Comments
Transcript
J. Mass Spectrom. Soc. Jpn., 53, 125-132
J. Mass Spectrom. Soc. Jpn. Vol. 53, No. 3, 2005 COMMENTARY Mass Microprobe Aimed at Biological Samples ῎ Yasuhide N6>ID (Received December 9, 2004; Accepted February 26, 2005) Mass microprobe acquires mass-to-charge ratios of ions which are generated at an extremely small area on the sample surface. A raster achieved by moving the area of ionization over the sample surface allows to map a wide variety of compounds existing on the surface with a lateral resolution of 1῍100 mm. The technology to visualize a local distribution of compounds in the sample is called imaging mass spectrometry and is recognized as an emerging field of mass spectrometry in recent years. Mass microprobe can now be applied to biological samples, such as thin tissue sections, after significant progress of sample preparation techniques. SIMS, LDI, and MALDI are ionization methods utilized in mass microprobe. Molecular images of light compounds, such as lipids or metabolites, are suited to be recorded by SIMS or LDI, whereas peptides and proteins are targeted by MALDI. Although the sensitivity is the most important issue still to be overcome, mass microprobe is superior to optical observations for providing chemical information on biological samples, and is highly promising as a practical tool of biological researches in very near future. A# }~ @2 }mass microscope~ 1. 1,<>/B,0 AB"+, mass (mass microprobe) microscope mass microprobe ]A8 tCv " /0 w&:"+@216789 !" #$%&' O mass microprobe +>"/B A ()"*+,-."/0 D>!EFG21-Q :-HIJ 1234 5 678 $-Q A"/2 }mass microprobe~ } 9 (imaging mass spectrometry) :-; ~ @2- !KL"*M 6789 (molecular imaging) <= > @- t:X!&A1v N } ?@+,AB !!2C6DE ~ Q210 FG (ASMS) "HIJKLMN@A 2. OPQ211)R7)0 ST2 U@2S/V W:X!&A 2.1 !" 1" "#Y$:-Z%AO5[&\' O-2 (,0 ;)]* (specificity) ^1 P@2Q F_+"/B `a12() " P"8R- 8 0 P8 qRSI ,bcd9--eF+(). P2 8R¡BT ! f g/2 FhiF0j?Q21 " 8¢6789U£Q0 6789U£ 2"/0 ¤-V¥¦I§ (pixel) <¨0 ¥¦I§ ῎ 3k3F3FlZFmnop45;q7r7mns6 tῌ573῍0128 78V9:ug 2῍9῍5v Institute of Free Electron Laser, Graduate School of Engineering, Osaka University (2῍9῍5 Tsuda-Yamate, Hirakata 573῍0128, Japan) E-mail: [email protected] w;<x eyz=3Fl3F tῌ431῍1202 >{V|{? 1955῍1v The Graduate School for the Creation of New Protonics Industries (1955῍1 Kurematsu-cho, Hamamatsu 431῍1202, Japan) E-mail: [email protected] WX@ R TPY Z 0 ¥¦I§[6789U£¥¦I§ ©ª«! \= 50 mm¬50 mm ¥¦I§© ª"() ® 1 cm¬1 cm 6789U£ 200¬200¯40,000 ¥¦I§°"10 ¥¦I § 1 ±²³¦´§]? " !® 40,000 ±²³¦´§ 0 Oµ^ _&A m/z ¶678 9U£9q²·7§NO"¸ `&"/ B a¹ºb t 5cd:- E» ῌ 125 ῌ Y. Naito Fig. 1. Principle of imaging mass spectrometry with mass microprobe. A thin flat sample, such as a tissue section, is subjected to SIMS, LDI, or MALDI source. The area of ionization on the sample surface is clearly identified by the small exposure spot of primary ion beam (SIMS) or pulsed laser beam (LDI or MALDI). Thus a mass spectrum corresponding to a particular location (pixel) on the sample surface is recorded. Imaging is achieved by scanning pixels over the sample surface. After the whole mass spectra being recorded, peak intensities at each m/z are converted to gray scale tones of image pixels, i.e., a darker represents a higher intensity, to create raster images. Each m/z gives a raster image, which is the molecular image of that m/z over the sample surface. v (matrix-assisted laser desorption/ionization; 3 !"# $%&' MALDI) ;5nu,Gn ()*+, $%&'-./01234 2.2.1 2 ῐῌ῍῎ῑΐῒ (SIMS) SIMS - 325 56 78' 9(: keV 9:I 1 {&| ;< = (lateral resolution) - >? >}~ >u9;; P I, @A5 2 BCDEFGHI, = 2 5 >I< JKLMFG NO P 5 +=6;*V >?-@4 7I ;< Q- > j*56AFGBC Gaῌ # Inῌ NR;S;=TUV {&|B-Df (liquid metal ion NR;SWGODI6 XY; source; LMI) -E5 1 f<S {& &Z&[\]^ !:6 XY;_`&[ |-%b 1 mm PC 100 nm z: \]^< "#9$6[&a :; F; 8< S ¡¢5 XY-_`&[\]^; %b-&Z&[ 1 fFG Csῌ £5¤;<S 23 mm \]^cde& GGn 2.2 ῌ῍῎῏ ¥G->MH¦I§vY&- f-9g'h()i4C)j*5k*+ JI5nF¨Vu,Gn; 1 }~3T < 9g'hlm>-Rno,p- Pqr I§Mv©; Benninghoven ¥G . 5 s-tp.u/:0 KªI,G«L8) ->¬I§vY SIMS v1;2w<S N3x* & (organic SIMS) ;M®*+,m5¥ 4u5A5v1-IuTI, y,z I§MNL 2 - 1 O¯}~ {&|>}~ 2 96 ;7P (static SIMS limit) QVF3n°± (secondary ion mass spectrometry; SIMS) && ²R ># 1 ³¥G static SIMS {&|}~&&0v (laser desorp- limit -´5; µ 10131014¶/cm2 <S 1 tion/ionization; LDI) MvYv STU 1 nA/mm2 XY-}~·BV 15 7 ] (matrix) >8G 150 ms .W y,- SIMS ¸&¹^9 &&{&|}~]&&0 6!:5º»5¥Gn 2 ° ῌ 126 ῌ Mass Microprobe Aimed at Biological Samples M<)lP9Q ?S>=& MALDI 1 :- (sinapinic acid; SA) !"#$%& '()*+ /]>%$ (+- ,-. (massive cluster bom- ?& MALDI 10 J#+12 bardment) # / LDI I O)-[& 0 2 123456 l'+ 12 +] m-=& X l'+EH % & 9) SIMS 1 12+ 7 +89 X$++3:;+W :;<+!"=> 7#$?@A => ?[\ym ?&' (charge compensation) 12B %#&'=& =& l'-+TU*V > C(D- )E*F 5G10 eV }+12j01klm>]X > H+,+ -./01 1 12IJ ! YZIJo BT],%^m 2 122345?KL M6N-78O P9 + -=& ^ 4KLQ YZ MFG 337 nm *S 4 nsQ 3 ]F Nd : 89:;< :; YAG YZ MFG 355 nm *S 10 nsQ =& 4#$%& 2.2.2 (LDI) YZ_B N2 LDI < 01hMI LDI X >X} 105 G108 R= S>?TU*VB SIMS W 1 W/cm2 QI-=& LDI ¡} 10G100 nQI+ 12IJX$YZIJ ?[\#]+@^ *01-yz{>|?& -[& X _01 `A+!"=& (1) _aB 2.2.4 SIMS '() +b_TU*VCTU*V D\-[+ * +¢Ow+H SIMS + 1 12 - E aBFG+YZ +.£$?& Hl'S &'-=& (2) HcdIJ#,de-+C >?X$ 2 12 (liquid-SIMS, ^f++IgK-[+- +f L LSIMS) ¤ }> ~ 3,000 QI- 01hMI&'-=& (3) NLOP iQ ?& A@w+ SIMS yz-}¥ 8- +- R* *S+YZ&'-=& = C(D -[ %& LSIMS / YZIJBT4U X$ V_j? W +0?q¦¡¢§¨=> static klm+@W)+/XY MnZocQ YZFG SIMS limit ©£IO)? ¤ p[?+- \q (UV) YZr%& 4 ]F+ & MALDI +F `l'>% Nd : YAG YZ MFG 266 nm *S 10 ns * ¥¦-[& +§ ª¨;X$ TU*V 10 mJQ ^ YZ_B-=> SIMS ,yz%10)& klm 0.5 mm -BT-[ _` 1G5 mm Q I+klm-a>?& /R 01sI 2.2.5 LDI MALDI -_ ` YZIJ+_©`zq9~<* t > b_u MND v* Q _YZ : >)+YZ01jP9?& IJ01? A@wcd+1201 «>%q9:-j?ªI¬5 hMI 106G1010 W/cm2 -e$%& 018O mm e%& $ ,ªI j?!?«w +f Mg1x reflection typeQ ? yzhi12 T®¬>%:P9@A- 20 nm +ªIe {[3?8O|- } jk ~<*: & _lf Mjix transmission typeQ X$]m SIMS -~<*:+j?`z 1 12 _n o??12Bp+q IJ «®« >¯O401j -=> cI,! jix-~<*+ 1 mm e P9?& +8°¯°¯* @A] %+- ro& LDI 89:;<?so ,++P9m-=>,ªI-{±],%& X } *01 +- static SIMS limit tu? 2 12_±+#s© < 1 1201j 12+ ] SIMS Cv- %& X 1 Dj?! SIMS -)+01m *01+12yX-=> _`w M²³Q ro¡& +Dj+²³´µ²³ ~ xn+*01-yz{>| ´!5 (dynamic emittance matching; DEM) ]"6 $ %& %11)& 2.2.3 (MALDI) Organic SIMS LDI +}> ~ 2.2.6 !"#$% +}+µ ¶ M¶Q +01j?+··|- } 500 QI--=> J# ¶+<¸¸]¹º)!¹'-= yz-l'+>& & I¸2«° }µ¶+';*1Jº»» & l' ,+^#hi12 ¼%& 1 12YZ+IJ W ῌ 127 ῌ Y. Naito v#$_J:@K[dI<8 ! 4NIH Image15) LM +$P cd0 " #$ LDI ῎%&'()*)+, D" $ -()*)%&. 3. /0!12)" 2.3 3.1 ῎%& 123 ῎ ῎%&῍yz SEM -{|}N! 45 (quadrupole) 6 (magnetic sector) N SEM ῍6~lNQ 7 (time-of-flight; TOF) 89:; (ion trap; ῎%& P c+l>?N! %T IT) <)=>?@A8A- (Fourier QE" SEM ῍yz transform ion cyclotron resonance; FT-ICR) BC dA U:@9Kj DEFGH IJ:KHLM NO !P L+C3ZA+ " ED !Q#R#"#S$N.QD3" "῍ (1) 7ῒ3Y9Y ¡¢ %T3 (1) &?@U (2) '(Vῌ £¤i _ (freeze-dry) (2) 7 (transmittance) NWXED" )*+ ῎YZ@8 ῒ3Y9Y ¥8~##H¤i U+,-[)\ ῎ ?@U _ (hydrated-cryogenic) (3) ¤ .89:; (IT, FT-ICR) / 01 !" }=o(L+!33e}P +,P TOF ?@UN2& !P (Vῌ0 _ (membrane-blotting) Lyz=N 100]3 ῎%&324 ! !P yD¦D.&N!" (1) = ¢" " SIMS +56# 1 7^)G+_UY Nk6 4[)\ ῍}8 '3 2 7+_UY89:` #$;ab D§EM ¨PnL©NKL <= (orthogonal acceleration) c3 2 7+_ " ª:0D" (2) = '«$ ! UY8b<>?N!" +>? 4hM D$῍¬ῌ 5 m/z (V@+dA'eBfY<g 'N" (3) E`®= !P U3CD 1 Eῐ/F+G$ !BP c D¡ED¯ GFEῐ [)\ ῎43" ΐ6+ hm¢῎c3QRsED" `£hJA: 9: SIMS 5624 !N LDI h MALDI 8=c3,P¤¥+¦jC " 560O !" P§=3 ¨ L"©*῎m¢ ῎%&FG' (MS/MS) P 3 "}+;5?;U;() (VῌHi ?@UhF)I῎J*c 8n3,C0 " ª«῍3 $KL+MjN NOP +QR$F ()*)f@A}@w° (laser capture micro- [)\ ST !" dissection, LCM) +$yz=N!16)" #$¬ª«9 2.4 P+7ῒ ±#$¡hmg z# ῎%&U ῎VklWm 4XFJY $.²=0³QD317)" MALDI ῍y nhfUoopqU;()8LM +3N H z QEf8:@Y®b+" yD (1) f 9:῎ ZA$r lWstheB? @A|Z:8+3f8:@Y¯´+῍°i u[\U ῎P0'" ]^_8qU5 ¤i #H (superconducting tunnel junction) lWm' :@Y¯´+῍µ3²³ ¤i q±¢Q eB'/N!P13) QE.Nv`QD" q±¢QS (2) =Y;()+3f8 S (3) !E`krf8:@Y ¶)xg$; ῎%&F)wYxG U ῎ ()8῍+´S L=N!" (1) h (2) f yazbj3 (1) ῎YZ@8U`E[)\ 8:@Y®b= ῍e}`EP N¯W F)bW (2) P cd{|@}Uefgh µ¶·N>? !P f8:@Y¯´°i῎ ij (3) P cdF)~klm (4) [) U MALDI ZA·23`P¸Q (¸200 nL)" \noI)K 4?;UYx)\C ῍G¹¹Q SIMS, MALDI 0 10¸20 pLM qCr 23+UG s" mm m ῎+t$ ῎%& C 3.2 !" SIMS +0F)wYxG+qD3 4ῑ SIMS +$ ῎%&'}'<[) )^U8* MS Image Tool14)M" uv ῎%& \+w. ῑ3 40,000 |@}U[) P cd+wx<U6Fg\U[)\ \῏º+º 3 7 3lmN TIF 6 (tagged image file format) 4CAMECA »M h TOF-SIMS 4Ion-Tof »M TRIFT 4Phys- LU[)\<U6=@Y)8 u ical Electronics »M N!P ¯D0`P¼»3 ῌ 128 ῌ ,-" uv$ IMS Mass Microprobe Aimed at Biological Samples Table 1. Institute Current Researches for MALDI Mass Microprobe Leader Main research activities Vanderbilt Univ., U.S.A. R. M. Caprioli Univ. Illinois, U.S.A. Novartis Pharma AG, Switzerland J. V. Sweedler M. Stoeckli Univ. Giessen, Germany FOM-AMOLF, The Netherlands She$eld Hallam Univ., U.K. B. Spengler R. M. A. Heeren M. Clench Penn. State Univ., U.S.A. N. Winograd ICSN-CNRS, France O. Laprevote Iowa State Univ., U.S.A. E. S. Yeung Univ. Metz, France J.-F. Muller EMSL-PNNL, U.S.A. Univ. Manitoba, Canada Texas A&M Univ., U.S.A. Applied Biosystems/MDS Sciex, Canada K. M. Beck W. Ens D. H. Russell J. Y. Zhao a) b) c) d) e) f) g) Instrumentation, Method development, Molecular imaging of proteins in tissue and cell Method development, Molecular imaging of peptides in cell Instrumentation, Method development, Molecular imaging of peptides in tissue Instrumentation (built in-house), Method development Instrumentation (stigmatic mode), Method development Method development Molecular imaging of light compounds in epidermis Instrumentation, Method development (LDI from frozen aqueous matrix) Instrumentation (MALDI and Cluster-SIMS), Method developmenta) Method development (colloidal metal additive LDI), Molecular imaging of light compoundsb) Instrumentation Method developmentc) Instrumentationd) Instrumentation (orthogonal-configuration)e) Instrumentation (DMAf) optics, ion-mobility device)g) Instrumentation, Method development, Molecular imaging of light compounds in tissue A. Brunelle, et al., Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, TN, May 23῍27, 2004, WOBpm04 : 00 C. Sluszny and E. S. Yeung, Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, TN, May 23῍27, 2004, TPL208 J.-F. Muller, et al., Proceedings of the 51st ASMS Conference on Mass Spectrometry and Allied Topics, Montreal, Canada, June 8῍12, 2003, MPY497 D. S. Wunschel and K. M. Beck, Proceedings of the 51st ASMS Conference on Mass Spectrometry and Allied Topics, Montréal, Canada, June 8῍12, 2003, MPY499 G. Piyadasa, et al., Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, TN, May 23῍27, 2004, TPL207 Digital mirror array S. D. Sherrod, et al., Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, TN, May 23῍27, 2004, TPL209 | !DM_z{ (aNi3S2) } 1~ !" #$%&'()* 8 (guinea pig alveolar) M_c +, -./0 #1234 , 5 %6 7 Fj "oz{7 w %% (phosphatidylcholine) -7518) 89: #$ Clofazimine -5@123%X %;<%=>? @A %6 BCD D EF89:%;<% (m/z 184) G P Q FT-ICR (phytoalexin) Fj @N%; R <:%-HI J%KLMNOP #Bruker Daltonics S, - !"TU5 & Q TOF deDj[%&-'5 R #Kratos S, -TU5 @ !"- VW<%X:Y3Z[K\ k e z()f -5@]2'K 1 ^3_<:% *+w XE¡¢£¤,F"¥-¦§¨ -HI 0-©I5@kbj 17) 3.3 LDI ῌ῍῎῏ῐῑ LDI -@ !" `a! 3.4 MALDI ῌ῍῎῏ῐῑ MALDI -@ !" <:% (laser microprobe mass spectrometry; LMMS) b5 ª«b5¬¦. (Table 1) 1980 c d e f19), 20) Q g h %®¯;P Q MALDI- LAMMA #Leybold-Heraeus S i SPECS S, X TOF i °F./G$%± -/5@<: Kratos S, j k el%3mnop- % -HI 0²³^ (D54) ´µn LIMA #Cambridge Mass Spectrometry S R #Applied Biosystems S, -TU5 q <:%oF@A 3r; #123}¶, ·1¸-¹º (thymosin b.4) (mass microprobe profiling) e st> 7 Fj Lm»3 81S ?uvw xy0Goz{7 '2Q MALDI-TOF ῌ 129 ῌ R-TU5@ Y. Naito Fig. 2. An example of MALDI mass microprobe data obtained from single cultured cerebral ganglion neuron of Aplysia californica. (A) Raster image showing the spatial distribution of peptide with m/z 4617. (B) Mass spectra which were taken from spots located on a line with their centers separated by 50 mm. Peaks are detected that correspond to physiological active neuropeptides: AP, acidic peptide; ELH, egg laying hormone. MALDI matrix: a-cyano-4hydroxycinnamic acid (A) or sinapinic acid (B); 50 mg of each matrix was dissolved in 1 mL of acetone. (Figure supplied courtesy of J. V. Sweedler and reprinted with permission from ref. 22. Copyright 2003 American Chemical Society.) APP Y3[\]TB& > z)G. 23 amy- lm[WT^>Z67J ' MALDI ' () lF;_`. *"a loid b !"#$%& 21) *+,-". /01 (Aplysia califor- ?bc >J[ dNefghi. nica) 234&&)25& jko ' *<N “MALDI” LDI 1 5672!"#$8/- nlA )GJo A >op1* (Fig. 2)22)' ;&) !#mnlm desorption/ionization on sili- /-. (1) *<= con; DIOS)26) @ FX?@LyA a ;>? !34"&@AB (2) !#7 ;* *C$DEF@A)G MALDI 7 lmCn&VopA ' 9: .H%I&7J > 'K()(). *+,EL )-MNOP.EFQG 23), 24) MALDI27), 28) . 4.2 SEM ' 2 rq;rnmnlm7.] 6.N > 7Pd! 4. T1.s17J ' &3& /-Kv 4.1 tn{!T1uvwSLpC . R/01S. T1 23 xNUN[ ]tN=ZY.A n>yB 4U VWX Y3 0 .=Z !T1 N ' MALDI )7 {¡z&{|U NO>J[ A\567J > ]77^P89A\_ ¢X£¤){}m?¥>J .Y3`#7J ' /-a: "d#PWX>J ' z7C ~¦A >12), 21), 29) .bcdN7J[N>4 ;/ (scanning mode) n.l ? !# -.Y3><=N)G .>.*eNOfg 2 r§A l!7F;& hiN?@& ' jAkB.lmCnV lNe¨©ª&)(( m/z R« K?DEF ' >op SIMS Eq 2 rlF; n&)¬ eV1NVKl A G.siEF H 0.1t1u7J ' 1 mm (stigmatic mode) >®¯EF IJKv ! 4w106 x;>Ly& z@7 l.±N²³´A n> ;M 1un&)Eq IJKvN !; 17J ' ´l°,µ q£ P >siEF)n&P;l.^{7 400 ().¬eAFp ´&)lVK x&3F;&N' lO|G 100u P (TOF) 7_ 7JFp 400 xl>VKQRA > ]yV scope) n¶pF K}S7.lT~ 0 %=NU GnVK!T1·LA > sC ~ 7.N' AN !T1n0PY3kB ¦[{B7_ 2 ' °,Nn ' F.d" (mass micro(Fig. 3)' !T1.q£ ' VKv&)#¸¹U A ' LDI lF;P^ !VWEF IJK CCD ;ºUA >TFp TUC vWE 50 nm (7X)Y 108 x#;>Z6 H3.&{}m7_ ' l ' MALDI .lm G`# P. TOF 7J[ ». n)P4F 25) ῌ 130 ῌ Mass Microprobe Aimed at Biological Samples Fig. 3. Schematic diagram of a stigmatic mode (mass microscope). Relative positions of analytes within the exposure spot of pulsed primary ion beam (SIMS) or pulsed laser beam (LDI or MALDI) are conserved through flying in the mass analyzer region, which consists of stigmatic achromatic ion transfer optics. Each bunch of ions separated according to the flight time (m/z) is subjected to magnification with electrostatic lenses followed by a position sensitive detector to create the enlarged molecular image directly. (TRIFT)30), 31) FOM .4&'X7Y' ?@9: TRIFT MALDI 7A&n 97+=CD+ !"#$%&'32) () y1zB' 9:C z7DP& !¡¢ *+,- . `Ey1z/00uF£n=¤q /0123456#7&89 5. :;<=>?@A7& B@#CDEFGHI ¥()<¦§¨©ª TOF J%&=33) KLMN =«=O ¬-GCnHI®J KL OHI8PQ'R TOF =O 6S 1M ¯°N^± ²@=O³I+ T&J%&U'V W9= X9 , +Pst ()< !"#Y9 @¥=Qjn9 !fg(R¡! 4.3 g 8Wafg´!)d(RK Z!+"#7[&$\]^%]_MG&= S7& µ¶=T4W9+'>+/r)qX7 $\].`O''῍aRbc + U9=·/0#Y8V¸ d(=O eRafg)[&' ¹O XWºX=»OMO¹Y' hi!jkl*"#+m$\],-eR afg.4&' n=op`q/0 eRafg/rst 0uvw& '[xqy1z&{89 | }2~;= 3+I 45NO&() 1) 2) n 6+ TOF <=z 3) (R7O X9Wnp&y1 589+w9 4) Z!=+' y\eRafg (MS Image Tool) (R 5 8n. t[&' 0uF"#=8W 459: `9;+, np&<1& =&"#>]zny1 ῌ 131 ῌ 5) 6) 7) P. J. Todd, T. G. Schaa#, P. Chaurand, and R. M. Caprioli, J. Mass Spectrom., 36, 355 (2001). P. Chaurand, S. A. Schwartz, and R. M. Caprioli, Anal. Chem., 76, 86A (2004). M. L. Pacholski and N. Winograd, Chem. Rev., 99, 2977 (1999). P. J. Todd, J. M. McMahon, R. T. Short, and C. A. McCandlish, Anal. Chem., 69, 529A (1997). P. Chaurand and R. M. Caprioli, Electrophoresis, 23, 3125 (2002). M. Stoeckli, P. Chaurand, D. E. Hallahan, and R. M. Caprioli, Nat. Med., 7, 493 (2001). A. Benninghoven, B. Hagenho#, and E. Niehuis, Anal. Y. Naito 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) Chem., 65, 630A (1993). A. Benninghoven and W. K. Sichtermann, Anal. Chem., 50, 1180 (1978). J. M. McMahon, N. N. Dookeran, and P. J. Todd, J. Am. Soc. Mass Spectrom., 6, 1047 (1995). A. Delcorte, N. Medard, and P. Bertrand, Anal. Chem., 74, 4955 (2002). C. C. Grimm, R. T. Short, and P. J. Todd, J. Am. Soc. Mass Spectrom., 2, 362 (1991). B. Spengler and M. Hubert, J. Am. Soc. Mass Spectrom., 13, 735 (2002). P. Chaurand, G. Hayn, U. Matter, and R. M. Caprioli, Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, TN, May 23῍27, 2004, TPL210. M. Stoeckli, T. B. Farmer, and R. M. Caprioli, J. Am. Soc. Mass Spectrom., 10, 67 (1999). http://rsb.info.nih.gov B. J. Xu, R. M. Caprioli, M. E. Sanders, and R. A. Jensen, J. Am. Soc. Mass Spectrom., 13, 1292 (2002). T. L. Colliver, C. L. Brummel, M. L. Pacholski, F. D. Swanek, A. G. Ewing, and N. Winograd, Anal. Chem., 69, 2225 (1997). J. M. McMahon, R. T. Short, C. A. McCandlish, J. T. Brenna, and P. J. Todd, Rapid Commun. Mass Spectrom., 10, 335 (1996). L. Van Vaeck, K. Poels, S. De Nollin, A. Hachimi, and R. Gijbels, Cell Biol. Int., 21, 635 (1997). L. Van Vaeck, H. Struyf, W. Van Roy, and F. Adams, Mass Spectrom. Rev., 13, 209 (1994). M. Stoeckli, D. Staab, M. Staufenbiel, K.-H. Wiederhold, and L. Signor, Anal. Biochem., 311, 33 (2002). S. S. Rubakhin, W. T. Greenough, and J. V. Sweedler, 23) 24) 25) 26) 27) 28) 29) 30) 31) 32) 33) Anal. Chem., 75, 5374 (2003). M. L. Reyzer, Y. Hsieh, K. Ng, W. A. Korfmacher, and R. M. Caprioli, J. Mass Spectrom., 38, 1081 (2003). J. Bunch, M. R. Clench, and D. S. Richards, Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, TN, May 23῍27, 2004, TPL 216. R. Holm and D. Holtkamp, “Microbeam Analysisῌ 1989,” ed. by P. E. Russell, San Francisco Press Inc., San Francisco (1989), pp. 325῍329. J. Wei, J. M. Buriak, and G. Siuzdak, Nature, 399, 243 (1999). S. Berkenkamp, M. Karas, and F. Hillenkamp, Proc. Natl. Acad. Sci. U.S.A., 93, 7003 (1996). J. I. Berry, S. Sun, Y. Dou, A. Wucher, and N. Winograd, Anal. Chem., 75, 5146 (2003). J. Y. Zhao, A. Dindyal-Popescu, G. Scott, M. Yang, and J. E. Wingate, Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, TN, May 23῍27, 2004, TPL215. B. W. Schueler, Microsc. Microanal. Microstruct., 3, 119 (1992). R & D 34 (2), 11 (1999). S. L. Luxembourg, T. H. Mize, L. A. McDonnell, and R. M. A. Heeren, Anal. Chem., 76, 5339 (2004). T. Matsuo, M. Toyoda, T. Sakurai, and M. Ishihara, J. Mass Spectrom., 32, 1179 (1997). Keywords: Mass microprobe, Imaging mass spectrometry, Molecular imaging, Secondary ion mass spectrometry (SIMS), Laser microprobe mass spectrometry (LMMS), Matrix-assisted laser desorption/ionization (MALDI) ῌ 132 ῌ