Comments
Description
Transcript
Characters
REPRESENTATION THEORY (d) No explicit calculation is needed to see that if i = j = k = l = 1, with (λ) (µ) D̂ = D̂ = A1 (or A2 ), then each term in the sum is either 12 or (−1)2 and the total is 6, as predicted by the right-hand side of (29.13) since g = 6 and nλ = 1. 29.6 Characters The actual matrices of general representations and irreps are cumbersome to work with, and they are not unique since there is always the freedom to change the coordinate system, i.e. the components of the basis vector (see section 29.3), and hence the entries in the matrices. However, one thing that does not change for a matrix under such an equivalence (similarity) transformation – i.e. under a change of basis – is the trace of the matrix. This was shown in chapter 8, but is repeated here. The trace of a matrix A is the sum of its diagonal elements, n Aii Tr A = i=1 or, using the summation convention (section 26.1), simply Aii . Under a similarity transformation, again using the summation convention, [DQ (X)]ii = [Q−1 ]ij [D(X)]jk [Q]ki = [D(X)]jk [Q]ki [Q−1 ]ij = [D(X)]jk [I]kj = [D(X)]jj , showing that the traces of equivalent matrices are equal. This fact can be used to greatly simplify work with representations, though with some partial loss of the information content of the full matrices. For example, using trace values alone it is not possible to distinguish between the two groups known as 4mm and 4̄2m, or as C4v and D2d respectively, even though the two groups are not isomorphic. To make use of these simplifications we now define the characters of a representation. Definition. The characters χ(D) of a representation D of a group G are defined as the traces of the matrices D(X), one for each element X of G. At this stage there will be g characters, but, as we noted in subsection 28.7.3, elements A, B of G in the same conjugacy class are connected by equations of the form B = X −1 AX. It follows that their matrix representations are connected by corresponding equations of the form D(B) = D(X −1 )D(A)D(X), and so by the argument just given their representations will have equal traces and hence equal characters. Thus elements in the same conjugacy class have the same characters, 1092 29.6 CHARACTERS 3m I A, B C, D, E A1 A2 E 1 1 2 1 1 −1 1 −1 0 z; z 2 ; x2 + y 2 Rz (x, y); (xz, yz); (Rx , Ry ); (x2 − y 2 , 2xy) Table 29.1 The character table for the irreps of group 3m (C3v or S3 ). The right-hand column lists some common functions that transform according to the irrep against which each is shown (see text). though, in general, these will vary from one representation to another. However, it might also happen that two or more conjugacy classes have the same characters in a representation – indeed, in the trivial irrep A1 , see (29.12), every element inevitably has the character 1. For the irrep A2 of the group 3m, the classes {I}, {A, B} and {C, D, E} have characters 1, 1 and −1, respectively, whilst they have characters 2, −1 and 0 respectively in irrep E. We are thus able to draw up a character table for the group 3m as shown in table 29.1. This table holds in compact form most of the important information on the behaviour of functions under the two-dimensional rotational and reflection symmetries of an equilateral triangle, i.e. under the elements of group 3m. The entry under I for any irrep gives the dimension of the irrep, since it is equal to the trace of the unit matrix whose dimension is equal to that of the irrep. In other words, for the λth irrep χ(λ) (I) = nλ , where nλ is its dimension. In the extreme right-hand column we list some common functions of Cartesian coordinates that transform, under the group 3m, according to the irrep on whose line they are listed. Thus, as we have seen, z, z 2 , and x2 + y 2 are all unchanged by the group operations (though x and y individually are affected) and so are listed against the one-dimensional irrep A1 . Each of the pairs (x, y), (xz, yz), and (x2 − y 2 , 2xy), however, is mixed as a pair by some of the operations, and so these pairs are listed against the two-dimensional irrep E: each pair forms a basis set for this irrep. The quantities Rx , Ry and Rz refer to rotations about the indicated axes; they transform in the same way as the corresponding components of angular momentum J, and their behaviour can be established by examining how the components of J = r × p transform under the operations of the group. To do this explicitly is beyond the scope of this book. However, it can be noted that Rz , being listed opposite the one-dimensional A2 , is unchanged by I and by the rotations A and B but changes sign under the mirror reflections C, D, and E, as would be expected. 1093 REPRESENTATION THEORY 29.6.1 Orthogonality property of characters Some of the most important properties of characters can be deduced from the orthogonality theorem (29.13), ∗ (µ) (λ) g D̂ (X) D̂ (X) = δik δjl δλµ . ij kl n λ X If we set j = i and l = k, so that both factors in any particular term in the summation refer to diagonal elements of the representative matrices, and then sum both sides over i and k, we obtain nµ nλ X ∗ (µ) (λ) D̂ (X) D̂ (X) ii i=1 k=1 kk = nµ nλ g δik δik δλµ . nλ i=1 k=1 Expressed in term of characters, this reads nλ nλ ∗ g g χ(λ) (X) χ(µ) (X) = δii2 δλµ = 1 × δλµ = gδλµ . nλ nλ X i=1 i=1 (29.14) In words, the (g-component) ‘vectors’ formed from the characters of the various irreps of a group are mutually orthogonal, but each one has a squared magnitude (the sum of the squares of its components) equal to the order of the group. Since, as noted in the previous subsection, group elements in the same class have the same characters, (29.14) can be written as a sum over classes rather than elements. If ci denotes the number of elements in class Ci and Xi any element of Ci , then ∗ ci χ(λ) (Xi ) χ(µ) (Xi ) = gδλµ . (29.15) i Although we do not prove it here, there also exists a ‘completeness’ relation for characters. It makes a statement about the products of characters for a fixed pair of group elements, X1 and X2 , when the products are summed over all possible irreps of the group. This is the converse of the summation process defined by (29.14). The completeness relation states that ∗ g χ(λ) (X1 ) χ(λ) (X2 ) = δC1 C2 , (29.16) c1 λ where element X1 belongs to conjugacy class C1 and X2 belongs to C2 . Thus the sum is zero unless X1 and X2 belong to the same class. For table 29.1 we can verify that these results are valid. (λ) (i) For D̂ = D̂ (µ) = A1 or A2 , (29.15) reads 1(1) + 2(1) + 3(1) = 6, 1094