. 52. 5) P. Sigmund, “Theory of Sputtering . I. Sputtering Yield of ࡣ㸪Ⓨ㐩ࡋࡓ⾪✺࢝ࢫࢣ࣮ࢻࡼࡗ࡚ࢫࣃࢵࢱ࣮ࡉ Amorphous and Polycrystalline Targets”, Phys. Rev., 184, ࢀࡓࢱ࣮ࢤࢵࢺཎᏊࡢゅᗘศᕸࡣࢥࢧࣥศᕸ ࡞ࡿࡇࡀ⌮ㄽⓗண ࡉࢀࡿࡀ㸪ప࢚ࢿࣝࢠ࣮ 384-416 (1969). 6) Y. Yamamura and H. Tawara, “Energy Dependence of Ion-Induced Sputtering Yields from Monoatomic Solids at Ar+࢜ࣥࡢ㖡ࢱ࣮ࢤࢵࢺᆶ┤ධᑕࡢሙྜࡣ⾪✺࢝ Normal Incidence”, Atomic Data and Nuclear Data Tables, ࢫࢣ࣮ࢻࡀ༑ศⓎ㐩ࡋ࡞࠸ࡓࡵ㸪ධᑕ᪉ྥࡢ㐠ື 62, 149-253 (1996). 㔞ᡂศࡀከࡃṧࡿ㸬ࡑࡢ⤖ᯝ㸪⾲㠃ᆶ┤ᡂศࡢ㔞 7) Y. Yamamura and Y. Mizuno, “Low-Energy Sputterings ࡀᑡ࡞࠸ࣥࢲ࣮ࢥࢧࣥศᕸࢆ♧ࡍ㸬୍᪉㸪H+ with the Monte Carlo Program ACAT, IIPJ-AM-40, Inst. ࢜ࣥࡢప࢚ࢿࣝࢠ࣮㖡ࢱ࣮ࢤࢵࢺᆶ┤ධᑕࡢሙ Plasma Physics, Nagoya Univ., 1985. ྜࡣ㸪ᑡᩘᅇ⾪✺ᶵᵓࡀᨭ㓄ⓗ࡞ࡾ㸪⤖ᯝⓗゅ 8) J. P. Biersack and L. G. Haggmark, “A Monte Carlo Computer Program for the Transport of Energetic Ions in ᗘศᕸࡣࢥࢧࣥศᕸ㏆࠸ศᕸࢆ♧ࡍ㸬 Amorphous Targets”, Nucl. Instr. and Meth., 174, ࢫࣃࢵࢱ࣮⢏Ꮚࡢ࢚ࢿࣝࢠ࣮ศᕸࡘ࠸࡚ࡣ㸪 ప࢚ࢿࣝࢠ࣮Ar+࢜ࣥࡢሙྜࡣ㸪࢚ࢿࣝࢠ࣮ศᕸ 257-269 (1980). 9) ࡢࣆ࣮ࢡ࢚ࢿࣝࢠ࣮ࡣ⌮ㄽⓗண ࡉࢀࡿࢺࣥࣉ ࢯࣥࡢබᘧࡼࡃ୍⮴ࡍࡿࡀ㸪㧗࢚ࢿࣝࢠ࣮㒊ศࡢ 㔞ࡀࢺࣥࣉࢯࣥࡢබᘧẚ࡚ᑡ࡞࠸㸬ࡇࡢഴྥ Eckstein, “Computer Simulation of Ion-Solid 10) W. Eckstein, “Computer Simulation of Ion-Solid Interaction”, (Springer-Verlag, Berlin, 1991), p. 40. 11) O. B. Firsov, ”Calculation of the interaction potential of ࡣ㍍࢜ࣥప࢚ࢿࣝࢠ࣮ධᑕࡢሙྜ࡛≉㢧ⴭ࡛㸪 ㍍࢜ࣥࡢሙྜࡣ㸪ศᕸࡢࣆ࣮ࢡࢆ࠼ࡿ࢚ࢿࣝࢠ W. Interaction”, (Springer-Verlag, Berlin, 1991), p. 17. atoms” , Sov. Phys. JETP 6, 534-537 (1958). 12) 65 ) ( G.. Molière, “Therorie der Streuung schneller 剣持貴弘 66 geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld “, Z. Naturforsch. A2, 133-145 (1947). 13) J. F. Ziegler, J. P. Biersack, U. Littmark, “The Stopping and Range of Ion in Solids: The Stopping and Range of Ions in Matter”, Vol.1, ed. by J. F. Ziegler (Pergamon, New York, 1985). 14) W. D. Wilson, L. G. Haggmark, J. P. Biersac, “Calculations of nuclear stopping, ranges, and straggling in the low-energy region”, Phys. Rev. 15, p. 2458 (1977). 15) A. Sommerfeld, “Asymptotische Integration der Differentialgleichung des Thomas-Fermischen Atoms,” Z. Phys. 78, 283 (1932). 16) S. T. Nakagawa and Y. Yamamura, “Interatomic potential in solids and its applications to range calculations”, Radiat. Eff. 105, 239-256 (1988) . 17) J. Lindhard, M. Scharff and H. E. Schiott, “ Range Concepts and Heavy Ion Ranges”, K. Dan. Vidensk. Selsk. Mat. Fyz. Medd., 33 No. 14, 1-41 (1963). 18) H. H. Andersen and J. F. Ziegler, “Hydrogen Stopping Powers and Ranges in All Elements”, (Pergamon, New York, 1977), pp. 1-16. 19) F. Keywell, “Measurements and Collision—Radiation Damage Theory of High-Vacuum Sputtering”, Phys. Rev., 97, 1611-1619 (1955). 20) M. Bader, F. C. Winterborn and T. W. Snouse, NASA Tech. Report R105 (1961). 11) N. Laegreid and G. K. Wehner, “Sputtering Yields of Metals for Ar+ and Ne+ Ions with Energies from 50 to 600 eV”, J. Appl. Phys., 32, 365-369 (1961). 21) G. Falcone and P. Sigmund, “Depth of Origin of Sputtered Atoms”, Appl. Phys., 25, 307-310 (1981). 66 ) (