Comments
Description
Transcript
The quotient law
26.7 THE QUOTIENT LAW An operation that produces the opposite effect – namely, generates a tensor of smaller rather than larger order – is known as contraction and consists of making two of the subscripts equal and summing over all values of the equalised subscripts. Show that the process of contraction of an Nth-order tensor produces another tensor, of order N − 2. Let Tij···l···m···k be the components of an Nth-order tensor, then = Lip Ljq · · · Llr · · · Lms · · · Lkn Tpq···r···s···n . Tij···l···m···k 8 9: ; N factors Thus if, for example, we make the two subscripts l and m equal and sum over all values of these subscripts, we obtain = Lip Ljq · · · Llr · · · Lls · · · Lkn Tpq···r···s···n Tij···l···l···k = Lip Ljq · · · δrs · · · Lkn Tpq···r···s···n = Lip Ljq · · · Lkn Tpq···r···r···n , 8 9: ; (N − 2) factors showing that Tij···l···l···k are the components of a (different) Cartesian tensor of order N − 2. For a second-rank tensor, the process of contraction is the same as taking the trace of the corresponding matrix. The trace Tii itself is thus a zero-order tensor (or scalar) and hence invariant under rotations, as was noted in chapter 8. The process of taking the scalar product of two vectors can be recast into tensor language as forming the outer product Tij = ui vj of two first-order tensors u and v and then contracting the second-order tensor T so formed, to give Tii = ui vi , a scalar (invariant under a rotation of axes). As yet another example of a familiar operation that is a particular case of a contraction, we may note that the multiplication of a column vector [ui ] by a matrix [Bij ] to produce another column vector [vi ], Bij uj = vi , can be looked upon as the contraction Tijj of the third-order tensor Tijk formed from the outer product of Bij and uk . 26.7 The quotient law The previous paragraph appears to give a heavy-handed way of describing a familiar operation, but it leads us to ask whether it has a converse. To put the question in more general terms: if we know that B and C are tensors and also that Apq···k···m Bij···k···n = Cpq···mij···n , 939 (26.25) TENSORS does this imply that the Apq···k···m also form the components of a tensor A? Here A, B and C are respectively of Mth, Nth and (M +N −2)th order and it should be noted that the subscript k that has been contracted may be any of the subscripts in A and B independently. The quotient law for tensors states that if (26.25) holds in all rotated coordinate frames then the Apq···k···m do indeed form the components of a tensor A. To prove it for general M and N is no more difficult regarding the ideas involved than to show it for specific M and N, but this does involve the introduction of a large number of subscript symbols. We will therefore take the case M = N = 2, but it will be readily apparent that the principle of the proof holds for general M and N. We thus start with (say) Apk Bik = Cpi , (26.26) where Bik and Cpi are arbitrary second-order tensors. Under a rotation of coordinates the set Apk (tensor or not) transforms into a new set of quantities that we will denote by Apk . We thus obtain in succession the following steps, using (26.16), (26.17) and (26.6): Apk Bik = = = = = Cpi Lpq Lij Cqj Lpq Lij Aql Bjl Lpq Lij Aql Lmj Lnl Bmn Lpq Lnl Aql Bin (transforming (26.26)), (since C is a tensor), (from (26.26)), (since B is a tensor), (since Lij Lmj = δim ). Now k on the left and n on the right are dummy subscripts and thus we may write (Apk − Lpq Lkl Aql )Bik = 0. (26.27) Since Bik , and hence Bik , is an arbitrary tensor, we must have Apk = Lpq Lkl Aql , showing that the Apk are given by the general formula (26.18) and hence that the Apk are the components of a second-order tensor. By following an analogous argument, the same result (26.27) and deduction could be obtained if (26.26) were replaced by Apk Bki = Cpi , i.e. the contraction being now with respect to a different pair of indices. Use of the quotient law to test whether a given set of quantities is a tensor is generally much more convenient than making a direct substitution. A particular way in which it is applied is by contracting the given set of quantities, having 940