...

J. Mass Spectrom. Soc. Jpn., 53, 125-132

by user

on
Category: Documents
28

views

Report

Comments

Transcript

J. Mass Spectrom. Soc. Jpn., 53, 125-132
J. Mass Spectrom. Soc. Jpn.
Vol. 53, No. 3, 2005
COMMENTARY
Mass Microprobe Aimed at Biological Samples
῎
Yasuhide N6>ID
(Received December 9, 2004; Accepted February 26, 2005)
Mass microprobe acquires mass-to-charge ratios of ions which are generated at an extremely small area on
the sample surface. A raster achieved by moving the area of ionization over the sample surface allows to map a
wide variety of compounds existing on the surface with a lateral resolution of 1῍100 mm. The technology to
visualize a local distribution of compounds in the sample is called imaging mass spectrometry and is recognized
as an emerging field of mass spectrometry in recent years. Mass microprobe can now be applied to biological
samples, such as thin tissue sections, after significant progress of sample preparation techniques. SIMS, LDI, and
MALDI are ionization methods utilized in mass microprobe. Molecular images of light compounds, such as lipids
or metabolites, are suited to be recorded by SIMS or LDI, whereas peptides and proteins are targeted by MALDI.
Although the sensitivity is the most important issue still to be overcome, mass microprobe is superior to optical
observations for providing chemical information on biological samples, and is highly promising as a practical
tool of biological researches in very near future.
A# }~ @2 }mass microscope~
1. 1,<€>/B,0 A‚B"ƒ„+, mass
(mass microprobe) microscope mass microprobe ]A8… t†Cv "
/0 w&:"+‡@216789
!" #$%&'
ˆ‰O mass microprobe +>"/B A
()"*+,-."/0 D>!EFGŠ21-Q :-H‹ŒIJ
1234 5 678
$-Q A"/2 }mass microprobe~ }
9 (imaging mass spectrometry) :-;
~ @2Ž- !KL"*M
6789 (molecular imaging) <= >
@-‘ t‘:X!&A1v N }
?@+,AB !!2C6DE
~ ’Q210
FG (ASMS) "HIJKLMN@A
2. OPQ211)R7)0 ST2
U@2S/V W:X!&A
2.1 !"
1" "#Y$:-Z%AO5[&\'
O-“2
”
(,0 ;)]* (specificity) ^1
P@•2–Q
F_+"/B `a12() " ”P"š8›œR™-‚ ž8
0 ”P8…—q˜R™SIŠ
,bcd9--eF+().
›”P2Ÿ š8›œR™¡BT !
f g/2 FhiF0j?Q21
" 8¢6789U£Q0 6789U£
2"/0
¤-V¥¦I§ (pixel) <¨0 ¥¦I§
῎ 3k3F3FlZFmnop45;q7r7mns6
tῌ573῍0128 78V9:ug 2῍9῍5v
Institute of Free Electron Laser, Graduate School of Engineering, Osaka University (2῍9῍5 Tsuda-Yamate, Hirakata
573῍0128, Japan)
E-mail: [email protected]
w;<x eyz=3Fl3F tῌ431῍1202 >{V|{?
1955῍1v
The Graduate School for the Creation of New Protonics Industries (1955῍1 Kurematsu-cho, Hamamatsu 431῍1202, Japan)
E-mail: [email protected]
WX@
R™ T”PY
Z 0 ¥¦I§[6789U£¥¦I§
©ª«! \= 50 mm¬50 mm ¥¦I§©
ª"()
­® 1 cm¬1 cm 6789U£
200¬200¯40,000 ¥¦I§°‰"10 ¥¦I
§ 1 ±²³¦´§]?
" !­®
40,000 ±²³¦´§ 0
Oµ^ _&A m/z ¶678
9U£9q²·7§NO"¸ `&"/
B a¹ºb t
5cd:-
E»
ῌ 125 ῌ
Y. Naito
Fig. 1.
Principle of imaging mass spectrometry with mass microprobe. A thin flat sample, such as a tissue section, is
subjected to SIMS, LDI, or MALDI source. The area of ionization on the sample surface is clearly identified by the
small exposure spot of primary ion beam (SIMS) or pulsed laser beam (LDI or MALDI). Thus a mass spectrum
corresponding to a particular location (pixel) on the sample surface is recorded. Imaging is achieved by scanning
pixels over the sample surface. After the whole mass spectra being recorded, peak intensities at each m/z are
converted to gray scale tones of image pixels, i.e., a darker represents a higher intensity, to create raster images.
Each m/z gives a raster image, which is the molecular image of that m/z over the sample surface.
v (matrix-assisted laser desorption/ionization;
3 !"# $%&'
MALDI) ;5nu,Gn
()*+, $%&'-./01234
2.2.1
2 ῐῌ῍῎ῑ῔ΐῒ (SIMS)
SIMS - 3Œ25
56 78'
9(:
keV ‰9:IŽ 1 {&|„
;< = (lateral resolution) - >?
>}~ >u9;;‘ Pˆ’‡“ I,
@A5 2 BCDEFGHI, =
” 2 5 >•I<–
JKLMFG NO P
„—5 +=6;*V >?-@4
7I ;< Q- >
j*56˜AFGBC Gaῌ # Inῌ NR;S;=TUV {&|B™-šDf (liquid metal ion
NR;SWGODI6 XY;
source; LMI) -E5 1 f<S {&
&Z&[\]^ !:6 XY;_`&[
|ˆ›‡œ-%b 1 mm PC„ 100 nm z:
\]^< "#9$6[&a
:; F;
ž8„Ÿ< ‚S Ÿ¡¢5
XY-_`&[\]^; %b-&Z&[
1 fFG Csῌ £5¤;<S 2Œ3 mm \]^cde&
ˆ›‡œGGn
2.2 ῌ῍῎῏
¥G->MH¦I§vY&-
f-9g'h()i4C)j*5k*+
JI5nF¨Vu,Gn; 1 }~3T
< 9g'hlm>-Rno,p- Pqr
‚I§Mv©; Benninghoven ‚¥G
. 5 s-tp.u/:0
KªI,G«L8) ->¬­I§vY SIMS
v1;2w<S N3x*
& (organic SIMS) ;M®*+,‚m5¥
4u5A5v1-IuTI, y,z
I§MNL 2 - 1 O¯}~
{&|>}~ 2 96
;7P (static SIMS limit) QVF3n°±
(secondary ion mass spectrometry; SIMS) &€&
²R ># 1 ³‚¥G static SIMS
{&|}~&€&0v (laser desorp-
limit -´5; ‚µ 1013Œ1014¶/cm2 <S 1 tion/ionization; LDI) ‚ƒ „MvYv
STU 1 nA/mm2 XY-}~·BV 15Œ
7…†]‡ˆ (matrix) >8‰G
150 ms .W y,- SIMS ‚¸&¹^9
&€&{&|}~†]‡ˆŠ‹&€&0
6!:5º»5¥Gn 2 °
ῌ 126 ῌ
Mass Microprobe Aimed at Biological Samples
M<)lP9Q „…?S>=& MALDI 1
‘:†-’“”‡ (sinapinic acid; SA)
!"#$%& '()*+
/]>%$ (•ˆ+‰-
,-. (massive cluster bom-
?& MALDI 10 ŠJ#+12
bardment) #
/
LDI ‹–—I˜Œ
O)-[& 0 2 123456
l'+Ž
12€
+]
m-=& X l'‘™+‘E’“H
% &
9)
SIMS 1 12+ 7
+89
X$++‘3š›:;+Wœ
:;<+!"=> 7#$?@A
=> ”?[\ym•
–?&'
(charge compensation) 12B
%#&'=&
=& l'-+TU*V—˜
>
C(D- )E*F
5G10 eV }ž+12j01klm>]X >Ÿ
H+,+ -./01 1 12IJ
! YZIJ€o
BT],%^m
2 122345?KL M6N-78O
P9
+™ š-=& ^
4KLQ YZ MFG 337 nm *S 4 nsQ  3 ]F Nd :
89:;<
:;
YAG YZ MFG 355 nm *S 10 nsQ =&
4#$%&
2.2.2 (LDI)
YZ_B N2
LDI <
01hMI LDI ‹–X
>X} 105 G108
R=
S>?TU*VB SIMS W 1 W/cm2 QI-=& LDI ›¡} 10G100 nQI+
12IJX$YZIJ
?[\#]+@^
*01-yz{ˆ‰Š>|?&
-[& X _01
`A+!"=& (1) _aB
2.2.4
SIMS '()
+b_TU*VCTU*V
D\-[+
* +œ¢O•™w+“H SIMS + 1 12
- E
aBFG+YZ
+.£$?& “H™l'S
&'-=& (2) HcdIJ#,de-+C
>?X$ ™ 2 12† (liquid-SIMS,
^f++IgK-[+- +f
L
LSIMS) ¤‹ }>
~Œ 3,000 QI-Ÿ
01hMI&'-=& (3) NLOP
iQ
?& A@w+ SIMS yz-‡}¥ž
8-
+- R*
*S+YZ&'-=& = C(D
Ÿ -[ %& LSIMS /
YZIJBT4U
X$ V_j?
W
+0?q¦¡¢§¨=> static
klm+@W)+/XY MnZocQ YZFG
SIMS limit ©£—IO)? ”¤
p[?+- \q (UV) YZr%& 4 ]F+
& MALDI +F
`l'>%‹
Nd : YAG YZ MFG 266 nm *S 10 ns *
”¥¦-[& œ+§ ª¨;X$
TU*V 10 mJQ ^
YZ_B-=> SIMS ,yz%10)&
klm 0.5 mm -BT-[ _` 1G5 mm Q
I+klm-a>?& /R 01sI
2.2.5
LDI  MALDI -_
` YZIJ+_©`zq9~<*
t > b_u MND v* Q _YZ
:
>)+YZ01jP9?& IJ01? A@wcd+1201
”«>%q9:-j?ªI¬5
hMI 106G1010 W/cm2 -e$%& 018O
mm e%& $
,ªI
j?­!?«w ”
+f Mg1x reflection typeQ ? yzhi12
T®¬>%:P9@A- 20 nm +ªIe
{[3?8O|- } jk ~<*:
&
_lf Mjix transmission typeQ X$]m
SIMS -~<*:+j?`z 1 12
€_n o??12Bp‚+q
IJ­ «®«
>¯O401j
-=>
cI,! jix-~<*+ƒ 1 mm „e
P9?& +8°‘¯°¯* @A] %+-
ro& LDI 89:;<?so
,++P9m-=>,ªI-{±•],%& X
} *01 +- static SIMS limit tu?
2 12_±+#s©
< 1 1201j
12+…] SIMS †Cv- %& X 1
Dj?! SIMS -)+01m
*01‡+12yX-=> _`w
M²³Q ro¡& +Dj+²³´µ²³
~Œ
xn+*01-yz{ˆ‰Š>| ‹
´!5 (dynamic emittance matching; DEM) ]"6
$ %&
%11)&
2.2.3
(MALDI)
Organic SIMS  LDI +}>
~Œ
2.2.6
!"#$%
+}ž+Ÿµ
¶ M¶Q +01j?+··|- }
500 QI--=> J#Ž 

”¶+<¸¸]¹º)€!¹'-=
€
yz-l'+>&‚
& I¸2«°
}µ¶+';*1Jºš»»
& l'
,+^ƒ#hi12
¼%& 1 12YZ+IJ W
ῌ 127 ῌ
Y. Naito
v#$_J:@K[ŽdI<8€‚
!
4NIH Image15) LM +$P
cd0‘’
" #$ LDI ῎%&'()*)+,
D"
$ -()*)%&.
3. /0!12)"
2.3 3.1 ῎%& 123
῎
῎%&῍yz SEM -{|}N!
45 (quadrupole) 6 (magnetic sector)
N SEM
῍6~l“”N€Q
7 (time-of-flight; TOF) 89:; (ion trap;
῎%& P
c+l>?N! %T
IT) <)=>?@A8A- (Fourier
QE•‘" SEM ῍yz
transform ion cyclotron resonance; FT-ICR) BC
dA –—˜U™:@9€Kˆjš›‚œ
DEFGH IJ:KHLM NO !P
L+žŸC3ZA+ƒ „ ž" …
‘ED
!Q#R#"#S$N.QD3" "†῍ (1) ‡7ῒˆ3‰‘Y9Y Š¡¢
%T3 (1) &?@U (2) '(Vῌ
‹£Œ¤i _ (freeze-dry) (2) ‡7
(transmittance) NWXED" )*+
῎YZ@8
ῒˆ3‰‘Y9Y ¥Ž8~##H¤i U+,-[)\
῎ ?@U
_ (hydrated-cryogenic) (3) Œ¤ 
.89:; (IT, FT-ICR) /
01 !"
}=o(‘L+!33e}P
+ƒ,P
TOF ?@UN2&
!P (Vῌ0
_ (membrane-blotting) Lyz=N
100]3 ῎%&324 !
!P yD¦D.&N!" (1) = ¢‹"
" SIMS +56# 1 7^)G+_UY
†’N“k6 4[)\ ῍”}8
'3 2 7+_UY89:` #$;ab
”D§EM ¨•–Pn‘L©NKL
<= (orthogonal acceleration) c3 2 7+_
" ª—:0˜’D" (2) =™š '«$
!
UY8b<>?N!"
+>? Ž 4›hœM
’D$῍¬ῌ
5 m/z (V@+dA'eBfY<g
'N€" (3) žE`­®= !P
U3CD 1 Eῐ/F+G$
!ŸBP
c D¡”ED¯ GFEῐ
[)\
῎43" ΐ6+
hm¢῎c3QRsED" `‘£•hJA:
9: SIMS 5624 !N LDI h MALDI
8=c3ƒ,P¤¥—+¦jC ž" 560O !"
P­§=3 ¨
L"†©*῎m¢
῎%&FG' (MS/MS) P
3 "†}+;5?;U;()
(VῌHi ?@UhF)I῎J*c
8n”3ƒ,C0
ž" ª«῍3
$KL+MjN NOP
+QR$F
()*)f@AŒ}@w° (laser capture micro-
[)\ ST !"
dissection, LCM) +$yz=N!16)" #$¬ª«9
2.4 P+‡7ῒˆ ±#$Š¡hmg z#
῎%&U
῎VklWm 4XFJY
$.²=0­³QD317)" MALDI ῍y
nhfUoopqU;()8LM +3N H
z QEf8:@Y®b+ˆ" yD (1) f
9:῎ ZA$r lWstheB?
@A|Z:8+3f8:@Y¯´+῍°i
u[\U
῎P0'" ]^_8qU5
Œ¤i
#H (superconducting tunnel junction) lWm'
:@Y¯´+῍µ”3²³ Œ¤i q±¢‹Q
eB'/N!P13) QE.Nv`QD"
q±¢‹QS (2) =‚Y;()+3f8
S (3) !E`krf8:@Y
¶)xg$;
῎%&F)wYxG U
῎ ()8῍+´S L=N!" (1) h (2) f
yazbj3 (1) ῎YZ@8U`E[)\
8:@Y®b= ῍e}`EP
N¯W
F)bW (2) P
cd{|@}Uefgh
ˆµ¶·N>? !P f8:@Y¯´°i῎
ij (3) P
cdF)~klm (4) [)
U MALDI ZA·23`P¸Q (¸200 nL)"
\noI)K€‚ 4?;UYx)\ƒC„
῍’G¹¹Q SIMS, MALDI 0 10¸20
pLM qCr… 23+‚UG s"
mm
†m
῎+‡t$
῎%& Cˆ
3.2
!"
SIMS „+0F)wYxG+qD3 4ῑ‰ Š‹
SIMS +$
῎%&'}'<[)
Œ)^U8* MS Image Tool14)M" uv
῎%&
\+w. ῑ3 40,000 |@}U[)
P
cd+wx<‹U6Fg\U[)\
\῏º+º 3 7
3lmN TIF 6 (tagged image file format)
4CAMECA »M h TOF-SIMS 4Ion-Tof »M TRIFT 4Phys-
LU[)\<‹U6=@Y)8 u
ical Electronics »M N!P ¯D0`P¼»3
ῌ 128 ῌ
,-" uv$ IMS
Mass Microprobe Aimed at Biological Samples
Table 1.
Institute
Current Researches for MALDI Mass Microprobe
Leader
Main research activities
Vanderbilt Univ., U.S.A.
R. M. Caprioli
Univ. Illinois, U.S.A.
Novartis Pharma AG, Switzerland
J. V. Sweedler
M. Stoeckli
Univ. Giessen, Germany
FOM-AMOLF, The Netherlands
She$eld Hallam Univ., U.K.
B. Spengler
R. M. A. Heeren
M. Clench
Penn. State Univ., U.S.A.
N. Winograd
ICSN-CNRS, France
O. Laprevote
Iowa State Univ., U.S.A.
E. S. Yeung
Univ. Metz, France
J.-F. Muller
EMSL-PNNL, U.S.A.
Univ. Manitoba, Canada
Texas A&M Univ., U.S.A.
Applied Biosystems/MDS Sciex, Canada
K. M. Beck
W. Ens
D. H. Russell
J. Y. Zhao
a)
b)
c)
d)
e)
f)
g)
Instrumentation, Method development, Molecular imaging
of proteins in tissue and cell
Method development, Molecular imaging of peptides in cell
Instrumentation, Method development, Molecular imaging
of peptides in tissue
Instrumentation (built in-house), Method development
Instrumentation (stigmatic mode), Method development
Method development
Molecular imaging of light compounds in epidermis
Instrumentation, Method development
(LDI from frozen aqueous matrix)
Instrumentation (MALDI and Cluster-SIMS),
Method developmenta)
Method development (colloidal metal additive LDI),
Molecular imaging of light compoundsb)
Instrumentation
Method developmentc)
Instrumentationd)
Instrumentation (orthogonal-configuration)e)
Instrumentation (DMAf) optics, ion-mobility device)g)
Instrumentation, Method development, Molecular imaging
of light compounds in tissue
A. Brunelle, et al., Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, TN, May
23῍27, 2004, WOBpm04 : 00
C. Sluszny and E. S. Yeung, Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics,
Nashville, TN, May 23῍27, 2004, TPL208
J.-F. Muller, et al., Proceedings of the 51st ASMS Conference on Mass Spectrometry and Allied Topics, Montreal, Canada,
June 8῍12, 2003, MPY497
D. S. Wunschel and K. M. Beck, Proceedings of the 51st ASMS Conference on Mass Spectrometry and Allied Topics,
Montréal, Canada, June 8῍12, 2003, MPY499
G. Piyadasa, et al., Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, TN,
May 23῍27, 2004, TPL207
Digital mirror array
S. D. Sherrod, et al., Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, TN,
May 23῍27, 2004, TPL209
| !DM_z{ (aNi3S2) } 1~
!" #$%&'()*
8 (guinea pig alveolar) €M_c‚
+, -./0 #1234
, 5 %6
7 Fƒj "oz{7 w „…%†%
(phosphatidylcholine) -7518) 89:
#$ Clofazimine -5@123%‡ˆ‰X Š
%;<%=>?
@A %6 BCD
„‹ŒD
EF89:%;<% (m/z 184) G
Ž P  Q FT-ICR
(phytoalexin) Fƒj @N%;
R
<:%-HI J%KLMNOP
#Bruker Daltonics S, - !"TU5 ‘&
Q TOF

’de“”Dj[•%&-'5
R #Kratos S, -TU5
@ !"- VW<%X:Y3Z[K\
k
e– —˜z™(š)›f œ
-5@]2'K 1 ^3_<:%
*ž+wŸ XE¡¢£¤,F"¥-¦§¨
-HI 0-©›I5@kbj
17)
3.3
LDI ῌ῍῎῏ῐῑ
LDI -@
!" `a!
3.4
MALDI ῌ῍῎῏ῐῑ
MALDI -@ !" <:% (laser microprobe mass spectrometry; LMMS) b5
ª«b5¬˜¦Œ.
(Table 1)
1980 c d e f19), 20) Q g h ­%®¯;P Q MALDI-
LAMMA #Leybold-Heraeus S i SPECS S, X
TOF
i
°F./G$%± -/5@<:
Kratos S, j k
el%3mnop-
% -HI 0²³^ (D54) ´µnŠ
LIMA
#Cambridge Mass Spectrometry S
R #Applied Biosystems S, -TU5 q <:%oF@A 3r;
#123}¶, ·1¸-¹º (thymosin b.4) (mass microprobe profiling) e
st>
7 Fƒj •Lm»3 81S
?uvw xy0Goz{7
'2Q MALDI-TOF
ῌ 129 ῌ
R-TU5@
Y. Naito
Fig. 2.
An example of MALDI mass microprobe data obtained from single cultured cerebral ganglion neuron of Aplysia
californica. (A) Raster image showing the spatial distribution of peptide with m/z 4617. (B) Mass spectra which
were taken from spots located on a line with their centers separated by 50 mm. Peaks are detected that correspond
to physiological active neuropeptides: AP, acidic peptide; ELH, egg laying hormone. MALDI matrix: a-cyano-4hydroxycinnamic acid (A) or sinapinic acid (B); 50 mg of each matrix was dissolved in 1 mL of acetone. (Figure
supplied courtesy of J. V. Sweedler and reprinted with permission from ref. 22. Copyright 2003 American
Chemical Society.)
APP
† Y3‡[\]TBˆ& > z)G.
23 amy-
lm‰Š†[WT^>Z67J ' MALDI ' ()
lF;_`‹. *"aŒ
loid b !"#$%&
21)
*+,-". /01 (Aplysia califor-
?bŽc >J[ dNefghi.‘
nica) 234&&)25&
jko ' *<N “MALDI” LDI
1 5672!"#$8/-
n’lA
)GJo“†” •A >op1*
(Fig. 2)22)' ;&)
– !#mnlm desorption/ionization on sili-
/-. (1) *<=
con; DIOS)26) @ FX?@—˜LyA a
;>? !34"&@AB (2) !#7
;*
*C$DEF@A)G MALDI 7
lmCn&VopA '
9:
.H%I&7J > 'K()(). *+,EL
)-MNOP.EFQG
23), 24)
MALDI27), 28) . 4.2 SEM '
2 rq;rnmnlm7.]
6.™N > 7Pš›œd!
4. T1.sž17J ' &3& /-Kv
4.1 tšŸn{!T1uvwSLpC .
R/01S. T1 23
xNUN[ ]tN=ZY.A “n>yB
4U VWX Y3 0 .=Z !T1
N ' MALDI )7 {¡z&{|U
NO>J[ A\567J > ]77^P89A\_
¢X£¤){}m?¥>J
.Y3`#7J ' /-a:
"d#PWX>J ' z“7C ~¦A
>12), 21), 29) “
.bcdN7J[N>4 ;/
€ (scanning mode) n.l ? !# -.Y3><=N)G .>.*eNOfg
2 r—§A †”l!7F;& hiN?@& ' jAkB.lmCnV
l‚Ne¨©ƒª&)(( m/z R«
K?DEF ' >op SIMS Eq 2 rlF;
n&)¬ eVž1NVKl„…­A
G.siEF H 0.1t1u7J ' 1 mm € (stigmatic mode) >®¯EF
IJKv ! 4w106 x;>Ly& z@7
†‡ l„.‚±Nˆ²‰Š³´A “n>ž
;M 1un&)Eq IJKvN !;
17J ' ´l°,µ ‹q£Ÿ PŒ
>siEF)n&P;l.^{7 400
().¬ŽeAFp ´&)l„VK
x&3F;&N' lO|G 100u P (TOF)
…­7_
7JFp 400 xl>VKQRA > ]yV
scope) n¶pF
K}S7.lT~ 0 %=NU
GnVK!T1·LA > sC ~
7.N' AN€ !T1n0PY3kB
¦€†[{B7_
2
' °,N„n
' “F.d–" (mass micro(Fig. 3)' !T1.‹q£Ÿ„
' VKv&)#¸¹U
‚A ' LDI lF;P^ !VWEF IJK
CCD ‘;º‘U‚’A >TFp TUC
vWE 50 nm (7X)Y 108 xƒ#;>Z6
H3.&{}m7_ ' l„…­€
' MALDI .lm…G`#
P. TOF 7J[ »“.“€
n„)P4F
25)
ῌ 130 ῌ
Mass Microprobe Aimed at Biological Samples
Fig. 3.
Schematic diagram of a stigmatic mode (mass microscope). Relative positions of analytes within the exposure spot
of pulsed primary ion beam (SIMS) or pulsed laser beam (LDI or MALDI) are conserved through flying in the
mass analyzer region, which consists of stigmatic achromatic ion transfer optics. Each bunch of ions separated
according to the flight time (m/z) is subjected to magnification with electrostatic lenses followed by a position
sensitive detector to create the enlarged molecular image directly.
(TRIFT)30), 31) FOM .4&'X7Y' ?™šŒ›@9:Žœ
TRIFT MALDI 7žA&n 9’7Ÿ+=CD+
!"#$%&'32) ()
y1zB' 9:ŽC z7DP& !¡¢
*+,-
. `Ey1z/00uF£n=¤q
/0123456#7&89 5. :;<=>?@A7&
B@#CDEFGHI
™š¥()<¦§¨©ª TOF J%&=33) KLMN
=«=O ¬­-GCnHI®J KL
OHI8PQ'R TOF =O 6S
1M
¯­°N^±
™š²@=O³I+
T&J%&U'V W9= X9
, +Pst ()<
!"#Y9
›@¥=Qjn9† !fgŒ(R¡!
4.3 g 8Wafg´!)d(ŒRK
œ
Z!+"#7[&$\]^%]_MG&=
S7& µ¶=T4W9+'>+/r)qX7
$\].`O''῍aRbc
+ ­U9=·/0#Y8V¸
d(=O eRafg)[&'
¹O XWºX=»OMO¹Y'
hi!jkl*"#+m$\],-eR
afg.4&' n=op`q/0
eRafg/rst 0uvw&
'[xqy1z&{89 | }2~;=
3+I€ 45NO&()
1)
2)
n ‚6ƒ+ TOF <=‚z„
3)
(R7O X9Wnp&y1…589+w9
4)
†Z!=+' y\eRafg (MS Image
Tool) „(R…5‡ˆ ‰ 8Šn‹.
t[&' 0uF"#=8W 45Œ9:Ž
 ‘`’9Œ“”;+, np&<1&•
=&"#>]‚zny1–—˜‹
ῌ 131 ῌ
5)
6)
7)
P. J. Todd, T. G. Schaa#, P. Chaurand, and R. M. Caprioli,
J. Mass Spectrom., 36, 355 (2001).
P. Chaurand, S. A. Schwartz, and R. M. Caprioli, Anal.
Chem., 76, 86A (2004).
M. L. Pacholski and N. Winograd, Chem. Rev., 99, 2977
(1999).
P. J. Todd, J. M. McMahon, R. T. Short, and C. A. McCandlish, Anal. Chem., 69, 529A (1997).
P. Chaurand and R. M. Caprioli, Electrophoresis, 23, 3125
(2002).
M. Stoeckli, P. Chaurand, D. E. Hallahan, and R. M.
Caprioli, Nat. Med., 7, 493 (2001).
A. Benninghoven, B. Hagenho#, and E. Niehuis, Anal.
Y. Naito
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
Chem., 65, 630A (1993).
A. Benninghoven and W. K. Sichtermann, Anal. Chem.,
50, 1180 (1978).
J. M. McMahon, N. N. Dookeran, and P. J. Todd, J. Am.
Soc. Mass Spectrom., 6, 1047 (1995).
A. Delcorte, N. Medard, and P. Bertrand, Anal. Chem., 74,
4955 (2002).
C. C. Grimm, R. T. Short, and P. J. Todd, J. Am. Soc. Mass
Spectrom., 2, 362 (1991).
B. Spengler and M. Hubert, J. Am. Soc. Mass Spectrom.,
13, 735 (2002).
P. Chaurand, G. Hayn, U. Matter, and R. M. Caprioli,
Proceedings of the 52nd ASMS Conference on Mass
Spectrometry and Allied Topics, Nashville, TN, May
23῍27, 2004, TPL210.
M. Stoeckli, T. B. Farmer, and R. M. Caprioli, J. Am. Soc.
Mass Spectrom., 10, 67 (1999).
http://rsb.info.nih.gov
B. J. Xu, R. M. Caprioli, M. E. Sanders, and R. A. Jensen,
J. Am. Soc. Mass Spectrom., 13, 1292 (2002).
T. L. Colliver, C. L. Brummel, M. L. Pacholski, F. D.
Swanek, A. G. Ewing, and N. Winograd, Anal. Chem., 69,
2225 (1997).
J. M. McMahon, R. T. Short, C. A. McCandlish, J. T.
Brenna, and P. J. Todd, Rapid Commun. Mass Spectrom.,
10, 335 (1996).
L. Van Vaeck, K. Poels, S. De Nollin, A. Hachimi, and R.
Gijbels, Cell Biol. Int., 21, 635 (1997).
L. Van Vaeck, H. Struyf, W. Van Roy, and F. Adams,
Mass Spectrom. Rev., 13, 209 (1994).
M. Stoeckli, D. Staab, M. Staufenbiel, K.-H. Wiederhold,
and L. Signor, Anal. Biochem., 311, 33 (2002).
S. S. Rubakhin, W. T. Greenough, and J. V. Sweedler,
23)
24)
25)
26)
27)
28)
29)
30)
31)
32)
33)
Anal. Chem., 75, 5374 (2003).
M. L. Reyzer, Y. Hsieh, K. Ng, W. A. Korfmacher, and R.
M. Caprioli, J. Mass Spectrom., 38, 1081 (2003).
J. Bunch, M. R. Clench, and D. S. Richards, Proceedings
of the 52nd ASMS Conference on Mass Spectrometry
and Allied Topics, Nashville, TN, May 23῍27, 2004, TPL
216.
R. Holm and D. Holtkamp, “Microbeam Analysisῌ
1989,” ed. by P. E. Russell, San Francisco Press Inc., San
Francisco (1989), pp. 325῍329.
J. Wei, J. M. Buriak, and G. Siuzdak, Nature, 399, 243
(1999).
S. Berkenkamp, M. Karas, and F. Hillenkamp, Proc. Natl.
Acad. Sci. U.S.A., 93, 7003 (1996).
J. I. Berry, S. Sun, Y. Dou, A. Wucher, and N. Winograd,
Anal. Chem., 75, 5146 (2003).
J. Y. Zhao, A. Dindyal-Popescu, G. Scott, M. Yang, and J.
E. Wingate, Proceedings of the 52nd ASMS Conference
on Mass Spectrometry and Allied Topics, Nashville, TN,
May 23῍27, 2004, TPL215.
B. W. Schueler, Microsc. Microanal. Microstruct., 3, 119
(1992).
R & D 34 (2), 11
(1999).
S. L. Luxembourg, T. H. Mize, L. A. McDonnell, and R. M.
A. Heeren, Anal. Chem., 76, 5339 (2004).
T. Matsuo, M. Toyoda, T. Sakurai, and M. Ishihara, J.
Mass Spectrom., 32, 1179 (1997).
Keywords: Mass microprobe, Imaging mass spectrometry,
Molecular imaging, Secondary ion mass spectrometry (SIMS),
Laser microprobe mass spectrometry (LMMS), Matrix-assisted
laser desorption/ionization (MALDI)
ῌ 132 ῌ
Fly UP