Comments
Description
Transcript
General eigenvalue problems
CALCULUS OF VARIATIONS Using (22.13) and the fact that y does not appear explicitly, we obtain ∂y ∂ ∂y ∂ ρ − τ = 0. ∂t ∂t ∂x ∂x If, in addition, ρ and τ do not depend on x or t then ∂2 y 1 ∂2 y = 2 2, ∂x2 c ∂t where c2 = τ/ρ. This is the wave equation for small transverse oscillations of a taut uniform string. 22.6 General eigenvalue problems We have seen in this chapter that the problem of finding a curve that makes the value of a given integral stationary when the integral is taken along the curve results, in each case, in a differential equation for the curve. It is not a great extension to ask whether this may be used to solve differential equations, by setting up a suitable variational problem and then seeking ways other than the Euler equation of finding or estimating stationary solutions. We shall be concerned with differential equations of the form Ly = λρ(x)y, where the differential operator L is self-adjoint, so that L = L† (with appropriate boundary conditions on the solution y) and ρ(x) is some weight function, as discussed in chapter 17. In particular, we will concentrate on the Sturm–Liouville equation as an explicit example, but much of what follows can be applied to other equations of this type. We have already discussed the solution of equations of the Sturm–Liouville type in chapter 17 and the same notation will be used here. In this section, however, we will adopt a variational approach to estimating the eigenvalues of such equations. Suppose we search for stationary values of the integral b 2 (22.22) p(x)y (x) − q(x)y 2 (x) dx, I= a with y(a) = y(b) = 0 and p and q any sufficiently smooth and differentiable functions of x. However, in addition we impose a normalisation condition b ρ(x)y 2 (x) dx = constant. (22.23) J= a Here ρ(x) is a positive weight function defined in the interval a ≤ x ≤ b, but which may in particular cases be a constant. Then, as in section 22.4, we use undetermined Lagrange multipliers,§ and § We use −λ, rather than λ, so that the final equation (22.24) appears in the conventional Sturm– Liouville form. 790 22.6 GENERAL EIGENVALUE PROBLEMS consider K = I − λJ given by b K= 2 py − (q + λρ)y 2 dx. a On application of the EL equation (22.5) this yields d dy p + qy + λρy = 0, dx dx (22.24) which is exactly the Sturm–Liouville equation (17.34), with eigenvalue λ. Now, since both I and J are quadratic in y and its derivative, finding stationary values of K is equivalent to finding stationary values of I/J. This may also be shown by considering the functional Λ = I/J, for which δΛ = (δI/J) − (I/J 2 ) δJ = (δI − ΛδJ)/J = δK/J. Hence, extremising Λ is equivalent to extremising K. Thus we have the important result that finding functions y that make I/J stationary is equivalent to finding functions y that are solutions of the Sturm–Liouville equation; the resulting value of I/J equals the corresponding eigenvalue of the equation. Of course this does not tell us how to find such a function y and, naturally, to have to do this by solving (22.24) directly defeats the purpose of the exercise. We will see in the next section how some progress can be made. It is worth recalling that the functions p(x), q(x) and ρ(x) can have many different forms, and so (22.24) represents quite a wide variety of equations. We now recall some properties of the solutions of the Sturm–Liouville equation. The eigenvalues λi of (22.24) are real and will be assumed non-degenerate (for simplicity). We also assume that the corresponding eigenfunctions have been made real, so that normalised eigenfunctions yi (x) satisfy the orthogonality relation (as in (17.24)) b yi yj ρ dx = δij . (22.25) a Further, we take the boundary condition in the form yi pyj x=b x=a = 0; (22.26) this can be satisfied by y(a) = y(b) = 0, but also by many other sets of boundary conditions. 791