Comments
Description
Transcript
Vector operators in tensor form
26.20 VECTOR OPERATORS IN TENSOR FORM where the expression in parentheses is the required covariant derivative T ij ; k = ∂T ij + Γilk T lj + Γ j lk T il . ∂uk (26.89) k Using (26.89), the derivative of the tensor T with respect to u can now be written in terms of its contravariant components as ∂T = T ij ; k ei ⊗ ej . ∂uk Results similar to (26.89) may be obtained for the the covariant derivatives of the mixed and covariant components of a second-order tensor. Collecting these results together, we have T ij ; k = T ij , k + Γilk T lj + Γ j lk T il , T ij; k = T ij, k + Γilk T l j − Γl jk T il , Tij; k = Tij, k − Γl ik Tlj − Γl jk Til , where we have used the comma notation for partial derivatives. The position of the indices in these expressions is very systematic: for each contravariant index (superscript) on the LHS we add a term on the RHS containing a Christoffel symbol with a plus sign, and for every covariant index (subscript) we add a corresponding term with a minus sign. This is extended straightforwardly to tensors with an arbitrary number of contravariant and covariant indices. We note that the quantities T ij ; k , T ij; k and Tij; k are the components of the same third-order tensor ∇T with respect to different tensor bases, i.e. ∇T = T ij ; k ei ⊗ ej ⊗ ek = T ij; k ei ⊗ e j ⊗ ek = Tij; k ei ⊗ e j ⊗ ek . We conclude this section by considering briefly the covariant derivative of a scalar. The covariant derivative differs from the simple partial derivative with respect to the coordinates only because the basis vectors of the coordinate system change with position in space (hence for Cartesian coordinates there is no difference). However, a scalar φ does not depend on the basis vectors at all and so its covariant derivative must be the same as its partial derivative, i.e. φ; j = ∂φ = φ, j . ∂u j (26.90) 26.20 Vector operators in tensor form In section 10.10 we used vector calculus methods to find expressions for vector differential operators, such as grad, div, curl and the Laplacian, in general orthogonal curvilinear coordinates, taking cylindrical and spherical polars as particular examples. In this section we use the framework of general tensors that we have developed to obtain, in tensor form, expressions for these operators that are valid in all coordinate systems, whether orthogonal or not. 971 TENSORS In order to compare the results obtained here with those given in section 10.10 for orthogonal coordinates, it is necessary to remember that here we are working with the (in general) non-unit basis vectors ei = ∂r/∂ui or ei = ∇ui . Thus the components of a vector v = v i ei are not the same as the components v̂ i appropriate to the corresponding unit basis êi . In fact, if the scale factors of the coordinate system are hi , i = 1, 2, 3, then v i = v̂ i /hi (no summation over i). As mentioned in section 26.15, for an orthogonal coordinate system with scale factors hi we have # # h2i if i = j, 1/h2i if i = j, and g ij = gij = 0 otherwise 0 otherwise, and so the determinant g of the matrix [gij ] is given by g = h21 h22 h23 . Gradient The gradient of a scalar φ is given by ∇φ = φ; i ei = ∂φ i e, ∂ui (26.91) since the covariant derivative of a scalar is the same as its partial derivative. Divergence Replacing the partial derivatives that occur in Cartesian coordinates with covariant derivatives, the divergence of a vector field v in a general coordinate system is given by ∇ · v = vi ; i = ∂v i + Γiki v k . ∂ui Using the expression (26.82) for the Christoffel symbol in terms of the metric tensor, we find ∂gil ∂gil ∂gkl ∂gki + − (26.92) Γiki = 12 g il = 12 g il k . ∂uk ∂ui ∂ul ∂u The last two terms have cancelled because g il ∂gkl ∂gki ∂gki = g li l = g il l , ∂ui ∂u ∂u where in the first equality we have interchanged the dummy indices i and l, and in the second equality have used the symmetry of the metric tensor. We may simplify (26.92) still further by using a result concerning the derivative of the determinant of a matrix whose elements are functions of the coordinates. 972 26.20 VECTOR OPERATORS IN TENSOR FORM Suppose A = [aij ], B = [bij ] and that B = A−1 . By considering the determinant a = |A|, show that ∂aij ∂a = ab ji k . ∂uk ∂u If we denote the cofactor of the element aij by ∆ij then the elements of the inverse matrix are given by (see chapter 8) bij = 1 ji ∆ . a (26.93) However, the determinant of A is given by aij ∆ij , a= j in which we have fixed i and written the sum over j explicitly, for clarity. Partially differentiating both sides with respect to aij , we then obtain ∂a = ∆ij , ∂aij (26.94) since aij does not occur in any of the cofactors ∆ij . Now, if the aij depend on the coordinates then so will the determinant a and, by the chain rule, we have ∂a ∂aij ∂a ∂aij ∂aij = = ∆ij k = ab ji k , ∂uk ∂aij ∂uk ∂u ∂u (26.95) in which we have used (26.93) and (26.94). Applying the result (26.95) to the determinant g of the metric tensor, and remembering both that g ik gkj = δji and that g ij is symmetric, we obtain ∂gij ∂g = gg ij k . (26.96) ∂uk ∂u Substituting (26.96) into (26.92) we find that the expression for the Christoffel symbol can be much simplified to give √ 1 ∂g 1 ∂ g = . Γiki = √ 2g ∂uk g ∂uk Thus finally we obtain the expression for the divergence of a vector field in a general coordinate system as 1 ∂ √ j ( gv ). ∇ · v = vi ; i = √ g ∂u j (26.97) Laplacian If we replace v by ∇φ in ∇ · v then we obtain the Laplacian ∇2 φ. From (26.91), we have ∂φ vi ei = v = ∇φ = i ei , ∂u 973 TENSORS and so the covariant components of v are given by vi = ∂φ/∂ui . In (26.97), however, we require the contravariant components v i . These may be obtained by raising the index using the metric tensor, to give v j = g jk vk = g jk Substituting this into (26.97) we obtain 1 ∂ ∇2 φ = √ g ∂u j √ ∂φ . ∂uk gg jk ∂φ ∂uk . (26.98) Use (26.98) to find the expression for ∇2 φ in an orthogonal coordinate system with scale factors hi , i = 1, 2, 3. √ For an orthogonal coordinate system g = h1 h2 h3 ; further, g ij = 1/h2i if i = j and g ij = 0 otherwise. Therefore, from (26.98) we have 1 h1 h2 h3 ∂φ ∂ , ∇2 φ = h1 h2 h3 ∂u j h2j ∂u j which agrees with the results of section 10.10. Curl The special vector form of the curl of a vector field exists only in three dimensions. We therefore consider a more general form valid in higher-dimensional spaces as well. In a general space the operation curl v is defined by (curl v)ij = vi; j − vj; i , which is an antisymmetric covariant tensor. In fact the difference of derivatives can be simplified, since ∂vi ∂vj − Γl ij vl − i + Γl ji vl ∂u j ∂u ∂vi ∂vj = − i, ∂u j ∂u where the Christoffel symbols have cancelled because of their symmetry properties. Thus curl v can be written in terms of partial derivatives as vi; j − vj; i = ∂vi ∂vj − i. ∂u j ∂u Generalising slightly the discussion of section 26.17, in three dimensions we may associate with this antisymmetric second-order tensor a vector with contravariant components, (curl v)ij = 1 (∇ × v)i = − √ ijk (curl v)jk 2 g ∂vj ∂vk 1 ∂vk 1 = − √ ijk − = √ ijk j ; 2 g ∂uk ∂u j g ∂u 974