Comments
Description
Transcript
Physical applications of group theory
29.11 PHYSICAL APPLICATIONS OF GROUP THEORY It follows that χprod (X) = nλ nµ prod D (X) kk k=1 nµ nλ (λ) D (X) ii D(µ) (X) jj = i=1 j=1 #n . # nµ . λ (λ) D (X) ii D(µ) (X) jj = i=1 j=1 = χ(λ) (X) χ(µ) (X). (29.23) This proves the theorem, and a similar argument leads to the corresponding result for integrands in the form of a product of three or more factors. An immediate corollary is that an integral whose integrand is the product of two functions transforming according to two different irreps is necessarily zero. To see this, we use (29.18) to determine whether irrep A1 appears in the product character set χprod (X): mA1 = ∗ 1 (A1 ) 1 prod 1 (λ) χ (X) χprod (X) = χ (X) = χ (X)χ(µ) (X). g X g X g X We have used the fact that χ(A1 ) (X) = 1 for all X but now note that, by virtue of (29.14), the expression on the right of this equation is equal to zero unless λ = µ. Any complications due to non-real characters have been ignored – in practice, they are handled automatically as it is usually Ψ∗ φ, rather than Ψφ, that appears in integrands, though many functions are real in any case, and nearly all characters are. Equation (29.23) is a general result for integrands but, specifically in the context of chemical bonding, it implies that for the possibility of bonding to exist, the two quantum wavefunctions must transform according to the same irrep. This is discussed further in the next section. 29.11 Physical applications of group theory As we indicated at the start of chapter 28 and discussed in a little more detail at the beginning of the present chapter, some physical systems possess symmetries that allow the results of the present chapter to be used in their analysis. We consider now some of the more common sorts of problem in which these results find ready application. 1105 REPRESENTATION THEORY y 1 4 2 x 3 Figure 29.4 A molecule consisting of four atoms of iodine and one of manganese. 29.11.1 Bonding in molecules We have just seen that whether chemical bonding can take place in a molecule is strongly dependent upon whether the wavefunctions of the two atoms forming a bond transform according to the same irrep. Thus it is sometimes useful to be able to find a wavefunction that does transform according to a particular irrep of a group of transformations. This can be done if the characters of the irrep are known and a sensible starting point can be guessed. We state without proof that starting from any n-dimensional basis vector Ψ ≡ (Ψ1 Ψ2 · · · Ψn )T , where {Ψi } · · · Ψn(λ) )T generated is a set of wavefunctions, the new vector Ψ(λ) ≡ (Ψ1(λ) Ψ(λ) 2 by ∗ χ(λ) (X)XΨi (29.24) Ψi(λ) = X will transform according to the λth irrep. If the randomly chosen Ψ happens not to contain any component that transforms in the desired way then the Ψ(λ) so generated is found to be a zero vector and it is necessary to select a new starting vector. An illustration of the use of this ‘projection operator’ is given in the next example. Consider a molecule made up of four iodine atoms lying at the corners of a square in the xy-plane, with a manganese atom at its centre, as shown in figure 29.4. Investigate whether the molecular orbital given by the superposition of p-state (angular momentum l = 1) atomic orbitals Ψ1 = Ψy (r − R1 ) + Ψx (r − R2 ) − Ψy (r − R3 ) − Ψx (r − R4 ) can bond to the d-state atomic orbitals of the manganese atom described by either (i) φ1 = (3z 2 − r2 )f(r) or (ii) φ2 = (x2 − y 2 )f(r), where f(r) is a function of r and so is unchanged by any of the symmetry operations of the molecule. Such linear combinations of atomic orbitals are known as ring orbitals. We have eight basis functions, the atomic orbitals Ψx (N) and Ψy (N), where N = 1, 2, 3, 4 and indicates the position of an iodine atom. Since the wavefunctions are those of p-states they have the forms xf(r) or yf(r) and lie in the directions of the x- and y-axes shown in the figure. Since r is not changed by any of the symmetry operations, f(r) can be treated as a constant. The symmetry group of the system is 4mm, whose character table is table 29.4. 1106 29.11 PHYSICAL APPLICATIONS OF GROUP THEORY Case (i). The manganese atomic orbital φ1 = (3z 2 − r2 )f(r), lying at the centre of the molecule, is not affected by any of the symmetry operations since z and r are unchanged by them. It clearly transforms according to the identity irrep A1 . We therefore need to know which combination of the iodine orbitals Ψx (N) and Ψy (N), if any, also transforms according to A1 . We use the projection operator (29.24). If we choose Ψx (1) as the arbitrary onedimensional starting vector, we unfortunately obtain zero (as the reader may wish to verify), but Ψy (1) is found to generate a new non-zero one-dimensional vector transforming according to A1 . The results of acting on Ψy (1) with the various symmetry elements X can be written down by inspection (see the discussion in section 29.2). So, for example, the Ψy (1) orbital centred on iodine atom 1 and aligned along the positive y-axis is changed by the anticlockwise rotation of π/2 produced by R into an orbital centred on atom 4 and aligned along the negative x-axis; thus R Ψy (1) = −Ψx (4). The complete set of group actions on Ψy (1) is: I, Ψy (1); Q, −Ψy (3); R, Ψx (2); mx , Ψy (1); my , −Ψy (3); md , Ψx (2); R , −Ψx (4); md , −Ψx (4). Now χ(A1 ) (X) = 1 for all X, so (29.24) states that the sum of the above results for XΨy (1), all with weight 1, gives a vector (here, since the irrep is one-dimensional, just a wavefunction) that transforms according to A1 and is therefore capable of forming a chemical bond with the manganese wavefunction φ1 . It is Ψ(A1 ) = 2[Ψy (1) − Ψy (3) + Ψx (2) − Ψx (4)], though, of course, the factor 2 is irrelevant. This is precisely the ring orbital Ψ1 given in the problem, but here it is generated rather than guessed beforehand. Case (ii). The atomic orbital φ2 = (x2 − y 2 )f(r) behaves as follows under the action of typical conjugacy class members: I, φ2 ; Q, φ2 ; R, (y 2 − x2 )f(r) = −φ2 ; mx , φ2 ; md , −φ2 . From this we see that φ2 transforms as a one-dimensional irrep, but, from table 29.4, that irrep is B1 not A1 (the irrep according to which Ψ1 transforms, as already shown). Thus φ2 and Ψ1 cannot form a bond. The original question did not ask for the the ring orbital to which φ2 may bond, but it can be generated easily by using the values of XΨy (1) calculated in case (i) and now weighting them according to the characters of B1 : Ψ(B1 ) = Ψy (1) − Ψy (3) + (−1)Ψx (2) − (−1)Ψx (4) + Ψy (1) − Ψy (3) + (−1)Ψx (2) − (−1)Ψx (4) = 2[Ψy (1) − Ψx (2) − Ψy (3) + Ψx (4)]. Now we will find the other irreps of 4mm present in the space spanned by the basis functions Ψx (N) and Ψy (N); at the same time this will illustrate the important point that since we are working with characters we are only interested in the diagonal elements of the representative matrices. This means (section 29.2) that if we work in the natural representation Dnat we need consider only those functions that transform, wholly or partially, into themselves. Since we have no need to write out the matrices explicitly, their size (8 × 8) is no drawback. All the irreps spanned by the basis functions Ψx (N) and Ψy (N) can be determined by considering the actions of the group elements upon them, as follows. 1107 REPRESENTATION THEORY (i) Under I all eight basis functions are unchanged, and χ(I) = 8. (ii) The rotations R, R and Q change the value of N in every case and so all diagonal elements of the natural representation are zero and χ(R) = χ(Q) = 0. (iii) mx takes x into −x and y into y and, for N = 1 and 3, leaves N unchanged, with the consequences (remember the forms of Ψx (N) and Ψy (N)) that Ψx (1) → −Ψx (1), Ψy (1) → Ψy (1), Ψx (3) → −Ψx (3), Ψy (3) → Ψy (3). Thus χ(mx ) has four non-zero contributions, −1, −1, 1 and 1, together with four zero contributions. The total is thus zero. (iv) md and md leave no atom unchanged and so χ(md ) = 0. The character set of the natural representation is thus 8, 0, 0, 0, 0, which, either by inspection or by applying formula (29.18), shows that Dnat = A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ 2E, i.e. that all possible irreps are present. We have constructed previously the combinations of Ψx (N) and Ψy (N) that transform according to A1 and B1 . The others can be found in the same way. 29.11.2 Matrix elements in quantum mechanics In section 29.10 we outlined the procedure for determining whether a matrix element that involves the product of three factors as an integrand is necessarily zero. We now illustrate this with a specific worked example. Determine whether a ‘dipole’ matrix element of the form J = Ψd1 xΨd2 dτ, where Ψd1 and Ψd2 are d-state wavefunctions of the forms xyf(r) and (x2 − y 2 )g(r) respectively, can be non-zero (i) in a molecule with symmetry C3v (or 3m), such as ammonia, and (ii) in a molecule with symmetry C4v (or 4mm), such as the MnI4 molecule considered in the previous example. We will need to make reference to the character tables of the two groups. The table for C3v is table 29.1 (section 29.6); that for C4v is reproduced as table 29.5 from table 29.4 but with the addition of another column showing how some common functions transform. We make use of (29.23), extended to the product of three functions. No attention need be paid to f(r) and g(r) as they are unaffected by the group operations. Case (i). From the character table 29.1 for C3v , we see that each of xy, x and x2 − y 2 forms part of a basis set transforming according to the two-dimensional irrep E. Thus we may fill in the array of characters (using chemical notation for the classes, except that we continue to use I rather than E) as shown in table 29.6. The last line is obtained by 1108 29.11 PHYSICAL APPLICATIONS OF GROUP THEORY 4mm I Q R, R mx , my md , md A1 A2 B1 B2 E 1 1 1 1 2 1 1 1 1 −2 1 1 −1 −1 0 1 −1 1 −1 0 1 −1 −1 1 0 z; z 2 ; x2 + y 2 Rz x2 − y 2 xy (x, y); (xz, yz); (Rx , Ry ) Table 29.5 The character table for the irreps of group 4mm (or C4v ). The right-hand column lists some common functions, or, for the two-dimensional irrep E, pairs of functions, that transform according to the irrep against which they are shown. Function Irrep I xy x x2 − y 2 E E E product Classes 2C3 3σv 2 2 2 −1 −1 −1 0 0 0 8 −1 0 Table 29.6 The character sets, for the group C3v (or 3mm), of three functions and of their product x2 y(x2 − y 2 ). Function xy x x2 − y 2 product Irrep B2 E B1 Classes 2C6 2σv I C2 1 2 1 1 −2 1 −1 0 −1 −1 0 1 1 0 −1 2 −2 0 0 0 2σd Table 29.7 The character sets, for the group C4v (or 4mm), of three functions, and of their product x2 y(x2 − y 2 ). multiplying together the corresponding characters for each of the three elements. Now, by inspection, or by applying (29.18), i.e. mA1 = 16 [1(1)(8) + 2(1)(−1) + 3(1)(0)] = 1, we see that irrep A1 does appear in the reduced representation of the product, and so J is not necessarily zero. Case (ii). From table 29.5 we find that, under the group C4v , xy and x2 − y 2 transform as irreps B2 and B1 respectively and that x is part of a basis set transforming as E. Thus the calculation table takes the form of table 29.7 (again, chemical notation for the classes has been used). Here inspection is sufficient, as the product is exactly that of irrep E and irrep A1 is certainly not present. Thus J is necessarily zero and the dipole matrix element vanishes. 1109 REPRESENTATION THEORY y3 x3 y1 y2 x2 x1 Figure 29.5 An equilateral array of masses and springs. 29.11.3 Degeneracy of normal modes As our final area for illustrating the usefulness of group theoretical results we consider the normal modes of a vibrating system (see chapter 9). This analysis has far-reaching applications in physics, chemistry and engineering. For a given system, normal modes that are related by some symmetry operation have the same frequency of vibration; the modes are said to be degenerate. It can be shown that such modes span a vector space that transforms according to some irrep of the group G of symmetry operations of the system. Moreover, the degeneracy of the modes equals the dimension of the irrep. As an illustration, we consider the following example. Investigate the possible vibrational modes of the equilateral triangular arrangement of equal masses and springs shown in figure 29.5. Demonstrate that two are degenerate. Clearly the symmetry group is that of the symmetry operations on an equilateral triangle, namely 3m (or C3v ), whose character table is table 29.1. As on a previous occasion, it is most convenient to use the natural representation Dnat of this group (it almost always saves having to write out matrices explicitly) acting on the six-dimensional vector space (x1 , y1 , x2 , y2 , x3 , y3 ). In this example the natural and regular representations coincide, but this is not usually the case. We note that in table 29.1 the second class contains the rotations A (by π/3) and B (by 2π/3), also known as R and R . This class is known as 3z in crystallographic notation, or C3 in chemical notation, as explained in section 29.9. The third class contains C, D, E, the three mirror reflections. Clearly χ(I) = 6. Since all position labels are changed by a rotation, χ(3z ) = 0. For the mirror reflections the simplest representative class member to choose is the reflection my in the plane containing the y3 -axis, since then only label 3 is unchanged; under my , x3 → −x3 and y3 → y3 , leading to the conclusion that χ(my ) = 0. Thus the character set is 6, 0, 0. Using (29.18) and the character table 29.1 shows that Dnat = A1 ⊕ A2 ⊕ 2E. 1110 29.11 PHYSICAL APPLICATIONS OF GROUP THEORY However, we have so far allowed xi , yi to be completely general, and we must now identify and remove those irreps that do not correspond to vibrations. These will be the irreps corresponding to bodily translations of the triangle and to its rotation without relative motion of the three masses. Bodily translations are linear motions of the centre of mass, which has coordinates x = (x1 + x2 + x3 )/3 and y = (y1 + y2 + y3 )/3). Table 29.1 shows that such a coordinate pair (x, y) transforms according to the twodimensional irrep E; this accounts for one of the two such irreps found in the natural representation. It can be shown that, as stated in table 29.1, planar bodily rotations of the triangle – rotations about the z-axis, denoted by Rz – transform as irrep A2 . Thus, when the linear motions of the centre of mass, and pure rotation about it, are removed from our reduced representation, we are left with E⊕A1 . So, E and A1 must be the irreps corresponding to the internal vibrations of the triangle – one doubly degenerate mode and one non-degenerate mode. The physical interpretation of this is that two of the normal modes of the system have the same frequency and one normal mode has a different frequency (barring accidental coincidences for other reasons). It may be noted that in quantum mechanics the energy quantum of a normal mode is proportional to its frequency. In general, group theory does not tell us what the frequencies are, since it is entirely concerned with the symmetry of the system and not with the values of masses and spring constants. However, using this type of reasoning, the results from representation theory can be used to predict the degeneracies of atomic energy levels and, given a perturbation whose Hamiltonian (energy operator) has some degree of symmetry, the extent to which the perturbation will resolve the degeneracy. Some of these ideas are explored a little further in the next section and in the exercises. 29.11.4 Breaking of degeneracies If a physical system has a high degree of symmetry, invariant under a group G of reflections and rotations, say, then, as implied above, it will normally be the case that some of its eigenvalues (of energy, frequency, angular momentum etc.) are degenerate. However, if a perturbation that is invariant only under the operations of the elements of a smaller symmetry group (a subgroup of G) is added, some of the original degeneracies may be broken. The results derived from representation theory can be used to decide the extent of the degeneracy-breaking. The normal procedure is to use an N-dimensional basis vector, consisting of the N degenerate eigenfunctions, to generate an N-dimensional representation of the symmetry group of the perturbation. This representation is then decomposed into irreps. In general, eigenfunctions that transform according to different irreps no longer share the same frequency of vibration. We illustrate this with the following example. 1111 REPRESENTATION THEORY M M M Figure 29.6 A circular drumskin loaded with three symmetrically placed masses. A circular drumskin has three equal masses placed on it at the vertices of an equilateral triangle, as shown in figure 29.6. Determine which degenerate normal modes of the drumskin can be split in frequency by this perturbation. When no masses are present the normal modes of the drum-skin are either non-degenerate or two-fold degenerate (see chapter 21). The degenerate eigenfunctions Ψ of the nth normal mode have the forms Jn (kr)(cos nθ)e±iωt or Jn (kr)(sin nθ)e±iωt . Therefore, as explained above, we need to consider the two-dimensional vector space spanned by Ψ1 = sin nθ and Ψ2 = cos nθ. This will generate a two-dimensional representation of the group 3m (or C3v ), the symmetry group of the perturbation. Taking the easiest element from each of the three classes (identity, rotations, and reflections) of group 3m, we have IΨ1 = Ψ1 , IΨ2 = Ψ2 , AΨ1 = sin n θ − 23 π = cos 23 nπ Ψ1 − sin 23 nπ Ψ2 , AΨ2 = cos n θ − 23 π = cos 23 nπ Ψ2 + sin 23 nπ Ψ1 , CΨ1 = sin[n(π − θ)] = −(cos nπ)Ψ1 , CΨ2 = cos[n(π − θ)] = (cos nπ)Ψ2 . The three representative matrices are therefore cos 23 nπ − sin 23 nπ D(I) = I2 , D(A) = , cos 23 nπ sin 23 nπ D(C) = − cos nπ 0 0 cos nπ . The characters of this representation are χ(I) = 2, χ(A) = 2 cos(2nπ/3) and χ(C) = 0. Using (29.18) and table 29.1, we find that mA1 = 16 2 + 4 cos 23 nπ = mA2 mE = 16 4 − 4 cos 23 nπ . Thus # D= A1 ⊕ A2 E if n = 3, 6, 9, . . . , otherwise. Hence the normal modes n = 3, 6, 9, . . . each transform under the operations of 3m 1112