Transformation of variables in joint distributions
by taratuta
Comments
Transcript
Transformation of variables in joint distributions
PROBABILITY Finally we note that, by analogy with the single-variable case, the characteristic function and the cumulant generating function of a multivariate distribution are defined respectively as C(t1 , t2 , . . . , tn ) = M(it1 , it2 , . . . , itn ) and K(t1 , t2 , . . . , tn ) = ln M(t1 , t2 , . . . , tn ). Suppose that the random variables Xi , i = 1, 2, . . . , n, are described by the PDF f(x) = f(x1 , x2 , . . . , xn ) = N exp(− 21 xT Ax), where the column vector x = (x1 x2 · · · xn )T , A is an n × n symmetric matrix and N is a normalisation constant such that ∞ ∞ ∞ f(x) dn x ≡ ··· f(x1 , x2 , . . . , xn ) dx1 dx2 · · · dxn = 1. −∞ ∞ −∞ −∞ Find the MGF of f(x). From (30.142), the MGF is given by M(t1 , t2 , . . . , tn ) = N t2 where the column vector t = (t1 we begin by noting that ··· ∞ exp(− 21 xT Ax + tT x) dn x, (30.144) tn )T . In order to evaluate this multiple integral, xT Ax − 2tT x = (x − A−1 t)T A(x − A−1 t) − tT A−1 t, which is the matrix equivalent of ‘completing the square’. Using this expression in (30.144) and making the substitution y = x − A−1 t, we obtain M(t1 , t2 , . . . , tn ) = c exp( 12 tT A−1 t), where the constant c is given by (30.145) c=N ∞ exp(− 21 yT Ay) dn y. From the normalisation condition for N, we see that c = 1, as indeed it must be in order that M(0, 0, . . . , 0) = 1. 30.14 Transformation of variables in joint distributions Suppose the random variables Xi , i = 1, 2, . . . , n, are described by the multivariate PDF f(x1 , x2 . . . , xn ). If we wish to consider random variables Yj , j = 1, 2, . . . , m, related to the Xi by Yj = Yj (X1 , X2 , . . . , Xm ) then we may calculate g(y1 , y2 , . . . , ym ), the PDF for the Yj , in a similar way to that in the univariate case by demanding that |f(x1 , x2 . . . , xn ) dx1 dx2 · · · dxn | = |g(y1 , y2 , . . . , ym ) dy1 dy2 · · · dym |. From the discussion of changing the variables in multiple integrals given in chapter 6 it follows that, in the special case where n = m, g(y1 , y2 , . . . , ym ) = f(x1 , x2 . . . , xn )|J|, 1206