Comments
Description
Transcript
Absolute derivatives along curves
26.21 ABSOLUTE DERIVATIVES ALONG CURVES this is the analogue of the expression in Cartesian coordinates discussed in section 26.8. 26.21 Absolute derivatives along curves In section 26.19 we discussed how to differentiate a general tensor with respect to the coordinates and introduced the covariant derivative. In this section we consider the slightly different problem of calculating the derivative of a tensor along a curve r(t) that is parameterised by some variable t. Let us begin by considering the derivative of a vector v along the curve. If we introduce an arbitrary coordinate system ui with basis vectors ei , i = 1, 2, 3, then we may write v = v i ei and so obtain dv i dei dv = ei + v i dt dt dt k ∂e dv i i du ei + v i k ; = dt ∂u dt here the chain rule has been used to rewrite the last term on the right-hand side. Using (26.75) to write the derivatives of the basis vectors in terms of Christoffel symbols, we obtain dv dv i duk = ei + Γ j ik v i ej . dt dt dt Interchanging the dummy indices i and j in the last term, we may factor out the basis vector and find i dv duk dv = + Γijk v j ei . dt dt dt The term in parentheses is called the absolute (or intrinsic) derivative of the components v i along the curve r(t)and is usually denoted by δv i duk duk dv i ≡ + Γijk v j = vi ; k . δt dt dt dt With this notation, we may write dv δv i duk = ei = v i ; k ei . dt δt dt (26.99) Using the same method, the absolute derivative of the covariant components vi of a vector is given by δvi duk ≡ vi; k . δt dt Similarly, the absolute derivatives of the contravariant, mixed and covariant 975