Comments
Description
Transcript
XMASS:液体キセノン中の ラドンバックグラウンドの研究
XMASS:液体キセノン中の ラドンバックグラウンドの研究 14/12/6,12/7@名古屋大学 神戸大学大学院理学研究科物理専攻 修士1年 藤田 黎 contents • XMASS実験紹介 • My work : 液体キセノン中のラドンバックグラ ウンドの研究 2 XMASS実験 • 液体キセノンを用いた多目的実験 • • XMASS検出器 暗黒物質 • 太陽ニュートリノ • double beta decay PMT 642本 など… 暗黒物質探索 約80cm • 液体キセノンを用いた世界最大の 検出器(832kg) • キセノンと暗黒物質が弾性散乱す る際に落としたエネルギーをシン チレーション光として捉える。 3 液体キセノン : 832kg 神岡 実験室LabC XMASS collaboration Kamioka Observatory, ICRR, the University of Tokyo: K. Abe, K. Hiraide, K. Ichimura,Y. Kishimoto, K. Kobayashi, M. Kobayashi, S. Moriyama, M. Nakahata, T. Norita, H. Ogawa, H. Sekiya, O. Takachio, A. Takeda, M. Yamashita, B. Yang Kavli IPMU, the University of Tokyo: K.Martens, Y. Suzuki Kobe University: R. Fujita, K. Hosokawa, K. Miuchi, Y. Ohnishi, N. Oka, Y. Takeuchi Tokai University: K. Nishijima Gifu University: S. Tasaka Yokohama National University: S. Nakamura Miyagi University of Education: Y. Fukuda Insitiute of Socio-Arts and Sciences, The University of Tokushima : K.Fushimi STEL, Nagoya University: Y. Itow, R. Kegasa, K. Kobayashi, K. Masuda, H. Takiya Sejong University: N. Y. Kim, Y. D. Kim KRISS: Y. H. Kim, M. K. Lee, K. B. Lee, J. S. Lee 5 液体キセノンの利点 • 大きい原子番号 Z=54と密度 ρ=約3g/cm^3 ➡ コンパクトで大質量の検出器 • 大きな発光量(46000photon/MeV) • 発光波長:175nm ➡ 真空紫外領域で波長変換材を使わずPMTで直接観測可 能 • 液ガス両方の状態での純化が可能 6 低バックグラウンド環境への取り組み • 暗黒物質との反応は非常に稀 第 3 章 XMASS 実験 ➡バックグラウンドを減らすこと が重要 3.3 800kg 検出器の特徴 3.3.1 液体キセノンによるガンマ線の自己遮蔽 本実験では約 800kg の液体キセノンを使用する。液体キセノンは直径 80cm の球体に収めら にキセノンは原子番号が Z = 54 と大きいのでガンマ線と相互作用する確率が高く、遮蔽体と • XMASSでは次のようなことを行って いる。 る。本実験では液体キセノンが入っている直径 80cm の球のうち、外側 20cm の領域はガンマ線の 純水タンク よって内側 20cm の領域をガンマ線 BG が非常に少ない領域にすることが出来る。これにより暗 の領域から選ぶことができる。事象の反応点は 642 個の PMT の光量分布から再構成する。図 表面から発生させたガンマ線の遮蔽効果のシミュレーションである。青い線が発生したガンマ線 の領域が 800kg すべての液体キセノン領域を、濃いピンクが液体キセノンの有効体積を表して ションでは液体キセノンの表面から 238 U を 106 個崩壊させて、放出されるガンマ線がどの程度 • 地下1000mで実験(宇宙線μ粒 子を10万分の1に減らせる) 積まで届くのかを示している。この自己遮蔽効果が実際に使用する PMT からのガンマ線に対し のかを確かめたのが図 3.11 と図 3.12 に示すシミュレーション結果である。このシミュレーショ る 238 U からのガンマ線 BG を調べ、conservative に評価するために PMT1 個あたり 1.8mBq の 3.11 は、液体キセノンの外側からそれぞれ 5cm、10cm、20cm 内側の領域を色分けしたものである 分けと対応している。図 3.12 は PMT から発生するガンマ線が液体キセノン中の作るガンマ線 こで赤色の分布が、液体キセノンの外側 20cm を自己遮蔽として使用した場合に得られるガンマ • 純水タンクによるシールド これよりこの PMT と液体キセノンの自己遮蔽効果を用いれば、半径 20cm の有効体積では暗黒 れると予想される 100KeV 以下のエネルギー領域において、目標 BG レベルの 10−4 event/day/k 回ることが分かる。 • 検出器に放射性物質の少ないも のを用いる(PMT,無酸素銅等) • キセノンによる自己遮 (キセノ ンは高密度、Zが大きいのでγ線 をよく遮 する) 発生したガンマ線は中心付近に入り込めない Blue : γ tracking Pink : whole liquid xenon Deep pink : fiducial volume 7 現状とこれから • 2010年10月 2012年6月 コミッショニングラン • 予期せぬバックグラウンドが見つかる(PMT • 2012年6月 Al シール) 2013年10月 バックグラウンド低減のための改造作 業 - 1桁以上のBG低減に成功 • 2013年11月 観測開始 - 低閾値での季節変動の探索 - 検出器の中心での原子核反跳事象の探索 • 将来計画 • XMASS-1.5 • 標的質量1トンでの暗黒物質探索 • XMASS-Ⅱ • 標的質量10トンで様々な物理を高統計、高精度で測定 8 これまでの結果 XMASS Collaboration / Physics Letters B 724 (2013) 46–50 軽い暗黒物質探索 WIMP-原子核の弾性散乱 counts/kg/day/keVee Physics Letters B 719 (2013) 78-82 Data 18GeV MC 12GeV MC Fig. 7. Simulated WIMP energy spectra in the XMASS detector assuming the maximum cross section that provides a signal rate no larger than the observation in any bin above 0.3 keVee. [cm2 ] select these events a time-of-flight correction is made to the timing distribution of each event assuming the event vertex is on effect is dominant in this energy range (<100 keV), and (3)the thesurface of the PMT closest to the charge-weighted center of gravity process after the axioelectric effect is exactly the same as that of the event. After this correction the timing distribution K. Abe et al. / Physics Letters B 719 78–82 81 of (2013) Cherenkov-like events is found to be narrower than that for for the photoelectric effect. In the simulation, we considered the scintillation-like events. Events with more than 60% of their PMT nonlinearity of the scintillation yield for gamma rays, the optical hits occurring within the first 20 ns of the event window are reprocesses of the scintillation photons in the detector, the photomoved as Cherenkov-like. The ratio of the number of PMT hits electron distributions and discrimination threshold of photomultiwithin the first 20 ns relative to the total number of hits in the pliers, and the trigger conditions of the data acquisition system. event window for all events (head-to-total ratio) is shown in Fig. 4. The detailed description of the simulation and efficiencies Each werestep of the data reduction is shown in Fig. 5. The expected WIMP acceptance efficiency of these cuts was previously reported [36,35]. After taking into account the reducestimated with the detector simulation. In the simulation WIMP tion efficiency described in the next section, the expected energy recoil energy spectra were generated for each WIMP mass and MC spectra for various masses of axions are obtained. events were distributed uniformly throughout the detector volume using a liquid scintillation decay constant of 25 ns [16]. Fig. 6 3. The data shows the resulting signal acceptance efficiency at energies below 1 keVee. The size of the error bars comes primarily from the The XMASS detector is a large liquid-xenon detector locatedsystematic ununcertainty in the xenon scintillation decay constant, derground (3000 m water equivalent) at the Kamioka Observatory, 25 ± 1 ns, which is estimated based on the difference between the Japan. It contains an 835-kg liquid-xenon target with a surface of model [16] and the NEST model [17] based on [18]. A sysXMASS tematic error on the selection efficiency is determined based on a pentakis-dodecahedron that is tiled with inward looking photothe error resulting from a linear fit to the points in the figure. At multiplier tubes (PMT), which have hexagonal Fig. 6. WIMP signal acceptance efficiency630 after of data reduction for the analysis. and 12 have 0.3 keVee analysis threshold this error is 6.1%. round photocathodes. The PMTs (R-10789, Hamamatsu) are the spe- n 48 SI Light WIMP search Fig. 6. WIMP signal acceptance efficiency after data reduction for the analysis. 7GeV MC Fig. 2. Observed energy spectra. The horizontal axis shows the “scaled energy” calcially developed for this correction low-background The photoelecselect these events a time-of-flight is madedetector. to the tim4. Results and discussion culated by dividing the number of photoelectrons by the photoelectron yield at the tron yield at the center of the detector is evaluated at 14.7 phoing distribution of each event assuming the event vertex is on center of the detector, 14.7 p.e./keV. Error bars are statistical only. In this figure 57 toelectrons (p.e.)/keV internal Co source. The positional the surface of the PMT closest using to thean charge-weighted center of Fig. 8.horizontal Spin-independent elastic WIMP-nucleon cross section as a function of WIMP we also show the efficiencies for the Cherenkov cut (closed circles with Fig. 7 shows simulated WIMPs energy spectra overlaid on the (maximum 15%) of the the timing photoelectron yield caused by gravity ofdependence the event. After this correction distribution mass. uncertainties except that from Leff are taken into account in forenergy the applicable 1 fordetector 100%) and for the of all All oursystematic cuts Fig. 7. Simulated bars WIMP spectra in range; the XMASS assuming thecombination maxiobserved spectrum after the data reduction was applied. WIMPs the XMASS 90% C.L. limit line. The effect of the Leff uncertainty on the limit is of Cherenkov-like events is found be and narrower than that for the angular acceptance of to PMTs absorption of scintillation mumlight cross section that circles). provides Only a signal rate trigger no larger than theisobservation any (open at the threshold the overallinefficiency not dominated are assumed to be distributed in an isothermal halo with v = shown in the band. Limits from other experiments and favored regions are Collaboratio also binacquiabove 0.3 keVee. XMASS scintillation-like events. Events with more thanCarlo 60% of their PMT Data by the Cherenkov cut efficiency. The inset shows the sameo quantities for energies are taken into account in the Monte simulations. shown [4–9]. 220 km / s, a galactic escape velocity of v = 650 km / s, and an esc extending up to 100 keV. hits occurring the firstif 20 ns or of more the event window are re-than 0.2 p.e. sitionwithin is triggered four PMTs have more average density of 0.3 GeV/cm3 . In order to set a conservative moved aswithin Cherenkov-like. The ratio of the number of PMT hits 200 ns. The trigger efficiency around the trigger threshold nuclear-recoil and electronic events, and many events remain in upper bound on the spin-independent WIMP-nucleon cross secwithin the first 20 ns relative to the totalatnumber of hits wall. in the was examined by LEDs placed the detector The observed the analysis sample, the present result excludes part of the paramtion, the cross section is adjusted until the expected event rate event window for all events ratio) is shown in Fig. 4. behavior was well (head-to-total reproduced by the Monte Carlo simulations. eter space favored by other measurements [4–6] when those data inSigXMASS does not exceed the observed one in any energy bin Each step of the data reduction is shown in Fig. 5. are interpreted as a signal for light mass WIMPs. Finally, we are nals from each PMT are fed into charge ADCs and TDCs whose above 0.3 keVee. Implementing the systematic errors discussed in The expected WIMP acceptance efficiency of these cuts was working on modifications to the inner surface of XMASS, especially the text above, the resulting 90% confidence level (C.L.) limit deresolution is around 0.05 p.e. and 0.4 ns, respectively. The liquidestimated with the detector simulation. In the simulation WIMP around the PMTs, to improve the detector performance. rived from this procedure is shown in Fig. 8. The impact of the xenon detector is surrounded by a water Cherenkov veto counter, recoil energy spectra were generated for each WIMP mass and MC uncertainty from L is large in this analysis, so its effect on the eff which is 10.5 uniformly m in height and 10 the m detector in diameter. It is equipped events were distributed throughout volume Acknowledgements limit is shown separately in the figure. with 72 20-inch PMTs signals using a liquid scintillation decay whose constant of 25 are ns fed [16].into Fig. the 6 ADCs and After careful study of the events surviving the analysis cuts, TDCs. Data acquisition is triggered if eight or morebe20-inch PMTs shows the resulting signal acceptance efficiency at energies We gratefully acknowledge the cooperation of Kamioka Mining their origins are not completely understood. Contamination of 14 C have hits. The detector is described in detail in Ref. [36]. low 1 keVee. The size of the error bars comes primarily from the and Smelting Company. This work was supported by the Japanese in the GORE-TEX® sheets between the PMTs and the support strucThe data set in thescintillation solar axion search experiments ture cov-may explain a fraction of the events. Light leaks through this systematic uncertainty in used the xenon decay constant, Ministry of Education, Culture, Sports, Science and Technology, 21–27,based 2012.onA the sequence of standard data reduction February 25 ± 1 ns,ers which is estimated difference between the Grant-in-Aid for Scientific Research, and partially by the National material are also suspect. Nonetheless, the possible existence of a XMASS model [16] and the NESTevents model caused [17] based [18]. A sysis applied to remove by on afterpulses and electronic Research Foundation of Korea Grant funded by the Korean GovernWIMP signal hidden under these and other backgrounds cannot tematic error on The the selection determined based of on cuts: (1)bethe ment (NRF-2011-220-C00006). excluded. Although no discrimination has been made between ringing. standard efficiency reductionisconsists of a series the errorevent resulting from a linear theliquid-xenon points in thedetector; figure. At(2) the time is triggered only fit bytothe the 0.3 keVee analysis this error difference to threshold the previous eventisis6.1%. more than 10 ms; (3) the root WIMP mass[GeV] Solar axion search Physics Letters B 724 (2013) 46-50 • 太陽中で制動放射やコンプトン散乱に よって放出される可能性がある。 • 光電効果のような反応 • 実験的探索としては世界最高感度を達 成 counts/kg/day/keVee energy[keVee] mean square of the hit timing is less than 100 ns and is used to 4. Results and discussion reject events caused by afterpulses of PMTs due to bright events; and (4) the number of PMT hits in the first 20 ns divided by the Fig. 8. Spin-independent elastic WIMP-nucleon cross section as a function of WIMP uncertainties except that from Leff are taken into account in limit line. The effect of the Leff uncertainty on the limit is Fig. 7 total shows simulated WIMPs energy on which the the numnumber of hits is less thanspectra 0.6 foroverlaid events in mass. All systematic observed ber spectrum after the data reduction was applied. WIMPs of photoelectrons is less than 200. The fourth cut was the applied XMASS 90% C.L. 40 energy[keV] mass[keV] Fig. 3. Comparison between the observed data (points with error bars) and Fig. expected 4. Limits on gaee . The thick solid line shows the limit obtained in this 10 main contribution to the remaining background in this energy region stems from 214 Pb. From our simulation we estimate this background alone to contribute 2 other background contributions are smaller but less certain, we do not subtract calculating our limits. Our detector’s low background allows us to directly use the signal region to extract our limit on the inelastic scattering cross section of solid line: pre-selection nuclei. Using Eq. 6 and taking into account the nuclear form factor and our si solid line ; XMASS(90% dashedderive line: aR 90% cut C.L. upper limit for this cross section, which in Fig. 4 is C.L.) compared dashed line : DAMA/LXe doted Refs. line: timing cut [12,13]. The gray band reflects our systematic uncertainties. The system 1 30 40 50 60 70 80 90 100 energy [keV] Fig. 2. Energy spectra of the simulated events after each reduction step. As an example we chose a WIMP mass of 50 GeV and the form factor in Ref. [29]. From top to bottom, simulated energy spectrum after pre-selection , Prog. Theor. Exp. Phys. 2014, 063C01 (solid line), cut (2) (dashed line), cut (3) (dotted line), and cut (4) (solid line). As we do not apply the proper radial correction for energy, a shift in our energy scale seems to occur after our fiducial volume cut (2). As • WIMP-原子核の非弾性散乱 we are only using events in a very limited fiducial volume and our energy scale is based on calibration at the PTEP 2014, 063C01 counts/keV events/keV counts/keV events/keV 105 104 Data 103 102 104 103 102 10 MC 10 10 20 30 40 50 60 70 10 80 90 100 energy [keV] 20 30 40 50 60 70 102 10 80 90 100 energy [keV] 1 energy[keV] energy[keV] 102 Downloaded from http://ptep.oxfordjournals.org/ at Kokusai Hoken Keikakugaku (UNIV OF TOKYO) on June 15, 2014 1 1 H. Uchida et al. solid line: Band cut center of the detector, the energy scale of the surviving events is correct within 4%. cross section [pb] 20 Asymptotic cross section (σas I ) [pb] 10 Downloaded from http://ptep.oxfordjournals.org/ at Kokusai Hoken Keikakugaku (UNIV OF TOKYO) on June 15, 2014 WIMP-nucleus Inelastic Scattering search 103 WIMP mass [GeV] Fig. 2. for Energy spectra of days the simulated events Fig. 3. Energy spectra of the observed events after each reduction step our 165.9 live of data. From topafter each reduction step. As an example we chose a WIMP mass of 50 GeV and the form factor in Ref. [29]. From to bottom, the observed energy spectrum after pre-selection (solid line), cut (2) (dashed line), cut (3) (dotted top to bottom, simulated energy spectrum after pre-selection 4. The black solid is ourthe 90% C.L. upper limit on the asymptotic cross section (solid line), cut (2) (dashed line), cut (3) (dotted line), and cutFig. (4) (solid line). As we do line not apply proper line), and cut (4) (solid line). The fiducial volume contains 41 kg of LXe. 129 Cut1: pre-selection using the volume same form factors on afterXeour radial correction for energy, a shift in our energy scale seemstering to occur fiducial cut (2). As as DAMA. The gray band covers its variation we are only using events in a very limited fiducial volume andCut2: our energy scale is based on calibration at the uncertainty. The dotted line is the limit obtained by the DAMA group [12,13]. It was R cut The cut values for the three cuts that are applied after our ofalmost standard pre-selection center the detector, the energy scale of were the surviving eventscally is correct within 4%. subtracting background. Our low background allows us to derive this limit witho Bosonic super-WIMP search Counts/keVee/kg/day MC pseudo scalar 7/11 Signal (MC simulation) 10-1 cut1-3 10-2 cut1-4 gaee cut1-2 -11 XENON100 EDW-II -11.5 -3 10 -4 10 150 50 100 -12 150 10-1 -12.5 (a) XMASS Ge (solar) (b) -19 10 -20 10 20 30 40 50 60 70 80 90 100 -21 10-4 10-4 energy [keV] HB stars -22 50 100 150 50 100 150 2 Fig. 3. Energy spectra of the observed events after each reduction step for our 165.9 live days of data.-23 From top Ωh =0.1 10-1 10-1 (solid line), cut (2) (dashed line), cut (3) (dotted mb =after 120keV to bottom, the observed energy spectrum pre-selection -24 line), and cut (4) (solid line). 41 kg of LXe. 10-2 The fiducial volume contains 10-2 -25 Diffuse γ -3 -3 -26 XMASS 10 10 The cut values for the three cuts that are applied after our almost standard pre-selection were -27 10-4 10-4 20 40 60 80 100 120 140 optimized for a WIMP mass of 50 GeV. Except for the radius cut, our cut values were determined vector boson/pseudoscalar mass (keV) 50 100 150 50 100 150 -2 10 -3 Counts/keV ee/kg/day 6/11 events/keV Counts/keVee/kg/day counts/keVee/kg/day Physics Review Letters 113,121301 (2014) • warm dark matterの候補 • pseudo-scalar,vector bosonを探索 • super-WIMPは光電効果と似た反応 • 実験的に初めて制限を与えた Cut3: timing cut subtraction. Cut4: Band cut log(α’/α) optimized for a WIMP mass of 50 GeV. Except for the radius cut, our cut values were determined by optimizing the ratio of simulated signal events surviving the cuts in a tentative signal range from 105 30 to 80 keV over the sum of background events found in the data in two side bands ranging fromevents 10 Observed Data 10-1 mb = 40keV to 30 and from 80 to 100 keV. For the radius cut, this procedure results in an extremely4 low fiducial 10 -2 10 volume, leading us to halt this optimization at 15 cm. For the remaining cuts, the values resulting 10-3 band from our optimization were 12.91 ns for the timing cut and a ratio of 0.248 for the 103 cut. Events with parameter values smaller than these cut values enter into the final sample. 10-4 102 50 100 Figures 2 and 3 show the impact of our cuts on the expected signal from our 50 GeV WIMP simulation and the observed data spectrum, respectively. The signal window is defined10-1so that it contains mb = 80keV 10 -2 90% of the simulated 50 GeV WIMP signal with equal 5% tails to either side,10which results in a 36–48 keV window. While the underlying simulation shown in Fig. 2 is based on the1form factors 10-3 WIMP mass[GeV] energy (keVeesurviving ) (keVee) by optimizing the ratio of simulated signal events the cutsenergy in a tentative signal range from energy[keV] 30 to 80 keV over the sum of background events found in the data in two side bands ranging from 10 vector boson mass [GeV] My work : 液体キセノン中ラドンバックグラウンドの研究 • Motivation 214Bi-214Po coincidence 解析 214Bi-214Po coincidence 解析 : 結果 • まとめ • • Motivation • ラドン • XMASS実験のバックグラウンドの1つ • ウラン系列の希ガス 有効体積内に存在(検出器部材から放出 されている) • 娘核の214Pb(β崩壊)の低エネルギー領域が暗黒物質探索の BGとなる。 ➡自己遮 することが出来ない • 目標値:全体のバックグラウンドの寄与の1/10になるように <1.2uBq/kgと定めた(小川 2011/9/16 物理学会発表) • ラドンは検出器に一様に分布していると考えられるのでcontrol sampleとして事象再構成のパフォーマンスの評価に用いることが できる。 • 今回はXMASSの改修後のデータ114.42時間をもちいて液体キセ ノン中のラドン222の量を見積もる 12 214Bi-214Po coincidence 解析 • 222Rnを娘核である214Biから見積 もる。 ‣ 214Bi β崩壊 (3.272MeV,19.9min) ‣ 214Po α崩壊 (7.687MeV,164us) • 214Poの短い半減期を利用しBi-Poの ペアを選別する。 13 ウラン系列(222ラドン以降) 214Bi-214Po coincidence 解析(2) FADCの時間窓10us sampling rate 1GHz Bi 候補 (2)100us<dT<1000us (β+γ崩壊) ③ ① ② dT_pre>100us Po候補 (α崩壊) ④ cut条件 : • preselection preselectionで除いたイベントはペアを組まない 検出器内の事象 PMTのヒット数>=4 チェレンコフ事象カット(PMTの窓で起こった早い事象のカット) ヒットタイミングによるノイズカット • BiPoペアを選ぶためのカット Bi候補と前の事象の時間差のカット(アフターパルスの除去) dT_pre>100us 2事象目の光量 > 25000p.e. FADCの波形解析によるカット(αイベントを選ぶ) Bi候補とPo候補の時間差 100us<dT<1000us 14 214Bi-214Po coincidence 解析 : 結果 Entries criteria Bi-Po pair Bi_after_pe_slope Bi_after_pecut Bi_all_cut Bi Entries 2803 4246 2059 2759 Mean 2.173e+04 2.159e+04 1.748e+04 2.201e+04 RMS 1.141e+04 9976 9742 9805 2 10 preselection + 2nd totalNPE>20+ cut1 +dT_pre>100us +dT<1000us 10 4246 x10^3 1 3 cut3 cut1+2nd event PE>25000 cut2+2nd decay slope<35ns 20 40 60 80 100 #of PEs 2803 2759 Po_after_pe_slope Po_after_pecut Po Entries 2803 4246 2759 Mean 8.364e+04 8.287e+04 5.748e+04 RMS 1.654e+04 1.764e+04 3.836e+04 Entries cut2 0 2 10 cut4 cut3+dT>100us ×10 120 # of PE 2059 10 live time:114.42 hours x10^3 3 0 20 40 60 80 100 ×10 120 # of PE #of PEs 各カットのスペクトルと残ったイベント数 最終的に2059イベントが残った。 dT_after_pe_cut Entries 2059 Mean 317.1 時間差分布 RMS 250 191 250 214Bi 200 250 150 200 50 100 0 500 20 250 β+γ崩壊 200 100 150 p1 3 60 80 p0 Entries Mean 100 200 ×10 120 p2 2059 23.17317.1 / 24 RMS 191 4.339e-10 ± 1.066e+00 χ2 / ndf x10^3 40 χ 2 / ndf Entries Entries Entries 334.6 光量分布 260.2 69.23 / 69 15.6 ± 1.9 66.1 ± 10.0 174 ± 13.9 Entries 214Bi-214Po coincidence 解析 : 結果 4246 23.17 / 24 453.8 ± 18.9 p0 3.533e-10 ± 1.066e+00 p1 453.8 ± 18.9 p2 162.4 162.4 ±±4.34.3 # of PE ×10 PEs #of 120 Entries Entries 3 0 0 160 20 40 80 120 60 100 80 100 150 # of PE 150 140 120 160 100 140 60 214Po 40 80 20 60 α崩壊 100 50 0 40 0 20 20 40 0 0 20 40 100 3 60 80 100 60 80 100 ×10 120 # of PE x10^3 3 ×10 120 # of PE #of PEs 0 0 100 200 300 400 500 600 700 800 900 1000 dT[us] fitting function : p0+p1*(1/2)^(x/p2) 低光量の領域は銅表面で起こった事象 50 (エネルギー再構成を行っていない) 214Poの半減期:164us フィットの結果Poの半減期とエラーの範囲でコンシステント 0 00 1000 0 100 200 300 400 500 600 700 800 900 1000 dT[us] →正しくBiPoペアを選び出している。 dT[us] 16 アクシデンタルイベントの見積もり(1) Biのためのカット条件 • preselection + dT_pre>100us + dT>1000us Bi_all_cut accidental of Bi 10 アクシデンタルのスペクトルは Entries 2059 Entries 783327 黄色のcut criteriaでcutした後のスペクトルの面積を Mean Mean 2.201e+04 9460 9742 RMS RMS 9332 アクシデンタルのイベント数になるようにスケールした 3 Entries Entries 10 10^3 102 10^2 4 103 10 10 1 red: Bi candidate(2059 events) blue: accidental for Bi (16.6 events) livetime : 411264sec 1 102 10^-1 10-1 10^-2 10-2 x10^3 0 20 40 60 80 100 × 10 120 # of PE 10 3 0 hPE_pe_slope Po_all_cut 103 低エネルギー側では少し純度が落ちる Entries 2059 9662 Mean 6.183e+04 8.364e+04 1.572e+04 1.652e+04 RMS 102 Entries Entries # of PE 104 17 103 20 1 アクシデンタルイベントの見積もり(2) -1 10 Poアクシデンタルのためのカット条件 • preselection -2 + totalPE>25000 + decay slope<35ns + 10 0 20 40 60 dT>1000us 3 80 100 hPE_pe_slope Po_all_cut 3 10 10^3 Entries ×10 120 # of PE Entries 9659 2054 Mean 8.363e+04 6.182e+04 RMS 1.652e+04 1.571e+04 2 10 10^2 10 10 11 -1 10^-1 10 x10^3 3 -2 10 0 20 40 60 80 100 ×10 120 # of PE # of PE red: Po candidate : 2059 events blue: accidental for Po : 16.6 events livetime : 411264 sec 18 アクシデンタルイベントの見積もり アクシデンタルレート[Hz] = 1事象目のレート(p17 blue spectrum)[Hz] x 2事象目のレート(p18 blue spectrum)[Hz] x 時間窓(900us) = 1.90[count/sec] x 0.023[count/sec] x 900[us] = 4.03e-5[count/sec] アクシデンタルイベント = アクシデンタルレート[Hz] x live time[s] = 4.03e-5[count/sec] x 411264[sec]= 16.6[events] アクシデンタルイベント/残ったイベント 集めたサンプルに含まれる =16.6/2059=0.8% アクシデンタルの量 19 222Rn濃度 見積もり • live •# time : 411264 sec of BiPo pair : 2059 • accidental • cut events : 16.6 efficiency(100<dT<1000us) : 0.65 • 今の時点ではdTのみ(PE,α事象カットの見積もりはまだ) • 液体キセノン:832kg • activity :(2059-16.6)/(411264x0.65x832) = 9.17 0.20uBq/kg(stat only) c.f. XENON100 20uBq/kg, LUX 10uBq/kg, EXO 4uBq/kg, SK ~a few uBq/ kg(純水) , NEWAGE 25mBq/kg(CF4,14g) 参考: XENON100 collaboration, E. Aprile et al., Study of the electromagnetic background in the XENON100 experiment, Phys. Rev. D 83 (2011) 082001 EXO-200 collaboration, J.B. Albert et al., An improved measurement of the 2νββ half-life of 136Xe with EXO-200, arXiv:1306.6106 LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, arXiv: 1310.8214 http://www-sk.icrr.u-tokyo.ac.jp/sk/pub/master/Nakano master thesis.pdf NEWAGE 中村D論 20 まとめ • XMASSの改修後のデータ(114.42時間)を用いてラドン濃度を見 積もった。 • 純度よくBiPoペアを選び出した。 • 液体キセノン中に含まれるラドン222は9.17 0.20uBq/kgだと わかった。 今後… • 選び出した事象について事象再構成を行い再構成のパフォー マンスを評価する。 • 時間的にラドン量が安定しているかの確認 21