Comments
Description
Transcript
Hints and answers
29.13 HINTS AND ANSWERS (a) Make an initial sketch showing an arbitrary small mass displacement from, say, vertex C. Draw the results of operating on this initial sketch with each of the symmetry elements of the group 3m (C3v ). (b) Superimpose the results, weighting them according to the characters of irrep A1 (table 29.1 in section 29.6) and verify that the resultant is a symmetrical arrangement in which all three masses move symmetrically towards (or away from) the centroid of the triangle. The mode is illustrated in figure 29.7(a). (c) Start again, this time considering a displacement δ of C parallel to the x-axis. Form a similar superposition of sketches weighted according to the characters of irrep E (note that the reflections are not needed). The resultant contains some bodily displacement of the triangle, since this also transforms according to E. Show that the displacement of the centre of mass is x̄ = δ, ȳ = 0. Subtract this out, and verify that the remainder is of the form shown in figure 29.7(c). (d) Using an initial displacement parallel to the y-axis, and an analogous procedure, generate the remaining normal mode, degenerate with that in (c) and shown in figure 29.7(b). 29.13 Further investigation of the crystalline compound considered in exercise 29.7 shows that the octahedron is not quite perfect but is elongated along the (1, 1, 1) direction with the sulphur atoms at positions ±(a+δ, δ, δ), ±(δ, a+δ, δ), ±(δ, δ, a+ δ), where δ a. This structure is invariant under the (crystallographic) symmetry group 32 with three two-fold axes along directions typified by (1, −1, 0). The latter axes, which are perpendicular to the (1, 1, 1) direction, are axes of twofold symmetry for the perfect octahedron. The group 32 is really the threedimensional version of the group 3m and has the same character table as table 29.1 (section 29.6). Use this to show that, when the distortion of the octahedron is included, the doublet found in exercise 29.7 is unsplit but the triplet breaks up into a singlet and a doublet. 29.13 Hints and answers 29.1 29.3 29.5 29.7 29.9 29.11 There are four classes and hence four one-dimensional irreps, which must have entries as follows: 1, 1, 1, 1; 1, 1, −1, −1; 1, −1, 1, −1; 1, −1, −1, 1. The characters of D are 2, −2, 0, 0 and so the irreps present are the last two of these. There are five classes {1}, {−1}, {±i}, {±j}, {±k}; there are four one-dimensional irreps and one two-dimensional irrep. Show that ab = ba. The homomorphism is ±1 → I, ±i → a, ±j → b, ±k → ab. V is Abelian and hence has four one-dimensional irreps. In the class order given above, the characters for Q are as follows: (1) (2) (3) D̂ , 1, 1, 1, 1, 1; D̂ , 1, 1, 1, −1, −1; D̂ , 1, 1, −1, 1, −1; (4) (5) D̂ , 1, 1, −1, −1, 1; D̂ , 2, −2, 0, 0, 0. Note that the fourth and fifth classes each have 6 members. The five basis functions of the representation are multiplied by 1, e−iφ , e+iφ , e−2iφ , e+2iφ as a result of the rotation. The character is the sum of these for rotations of 0, 2π/3, π, π/2, π; Drep = E + T2 . (b) The bodily translation has irrep T2 and the rotation has irrep T1 . The irreps of the internal vibrations are A1 , E, T2 , with respective degeneracies 1, 2, 3, making six internal coordinates (12 in total, minus three translational, minus three rotational). There are four classes and hence four irreps, which can only be the identity irrep, one other one-dimensional irrep, and two two-dimensional irreps. In the class order {I}, {R, R 4 }, {R 2 , R 3 }, {mi } the second one-dimensional irrep must 1117 REPRESENTATION THEORY 29.13 (because of orthogonality) have characters 1, 1, 1, −1. The summation√rules and orthogonality require the character sets to be 2, (−1 + 5)/2, √ other two √ √ 2, (−1 − 5)/2, (−1 + 5)/2, 0. Note that R has order 5 and (−1 − 5)/2, 0 and √ that, e.g., (−1 + 5)/2 = exp(2πi/5) + exp(8πi/5). The doublet irrep E (characters 2, −1, 0) appears in both 432 and 32 and so is unsplit. The triplet T1 (characters 3, 0, 1) splits under 32 into doublet E (characters 2, −1, 0) and singlet A1 (characters 1, 1, 1). 1118