Comments
Description
Transcript
Shu Namiki - The Institute of Optics
Photonics technologies for low-energy networks at AIST Shu Namiki National Institute of Advanced Industrial Science and Technology (AIST) Network Photonics Research Center ISUPT 2013, Oct. 21, 2013 At University of Rochester Part of this work is supported by p Coordination Funds for Promoting g Science and Technology gy of Ministry y of - Special Education, Culture, Sports, Science and Technology (MEXT). - New Energy and Industrial Technology Development Organization (NEDO) 1 Team • Network Architecture – Kiyo Ishii – Junya Kurumida – Tomohiro Kudoh • Silicon Photonics and Devices – – – – – – – – • Transmission and Node Subsystems – – – – – 2 Hitoshi Kawashima Keijiro Suzuki G. W. Cong Ken Tanizawa Sang-Hun Kim Haruhiko Kuwatsuka Hiroyuki Matsuura Aaron Albores-Mejia Takayuki Kurosu Takashi Inoue Hung Nguyen Tan Karen Solis-Trapala Mingyi Gao S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Outline • Introduction: – Scalability, and now is endangered! • Opportunity for optical switches – Distinct energy scaling and bandwidth – AIST project called “VICTORIES” – Development of 32 x 32 silicon switches • D Dynamic i O Optical ti l P Path th N Network t k • Inter-Data Center Network • Summary 3 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Network traffic keeps on increasing But, how sustainable is it for the future? Revenue ($millions) 450,000 40% CAGR 400,000 AT&T 350,000 Verizon 300,000 Traffic (A.U.) 250 000 250,000 Gap 200,000 150,000 100,000 50,000 0 2007 2008 2009 2010 2011 2012 2013 Year Source: Fortune 500 After T.J.Xia (Verizon) at WIN 2012, Inuyama 4 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Zettab bytes/Yeaar Data-centricity of Traffic 8 7 6 5 4 3 2 1 0 within DC D2D (such as VPN) Grobal IP DC Grobal IP non‐DC 2011 2012 2013 2014 Year 2015 2016 And, most of the contents are video. http://www.cisco.com/en/US/netsol/ns827/networking_solutions_sub_solution.html http://www.cisco.com/en/US/netsol/ns1175/networking_solutions_sub_solution.html 5 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester How have we scaled the transport capacity? • 1960s – Copper wire for telephony • 1970s – Use optical fibers, LDs, PDs • 1980s – Use ETDM (Sonet/SDH) • 1990s – Use EDFAs, Internet revolution!!! • 2000s – Use WDM, Raman amplifiers, FEC, the Bubble!!! • 2010s – Use advanced modulation formats formats, digital coherent technology • 2020s – Use Space and/or Mode-Division-Multiplexing • We’ve been so acclimated to scalable technology, but… 6 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester What we are learning from HPC • Because chips are no longer as scalable, Moore’s law may finally be ending unless the network scales. A. Benner (IBM) A (IBM), OFC 2012 Tutorial http://www.extremetech.com/computing/165331-intels-formerchief-architect-moores-law-will-be-dead-within-a-decade 7 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Can data centers scale out? • The role of network gets more important. OIDA Workshop Report April 2013 8 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Fundamental limits being faced! • Quantum Limit – Distributed Raman amplifiers with 3.1 dB noise figure – E-FEC allows error free transmission with only several photons per bit at receiver • Rayleigh Scattering Limit of Fiber – ~0.15 dB/km • Shannon Limit – A few dB away from E-FEC technologies – Non-linear Shannon limit is about 100 Tbps/fiber • El Electrical i lB Bandwidth d id h Li Limits i = Th The Li Limit i off P Parallelism ll li – Radiation loss – Thermal jitter – Bandwidth density = energy consumption / bit • TCP/IP Limits – Increasing inefficiency for larger Delay-Bandwidth products – QoS limitations – IP routers consumes energy proportional to the amount of traffic 9 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester • Disaster p proof – Communications is the ‘Lifeline’. – Energy supply will be limited when disasters occur. 10 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester 100,000 10,000 100,000 Japan’s Case 10,000 1,000 100 1,000 Japan’s Total Electricity Generation In 2005 Mostly HighDefinition Video Transmissions 10 1.0 100 10 1 0.1 2000 2010 2020 2030 2040 0.1 2050 Total Internet Traffic (Tbps) • Green of ICT, then Green by ICT Annuall energy consumpttion of IP Routers (TWh) Energy issue will eventually take over everything • The current technologies can’t scale to the increasing traffic in future. • 3-4 digit energy saving is necessary, which means we need a new paradigm. Almost all of the traffic will be due to video transfer Traffic Growth Projected by CISCO Internet Trafffic (EB//Month) 1.5 Consumer Internet Traffic W eb, Email, and Data File Sharing(P2P) Video Gaming Voice 1.0 Percentage from 2008 to 2013 Video CAGR=1.70 CAGR=1.39 0.5 Video After MIC (0.32 EB) File Exchange CAGR=1.21 Web, CAGR=1.24 0 2008 22.8%→61.6% 50.8%→24.7% 50 8%→24 7% 14.9%→8.2% 3.7%→3.7% 7 8%→1 8% 7.8%→1.8% 2009 2010 2011 2012 2013 source: Cisco Visual Networking Index: Forecast and Methodology, 2008-2013 11 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Packet switching versus circuit switching IP: Process every yp packet for routing g Which suits better for video? Optical Path: Set up end-to-end paths 12 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Switches: photonics vs. electronics O ti l switches Optical it h El t i l Switches Electrical S it h Type of switching Circuit switching Packet switching (requires a control plane) Granularity Coarse and inflexible Fine and flexible Bandwidth scaling Transparent Transceivers and LSI Physical I/F Optical connectors Transceivers Energy scaling < W/port (incl. amp) 0.3 nJ/bit (Infiniband) 6 nJ/bit (IP router) Energy gy consumption p for 1,000 ports x 1Tbps < 1 kW 300 kW ((Infiniband)) 6,000 kW (IP router) Scalability issue Number of ports Moore’s law QoS Physically guaranteed Depends Suitable apps Video Packetized data Optical switch can save energy by several orders of magnitude!! The hybrid use of packet and optical switching will be the key. 13 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Difference at the network level.. • C Conventionally ti ll exchange h digital di it l packets: k t Aggregate A t and d Transport T t A few lines between Routers 10 10-100 100 GbE Statistical Multiplexing • Bottle Bottleneck Statistical Multiplexing 100-1000 100 1000 GbE Bottleneck Many CRS-3 required!! h E h dt d numerous fibers fib i parallel!! ll l!! →AN New S Scheme: Exchange end-to-end in N users Transmission lines in parallel space ・ SDM rather than TDM ・ Full mesh connections rather than Aggregate and transport m paths Nxm Matrix Switch 14 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Optical switches: Transparent and Green S. Namiki et al S al., ECOC 2010, 2010 Mo Mo.2.A.4. 2A4 S. Namiki et al., JSTQE, 17, 446 (2011). It calls for new network technologies Energy and Cost Efficiency L3 (IP) Routing L2 (Ethernet) Switching Agility Resilience Good Poor L1 (ODU) Switching Dynamic Wavelength Path Switching Optical p Path Wave Band Path Switching Network Optical Path Switching (DOPN) 15 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Good Good Control Plane at upper ppPoor layers y & Good Optical Devices Toward Optical Cut-Through of Everything (OCE) • Today Access Edge OLT Splitter p ONU 16 Aggr . Aggr. S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Core Access Edge OLT Splitter p ONU Toward Optical Cut-Through of Everything (OCE) • Tomorrow Access Aggr . Aggr. Edge Core Edge OLT OLT Splitter p Splitter p ONU 17 Access Optical Cut-through of Core Routers S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester ONU Toward Optical Cut-Through of Everything (OCE) • Ideally Energy-Saving DOPN Access Aggr . Aggr. Edge Core Edge OLT DOPN-FE OLT DOPN-FE Splitter p Splitter p ONU Access Optical Cut-through of Core + Edge Routers Global Control Plane and Resource Management are necessary necessary. 18 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester ONU Jump from Optical Cut-through to DOPN Core Optical amplifier 138W/fiber/60km ・Avg. hop number is 4.2. Transponder 42W/10Gbps 149W/40Gbps 351W/100Gbps(DC) Core router 15.4nJ/bit Model for Dynamic Optical Path Network (DOPN) Regenerator (comparable energy consumption with TPND) REG Link distances: 150~850km 制御I/F Big Datacenter WSS Data Center Edge router 19.0nJ/bit Metro-core Optical Node 86W/degree IE Transponder L2 ODUSW *Considering low utilization of down-link side ports 400W/equipment A Accommodating d ti 410 ONU ONUs (80% utilization) Logically, 4x4 regular lattice in core with multi-granular switching. OLT Splitter ONU ONU OLT OLT ONU OLT Splitter Splitter 5W/equipment Traffic distribution defined as a function of population distribution ONU ONU Access Intelligent edge (IE) Splitter ONU ONU OpenFlowSW OLT ODU Agg. ONU Path requests Energy Consumpttion [TWh/year] Level 2 Optical cut-through in core Aggregation OLT 200 ONU 150 Extrapolation of the present model 100 50 0 2008 2010 2012 2014 2016 2018 2020 Year 2022 2024 2026 2028 2030 The energy reduction by optical cut-through is not large enough. The energy consumption at edge routers is dominant. 19 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Energy Consumptio on [TWh/year] 300 Level 1 Splitter ONU Calculation by K. Ishii (AIST), Under the NEDO Green IT project. j Details to appear in ECOC2013. 250 IE Small DC or Content server Aggregation Edge switch 30nJ/bit* ONU IE Splitter ONU IE Calculation by K. Ishii (AIST), Under the VICTOIRES project. Details in Photonics West 2013. ONU Extrapolation of the present model Optical cut‐through in core Dynamic optical path network 1000 100 Yr 2030 Yr. Yr. 2024 10 1 0 Traffic CAGR: 40% 10 20 Total Traffic [Pbps] 30 40 Some initiatives have already started • GreenTouch Consortium • VICTORIES http://www.greentouch.org/ IEC’s IEC s Megatrend: Energy Sustainability of optical communication networks and their driver: Dynamic Optical Path Network http://www.aist-victories.org/ 20 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Digital Optical Path Processor using Silicon Photonics • 32 32 Matrix 32x32 M t i Switch S it h – Energy: Need only a few Ws – Footprint: Within 2 cm x 1 cm Chip • Switching time – ~ sec by thermo-optical switching – ~ nsec by plasma-effect switching • Integration with control circuits for black-box operations Opitcal Fiber Array p y TO-Switch Control Circuit 21 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Courtesy of Y. Shoji, K. Kintaka, et al. Why 32 x 32 matrix switches? • • • 32 x 32 SWs make a 512 x 512 Clos SW. 100,000 CPU nodes can be accommodated by 675 450x450 (simplex) switches switches. A 450x450 SW consists of 96 32x32 SWs SWs, leading to a total of 64,800 32x32 SWs. Each port can carry a bandwidth > Tbps. 2-stage Fat tree Switch Fabric for 100,000 nodes 450x450 450x450 450x450 225 switches 450(d) 450x450 duplex 225 ports simplex 450 ports 22 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester 450x450 450x450 450x450 450 switches Total: 101250 CPU nodes Roadmap of Si-photonics matrix switch at AIST 2014 Mach-Zehnder Interferometer based TO switching 32×32 2013 2012 2011 2010 4×4 2×2 23 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester PILOSS 8x8 PILOSS 4×4 ~20 20 mm K. Suzuki et al., ECOC 2013, PDP 24 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester 2×2 Polarization diversity Kim et al., in ECOC2013 PS 2X2 Sw.Unit for TE PS TE Intersection PS PS 2X2 Sw.Unit for TM TM Orthogonal SOP Crossing (JP 2011 2011-158030 158030 ) TM 25 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester TE Si-ph. SW integrated with CMOS driver circuits • OXC: 2x2 TO switch with MOSFET – G. W. Cong et al., OE March 2013 (AIST) • Interconnect SW: 4x4/8x8 p-i-n switch with CMOS driver – B.G. Lee et al., OFC NFOEC PDP 5C3, 2013 (IBM) 26 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Realizing 32 x 32 chip scale Drawing time using Spot-Beam EB Lithography System (JEOL6000FS/E (50kV)) 8×8 11 mm×7 mm 4×4 6 mm×3 mm 27 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester 128 hrs. (~5 days) by EB 8 hrs. EB 2 hrs. 32×32 20 mm×10 mm DUV photolithography ArF Immersion Lithography facility Super Clean Room (SCR) 12 inch line @AIST Hierarchical multi-granularity in routing • Various path granularities – From fine to coarse - node that can handle such Control I/F 制御I/F Sub-lambda path 1GE 10GE 10GE ODU ODU OTN ODU OTN path path 100Gbit/s~ Fiber path 10~100 Gbit/s WSS Fiber path 光パス Lambda path 波長パス Optical SW 光スイッチ Transponder L2 ODU SW Lambda SW (WSS) Fiber path SW (Matrix SW) Electrical SW 電気スイッチ ODUSW 1~10 Gbit/s サブ・ウェーブレングス・パス Sub-lambda path ~1Gbit/s MPLS-TP K. Ishii et al., Photonics West 2013 • Network topology based on hierarchical routing – Low L energy consumption ti 28 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester -Scalability S l bilit tto national ti l scale l CDC-ROADM using Silicon Photonics (NEC+AIST) 1:8 Splitter Next Gen. ROADM 次世代ROADM 8x1 Switches 10-5 … … WSS /Splitter WSS /Splitter BER 10-6 λ1~λ8 10-7 10-8 10-9 λ1~λ8 10-10 Out-Port 3 Out-Port 4 Out-Port 6 Out-Port 7 Out-Port 5 10-11 In-Port 1 In-Port 8 λ1 1:8 Splitter ….. ….. 48 transponders 48 transponders 16 mm 8x1 Switches Add Drop … … … TPA TPA TPA TPA TPA TPA module module module module module … … module … … … .. .. .. .. … .. To transponders (8-port) Splitter 1 x 8 CPL … 12 mm 152 switch elements integrated 1 x 8 CPL Si-TPA transmission card … … To input/output fibers (8-port) λ8 43.018 Gbps DPSK signal OSNR 21 dB @ res 2 nm Received Power: ‐9dBm .. Transponder Gate / Selector 8 Input/output fibers SW Drivers 48 transponders TPA module x3 / daughter card (8 x 8 Si switch module) T. Hino et al., ECOC2012 Invited:Tu.3.A.5 29 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester TPA module x12 Switch drivers FPGA Feature of ODU XC (Fujitsu+AIST) • ODU XC (Cross Connect) is a digital cross connect for ODU (Optical Data Unit) that defined by ITU-T G.709. • ODU XC has capability of switching traffic with 1.25Gbps granularity. It is very efficient to switch 1Gbps-40Gbps stream. • ODU XC has 1/3 power consumption and 1/100 latency compared to core router. OTN λ Path Optical Fibre ODU XC ODUk(k=0,1,2,3,4,flex) ODUk(k=0,1,2,3,4,flex) ODUk(k=0,1,2,3,4,flex) ODUk(k=0,1,2,3,4,flex) ODUk(k=0,1,2,3,4,flex) ODUk(k=0,1,2,3,4,flex) ODUk(k=0,1,2,3,4,flex) ODUk(k=0,1,2,3,4,flex) … 10GE ODU2 ODU Packet#1 ODUflex#1 XC XC Router R t 100GE Packet#2 ODUflex#2 node Router λ Path λ ODU ODUflex#1 Packet#1 ODUflex#3 Packet#3 XC XC node 10GE Packet#3 ODUflex#3 ODU XC 40GE Packet#2 ODUflex#2 node λ ODU XC node 40GE Router λ S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester OTN … Slide courtesy of H. Honma and H. Onaka, Fujitsu 30 10GbE AIST and Fujitsu are developing the ODU XC chip and this chip p will be available in 2013 . OTN is effective and efficient f operating >1 GbE. for G Fujitsu plans to incorporate the OTN switch fabric into Fujitsu products. ODU ODU ODU λ • 1GbE 1GbE ODU2 10GE Router 32 x 32 SWs make up a nationwide Dynamic Optical Path Network R l Replace IP routers t by b optical ti l switches!! it h !! Hierarchical multi-granular node Sub- aggregating node Sub- and wavelength cross-connect node Wavelength path terminal Multi-granular aggregating node Sub- path terminal Content server … Core … … … … … … n … C-plane I/F … … Fiber path 100Gbit/s~ WSS … 10~100 Gbit/s -path Optical Transponder 1 Category-core 2 3 Group 1 1 2 31 … … k 1 … 1 2 i 1 k j … 3 1 m mx mx +1 i 1 2 2 … … mx i 1 2 2 … … 1 2 i 3 1 m mx +1 Electrical 1~10 Gbit/s k … … j … mx … … 1 2 3 K. Ishii, et al.(AIST), k … Photonics West 2013 1 … … m mx +1 i 1 2 Sub- path 1 j 1 1 L2 … 3 j 1 Category 2 ODUSW OLT i Passive Double Star Regular mesh in Core; Full Mesh in Metro; Complete bipartite graph in Access Flex-Grid compatible, ODU-XC for sub- granularity S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Inter-datacenter network: challenges • • • • • Chunkk off continually Ch ti ll generated t dd data t Ultra-coarse granularity Low latency data transfer High capacity and efficiency Strict QoS with scheduled connections Datacenters Distributed Datacenters • • 32 Seamless connections to intra intra-datacenter datacenter network Resilience for disaster S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Multi-Tbps Elastic Transmitter : WDM vs. OTDM • Super-channel S h lN Nyquist/OFDM i /OFDM WDM xN carriers Nxm Matrix SW Mod. ・・・ Comb Gen. ・・・ AWG Mod. PDM Combiner Mod. DSP hungry • Nyquist-OTDM Nyquist OTDM WDM xN symbol slots Mod. 1x S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester ・・・ Splitter 33 0x ・・・ Comb Gen. Mod. Waveshaper + PDM Combiner M d Mod. mx Optical processing needed? Optical comb generator (OCG) for Tbps elastic Tx/Rx • • High spectral efficiency through superchannel (OFDM or Nyquist) High quality optical comb/ultra-short pulse through highly nonlinear fibers – V. Ataite et al. (UCSD), OFC NFOEC 2013, PDP5C.1 C+L-band 40 dB OSNR – T. T Inoue and S. S Namiki, Namiki Laser & Photon Photon. Rev., Rev 2: 83 83–99 99 (2008) (2008). < 400 fsec Tunable • 34 R&D on Tbps elastic transceivers using OCG is highly expected. S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Research on Nyquist OTDM‐WDM signals Features of Nyquist OTDM o High spectral efficiency up to 1 symbol/s/Hz o Ultrahigh yet flexible baudrates (up to 1T) o Generation in optics, high energy efficiency o Eliminating guard‐bands in WDM system o Better transmission perf. than OTDM o T. Hirooka T Hi k et al., Opt. Express, 20, 2012. t l O t E 20 2012 o K. Harako et al., OFC 2013, JW2A.38. o H. Hu et. al., CLEO 2013, CTh5D.5. M. Nakazawa et al., Opt. Express, 20, 2012. G. Bosco et al., J. Lightw. Technol., 29, 2011. Nyquist OTDM‐WDM in network i i k o Granularity will grow to be more than ~100G in the future big‐data centric era o Especially, traffic between data‐centers Especially traffic between data‐centers o Highly efficient, ultra‐coarse yet flexible granular inter‐datacenter network based on all‐optical elastic network Nyquist OTDM‐WDM signals 35 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester O. Gerstel, et al., Comm. Magazine, 50, 2012. Nyquist filtering using Waveshaper Ultra‐coarse granular Nyquist signals yq g o Ultra‐coarse granular Nyquist signals (>40G) can be generated by Waveshaper Ultra coarse granular Nyquist signals (>40G) can be generated by Waveshaper o Waveshaper‐based WSS can efficiently add‐drop WDM channels of Nyquist OTDMs with almost no guard‐band o Pass‐drop over cascaded WSSs: H. Nguyen Tan et al., OFC 2013, JW2A.50 Pass drop over cascaded WSSs: H Nguyen Tan et al OFC 2013 JW2A 50 This paper: transmission and pass‐drop operations in full elasticity 36 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Experimental setup o Baudrate/pol. : 43Gbaud, 86Gbaud, 172Gbaud, and 344Gbaud o Clock recovery by optical null‐header (ONH): Kurosu et al., Opt. Express, 21, 2013. o Transmission 4 spans of 80km SLA+IDF and WSS nodes Transmission 4 spans of 80km SLA+IDF and WSS nodes o WSSs elastically pass‐drop WDM channels of Nyquist OTDMs 37 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Optical spectra of Nyquist OTDM WDM H. Nguyen Tan et al., OECC 2013, PDP / ECOC We.1.C.5 Details to appear in OE. INPUT WSS node PASS DROP o Simple generation of different baudrate signals by Waveshaper o WSS efficiently add‐drop WDM channels of Nyquist OTDMs with almost no guard‐band 38 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester BER performance of Nyquist OTDMs ONH ONH ONH 39 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester VICTORIES Test Bed DEMO2014 • Oct. O t 2014 iin T Tsukuba, k b JJapan • Co-located with a 3-day international symposium • Demonstrate 4k/8k video apps over DOPN ネットワークリソースマネージメント I1:ストレージ資源管理(AIST) N2:ダイナミック波長パス N2:ダイナミック波長パス・ ノード技術(NEC) ITRI M i Direction: 3 ITRI‐Main Di ti 3 ITRI‐Main‐TKB ‐WEST(NS1) Agg. I2:ストレージ・ネットワーク統合資源管理(NTT) TL‐1 N1:多粒度ダイナ TL‐1 ミック・ノード(AIST) P5:集積デバイス実装 (古河電工) NPRC‐Main Agg. P3:トラポン・アグリゲータ(NEC) Transponder ODU SW TL‐1 P1, P2:シリコンフォトニクス TOスイッチ(AIST)(富士通研) Transponder N4:ダイナミック波長可変光源(住友電工) ODU SW NPRC EAST1 NPRC‐EAST1 Direction: 3 Agg. P4:次世代 WSS (日立電線) N3:サブウェーブレングス ・パス・ノード(富士通) 配信サーバA (1G, HD) 配信サーバC (10G, HD) 配信サーバB (10G, HD) 視聴者SA (8K) Direction 2 Direction: 2 TV会議SYS2 視聴者A AIST情報棟 視聴者B コンテンツ集積 C5:超高速波形観測技術(Alnair) Mon. 拠点(HD) Direction: 3 サーバS ITRI‐WEST NPRC‐CTR Agg. Agg. ODU SW C4:集積型分散モニタ技術(フジクラ) C3:特殊ファイバ、高密度 線路技術(古河電工) NPRC‐EAST2 Direction: 4 Direction: 3 Agg. MUX C6:光パス多重 技術(富士通研) 視聴者C C1:自律制御光パス・ コンディショナ開発(AIST) 視聴者SB (8K) 視聴者E C2:高速制御 技術(Trimatiz) AIST デ デモ会場 会場 視聴者D TKB‐SUB1 TKB‐SHV Direction: 3 TKB‐SUB2 Direction: 2 Direction: 2 Agg. Agg. TV会議SYS1 配信サーバ (8K, SHV) 40 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester 視聴者SC (8K) ・制御要素の明確化(波長,帯域,ポート#, 制御 素 確 波 帯域 ポ フォーマット,ビットレート,ファイバ種,分散量) 視聴者F つくば地区 協力機関 Summary • • • • • • • • • 41 The energy consumption of the IP network is becoming a serious bottleneck, calling for a paradigm shift. For disaster survivability, resilience under limited energy supply is of critical importance. importance Dynamic Optical Path Network may be the only option in the sense of both energy, capacity, and suitability for video services, thus has been recognized g byy IEC as a driver of this megatrend. In order to realize this, some R&D initiatives have been put into action. We have reviewed some of the activities under VICTORIES project at AIST. An extensive effort on developing 32 x 32 silicon photonics switches was reviewed. All optical Nyquist filtering works well higher bandwidths than 40 Gbaud signals. Jump from ongoing optical cut-through to Dynamic Optical Path Network must be assisted through academic activities and standardization! Orchestration of different layers and/or standardization bodies is essential. S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester Thank you! [email protected] 42 S. Namiki, ISUPT2013, Oct. 27, Univ. of Rochester