Comments
Description
Transcript
OvertrainingNutritional Intervention
Chapter 37 Overtraining: Nutritional Intervention HARM KUIPERS Introduction The primary goal of athletic training is to enhance performance and to peak at the right moment. To push the performance capacity to its upper limit, relatively high amounts of intensive exercise are assumed to be necessary. Consequently, athletes are often balancing on the edge between training and overtraining. One of the most difficult parts of the training process is to find the optimal balance between training and recovery. A correct balance between training and recovery is of utmost importance, since the difference between winning and losing is small. Snyder and Foster (1994) reported that in the 1988 Olympic speedskating event in Calgary, the difference in average velocity between all gold and silver medal performances was 0.3%, while the mean difference between all the gold medalists and the fourth places was 1.3%. Similar differences can be found in other sports. Unfortunately, few scientific data exist about the optimal amount of training for peak performance. The relatively scarce data available indicates that there appears to be an inverted Ushaped relationship between training volume and increase in performance. It is assumed that there is an optimal amount of training which will yield optimal performances (Fig. 37.1). However, this optimal amount of training is poorly defined, and passing this ‘gray’ area may lead to overtraining. Proper nutrition, consisting of adequate carbohydrate intake, may enhance recovery, and consequently may play a significant role 492 to optimize the training process by increasing the training loads that can be sustained. The actual adaptation concludes the recovery phase and, therefore, recovery is one of the most important components of the training process. Too many athletes and coaches lay too much emphasis on the training but pay too little attention to recovery. Although little is known about recovery, it appears that the time required for the recovery phase is not always the same and depends among other things on several factors, such as: the volume of training, individual factors, and nutrition. It has been shown that after exercise, glycogen synthesis can be optimized by starting to consume easily absorbable carbohydrates immediately after exercise in an amount of 1–2 g · kg–1 body weight. Although direct evidence is still lacking, carbohydrate intake may indirectly also enhance other components of the recovery process. Carbohydrate ingestion stimulates insulin secretion, which is a powerful stimulator of protein synthesis, one of the key processes for recovery and adaptation. When exercise and the concomitant disturbance in homeostasis are not matched by adequate recovery, an athlete is actually overdoing or overtraining, and may become overloaded or overtrained. In order to obtain optimal results in sports, it is important to detect too much training or incomplete recovery as soon as possible. Although overtraining is a general term, it may include different entities. Based on the pathogenesis and affected organ systems, three different types of overtraining can be distinguished: Performance overtraining: nutritional intervention 493 Overreaching 2 ADP 1 ATP +1 AMP Optimal training NH3 Undertraining Overtraining syndrome Training load Fig. 37.1 The relationship between training volume and increase in performance capacity. Courtesy of C. Foster. 1 Mechanical overtraining. 2 Metabolic overtraining or overreaching. 3 Overtraining syndrome or staleness. Mechanical overtraining Mechanical overload involves the locomotor system. An imbalance between exercise and recovery is usually local and is generally expressed as an overuse injury. Although little information is available about the role of nutrition in these injuries, there is some indication that a low calcium intake increases the risk for stress injuries to the skeleton. Another type of mechanical overtraining is exercise-induced muscle damage. Muscle damage is associated with inflammatory changes, which are followed by regeneration. There is some evidence that a deficit in vitamin E intake may increase the susceptibility to this type of mechanical damage. However, athletes who consume a normal mixed diet are unlikely to have a vitamin E deficiency. Therefore, supplementation of vitamin E in these athletes does not provide any protection against exercise-induced muscle soreness. Metabolic overtraining or overreaching Nowadays athletic training includes a high volume of intensive exercise. Intensive exercise relies on carbohydrate supply, resulting in a IMP Uric acid Fig. 37.2 Metabolic pathway indicating the breakdown of ADP to uric acid, under the formation of ammonia. IMP, inosine monophosphate. rapid depletion of glycogen stores. When highintensity exercise is done in association with low glycogen levels, this may lead to an imbalance between the rates of adenosine triphosphate (ATP) splitting and ATP generation. This in turn will lead to an accumulation of adenosine diphosphate (ADP). In order to restore the ADP/ATP ratio, 2 ADP form 1 ATP and 1 adenosine monophosphate (AMP), which is further broken down to inosine monophosphate and eventually to uric acid (Fig. 37.2), while ammonia is also formed (Sahlin & Katz 1993). When insufficient time for recovery is allowed, this may lead to a decline of the energy-rich phosphate pool. The metabolic type of overtraining is probably associated with overreaching. Data suggest that insufficient carbohydrate intake may enhance the susceptibility for developing overreaching. Therefore, adequate carbohydrate intake and quick restoration of glycogen stores may decrease the risk of developing metabolic overtraining. Studies have shown that a high carbohydrate intake, starting immediately after exercise, may restore glycogen stores within 24 h. However, although insufficient carbohydrate intake may increase the susceptibility for metabolic overtraining, a high intake of carbohydrate may decrease the risk, but cannot prevent metabolic overtraining. Therefore, in addition to proper nutrition, adequate rest and recovery are of paramount importance. 494 practical issues Overtraining syndrome or staleness When the central nervous system cannot cope any more with the total amount of stress, a dysfunction of the neuroendocrine system and changes in behaviour may be encountered (Barron et al. 1985). This generalized form of overstress in athletes is generally referred to as overtraining syndrome or staleness (Kuipers & Keizer 1988). The overtraining syndrome is characterized by premature fatigue during exercise, decline in performance, mood swings, emotional instability, and decreased motivation (Stone et al. 1991). In addition, overtraining and staleness may be associated with changes in immune function (Fry et al. 1992). The proneness for infections has been attributed to changes in glutamine metabolism by Newsholme and associates (1991). They suggested that intensive exercise may cause a decrease in plasma glutamine. Since glutamine is considered to be essential for immune cell functioning, decreased plasma glutamine levels may lead to decreased immune function. Further research is needed to determine whether supplementation of glutamine can decrease the risk of overtraining or can ameliorate the intensity of the symptoms. Training alone is seldom the primary cause of overtraining syndrome or staleness. It is rather the total amount of stress exceeding the capacity of the organism to cope. Contributing factors for an overtraining syndrome include: too many competitions, too much training, infectious diseases, allergic reactions, mental stress, nutritional deficiencies, and jet lag. Nutritional deficiencies refer specifically to a low carbohydrate intake. Several studies have shown that even elite athletes may consume a suboptimal diet, containing too little carbohydrate and too much fat. Newsholme et al. (1991) attributed the overtraining syndrome to an increased uptake of branched-chain amino acids by muscle tissue during exhaustive exercise, leading to changed balance of the ratio of aromatic to branchedchain amino acids. This, in turn, would lead to an increased uptake of tryptophan in the brain and an increased formation of the neurotransmitter 5-hydroxytryptamine. This is supposed to be associated with central fatigue and symptoms of overtraining syndrome. However, recent studies do not provide scientific evidence in support of this hypothesis (Rowbottom et al. 1995; Tanaka et al. 1997). In a recent study by van Hall et al. (1995), in which the ratio between branchedchain amino acids and aromatic amino acids was restored by nutritional intervention, no changes in performance and perception of fatigue were found. The German literature distinguishes between two forms of overtraining: the sympathetic and the parasympathetic (Israel 1958). The sympathetic, or Basedowian, form is characterized by increased sympathetic tone in the resting state, while in the parasympathetic, or Addisonoid, form the parasympathetic tone dominates in the resting state as well as during exercise. The main characteristics of the sympathetic form of overtraining are: • increased resting heart rate; • slow recovery after exercise; • poor appetite, weight loss; • mental instability, mood swings and irritability; • increased blood pressure in the resting state; • menstrual irregularities, oligomenorrhoea or amenorrhoea in females; • disturbed sleep: difficulties in falling asleep and early wakening; • increased resting diastolic and systolic blood pressure. The main characteristics of the parasympathetic form of overtraining are: • low or normal resting pulse rate; • relatively low exercise heart rate; • fast recovery of heart rate after exercise; • hypoglycaemia during exercise, good appetite; • normal sleep, lethargy, depression; • low resting blood pressure; • low plasma lactates during submaximal and maximal exercise (lactate paradox). The sympathetic form of overtraining syndrome is most often observed in team sports and sprint events, while the parasympathetic form is overtraining: nutritional intervention preferentially observed in endurance athletes (Lehmann et al. 1993). The characteristics of the parasympathetic form of the overtraining syndrome are misleading to the athletes and the coach, because the symptoms are suggestive of excellent health. Although the pathophysiological mechanism of both forms of overtraining is not clear yet, it is hypothesized that both forms reflect different stages of the overtraining syndrome. The sympathetic form is supposed to be the early stage of the overtraining syndrome, during which the sympathetic system is continuously activated. During advanced overtraining, the activity of the sympathetic system is inhibited, resulting in a dominance of the parasympathetic system. This would also explain the increased proneness for hypoglycaemia during exercise in the parasympathetic form, because glucose counter-regulation is mediated via the sympathetic system. Because overtraining is difficult to diagnose, it is most important to prevent overtraining. The following rules and advice can be helpful to prevent overtraining. 1 Develop a well-balanced, flexible and attractive training programme, with individual adjustment when necessary. 2 Have field or laboratory performance tests at regular intervals — for instance, during the easy week during periodization. 3 Emphasize proper diet, which supplies sufficient carbohydrate to meet the metabolic requirements (4–8 g · kg–1 body weight during normal training and up to 10 g · kg–1 body weight during heavy training) and also provides sufficient amounts of other nutrients. 4 Have the athletes keep a training log in which resting heart rate and body weight are registered. Because behavioural signs seem to be the first consistent signs of overtraining, it can be helpful to use the profile of mood states scale (POMS scale) as described by Morgan and coworkers (1987). The POMS scale yields information about the global measure of mood, tension, depression, anger, vigour, fatigue and confusion. By monitoring the mood state on the POMS scale, overtraining can be detected at an early stage. 495 In addition, or alternatively, the athletes can fill in a self-designed visual analogue scale questionnaire, containing questions about fatiguability, recovery, motivation, irritability and sleep. Recent research has shown that a balanced training programme results in an increase in plasma glutamine concentrations, whereas a mismatch between training and recovery is associated with a decline in plasma glutamine concentrations (Rowbottom et al. 1996). Therefore, monitoring plasma glutamine concentrations during the training process may be helpful to detect overtraining in its earliest stage. However, more studies are needed to provide clear and practical guidelines about this possibility. Treatment of overtraining When symptoms of increased fatiguability occur, and no other symptoms are observed, overreaching or metabolic overtraining is most likely. In that case, the training should be adjusted, mainly by decreasing the volume. A decrease in volume is the most important measure to be taken. Most emphasis should be laid on sufficient rest, recovery, and a diet that is rich in carbohydrates and contains sufficient amounts of trace elements, vitamins, and other nutrients (Kuipers & Keizer 1988). Usually metabolic overtraining is reversible within some days. Systemic overtraining or overtraining syndrome usually requires one to several weeks for recovery. The contributing factors should be identified and sometimes counselling is necessary. There are no specific drugs or treatments known. Although proper nutrition is important, there is no evidence that specific nutritional supplements may be of any help to treat overtraining or to enhance recovery. References Barron, G.L., Noakes, T.D., Levy, W., Smith, C. & Millar, R.P. (1985) Hypothalamic dysfunction in overtrained athletes. Journal of Clinical Endocrinology and Metabolism 60, 803–806. Fry, R.W., Morton, A.W., Garcia-Webb, P., Crawford, G.P.M. & Keast, D. (1992) Biological responses to 496 practical issues overload training in endurance sports. European Journal of Applied Physiology 64, 335–344. Israel, S. (1958) Die Erscheinungsformen des Uebertrainings. Sportmedicine 9, 207–209. Kuipers, H. & Keizer, H.A. (1988) Overtraining in elite athletes: review, and directions for the future. Sports Medicine 6, 79–92. Lehmann, M., Foster, C. & Keul, J. (1993) Overtraining in endurance athletes: a brief review. Medicine and Science in Sport and Exercise 25, 854–862. Morgan, W.P., Brown, D.R., Raglin, J.S., O’Connor, P.J. & Ellickson, K.A. (1987) Psychological monitoring of overtraining and staleness. British Journal of Sports Medicine 21, 107–114. Newsholme, E.A., Parry-Billings, M., McAndrew, N. & Budgett, R. (1991) A biochemical mechanism to explain some characteristics of overtraining. In Advances in Nutrition and Top Sport (ed. F. Brouns), pp. 79–93. Karger, Basel. Rowbottom, D.G., Keast, D., Goodman, C. & Morton, A.R. (1995) The hematological, biochemical and immunological profile of athletes suffering from the overtraining syndrome. European Journal of Applied Physiology 70, 502–509. Rowbottom, D.G., Keast, D. & Morton, A.R. (1996) The emerging role of glutamine as an indicator of exer- cise stress and overtraining. Sports Medicine 22, 80–96. Sahlin, K. & Katz, A. (1993) Adenine nucleotide metabolism. In Principles of Exercise Biochemistry (ed. J.R. Poortmans), pp. 137–157. Karger, Basel. Snyder, A.C. & Foster, C. (1994) Physiology and nutrition for skating. In Perspectives in Exercise Science and Sports Medicine. Vol. 7. Physiology and Nutrition for Competitive Sport (ed. D.R. Lamb, H.G. Knuttgen & R. Murray), pp. 181–219. Cooper Publishing, Carmel, IN. Stone, M.H., Keith, R.E., Kearny, J.T., Fleck, S.J., Wilson, G.D. & Triplett, N.T. (1991) Overtraining: a review of the signs, symptoms and possible causes. Journal of Applied Sport Science and Research 5, 35–50. Tanaka, H., West, K.A., Duncan, G.E. & Bassett, D.R. (1997) Changes in plasma tryptophan/branched chain amino acid ratio in responses to training volume variation. International Journal of Sports Medicine 18(4), 270–275. Van Hall, G., Raaymakers, W.H.M., Saris, J.S.H. & Wagenmakers, A.J.M (1995) Ingestion of branchedchain amino acids and tryptophane during sustained exercise: failure to affect performance. Journal of Physiology 486, 789–794.