Comments
Description
Transcript
高強度場現象・アト秒科学(2)
石川顕一 東京大学 大学院工学系研究科 光量子科学研究センター [email protected] http://ishiken.free.fr/ 高強度場現象・アト秒科学(2) 高次高調波発生とアト秒 パルス 1 24 | OPN October 2008 www.osa-opn.org 高次高調波発生とアト秒パルス 2 Optics and Photonics News, Vol. 19, Issue 10, pp. 24-29 (2008) トンネル電離後の電子はどうなる? 非逐次2重電離 再結合→高次高調波 3 石川顕一 PHYSICAL REVIEW LETTERS Measurement 29 AUcUsT 1994 of Strong Field Double Ionization of Helium . Sheehy, ' L. F. DiMauro, ' P. Agostini, K. J. Schafer, " K. C. Kulander 非逐次2重電離 and try Department, Brookhaven National Laboratory, Upton, New York 11973 Surfaces et l'Irradiation de la Matiere, Centre d'Etudes de Saclay, 91191 Gif Sur Yvette, France Molecular Physics, Lawrence Livermore National Laboratory, Livermore, California 94551 for Laboratory Astrophysics, University of Colorado, Boulder, Colorado 80309 (Received 27 April 1994) Non-sequential double ionization (NSDI) and He + by a 160 fs, 780 nm laser has been measured over an unprecedented nitude in counting range. Enhanced double electron emission, called nonsequential was observed over an intensity range where the single ionization dynamics is evolving to pure tunneling. The NS yield is found to scale with the ac-tunneling rate for the A rescattering mechanism fails n tunneling is not the dominant ionization pathway. erved NS threshold or magnitude. of He+ .80.Rm, 31.90.+s, 32.80.Fb on (MPI) of noble gases be well described by timecal calculations within the approximation [1,2]. The aps from the fact that for long ion dynamics are dominated s, leading to the sequential ates. In recent experiments, on of doubly charged ions as been observed with yields ion based upon sequential he high intensities and small t has been argued [3,6] that from a direct, nonsequential her than a resonant process nt quantitative knowledge of ization is so limited that even double ejection has not been a high precision measurement He is reported which extends s experiments by a factor of the NS production of He range to directly test current ls. onization is clearly linked to of the first electron. Within which the NS process has n of He evolves from being in character to being purely in the ionization dynamics in the photoelectron energy tly, analysis of the intensity ndicates that the two-electron neling component of neutral on ionization dominates. which invoke features of a of strong field ionization have ionization [3,6]. In the first ' • イオン収量 He 1E4 Ne 100 fs 780 nm 1E2 'I ~ 1EO PI lE-2 He→He+ (トンネル電離) He+→He2+ (トンネル電離) 1ER Ne→Ne+ (トンネル電離) Ne+→Ne2+ (トンネル電離) lEW 1E14 1E15 intensity (W/cm 2 1E16 ) FIG. 1. Measured He ion yields for linear polarized, 100 fsec, 780 nm light. Calculations are shown as solid (SAE) Dörner et al., Physik. Blätter, 57, 49 (2001) Walker et al., PRL 73, 1227 (1994) and dashed (ac-tunneling) lines. The measured intensities are multiplied by 1.15. The solid curve on right is the calculated sequential He + yield. トンネル電離が順次起こるのでは説明できないkneeあるいはshoulderがある。 step an electron is released near the peak of the oscillating field amplitude. The electron either passes over or tunnels through the effective barrier created by the Coulombic attraction of the ion core and the laser's instantaneous electric field. At that point (second step), the electron's evolution is dominated by its interaction with the laser field since its motion is essentially removed from the 4 石川顕一 PHYSICAL REVIEW LETTERS Measurement 29 AUcUsT 1994 of Strong Field Double Ionization of Helium . Sheehy, ' L. F. DiMauro, ' P. Agostini, K. J. Schafer, " K. C. Kulander 非逐次2重電離 and try Department, Brookhaven National Laboratory, Upton, New York 11973 Surfaces et l'Irradiation de la Matiere, Centre d'Etudes de Saclay, 91191 Gif Sur Yvette, France Molecular Physics, Lawrence Livermore National Laboratory, Livermore, California 94551 for Laboratory Astrophysics, University of Colorado, Boulder, Colorado 80309 (Received 27 April 1994) Non-sequential double ionization (NSDI) and He + by a 160 fs, 780 nm laser has been measured over an unprecedented nitude in counting range. Enhanced double electron emission, called nonsequential was observed over an intensity range where the single ionization dynamics is evolving to pure tunneling. The NS yield is found to scale with the ac-tunneling rate for the A rescattering mechanism fails n tunneling is not the dominant ionization pathway. erved NS threshold or magnitude. of He+ .80.Rm, 31.90.+s, 32.80.Fb on (MPI) of noble gases be well described by timecal calculations within the approximation [1,2]. The aps from the fact that for long ion dynamics are dominated s, leading to the sequential ates. In recent experiments, on of doubly charged ions as been observed with yields ion based upon sequential he high intensities and small t has been argued [3,6] that from a direct, nonsequential her than a resonant process nt quantitative knowledge of ization is so limited that even double ejection has not been a high precision measurement He is reported which extends s experiments by a factor of the NS production of He range to directly test current ls. onization is clearly linked to of the first electron. Within which the NS process has n of He evolves from being in character to being purely in the ionization dynamics in the photoelectron energy tly, analysis of the intensity ndicates that the two-electron neling component of neutral on ionization dominates. which invoke features of a of strong field ionization have ionization [3,6]. In the first ' • イオン収量 He 1E4 トンネル電子が再衝突する際に、親イオンをさらにイオン化 100 fs 780 nm 1E2 'I ~ 1EO PI lE-2 He→He+ (トンネル電離) He+→He2+ (トンネル電離) 1ER lEW 1E14 1E15 intensity (W/cm 2 電子相関の顕著な例 1E16 ) FIG. 1. Measured He ion yields for linear polarized, 100 fsec, 780 nm light. Calculations are shown as solid (SAE) Walker et al., PRL 73, 1227 (1994) and dashed (ac-tunneling) lines. The measured intensities are multiplied by 1.15. The solid curve on right is the calculated sequential He + yield. トンネル電離が順次起こるのでは説明できないkneeあるいはshoulderがある。 step an electron is released near the peak of the oscillating field amplitude. The electron either passes over or tunnels through the effective barrier created by the Coulombic attraction of the ion core and the laser's instantaneous electric field. At that point (second step), the electron's evolution is dominated by its interaction with the laser field since its motion is essentially removed from the 5 石川顕一 トンネル電離後の電子はどうなる? 非逐次2重電離 再結合→高次高調波 6 石川顕一 高次高調波発生 HIGH-HARMONIC GENERATION (HHG) discovered in 1987 再結合の際に 運動エネルギー + イオン化ポテンシャル のエネルギーの光子を放出 高次高調波 XUV = extreme ultraviolet (極端紫外) 7 石川顕一 高調波発生 結晶等 ω 非線形光学効果 € ω,3ω,5ω, 物質の応答が、入射光強度に非線形に依存 € 3ω:3次高調波 (3rd harmonic) D = ε0 E + P P = ε0 [ χ (1) E + χ (2) E 2 + χ (3) E 3 +] € 非線形分極 (nonlinear) € € 波長変換 5ω:5次高調波 (5th harmonic) 線形分極 linear polarization€ 反転対称な媒質では、 χ (2) = 0 ∂ 2D ∇ × ∇ × E = −µ 0 2 ∂t € € 8 石川顕一 摂動論的高調波発生 3次高調波発生の概念図 Ionization 電離 遷移行列要素 MTHG = � � �3 · D1h �1 · Dhi �1 · Dij �1 · Dj1 h,i,f Virtual level 仮想準位 ω ω € € € ω + �1 · D1h �3 · Dhi �1 · Dij �1 · Dj1 (−ω1 − ωh )(2ω1 − ωi )(ω1 − ωj ) + �1 · D1h �1 · Dhi �3 · Dij �1 · Dj1 (−ω1 − ωh )(−2ω1 − ωi )(−ω1 − ωj ) + �1 · D1h �1 · Dhi �1 · Dij �3 · Dj1 (−ω1 − ωh )(−2ω1 − ωi )(−3ω1 − ωj ) 3ω Ground state 基底状態 (3ω1 − ωh )(2ω1 − ωi )(ω1 − ωj ) € 次数が高くなるほど、発生効率は減少。 9 石川顕一 プラトーとカットオフ Wahlström et al., Phys. Rev. A 48, 4709 (1993) Harmonic intensity (arb. unit) plateau cutoff 1015 W/cm2 10 2 10 1 10 0 10 -1 10 -2 10 -3 10 -4 10 -5 10 -6 10 -7 10 -8 800 nm, 1.6×1014 W/cm2 plateau cutoff TDSE Simulation 0 10 20 30 Harmonic order 40 50 プラトー(plateau):Efficiency does NOT decrease with increasing harmonic order. 次数が上がっても強度が落ちない。 カットオフ(cutoff):Maximum energy of harmonic photons e2 E02 2 2 −14 Up (eV) = = 9.3 × 10 I(W/cm )λ (µm) Ec ≈ Ip + 3.17Up 2 4mω ポンデロモーティブエネルギー • 摂動論的には解釈できない 10 石川顕一 高次高調波発生のメカニズム 3ステップモデル ③再結合→発光(高次高調波) ②電場中の古典 的運動(加速) ①トンネル電離 Paul B. Corkum, Phys. Rev. Lett. 71, 1994 (1993) K. C. Kulander et al., in Super-Intense Laser-Atom Physics, NATO ASI Ser. B, Vol. 316, p. 95 (1993) Paul B. Corkum 11 石川顕一 高次高調波発生の3ステップモデル 時刻 t0 でイオン化。原点に初速ゼロで出現 mz̈ = −eE0 cos ωt 規格化 ż(t0 ) = 0 z(t0 ) = 0 φ = ωt φ0 = ωt0 E0 z = 2 [(cos φ − cos φ0 ) + (φ − φ0 ) sin φ0 ] ω 再衝突 Ekin = 2Up (sin φ − sin φ0 )2 z = 0 となる φ = φret (φ0 ) レーザー電場 E(t) = E0 cos ωt ③再結合→発光 ①トンネル 電離 12 ②電場中の古典 的運動(加速) 石川顕一 再衝突時刻 (cos φret − cos φ0 ) + (φret − φ0 ) sin φ0 = 0 z=0 (cos φ) |φ0 � cos φret − cos φ0 = φret − φ0 イオン化時刻と再衝突時刻の関係 1.0 Phase of recombination (phi_r) 350 0.5 0.0 -0.5 -1.0 0 40 φ0 80 120 160 200 phi (degree) 240 φret 280 320 300 200 の場合再結合できない 150 100 50 0 0 360 π < φ0 < π 2 250 50 100 150 Phase of electron release (phi0) 13 石川顕一 Field (in E0) 1 field 0 -1 recombination ionization 3 再結合時の運動エネルギーの最大値 3.17Up 1 0 0 long short short 2 long Electron kinetic energy (in Up) カットオフ則のシンプルな説明 カットオフ Ec = Ip + 3.17Up 90 180 270 360 Phase (degrees) 同じ高調波次数(光子エネルギー)に short trajectory long trajectory 対応するイオン化時刻と再結合時刻の ペアは2つある。 14 石川顕一 なぜ、高次高調波スペクトルは離散的なのか? Takahashi et al., Appl. Phys. Lett. 93, 041111 (2008) レーザー電場 E(t) = E0 cos ωt ③再結合→発光 ①トンネル 電離 Harmonic intensity (arb. unit) 2 FIG. 4. !Color 10 online" Experimentally obtained harmonic spectra in Ar. Red 10 1 10 0 10 -1 10 -2 10 -3 10 -4 10 -5 10 -6 10 -7 10 -8 ②電場中の古典 的運動(加速) トンネル電離と高調波の発生は、レー ザーの半周期ごとに起こる。 0 10 20 30 Harmonic order 40 50 15 石川顕一 高調波の電場波形の概念図 harmonic field harmonic intensity 実験的にも観測されている fundamental field PHYSICAL REVIEW PRL Nabekawa 97, 153904et(2006) al., Phys. Rev. Lett. 97, 153904 (2006) -3 -2 0 -1 1 2 3 time [fs] -2 -1 0 1 Fundamental optical cycle f (t) = −f (t − π/ω0 ) FIG. 3 (colorレーザーの1周期(2.7 online). Estimated intensity profile fs) of the atto- 2 second pulse train (dark-green curve with hatched area) and the optical field (dark-blue curve). 基本波の奇数倍の周波数 the emission of a pulse of a high-order harmonic field every half-cycle period. In this model, the trajectory of the 成分のみを含む。 In lock ric a from enab puls of th ing t mea field optic reali W gene ciall Scie Scie electron, moving along the direction of the electric field of the fundamental laser, determines the phase of the emitted harmonic field. Therefore, our finding of the !-flipped phase in the attosecond pulse train verifies that [1] 16 harmonic pulses are certainly from electrons detached 石川顕一[2] from opposite sides at every half-cycle period of the fun- 1つの次数のみが存在するときの光電界 1.0 1.0 0.5 0.5 電場 電場 Electric field Eh (t) = Eq cos(qω + φq ) = E2n+1 cos[(2n + 1)ω + φ2n+1 ] 0.0 0.0 -0.5 -0.5 -1.0 -1.0 -2 -1 0 1 時間(フェムト秒) 2 -0.40 -0.30 -0.20 時間(フェムト秒) Time (fs) Time (fs) 連続波(パルスではない) Continuous wave (no pulse) 17 石川顕一 複数の次数(奇数次)が混在するときの光電界 Eh (t) = ! Eq cos(qω + φq ) = q ! E2n+1 cos[(2n + 1)ω + φ2n+1 ] q 1.0 電場 0.5 0.0 • アト秒パルス列になっている。 • パルスの間隔は、基本波の半周期 • 隣り合うパルスは位相が反転 -0.5 -1.0 -2 -1 0 1 時間(フェムト秒) 2 等間隔の周波数成分 等間隔のパルス列 18 石川顕一 高次高調波の奇数次のみを含む離散的 なピークは、二通りに解釈できる。 • 光子エネルギーの整数倍+反転対称性 • 基本波の半サイクルごとの光放出 19 石川顕一 一定の時間間隔で放出される電子波束のエネ ルギースペクトルは離散的になる トンネル電離 • アト秒パルス列に(1光子)イオン化された電子 • Photoelectron probability density (a.u.) Soft X-ray electric field (a.u.) 1.5 1.0x10-6 h̄ω = 1.55 eV (λ = 800 nm) τ = π/ω 1.0 0.5 0.0 -0.5 -1.0 -2 -1.5x10 -3 -2 -1 0 Time (fs) 1 2 3 1.0x104 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 10 0.0 0 100 Single pulse Double pulse Spectrum (arb. unit) H23, H25, H27, H29, H31 of ∆E · τ = h 20 30 40 Photoelectron energy (eV) 200 300 400 50 500 Distance from the nucleus (a.u.) 光パルス(アト秒ダブルパルス)のスペクトルが離散的 2つの電子波束が空間的に重なることによる干渉 どちらのパルスにイオン化されたか分からないこと による干渉縞(ヤングのダブルスリットの時間版) 20 K.L. Ishikawa, Phys. Rev. A 74, 023806 (2006) 石川顕一 次数によって高調波の発生時刻が異なる Long 300 250 200 Figure 4. XFROG measurements [20]. The images on the right and left sides of represent the photoelectron signal as a function of the delay between pump a trajectory and energy of the photoelectron (vertical). On the left, several sidebands w 22, 20, 18, 16, 14 from the測定 top to the bottom obtained for a Fourier-transform laser pulse are shown. On the right, the sideband 18 is shown for three fun chirps: bfund ¼ 1:2, 0, "0:8 # 1027 s"2. The graph in the middle shows the m (filled symbols) and simulated (open symbols) chirp rates as a function of 理論 the three different fundamental chirp cases (see text). The black straight line the simulated points; the blue and red lines are obtained from the latter equation (7). short trajectory 150 100 0.0 Ne 高調波放出時刻 350 40 0.5 1.0 1.5 2.0 2.5 3.0 Electron energy (in Up) ショートトラジェクトリーの場合 低次が先に高次が後で発生する。 ポジティブチャープ Intensity (arb.units) Phase of recombination (phi_r) 3.8×1014 W/cm2 30 20 10 0 0 500 1000 1500 Time (as) 2000 Mairesse et al., Science 302, 1540 (2003) Figure 5. Attosecond pulse train corresponding to the superposition of gro 21 Varju et al., J. Mod. Opt. 379 14 consecutive harmonics generated in neon at 52, 3:8 # 10(2005) W cm"2: 石川顕一 harmonics 次数によって高調波の発生時刻が異なる Phase of recombination (phi_r) TDSEシミュレーション 350 Long trajectory 300 250 200 short trajectory 150 100 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Electron energy (in Up) ショートトラジェクトリーの場合 ポジティブチャープ ロングトラジェクトリーの場合 ネガティブチャープ K. L. Ishikawa, “High-harmonic generation” in Advances in SolidState Lasers, ed. by M. Grishin (INTECH, 2010) 439-464 22 石川顕一 Time of recombination (as) 強度によって高調波の発生時刻が異なる Long trajectory 2500 14 2 3.8 x 10 W/cm 2000 14 Xe 2 1.2 x 10 W/cm 1500 Ne short trajectory 1000 20 30 40 50 Ar 60 70 Harmonic order ショートトラジェクトリーの場合 次数が同じなら、高強度の時 の方が、早く発生する Mairesse et al., Science 302, 1540 (2003) 同じ次数でも、強度によって発生時刻が異なる。 23 石川顕一 次数が同じなら、高強度の時の方が、早く発生する 強度上昇時は発生間隔が短い(ブルーシフト) 強度下降時は発生間隔が長い(レッドシフト) ネガティブチャープ Varju et al., J. Mod. Opt. 52, 379 (2005) 24 石川顕一 高調波のチャープのまとめ • 異なる次数間 → ポジティブチャープ • 1つの次数の中 → ネガティブチャープ 本来量子力学的なこれらの現象(実験的 にも観測されている)が、シンプルな3 ステップモデルで説明できる。 25 石川顕一 高次高調波発生の量子論 Lewensteinモデル Lewenstein et al., Phys. Rev. A 49, 2117 (1994) 26 高強度場近似 Strong-field approximation (SFA) • 励起状態の寄与を無視 The contribution of all the excited bound states can be neglected. • 連続状態に対する原子のポテンシャルの効果を無視 (連続状態を平面波で近似)The effect of the atomic potential on the motion of the continuum electron can be neglected. • 基底状態の減少を無視 The depletion of the ground state can be neglected. 27 石川顕一 � � ∂ψ(r, t) 1 2 i = − ∇ + V (r) + zE(t) ψ(r, t) ∂t 2 双極子モーメント x(t) ≡ �ψ(r, t) | z | ψ(r, t)� Time-dependent dipole moment =i � t dt� −∞ � 3ステップ モデル =i � t −∞ dt� � � t � �� �� 2 [p + A(t )] 3 iIp t �� � � iIp t� d p �ϕ(r)e |z|p + A(t)� exp −i dt �p + A(t )|zE(t )|ϕ(r)e � + c.c. 2 t� 再結合 � レーザー場中での運動 イオン化 � � t � �� �� 2 � [p + A(t )] d3 p �ϕ(r)eiIp t |z|p + A(t)� exp −i dt�� �p + A(t� )|zE(t� )|ϕ(r)eiIp t � + c.c. 2 t� 再衝突電子波束と基底状態と の間の双極子モーメント x(t) = i � t −∞ dt� � イオン化 再衝突電子波束 d3 p d∗ (p + A(t)) · exp[−iS(p, t, t� )] · E(t� )d(p + A(t� )) + c.c. 遷移双極子行列要素 transition dipole 半古典的作用積分 semiclassical action S(p, t, t� ) = � t dt�� t� 28 � [p + A(t )] + Ip 2 �� 2 � 石川顕一 高調波スペクトル=双極子モーメントのフーリエ変換 x̂(ωh ) = i � ∞ −∞ dt � t −∞ dt� � d3 p d∗ (p + A(t)) · exp[iωh t − iS(p, t, t� )] · E(t� )d(p + A(t� )) + c.c. 5重積分 five-dimensional integral 鞍点解析 saddle-point analysis cf. 経路積分 29 石川顕一 鞍点解析 saddle-point analysis (SPA) Saddle-point equations 解→トラジェクトリー trajectory 2 � [p + A(t� )] = −Ip 2 t [p + A(t�� )]dt�� = 0 トンネル電離 t’ イオン化時刻 t 再結合時刻 イオン化と再結合の位置が同じ t� 2 [p + A(t)] + Ip = ωh 2 x̂(ωh ) = � s � π � + 2i (ts − t�s ) 高調波の光子エネルギー = 再結合時の運動エネルギー + イオン化ポテンシャル �3/2 � i2π det S �� (t, t� )|s d∗ (ps + A(ts )) × exp[iωh ts − iS(ps , ts , t�s )]E(t�s )d(ps + A(t�s )), • 3ステップモデルに物理的に対応 30 石川顕一 鞍点解の例 E(t) = E0 cos ωt φ� = ωt� φ = ωt Ar (Ip = 15.7596 eV) 1.6 × 1014 W/cm 2 の実部(上)と虚部(下) 破線は3ステッ プモデルの解 カットオフ Ec = 3.17Up + gIp (g ≈ 1.3) 「トンネル時間」 に対応すると解釈 されている • 3ステップモデルは、量子力学的なLewensteinモデルのよい近似に なっている。→ 3ステップモデルの成功の理由 31 石川顕一 attosecond pulse train (APT) アト秒パルス列 と 単独アト秒パルス isolated attosecond pulse (IAP) 32 高次高調波は、基本波レーザーの半周期ごとにア ト秒のバーストとして発生する(アト秒パルス列) Paul et al., Science 292, 1689 (2001) 世界初 PHYSICAL REVIEW PRL 97, 153904 (2006) Nabekawa et al., Phys. Rev. Lett. 97, 153904 (2006) -3 -2 -1 0 1 2 3 time [fs] FIG. 3 (colorレーザーの1周期(2.7 online). Estimated intensity profile fs) of the attosecond pulse train (dark-green curve with hatched area) and the optical field (dark-blue curve). 超短パルスレーザーを用い、1回だけバーストが発 the emission of a pulse of a high-order harmonic field every half-cycle period. In this model, the trajectory of the electron, moving along the direction of the electric field 生するようにすれば、単独パルスになる。 of the fundamental laser, determines the phase of the In lock ric a from enab puls of th ing t mea field optic reali W gene ciall Scie Scie emitted harmonic field. Therefore, our finding of the !-flipped phase in the attosecond pulse train verifies that [1] 33 石川顕一 harmonic pulses are certainly from electrons detached [2] ~11° ( / 16 rad). (C to E) Spectra measured at the CE phase setting closest to *#4 ,$+22 ,+/#223/# 1-2,#,: !"# +11#+%+'(# )* ,+/#223/#, ,#1+%+/#0 .6 ,#()'0 1%# Fig. 1A. The zero+!! ofDMNthe CE phase scale in (A) was set to yield the best agreem *%)$ /"# (#'/%+2 1-2,# 2#+0, /) + ,1#(/%+2 $)0-2+/3)' 43/" + )* /"# 4+; spectra in (B). 1#%3)0 )* /43(# /"# 2+,#% 1")/)' #'#%&6L +, %#;#+2#0 .6 /"# (+2(-2+/#0 +$123/-0# 70 60 50 40 30 光の放出は1回だけ 6 86 4 0.8 0.6 94 2 –4 –2 0 Time (fs) 60 τx = 530 as 50 40 30 4 6 2 0.4 1 0.2 -200 -100 0 100 Time (as) 200 300 3'& /"# #; +//),#()'0 *#45(6(2# "3&"5"+%$ H$)%# 23T# )/"#% /"+' *%+(/3)' ) /3)' /) /" 0%3;#% 13$1%);# /" $#'/,: !"#$%&' (% V3/" 3/, 0 %+6 1-2,# #;)2-/3)' 3',/+'/+'# ;3,3.2# 23& ,3'-,)30+2 !"# 0)/, 3' 0 %# $+''#%L Delay (fs !9BD '$ "+;# /) %#$ )'# &#'#%+ (+2(-2+/#0 75%+6 ,)-% !"# $#+ 2+%&#% /"+' /3;#26 /"# /"+/ /"# ). −2 5 P'($3('%#+ 0 .'&<E#(+8 2 1#'&<'Q*2 4%#7"-&'( *1%#12*%; "&-E(# -. ' 2-.%<@<&'; −4 −2 2%'3""3(2#4 Delay (fs) 5,# @<&'; "3(2# *2 "&-+3$#+ *1 ' G<77<(-16 IDD<7>'& 1#-1 6'2 =-(37# >; ' B<.28 BCD< 17 6'322*'1 ('2#& "3(2# )*%, '1 -1<'Q*2 "#'J *1%#12*%; -. L " FDF0 H $7!I4 R-& %,# #(#$%&*$ E#(+ -. %,# ('2#& "3(2#8 %9# : ! #Q"9!# IS%IT :$-29&D# U !: )*%, ! O D 9$-2*1# "3(2#:8 1.0 ),#&# %T *2 %,# "3(2# +3&'%*-18 &D *2 %,# '163('& $'&&*#& .&#?3#1$; '1+ ! *2 %,# V'>2-(3%#W ",'2#4 5,# +'2,#+ (*1# 2,-)2 %,# -1<'Q*2 #(#$%&*$ 4 E#(+ -. %,# ('2#& "3(2# (#'=*16 %,# *1%#&'$%*-1 *-14 5,# $'($3('%#+ @<&'; &'+*'%*-1 *2 2#(#$%#+ )*%,*1 0.8 ' C<#M 2"#$%&'( &'16# 1#'& LD #M4 N12#%8 $'($3('%#+ 9.3(( (*1#: '1+ 7#'23&#+ 9+-%%#+ (*1#: @<&'; "3(2# 2"#$%&37 τx2#(#$%#+ = 80 ±>; 5 as %,# X-S!* &#Y#$%-&8 2,-)*16 %,'% '>-3% LDZ -. %,# %-%'( Y3#1$# *2 )*%,*1 ' 3 C<#M &'16# '&-31+ LD #M4 0.6 )*+ -300 2 70 XUV spectral intensity (arb.u.) C 90 Energy (eV) phase (rad) XUV intensity (arb.u.) 1.0 80 世界初 8 0 –6 −4 Light emission takes place only once. X-ray intensity (arbitrary units) Photoelectron energy ( eV) Baltuska et al. Nature 421, 611 (2003) 80 90 B Laser electric field (arbitrary units) 単独アト秒パルス 90 A Photoelectron energy ( eV) ,1#(/%-$ H*-22 23'#K 3' /"# 3',#/ )* I3&: J: !"# 0#1/" )* /"3, $)0-2+/3)' 1%);30#, + ,#',3/3;# $#+,-%# )* ,+/#223/# ()'/#'/: !"# $#+,-%#0 ,1#(/%-$ )* /"# "+%$)'3( 75%+6 1-2,# %#O#(/#0 .6 )-% <)MP3 $-2/32+6#% H0)//#0 23'# Nature 3' /"# 3',#/ )*414, I3&: JK ,#/, + ,+*# -11#% Hentschel et al. 509 (2001) D Goulielmakis etMagazine © 2001 Macmillan al.0.4 Science 320, 1614 (2008) 0.2 φ″=(1.5 ± 0 40 50 60 70 80 Photon Attosecond (10 sec) pulse アト秒パルス Fig. 3. Sub-100-as XUV pulse retrieval. (A)-18 Measured ATR spectrogram com spectra of photoelectrons launched by an XUV pulse with a bandwidth of ~28 eV at delay settings increased in steps of 80 as. Here, a positive delay corresp arriving before the NIR pulse. The high flux of the XUV source allows this spec within ~30 min. (B) ATR spectrogram reconstructed after ~103 iterations of th (C) Retrieved temporal intensity profile and spectral phase of the XUV pulse. T 34 XUV emission (Fig. 4B) is almost fully compensated by a 300-nm-thick Zr foil i 石川顕一 アト秒パルスの応用例 時間分解オージェ電子分光 Auger effect 光電子 Auger electron オージェ電子 光電子 Probe…Laser 750 nm Photoelectron Pump…HHG soft x rays 13 nm 数フェムト秒程度の超高速過程が見える! Ultrafast process a few fs 35 Drescher et al. Nature 419, 803 (2002) 石川顕一 アト秒パルスの応用例 DIRECT MEASUREMENT OF LIGHT WAVES • 光の電界の直接測定に初めて成功!→光が「電磁波」である ことの直接的な証明 Direct proof of the wave nature of light E. Goulielmakis et al., Science 305, 1267 (2004). 36 石川顕一 rent experimental parameters, the small deviations between the electron’s exact motion and that modeled via the CVA give rise to a 2-as discrepancy in the relative delay. Accepting this small discrepancy, manyelectron models were applied to investigate the effects of electron correlation. As a first attempt, the multiconfigurational Hartree-Fock method was used to evaluate transition matrix elements from the ground state of Ne to states where the electron wave asymptotically propagated along the direction of the streaking NIR electric field. These アト秒パルスの応用例 time for allowing us to track the history of microscopic phenomena accurately (Fig. 1A) calls for precise knowledge of the delay between the XUV pulse and an outgoing electron wave packet (henceforth, absolute delay). This can only be inferred from theory. For multielectron systems, such as Ne, physical description of the discrepancies revealed by this work proved to be a challenge. The sensitive experimental test to which time-dependent manyelectron models can now be subjected will benefit their development. DELAY IN PHOTOEMISSION WHEN DOES PHOTOEMISSION BEGIN? The photoelectric effect is usually considered instantaneous. But ... measure o photoemis lute delays tested tim Presently, provide th photoioniz cause of lo complex s of the pho streaking atomic pho sensitive t ually impr predictions understand and will m atomic chr e– Ne Ne+ ∆t2s Refere 1. 2. 3. 4. 5. 2p Ne 6. 2s 7. 8. Short light pulse Ne Ne+ 9. 10. 11. ∆t2p e– Fig. 3. The relative delay between photoemission from the 2p and 2s subshells of Ne atoms, induced by sub–200-as, near–100-eV XUV pulses. The depicted delays are extracted from measured attosecond streaking spectrograms by fitting a spectrogram, within the strong-field approximation, with parameterized NIR and XUV fields. Our optimization procedure matches the first derivatives along the time delay dimension of the measured and reconstructed spectrograms, thereby eliminating the influence of unstreaked background electrons [for details on the fitting algorithm, see (29)]. From the analysis of a set of spectrograms, the measured delays and associated retrieval uncertainties are plotted against the amplitude of the vector potential applied in the attosecond streak camera. Spectrograms measured in the presence of a satellite attosecond pulse were found to exhibit a less accurate retrieval of the delay value. When a subset of data (red diamonds) that represents scans with less than 3% satellite pulse content was evaluated, a mean delay value of 21 as with a standard deviation of ~5 as was found. The green circles represent the Schultze Science 328,bandwidth 1658 (2010) result of analyzing spectrograms recorded et withal., an XUV pulse with narrower in order to exclude the potential influence of shakeup states contributing to the electron kinetic energy spectrum. The 2s electron appears to come out 21 attoseconds earlier than the 2p electron! • • • Eisenbud–Wigner–Smith time delay Continuum-continuum phase shift Core rearrangement ?? 37 Klünder et al., PRL 106, 143002 (2011) 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. H. Hertz W. Hall A. Einst E. P. W C. A. A. 83 (200 A. F. St (Springe S. T. Ma M. Y. Iv (2007). A. Baltu R. Kienb M. Niso (2009). G. Sans M. Schu E. Gouli M. Hent A. Boris Echeniq A. L. Ca A. K. Ka 177401 C. Leme A 79, 0 J. C. Ba 043602 U. Beck Photoio (Plenum A. Rude J. Mauri 石川顕一 まとめ • 時間領域で考えよう! • 時間依存で考えよう! 38 石川顕一 チャレンジ 放射場を量子化して、高強度 場現象(トンネル電離、高次 高調波発生)を定式化するに は、どうすればいいか? 39 石川顕一