Comments
Description
Transcript
Exercises
26.23 EXERCISES Writing out the covariant derivative, we obtain i dt duk + Γijk t j ei = 0. ds ds But, since t j = du j /ds, it follows that the equation satisfied by a geodesic is j k d2 ui i du du = 0. + Γ jk ds2 ds ds (26.101) Find the equations satisfied by a geodesic (straight line) in cylindrical polar coordinates. From (26.83), the only non-zero Christoffel symbols are Γ122 = −ρ and Γ212 = Γ221 = 1/ρ. Thus the required geodesic equations are 2 2 2 d2 u1 d2 ρ dφ 1 du du + Γ − ρ = 0, = 0 ⇒ 22 ds2 ds ds ds2 ds d2 u2 du1 du2 + 2Γ212 =0 ds2 ds ds 2 3 du =0 ds2 ⇒ ⇒ 2 dρ dφ d2 φ + = 0, ds2 ρ ds ds 2 dz = 0. ds2 26.23 Exercises 26.1 Use the basic definition of a Cartesian tensor to show the following. (a) That for any general, but fixed, φ, (u1 , u2 ) = (x1 cos φ − x2 sin φ, x1 sin φ + x2 cos φ) are the components of a first-order tensor in two dimensions. (b) That x22 x1 x2 2 x1 x2 x1 is not a tensor of order 2. To establish that a single element does not transform correctly is sufficient. 26.2 The components of two vectors, A and B, and a second-order tensor, T, are given in one coordinate system by √ 1 3 0 0 √2 0 1 A= , B= , T= 3 4 0 . 0 0 0 0 2 In a second coordinate system, obtained from the first by rotation, the components of A and B are √ −1 1 3 1 . , B = A = 0 √0 2 2 1 3 Find the components of T in this new coordinate system and hence evaluate, with a minimum of calculation, Tij Tji , Tki Tjk Tij , 977 Tik Tmn Tni Tkm . TENSORS 26.3 26.4 In section 26.3 the transformation matrix for a rotation of the coordinate axes was derived, and this approach is used in the rest of the chapter. An alternative view is that of taking the coordinate axes as fixed and rotating the components of the system; this is equivalent to reversing the signs of all rotation angles. Using this alternative view, determine the matrices representing (a) a positive rotation of π/4 about the x-axis and (b) a rotation of −π/4 about the y-axis. Determine the initial vector r which, when subjected to (a) followed by (b), finishes at (3, 2, 1). Show how to decompose the Cartesian tensor Tij into three tensors, Tij = Uij + Vij + Sij , 26.5 26.6 where Uij is symmetric and has zero trace, Vij is isotropic and Sij has only three independent components. Use the quotient law discussed in section 26.7 to show that the array 2 y + z 2 − x2 −2xy −2xz 2 2 2 −2yz −2yx x +z −y −2zx −2zy x2 + y 2 − z 2 forms a second-order tensor. Use tensor methods to establish the following vector identities: (a) (b) (c) (d) (e) 26.7 (u × v) × w = (u · w)v − (v · w)u; curl (φu) = φ curl u + (grad φ) × u; div (u × v) = v · curl u − u · curl v; curl (u × v) = (v · grad)u − (u · grad)v + u div v − v div u; grad 12 (u · u) = u × curl u + (u · grad)u. Use result (e) of the previous question and the general divergence theorem for tensors to show that, for a vector field A, [A divA − A × curl A] dV , A(A · dS) − 12 A2 dS = S 26.8 V where S is the surface enclosing volume V . A column matrix a has components ax , ay , az and A is the matrix with elements Aij = −ijk ak . (a) What is the relationship between column matrices b and c if Ab = c? (b) Find the eigenvalues of A and show that a is one of its eigenvectors. Explain why this must be so. 26.9 Equation (26.29), |A|lmn = Ali Amj Ank ijk , is a more general form of the expression (8.47) for the determinant of a 3 × 3 matrix A. The latter could have been written as |A| = ijk Ai1 Aj2 Ak3 , whilst the former removes the explicit mention of 1, 2, 3 at the expense of an additional Levi–Civita symbol. As stated in the footnote on p. 942, (26.29) can be readily extended to cover a general N × N matrix. Use the form given in (26.29) to prove properties (i), (iii), (v), (vi) and (vii) of determinants stated in subsection 8.9.1. Property (iv) is obvious by inspection. For definiteness take N = 3, but convince yourself that your methods of proof would be valid for any positive integer N. 978 26.23 EXERCISES 26.10 A symmetric second-order Cartesian tensor is defined by Tij = δij − 3xi xj . Evaluate the following surface integrals, each taken over the surface of the unit sphere: (a) Tij dS; (b) Tik Tkj dS; (c) xi Tjk dS. 26.11 Given a non-zero vector v, find the value that should be assigned to α to make Pij = αvi vj 26.12 and Qij = δij − αvi vj into parallel and orthogonal projection tensors, respectively, i.e. tensors that satisfy, respectively, Pij vj = vi , Pij uj = 0 and Qij vj = 0, Qij uj = ui , for any vector u that is orthogonal to v. Show, in particular, that Qij is unique, i.e. that if another tensor Tij has the same properties as Qij then (Qij − Tij )wj = 0 for any vector w. In four dimensions, define second-order antisymmetric tensors, Fij and Qij , and a first-order tensor, Si , as follows: (a) F23 = H1 , Q23 = B1 and their cyclic permutations; (b) Fi4 = −Di , Qi4 = Ei for i = 1, 2, 3; (c) S4 = ρ, Si = Ji for i = 1, 2, 3. 26.13 26.14 26.15 Then, taking x4 as t and the other symbols to have their usual meanings in electromagnetic theory, show that the equations j ∂Fij /∂xj = Si and ∂Qjk /∂xi + ∂Qki /∂xj + ∂Qij /∂xk = 0 reproduce Maxwell’s equations. In the latter i, j, k is any set of three subscripts selected from 1, 2, 3, 4, but chosen in such a way that they are all different. In a certain crystal the unit cell can be taken as six identical atoms lying at the corners of a regular octahedron. Convince yourself that these atoms can also be considered as lying at the centres of the faces of a cube and hence that the crystal has cubic symmetry. Use this result to prove that the conductivity tensor for the crystal, σij , must be isotropic. Assuming that the current density j and the electric field E appearing in equation (26.44) are first-order Cartesian tensors, show explicitly that the electrical conductivity tensor σij transforms according to the law appropriate to a second-order tensor. The rate W at which energy is dissipated per unit volume, as a result of the current flow, is given by E · j. Determine the limits between which W must lie for a given value of |E| as the direction of E is varied. In a certain system of units, the electromagnetic stress tensor Mij is given by Mij = Ei Ej + Bi Bj − 12 δij (Ek Ek + Bk Bk ), 26.16 where the electric and magnetic fields, E and B, are first-order tensors. Show that Mij is a second-order tensor. Consider a situation in which |E| = |B|, but the directions of E and B are not parallel. Show that E ± B are principal axes of the stress tensor and find the corresponding principal values. Determine the third principal axis and its corresponding principal value. A rigid body consists of four particles of masses m, 2m, 3m, 4m, respectively situated at the points (a, a, a), (a, −a, −a), (−a, a, −a), (−a, −a, a) and connected together by a light framework. (a) Find the inertia tensor at the √ origin and show that the principal moments of inertia are 20ma2 and (20 ± 2 5)ma2 . 979 TENSORS (b) Find the principal axes and verify that they are orthogonal. 26.17 A rigid body consists of eight particles, each of mass m, held together by light rods. In a certain coordinate frame the particles are at positions ±a(3, 1, −1), ±a(1, −1, 3), ±a(1, 3, −1), ±a(−1, 1, 3). Show that, when the body rotates about an axis through the origin, if the angular velocity and angular momentum vectors are parallel then their ratio must be 40ma2 , 64ma2 or 72ma2 . 26.18 The paramagnetic tensor χij of a body placed in a magnetic field, in which its energy density is − 21 µ0 M · H with Mi = j χij Hj , is 2k 0 0 0 3k k 0 k . 3k Assuming depolarizing effects are negligible, find how the body will orientate itself if the field is horizontal, in the following circumstances: (a) the body can rotate freely; (b) the body is suspended with the (1, 0, 0) axis vertical; (c) the body is suspended with the (0, 1, 0) axis vertical. 26.19 A block of wood contains a number of thin soft-iron nails (of constant permeability). A unit magnetic field directed eastwards induces a magnetic moment in the block having components (3, 1, −2), and similar fields directed northwards and vertically upwards induce moments (1, 3, −2) and (−2, −2, 2) respectively. Show that all the nails lie in parallel planes. 26.20 For tin, the conductivity tensor is diagonal, with entries a, a, and b when referred to its crystal axes. A single crystal is grown in the shape of a long wire of length L and radius r, the axis of the wire making polar angle θ with respect to the crystal’s 3-axis. Show that the resistance of the wire is L(πr2 ab)−1 a cos2 θ + b sin2 θ . 26.21 By considering an isotropic body subjected to a uniform hydrostatic pressure (no shearing stress), show that the bulk modulus k, defined by the ratio of the pressure to the fractional decrease in volume, is given by k = E/[3(1 − 2σ)] where E is Young’s modulus and σ is Poisson’s ratio. 26.22 For an isotropic elastic medium under dynamic stress, at time t the displacement ui and the stress tensor pij satisfy pij = cijkl ∂ul ∂uk + ∂xl ∂xk and ∂pij ∂ 2 ui =ρ 2 , ∂xj ∂t where cijkl is the isotropic tensor given in equation (26.47) and ρ is a constant. Show that both ∇ · u and ∇ × u satisfy wave equations and find the corresponding wave speeds. 980 26.23 EXERCISES 26.23 A fourth-order tensor Tijkl has the properties Tjikl = −Tijkl , Tijlk = −Tijkl . Prove that for any such tensor there exists a second-order tensor Kmn such that Tijkl = ijm kln Kmn and give an explicit expression for Kmn . Consider two (separate) special cases, as follows. (a) Given that Tijkl is isotropic and Tijji = 1, show that Tijkl is uniquely determined and express it in terms of Kronecker deltas. (b) If now Tijkl has the additional property Tklij = −Tijkl , show that Tijkl has only three linearly independent components and find an expression for Tijkl in terms of the vector Vi = − 14 jkl Tijkl . 26.24 26.25 Working in cylindrical polar coordinates ρ, φ, z, parameterise the straight line (geodesic) joining (1, 0, 0) to (1, π/2, 1) in terms of s, the distance along the line. Show by substitution that the geodesic equations, derived at the end of section 26.22, are satisfied. In a general coordinate system ui , i = 1, 2, 3, in three-dimensional Euclidean space, a volume element is given by dV = |e1 du1 · (e2 du2 × e3 du3 )|. Show that an alternative form for this expression, written in terms of the determinant g of the metric tensor, is given by √ dV = g du1 du2 du3 . 26.26 26.27 Show that, under a general coordinate transformation to a new coordinate system u i , the volume element dV remains unchanged, i.e. show that it is a scalar quantity. By writing down the expression for the square of the infinitesimal arc length (ds)2 in spherical polar coordinates, find the components gij of the metric tensor in this coordinate system. Hence, using (26.97), find the expression for the divergence of a vector field v in spherical polars. Calculate the Christoffel symbols (of the second kind) Γijk in this coordinate system. Find an expression for the second covariant derivative vi; jk ≡ (vi; j ); k of a vector vi (see (26.88)). By interchanging the order of differentiation and then subtracting the two expressions, we define the components R l ijk of the Riemann tensor as vi; jk − vi; kj ≡ R l ijk vl . Show that in a general coordinate system ui these components are given by R l ijk = ∂Γl ij ∂Γlik − + Γmik Γl mj − Γmij Γlmk . j ∂u ∂uk By first considering Cartesian coordinates, show that all the components R l ijk ≡ 0 for any coordinate system in three-dimensional Euclidean space. In such a space, therefore, we may change the order of the covariant derivatives without changing the resulting expression. 981