Comments
Description
Transcript
General ordinary differential equations
HIGHER-ORDER ORDINARY DIFFERENTIAL EQUATIONS 15.3 General ordinary differential equations In this section, we discuss miscellaneous methods for simplifying general ODEs. These methods are applicable to both linear and non-linear equations and in some cases may lead to a solution. More often than not, however, finding a closed-form solution to a general non-linear ODE proves impossible. 15.3.1 Dependent variable absent If an ODE does not contain the dependent variable y explicitly, but only its derivatives, then the change of variable p = dy/dx leads to an equation of one order lower. Solve d2 y dy +2 = 4x dx2 dx (15.76) This is transformed by the substitution p = dy/dx to the first-order equation dp + 2p = 4x. dx (15.77) The solution to (15.77) is then found by the method of subsection 14.2.4 and reads p= dy = ae−2x + 2x − 1, dx where a is a constant. Thus by direct integration the solution to the original equation, (15.76), is y(x) = c1 e−2x + x2 − x + c2 . An extension to the above method is appropriate if an ODE contains only derivatives of y that are of order m and greater. Then the substitution p = dm y/dxm reduces the order of the ODE by m. Solution method. If the ODE contains only derivatives of y that are of order m and greater then the substitution p = dm y/dxm reduces the order of the equation by m. 15.3.2 Independent variable absent If an ODE does not contain the independent variable x explicitly, except in d/dx, d2 /dx2 etc., then as in the previous subsection we make the substitution p = dy/dx 518 15.3 GENERAL ORDINARY DIFFERENTIAL EQUATIONS but also write d2 y dy dp dp dp = =p = dx2 dx dx dy dy 2 dp d2 p d3 y d dp dy d dp = , p = p = p2 2 + p 3 dx dx dy dx dy dy dy dy (15.78) and so on for higher-order derivatives. This leads to an equation of one order lower. Solve 1+y d2 y + dx2 dy dx 2 = 0. (15.79) Making the substitutions dy/dx = p and d2 y/dx2 = p(dp/dy) we obtain the first-order ODE dp 1 + yp + p2 = 0, dy which is separable and may be solved as in subsection 14.2.1 to obtain (1 + p2 )y 2 = c1 . Using p = dy/dx we therefore have p= dy =± dx c21 − y 2 , y2 which may be integrated to give the general solution of (15.79); after squaring this reads (x + c2 )2 + y 2 = c21 . Solution method. If the ODE does not contain x explicitly then substitute p = dy/dx, along with the relations for higher derivatives given in (15.78), to obtain an equation of one order lower, which may prove easier to solve. 15.3.3 Non-linear exact equations As discussed in subsection 15.2.2, an exact ODE is one that can be obtained by straightforward differentiation of an equation of one order lower. Moreover, the notion of exact equations is useful for both linear and non-linear equations, since an exact equation can be immediately integrated. It is possible, of course, that the resulting equation may itself be exact, so that the process can be repeated. In the non-linear case, however, there is no simple relation (such as (15.43) for the linear case) by which an equation can be shown to be exact. Nevertheless, a general procedure does exist and is illustrated in the following example. 519 HIGHER-ORDER ORDINARY DIFFERENTIAL EQUATIONS Solve 2y d3 y dy d2 y +6 = x. dx3 dx dx2 (15.80) Directing our attention to the term on the LHS of (15.80) that contains the highest-order derivative, i.e. 2y d3 y/dx3 , we see that it can be obtained by differentiating 2y d2 y/dx2 since d2 y d3 y d dy d2 y 2y 2 = 2y 3 + 2 . (15.81) dx dx dx dx dx2 Rewriting the LHS of (15.80) using (15.81), we are left with 4(dy/dx)(d2 y/dy 2 ), which may itself be written as a derivative, i.e. 2 dy d2 y d dy 4 = . (15.82) 2 dx dx2 dx dx Since, therefore, we can write the LHS of (15.80) as a sum of simple derivatives of other functions, (15.80) is exact. Integrating (15.80) with respect to x, and using (15.81) and (15.82), now gives 2 d2 y x2 dy 2y 2 + 2 = x dx = (15.83) + c1 . dx dx 2 Now we can repeat the process to find whether (15.83) is itself exact. Considering the term on the LHS of (15.83) that contains the highest-order derivative, i.e. 2y d2 y/dx2 , we note that we obtain this by differentiating 2y dy/dx, as follows: 2 dy d2 y dy d 2y = 2y 2 + 2 . dx dx dx dx The above expression already contains all the terms on the LHS of (15.83), so we can integrate (15.83) to give x3 dy = + c1 x + c2 . dx 6 Integrating once more we obtain the solution 2y y2 = x4 c1 x2 + + c2 x + c3 . 24 2 It is worth noting that both linear equations (as discussed in subsection 15.2.2) and non-linear equations may sometimes be made exact by multiplying through by an appropriate integrating factor. Although no general method exists for finding such a factor, one may sometimes be found by inspection or inspired guesswork. Solution method. Rearrange the equation so that all the terms containing y or its derivatives are on the LHS, then check to see whether the equation is exact by attempting to write the LHS as a simple derivative. If this is possible then the equation is exact and may be integrated directly to give an equation of one order lower. If the new equation is itself exact the process can be repeated. 520 15.3 GENERAL ORDINARY DIFFERENTIAL EQUATIONS 15.3.4 Isobaric or homogeneous equations It is straightforward to generalise the discussion of first-order isobaric equations given in subsection 14.2.6 to equations of general order n. An nth-order isobaric equation is one in which every term can be made dimensionally consistent upon giving y and dy each a weight m, and x and dx each a weight 1. Then the nth derivative of y with respect to x, for example, would have dimensions m in y and −n in x. In the special case m = 1, for which the equation is dimensionally consistent, the equation is called homogeneous (not to be confused with linear equations with a zero RHS). If an equation is isobaric or homogeneous then the change in dependent variable y = vxm (y = vx in the homogeneous case) followed by the change in independent variable x = et leads to an equation in which the new independent variable t is absent except in the form d/dt. Solve x3 dy d2 y − (x2 + xy) + (y 2 + xy) = 0. dx2 dx (15.84) Assigning y and dy the weight m, and x and dx the weight 1, the weights of the five terms on the LHS of (15.84) are, from left to right: m + 1, m + 1, 2m, 2m, m + 1. For these weights all to be equal we require m = 1; thus (15.84) is a homogeneous equation. Since it is homogeneous we now make the substitution y = vx, which, after dividing the resulting equation through by x3 , gives dv d2 v + (1 − v) = 0. dx2 dx t Now substituting x = e into (15.85) we obtain (after some working) x d2 v dv −v = 0, dt2 dt which can be integrated directly to give dv = 12 v 2 + c1 . dt Equation (15.87) is separable, and integrates to give dv 1 t + d2 = 2 v 2 + d21 1 v . = tan−1 d1 d1 (15.85) (15.86) (15.87) Rearranging and using x = et and y = vx we finally obtain the solution to (15.84) as y = d1 x tan 12 d1 ln x + d1 d2 . Solution method. Assume that y and dy have weight m, and x and dx weight 1, and write down the combined weights of each term in the ODE. If these weights can be made equal by assuming a particular value for m then the equation is isobaric (or homogeneous if m = 1). Making the substitution y = vxm followed by x = et leads to an equation in which the new independent variable t is absent except in the form d/dt. 521 HIGHER-ORDER ORDINARY DIFFERENTIAL EQUATIONS 15.3.5 Equations homogeneous in x or y alone It will be seen that the intermediate equation (15.85) in the example of the previous subsection was simplified by the substitution x = et , in that this led to an equation in which the new independent variable t occurred only in the form d/dt; see (15.86). A closer examination of (15.85) reveals that it is dimensionally consistent in the independent variable x taken alone; this is equivalent to giving the dependent variable and its differential a weight m = 0. For any equation that is homogeneous in x alone, the substitution x = et will lead to an equation that does not contain the new independent variable t except as d/dt. Note that the Euler equation of subsection 15.2.1 is a special, linear example of an equation homogeneous in x alone. Similarly, if an equation is homogeneous in y alone, then substituting y = ev leads to an equation in which the new dependent variable, v, occurs only in the form d/dv. Solve x2 dy d2 y 2 +x = 0. + dx2 dx y 3 This equation is homogeneous in x alone, and on substituting x = et we obtain 2 d2 y + 3 = 0, dt2 y which does not contain the new independent variable t except as d/dt. Such equations may often be solved by the method of subsection 15.3.2, but in this case we can integrate directly to obtain dy = 2(c1 + 1/y 2 ). dt This equation is separable, and we find dy = t + c2 . 2(c1 + 1/y 2 ) By multiplying the numerator and denominator of the integrand on the LHS by y, we find the solution c1 y 2 + 1 √ = t + c2 . 2c1 Remembering that t = ln x, we finally obtain c1 y 2 + 1 √ = ln x + c2 . 2c1 Solution method. If the weight of x taken alone is the same in every term in the ODE then the substitution x = et leads to an equation in which the new independent variable t is absent except in the form d/dt. If the weight of y taken alone is the same in every term then the substitution y = ev leads to an equation in which the new dependent variable v is absent except in the form d/dv. 522