Comments
Description
Transcript
Geodesics
TENSORS components of a second-order tensor T are δT ij duk ≡ T ij ; k , δt dt δT ij duk ≡ T ij; k , δt dt k δTij du ≡ Tij; k . δt dt The derivative of T along the curve r(t) may then be written in terms of, for example, its contravariant components as dT δT ij duk = ei ⊗ ej = T ij ; k ei ⊗ ej . dt δt dt 26.22 Geodesics As an example of the use of the absolute derivative, we conclude this chapter with a brief discussion of geodesics. A geodesic in real three-dimensional space is a straight line, which has two equivalent defining properties. Firstly, it is the curve of shortest length between two points and, secondly, it is the curve whose tangent vector always points in the same direction (along the line). Although in this chapter we have considered explicitly only our familiar three-dimensional space, much of the mathematical formalism developed can be generalised to more abstract spaces of higher dimensionality in which the familiar ideas of Euclidean geometry are no longer valid. It is often of interest to find geodesic curves in such spaces by using the defining properties of straight lines in Euclidean space. We shall not consider these more complicated spaces explicitly but will determine the equation that a geodesic in Euclidean three-dimensional space (i.e. a straight line) must satisfy, deriving it in a sufficiently general way that our method may be applied with little modification to finding the equations satisfied by geodesics in more abstract spaces. Let us consider a curve r(s), parameterised by the arc length s from some point on the curve, and choose as our defining property for a geodesic that its tangent vector t = dr/ds always points in the same direction everywhere on the curve, i.e. dt = 0. (26.100) ds Alternatively, we could exploit the property that the distance between two points is a minimum along a geodesic and use the calculus of variations (see chapter 22); this would lead to the same final result (26.101). If we now introduce an arbitrary coordinate system ui with basis vectors ei , i = 1, 2, 3, then we may write t = ti ei , and from (26.99) we find dt duk = ti ; k ei = 0. ds ds 976