...

23Na-MQMAS NMR 法による高分子 Na 塩の研究 23Na

by user

on
Category: Documents
9

views

Report

Comments

Transcript

23Na-MQMAS NMR 法による高分子 Na 塩の研究 23Na
P81
23
○
Na-MQMAS NMR 法による高分子 Na 塩の研究
1
1
1
2
平沖敏文 、藤江正樹 、荒樋 周 、畠山盛明 、齋藤広児
1 北大院工、2 新日鐵先端研
23
2
Na-MQMAS NMR Studies on Na ion complexes of Polymers
Toshifumi Hiraoki1, Masaki Fujie1, Syu Arahi1, Moriaki Hatakeyama2, Koji Saito2
1
Grad. Sch. Eng., Hokkaido University,
2
Advanced Technology Res. Lab., Nippon Steel Corp.
○
Solid-state 23Na 3QMAS NMR measurements were made of sodium salts of poly(glutamic
acid), poly(aspartic acid), and poly(methacrylic acid). Local structures of the sodium ion were
characterized with the isotropic chemical shift cs and the quadrupole coupling product Pq to
be 0 ~ -1 ppm and 1.6 ~ 2.1 MHz, respectively.
序
水溶性ポリアミノ酸は、対イオンに依存してポリアミノ酸の固体状態の主鎖コンフ
ォメーションや対イオン結合部位の構造が変化することが知られている。本研究では、
23
Na MQMAS 法を用いて、高分子に対する Na(I=3/2)イオン結合部位の局所構造を検
討した。
実験
23
NaNMR 測定は JEOL ECA700(16.4T, 185 MHz)により、4mm ローターを用いて室温
で行い、1 M NaCl 水溶液を化学シフト基準に用いた。MQMAS 測定は Z-filter 3QMAS
法を用いた。13C-CPMAS 測定は 75MHz で行った。
試料は、ポリメタアクリル酸 Na(PMA-Na)、ポリ
グルタミン酸 Na(PGA-Na)、ポリアスパラギン酸
Na(PAA-Na)及び酢酸ナトリウム 3H2O を用いた。
結果と考察
Fig.1 に各試料の 23Na-MAS スペクトルとその化
学シフト値を示す。高分子系では半値幅が
400~600Hz の巾広いシングレットが得られた。化
学シフト値は Na-O 間距離が長くなると、減少する
の で 1) 、 得 ら れ た 結 果 は Na-O 間 距 離 が
PMANa<PGANa<PAANa の順で長くなることを示
唆している。一方酢酸ナトリウムのスペクトルは Fig. 1 23Na MAS NMR spectra
四極子分裂を含む線巾が狭い線形を示した。
---------------------------------------------------------------------------------------------------------キーワード:23Na MQMAS、高分子錯体、四極子結合定数
○ひらおき としふみ、ふじえ まさき、あらひ しゅう、はたけやま もりあき、さいとう こうじ
-350-
13
0
2
0
5
F1(Isotropic dimension)/ppm
−5
F1(Isotropic dimension)/ppm
−2
C CPMAS スペクトルの化学シフ
ト値から求めた高分子のコンフォメ
CS axis
ーションはそれぞれコイル、コイル/
ヘリックス、ヘリックスである。
II
QIS axis
酢酸ナトリウムの 23Na 3QMAS スペ
III
クトルを Fig.2 に示す。3 種の Na 部位
の存在が明瞭に判別でき、それぞれの
I
化学シフト等方値(cs)と四極子積(Pq)
を求めた。強度が最大のシグナル I は
cs=0.01ppm、Pq= 1.44MHz である。II
0
5
−5
F2(MAS dimension)/ppm
は-1.91ppm、1.27MHz、III は-0.34ppm、
Fig. 2 23Na 3QMAS NMR spectrum of NaAcetate.
1.40MHz である。
23
Fig. 3 に PGANa の Na 3QMAS スペ
クトルを示す。正の傾きを示す巾の広
い単一シグナルが観測され、
cs=0.04ppm、Pq =1.64MHz が得られた。
この試料のコンフォメーションは
70%がコイルで、30%がヘリックスで
あるが、線形に影響はないようである。
Fig. 4 に PAANa の 23Na 3QMAS スペ
クトルを示す。PGANa と同様に正の
傾きを示す巾の広い単一シグナルが
0
10
−10
5
−5
F2(MAS dimension)/ppm
得られ、cs= -1.32ppm、Pq=2.02MHz
である。
Fig. 3 23Na 3QMAS NMR spectrum of PGANa.
23
PMANa の Na 3QMAS スペクトル
(Fig. 5)は PGANa や PAANa と同様な線形を示し、cs= -0.44ppm、Pq=2.10MHz であ
る。
高分子 Na 塩の Pq 値はいずれも低分子結晶の NaAcetate より大きい。cs はコンフォ
メ­ションにはほとんど依存していない。
1) A. George, S. Sen, J. Stebbins, Solid State NMR, 10, 9(1997).
−5
−10
CS axis
QIS axis
0
F1(Isotropic dimension)/ppm
−5
0
QIS axis
10
5
5
F1(Isotropic dimension)/ppm
CS axis
20
20
10
0
−10
−20
Fig. 4 23Na 3QMAS NMR spectrum of PAANa.
10
0
−10
−20
F2(MAS dimension)/ppm
F2(MAS dimension)/ppm
Fig. 5 23Na 3QMAS NMR spectrum of PMANa.
-351-
P82
࡝࠴࠙ࡓࠗࠝࡦੑᰴ㔚ᳰ↪ᓸ⚦ሹ࠮ࡄ࡟࡯࠲ౝߩࠗࠝࡦ
᜛ᢔ⸃ᨆ
٤᫪Ꮉථ਽ᯅᧄᐽඳਸㇱඳ⧷ጊᧄ᜼ศ㊁ᓆ
ᣩൻᚑᩣᑼળ␠ ၮ⋚ᛛⴚ⎇ⓥᚲ
2
ᣩൻᚑᩣᑼળ␠ ศ㊁⎇ⓥቶ
Analysis of ionic mobility in the porous separator for Li ion battery
٤Takuya Morikawa1, Yasuhiro Hashimoto1, Hirohide Otobe1, Aguru Yamamoto1,
Akira Yoshino2
1
ASAHI KASEI CORP. Analysis & Simulation Center
2
ASAHI KASEI CORP. Yoshino Laboratory
Li-ion, diffusing in confined micro porous spaces of the membrane separator was
characterized with PFG-NMR. By placing the membrane sample with its direction
appropriately set, every x/y/z component of the ion mobility was individually obtained.
Further, with the varied diffusion time, an anomalous diffusion behavior was observed. These
anisotropy and anomalous diffusion phenomena may well be related with the inhomogeneity
of the micro pore distribution. With further information from FIB-SEM and computer
simulation combined, we will discuss the battery characteristics, focusing on the Li-ion
diffusion and micro porous structure.
‫ޤ⸒✜ޣ‬
࡝࠴࠙ࡓࠗࠝࡦੑᰴ㔚ᳰ㧔LIB㧕ߩ಴ജ․ᕈࠍℂ⸃ߔࠆߦߪ‫࠲࡯࡟ࡄ࠮ޔ‬ౝㇱߢߩ
ࠗࠝࡦߩ᜛ᢔ᜼േࠍ⍮ࠆߎߣ߇㊀ⷐߢ޽ࠅ‫ޔ‬᜛ᢔଥᢙࠍ⋥ធ⸘᷹น⢻ߥPFG-NMRߪ‫ޔ‬
LIBߩ಴ജ․ᕈࠍ⼏⺰ߔࠆߦ޽ߚߞߡ‫ޔ‬㕖Ᏹߦ᦭↪ߥ࠷࡯࡞ߢ޽ࠆ1) ‫࡞ࡃޔߒ߆ߒޕ‬
ࠢ㔚⸃ᶧਛߣߪ⇣ߥࠅ‫ޔ‬ᓸ⚦ሹࠍ᦭ߔࠆ࠮ࡄ࡟࡯࠲ౝㇱߢߪࠗࠝࡦ᜛ᢔ߇⚦ሹ᭴ㅧߦ
ࠃࠆ೙㒢ࠍฃߌࠆ‫ޕ‬PFG-NMRߦࠃࠅᓧࠄࠇࠆࠗࠝࡦߩ᜛ᢔ᜼േࠍℂ⸃ߒ‫ޔ‬LIBߩ಴ജ
․ᕈߩᡰ㈩࿃ሶࠍ᣿⏕ߦߔࠆߦߪ‫⚦࠲࡯࡟ࡄ࠮ޔ‬ሹ᭴ㅧߣࠗࠝࡦ᜛ᢔߩ㑐ଥࠍℂ⸃ߔ
ࠆߎߣ߇ਇนᰳߢ޽ࠆ‫ޔ߼ߚߩߎޕ‬PFG-NMRࠍ↪޿ߡ࠮ࡄ࡟࡯࠲ਛߢߩࠗࠝࡦ᜛ᢔ
ࠍ⹦⚦ߦᬌ⸛ߔࠆߣ౒ߦ‫ޔ‬FIB-SEMࠍ↪޿ߡਃᰴర⊛ߦ⚦ሹ᭴ㅧࠍᝒ߃‫ࡦࠝࠗޔ‬᜛ᢔ
ߣ⚦ሹ᭴ㅧࠍ㑐ㅪઃߌߚ‫▚⸘ޔߚ߹ޕ‬ᯏࠪࡒࡘ࡟࡯࡚ࠪࡦߦࠃࠆࠗࠝࡦߩᵹࠇ⸘▚ࠍ
↪޿ࠆߎߣߢ‫ࡦࠝࠗޔ‬᜛ᢔߦᓇ㗀ࠍਈ߃ࠆ⚦ሹ᭴ㅧ࿃ሶࠍ᣿⏕ߦߒߚ‫ࡂޔߪߢ⴫⊒ޕ‬
ࠗ࡟࡯࠻᡼㔚ᤨ߿‫ޔ‬ૐ᷷ⅣႺਅߦ߅޿ߡ‫ޔ‬LIBߩ಴ജ․ᕈߦᓇ㗀ࠍਈ߃ࠆ࠮ࡄ࡟࡯࠲
⚦ሹ᭴ㅧࠍ⼏⺰ߔࠆ‫ޕ‬
‫ޣ‬ታ㛎‫ޤ‬
㔚⸃ᶧࠍ฽ᶐߐߖߚ࠮ࡄ࡟࡯࠲㧔ᣩൻᚑࠗ࡯ࡑ࠹࡝ࠕ࡞࠭(ᩣ)ࠃࠅࠨࡦࡊ࡞ឭଏ㧕ߩ
PFG-NMR᷹ቯߦࠃࠅᓧࠄࠇߚ㔚⸃ᶧฦᚑಽߩ⥄Ꮖ᜛ᢔଥᢙ߆ࠄ‫⚦࠲࡯࡟ࡄ࠮ޔ‬ሹౝ
ߢߩLi+ߩ᜛ᢔ᜼േࠍ⹏ଔߒߚ‫⥄ޔ߅ߥޕ‬Ꮖ᜛ᢔଥᢙߪStejskalߩᑼߦၮߠߊ᜛ᢔࡊࡠ
࠶࠻߆ࠄ᳞߼ߚ‫ޕ‬PFG-NMR᷹ቯߪ‫ޔ‬JEOL⵾ECA400ߦᦨᄢ13T/m߹ߢ൨㈩⏛႐ࠍශട
น⢻ߥ⏛႐൨㈩࡙࠾࠶࠻ࠍធ⛯ߒߡⴕߞߚ‫ޕ‬㔚⸃ᶧߦߪ1M LiTFSI / EC-MEC(1 : 2
2()0/4ࠗࠝࡦ᜛ᢔ࡝࠴࠙ࡓࠗࠝࡦੑᰴ㔚ᳰ
٤߽ࠅ߆ࠊߚߊ߿㧘ߪߒ߽ߣ߿ߔ߭ࠈ㧘߅ߣߴ߭ࠈ߭ߢ㧘߿߹߽ߣ޽ߋࠆ㧘
ࠃߒߩ޽߈ࠄ
-352-
Y
X
vol.%)ࠍ↪޿ߚ‫ޕ‬PFG-NMRߢߪ㕒⏛႐ߦᐔⴕߥᣇะ
X
Y
㧔ࠨࡦࡊ࡞▤ߩ㜞ߐᣇะ㧕߳ߩ᜛ᢔ߇ᬌ಴ߐࠇࠆ‫ޕ‬
Fig.1ߦ␜ߔࠃ߁ߦ‫ࠍ࠲࡯࡟ࡄ࠮ޔ‬㊀ߨߡࠨࡦࡊ࡞▤ߦ
ዉ౉ߔࠆߎߣߢ⤑ෘᣇะ㧔Zᣇะ㧕‫ޔ‬౞╴⁁ߦᏎ޿ߡ
ࠨࡦࡊ࡞▤ߦዉ౉ߔࠆߎߣߢ‫ޔ‬㕙ౝߩੑᣇะ㧔Xᣇะ‫ޔ‬
Yᣇะ㧕߳ߩฦᚑಽߩ⥄Ꮖ᜛ᢔଥᢙࠍᓧߚ‫ޔߚ߹ޕ‬᜛
Zᣇะ
Yᣇะ
Xᣇะ
ᢔᤨ㑆㧔Ǎ㧕ࠍ20ms㨪800msߢᄌൻߐߖߡPFG-NMR
Fig. 1 Sample preparation for
᷹ቯࠍⴕ޿‫ޔ‬᜛ᢔࡊࡠ࠶࠻ߩǍଐሽᕈࠍᬌ⸽ߒߚ‫ޕ‬
PFG-NMR measurement
࠮ࡄ࡟࡯࠲ሹ᭴ㅧߩਃᰴర௝ߪFIB-SEM㧔HITACHI
NB5000ဳ㧕ࠍ↪޿ߡขᓧߒߚ‫ޕ‬೨ಣℂߦࠃࠅ࠮ࡄ࡟࡯࠲
FIB
SEM
ߩ㛽ᩰㇱಽߣሹㇱಽߣߩ㑆ߦ㔚ሶኒᐲᏅࠍߟߌ‫ޔ‬FIBߦࠃ
ࠆ㕙಴ߒടᎿߣSEMߦࠃࠆ᠟ᓇࠍ➅ࠅ㄰ߒߚ‫ޕ‬ᓧࠄࠇߚㅪ
eGa+
⛯౮⌀ࠍ┙૕᭴▽ߔࠆߎߣߢਃᰴర௝ࠍᓧߚ‫ޕ‬
‫⚿ޣ‬ᨐߣ⠨ኤ‫ޤ‬
࠮ࡄ࡟࡯࠲ߩ⤑ෘᣇะߩࠗࠝࡦ᜛ᢔߩ᜼േ߇LIBߩ᡼㔚
․ᕈߦᓇ㗀ࠍ෸߷ߔߎߣߪᗐ௝ߦ㔍ߊߥ޿‫ޔߒ߆ߒޕ‬᡼㔚 Fig. 2 Fabrication 㧒observation
᧦ઙ߿᷷ᐲ᧦ઙ߇ㆊ㉃ߦߥࠆߎߣߢ‫ో࠲࡯࡟ࡄ࠮ޔ‬૕ߢߩ image of FIB-SEM
ࠗࠝࡦ᜛ᢔߩ᜼േ߇LIBߩ಴ജ․ᕈߦᓇ㗀ࠍ෸߷ߔ‫ޕ‬
㪱
㪇㪅㪏
䉶䊌䊧䊷䉺㽲
Fig.3ߦ␜ߔࠃ߁ߦ‫ߩ࠲࡯࡟ࡄ࠮ޔ‬⒳㘃ߦࠃߞߡ⤑ෘᣇ
㪇㪅㪎
䉶䊌䊧䊷䉺㽳
㪇㪅㪍
ะߩ᜛ᢔᕈߪห╬ߢ߽‫ޔ‬㕙ᣇะߢߩ᜛ᢔᕈߩ㆑޿߇↢ߓ
㪇㪅㪌
㪇㪅㪋
ࠆ‫ߥ߁ࠃߩߎޕ‬᜛ᢔ᜼േߩᏅߪ⚦ሹ᭴ㅧߦ↱᧪ߒߡ߅ࠅ‫ޔ‬
㪇㪅㪊
㪇㪅㪉
㕙ᣇะ߽฽߼ߚ‫ో࠲࡯࡟ࡄ࠮ޔ‬૕ߩࠗࠝࡦߩ᜛ᢔ᜼േ߇‫ޔ‬
㪇㪅㪈
㪇
LIBߩ᡼㔚࡟࡯࠻ࠍ਄᣹ߐߖߚ㓙ߩ಴ജ․ᕈߦᓇ㗀ࠍਈ
߃ࠆߎߣ߇␜ߐࠇߚ‫ޕ‬
㪰
৻ᣇߢ‫ߦᦝޔ‬᡼㔚࡟࡯࠻ࠍ਄᣹ߐߖߚ႐ว߿ᭂૐ᷷ߢ
Fig.3 Diffusion constant of Li+ in
ߩ᡼㔚ߢߪ‫⤑ޔ‬ෘᣇะߩ᜛ᢔ᜼േ߿㕙ᣇะ߹ߢ฽߼ߚ࠮ the separator normalized against the
ࡄ࡟࡯࠲ో૕ߩ᜛ᢔ᜼േߢߪLIBߩ಴ജ․ᕈࠍ⺑᣿ߔࠆ bulk electrolyte.
㪯
ߎߣ߇಴᧪ߥ޿‫ޕ‬PFG-NMR߆ࠄᓧࠄࠇߚ᜛ᢔࡊࡠ࠶࠻ߢ
ߪ‫ޔ‬Fig.4ߦ⎕✢౞ߢ␜ߔࠃ߁ߦ‫࠲࡯࡟ࡄ࠮ޔ‬ౝߢߪ᜛ᢔଥ
ᢙ߇ዊߐ޿ᚑಽ߇ሽ࿷ߒ‫ߩߎޔ‬ᚑಽ߇ߎࠇࠄߩ㔚ᳰ․ᕈߦ
ᓇ㗀ߒߡ޿ࠆߎߣ߇ࠊ߆ߞߚ‫⻠ޕ‬Ṷߢߪ‫ޔ‬PFG-NMRߩǍ
ଐሽᕈ⹏ଔ߿FIB-SEMߦࠃࠆਃᰴర᭴ㅧࠗࡔ࡯ࠫ‫▚⸘ޔ‬ᯏ
ࠪࡒࡘ࡟࡯࡚ࠪࡦࠍ⚵ߺวࠊߖ‫࠲࡯࡟ࡄ࠮ޔ‬ౝߦሽ࿷ߔࠆ
᜛ᢔߩㆃ޿ᚑಽ߇ߤߩࠃ߁ߥ⚦ሹ᭴ㅧߦ↱᧪ߔࠆߩ߆ߦ
ߟ޿ߡ‫⺑ߦ⚦⹦ޔ‬᣿ࠍⴕ߁‫ޕ‬
‫ޣ‬ෳ⠨ᢥ₂‫ޤ‬
Fig. 4 The diffusion plot of
1) Hayamizu K. et al, J. Phys. Chem. B, 1999, 103, 519-524.
electrolyte in separator.
‫⻢ޣ‬ㄉ‫ޤ‬
PFG-NMR᷹ቯᜰዉߣ᭽‫↥)⁛(ޔߚߒ߹߈ߛߚ޿ࠍࠬࠗࡃ࠼ࠕߥޘ‬ᬺᛛⴚ✚ว⎇ⓥᚲ
ᣧ᳓♿ਭሶవ↢ߦᷓߊᗵ⻢޿ߚߒ߹ߔ‫࡞ࡊࡦࠨޔߚ߹ޕ‬ឭଏ‫ޔ‬㔚ᳰ⹏ଔ⚿ᨐࠍឭଏ޿
ߚߛ޿ߚᣩൻᚑࠗ࡯ࡑ࠹࡝ࠕ࡞࠭(ᩣ)‫ޔ‬ᛛⴚࠕ࠼ࡃࠗࠬࠍ޿ߚߛ޿ߚᣣᧄ㔚ሶ(ᩣ) ᰞ
੗ᥓม᭽ߦᗵ⻢޿ߚߒ߹ߔ‫ޕ‬
㪣㫀㩿㪣㫀㪂㪀
㪝㩿㪫㪝㪪㪠㪄㪀
㪟㩿㪜㪚㪀
㪟㩿㪤㪜㪚㪀
㪇
㪄㪇㪅㪌
㪄㪈
㫃㫅㩿㪜㪆㪜㪇㪀
㪄㪈㪅㪌
㪄㪉
㪄㪉㪅㪌
㪄㪊
㪄㪊㪅㪌
㪄㪋
㪄㪋㪅㪌
㪇㪅㪇㪜㪂㪇㪇
-353-
㪉㪅㪇㪜㪂㪈㪇
㪋㪅㪇㪜㪂㪈㪇
㪍㪅㪇㪜㪂㪈㪇
㪏㪅㪇㪜㪂㪈㪇
㱏㪉㱐㪉㪾㪉㩿㼺㪄㱐㪆㪊㪀
㪈㪅㪇㪜㪂㪈㪈
㪈㪅㪉㪜㪂㪈㪈
P83
/L/L0$6105࡟ࡼࡿ/L&R2ࡢᵓ㐀ゎᯒ
‫ۑ‬ᮧୖ⨾࿴㔝⏣Ὀᩯ➉⭜Ύ஀⌮
Ⲩ஭๰ෆᮏ႐ᬕᑠஂぢၿඵ
ி኱࣭⏘ᐁᏛ㐃ᦠᮏ㒊ி኱࣭⌮㸪&5(67 ி኱࣭ே⎔
6
Li/7Li MAS NMR studies on LiCoO2
‫ۑ‬Miwa Murakami1, Yasuto Noda2,3, Kiyonori Takegoshi2,3, Hajime Arai1,
Yoshiharu Uchimoto4, Zenpachi Ogumi1
1
Office of Society-Academia Collaboration for Innovation, Kyoto University, Kyoto, Japan.
2
Graduate School of Science, Kyoto University, Kyoto, Japan. 3 CREST, Japan.
4
Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.
6
Li/7Li solid-state magic-angle spinning (MAS) NMR has been employed to study
microscopic local structure of LiCoO2, which is one of the most widely used cathode
materials in lithium ion batteries. The 6Li/7Li MAS spectra consist mainly of a strong sharp
signal at 0 ppm and several small signals at ca. 183, 4, -5, -16 ppm. The shift was attributable
to hyperfine interaction between Li and paramagnetic Co ions, which are introduced by
excess Li ions occupying the Co sites in the D-NaFeO2 lattice structure. 7Li-7Li 2D exchange
NMR experiment bears cross peaks among the central Li peak and the minor peaks, for which
the exchange mechanism is ascribed to spin-diffusion. Analysis of the 2D NMR spectra as
well as T1 measurement allow us to assign the minor peaks and local structures of these minor
Li sites near the paramagnetic center is discussed.
ࢥࣂࣝࢺ㓟ࣜࢳ࣒࢘/L&R2ࡣ/L㟁ụࡢṇᴟᮦ
ᩱ࡜ࡋ࡚ࡣ୍⯡ⓗ࡞≀㉁࡛࠶ࡾࠊ࠸ࢃࡺࡿ
࣭1D)H2ᆺࡢᒙ≧ᵓ㐀ࢆᣢࡗ࡚࠸ࡿࠋ/Lࡢ඘ᨺ㟁
࡟ క ࠸ /L&R2 ࡟ /L ࡀ ฟ ධ ࡾ ࡋ ࠊ /L ࡀ 㐣 ๫ ࡞
/L[&R[2[!ࡢᅛయ105࡛ࡣᒙ㛫ࡢ/Lࡢࣆ࣮ࢡ
࡛ ࠶ ࡿ SSP ࡟ ⌧ ࢀ ࡿ ࣓ ࢖ ࣥ ࣆ ࣮ ࢡ ௨ እ ࡟
SSP࡟ᑠࡉ࡞ಙྕࡀ⌧ࢀࡿࡇ࡜ࡀ▱
ࡽࢀ࡚࠸ࡿࡀࠊࡑࡢᖐᒓࡣ᫂ࡽ࠿࡟ࡉࢀ࡚࠸࡞࠸ࠋ
ᅗ㸯࡟6LJPD$OGULFK࠿ࡽ㉎ධࡋࡓ/L&R2 ࡢ /L࡜
/Lࡢḟඖࢫ࣌ࢡࢺࣝࢆ♧ࡍࠋ/Lࡣኳ↛Ꮡᅾẚࡀ
࡛࠶ࡾ☢Ẽᅇ㌿ẚࡶ/Lࡢ⣙ಸ࡛࠶ࡾឤᗘ
ࡣ㧗࠸ࡀࠊᅄᴟᏊ࣮࣓ࣔࣥࢺࡀ/Lࡢ⣙ಸ࡜኱ࡁ
Fig. 1 7Li/6Li MAS spectra of
࠸ࡓࡵ࡟ࠊᅄᴟᏊ┦஫స⏝ࡢḟᦤື࡟ࡼࡿ⥺ᖜࡸ
LiCoO2 observed at 9.4 T with the
ᖖ☢ᛶ┦஫స⏝࡟ࡼࡿ⥺ᖜ࡞࡝࡟ࡼࡾ࣐࢖ࢼ࣮࡞
MAS frequency of ca. 20 kHz.
ಙྕ㸦ᅗ࡛$%&㸧ࡣᖜᗈࡃ࡞ࡾほ ࡀ㞴ࡋ࠸ࠋ
ࢫ࣮࣌ࢫࡢ㒔ྜ࡛SSP௜㏆ࡢࢫ࣌ࢡࢺࣝࡣ♧ࡋ࡚࠸࡞࠸ࠋ
ᅛయ㹌㹋㹐ࣜࢳ࣒࢘㟁ụ஧ḟඖ┦㛵㹌㹋㹐
‫ࢃࡳࡳ࠿ࡽࡴۑ‬㸪ࡢࡔࡸࡍ࡜㸪ࡓࡅࡈࡋࡁࡼࡢࡾ㸪࠶ࡽ࠸ࡣࡌࡵ㸪࠺ࡕࡶ࡜ࡼࡋࡣࡿ㸪
࠾ࡄࡳࡐࢇࡥࡕ
-354-
ᅗ㸰࡟ 7Li-7Liࡢ2D஺᥮NMRࢫ࣌ࢡࢺࣝࢆ
♧ࡋࡓࠋ஺᥮᫬㛫ࡣ500ms࡛࠶ࡾࠊ࣐࢖ࢼ࣮
࡞ࣆ࣮ࢡ(A-C)࡜࣓࢖ࣥࣆ࣮ࢡࡢ㛫࡟஺ᕪࣆ
࣮ࢡࡀほ ࡉࢀࡓࠋࡇࡢ஺ᕪࣆ࣮ࢡࡣᙜึࡣ
Li࢖࢜ࣥࡢᣑᩓ㐠ື࡟ࡼࡿ஺᥮࡟㉳ᅉࡍࡿ
࡜⪃࠼ࡓࡀࠊ㔝⏣ࡽࡢ ᗘኚ໬ ᐃ࡞࡝࡟ࡼ
ࡾࠊ࢖࢜ࣥࡢᣑᩓࡢ஺᥮ࡣ㐜࠸ࡇ࡜ࡀ♧၀ࡉ
ࢀࠊࡇࡢ஺ᕪࣆ࣮ࢡࡣࢫࣆࣥᣑᩓ࡛࠶ࡿ࡜⪃
࠼ࡓ(࣏ࢫࢱ࣮YP5)ࠋࡉࡽ࡟஺ᕪࣆ࣮ࢡᙉᗘ
ࡢMASࡢ㏿ᗘ౫Ꮡᛶ࡞࡝࠿ࡽࡶ஺ᕪࣆ࣮ࢡ
ࡢ⏤᮶ࡀࢫࣆࣥᣑᩓ࡛࠶ࡿࡇ࡜ࡀ♧၀ࡉࢀ
࡚࠸ࡿࠋᅗ㸯࡛♧ࡉࢀࡓࡼ࠺࡟6Liࡢ᪉ࡀศ
㞳ࡀⰋࡃ2D ᐃ࡟ࡶ㐺ࡋ࡚࠸ࡿࡀ஺᥮ࡢ࣓
࢝ࢽࢬ࣒ࡀࢫࣆࣥᣑᩓ࡛࠶ࡿ࡜♧၀ࡉࢀࡓ
ࡓࡵ࡟ᮏ◊✲࡛ࡣ 6Li-6Liࡢ2D஺᥮ ᐃࡣ⾜
Fig. 2 7Li-7Li 2D exchange MAS spectrum
ࢃ࡞࠿ࡗࡓࠋ
of LiCoO2 observed at 9.4 T with the MAS
ࡇࢀࡽࡢ࣐࢖ࢼ࣮ࣆ࣮ࢡࡢࢩࣇࢺࡢ
frequency of ca. 19 kHz.
ཎᅉࡣ㐣๫࡞Li࡟ࡼࡿ⤖ᬗḞ㝗ࡀཎᅉ
࡛⌧ࢀࡿᖖ☢ᛶCo࡜ࡢ┦஫స⏝࡟ࡼࡿ
ࡶࡢ࡜⪃࠼ࡽࢀࡿࠋࡑࡇ࡛ࠊᖖ☢ᛶ┦஫
స⏝ࡢ኱ࡁࡉࢆぢ✚ࡶࡿࡓࡵ࡟ࡇࢀࡽ
ࡢࣆ࣮ࢡࡢT1 ࢆ ᐃࡋࡓࠋ7Li࡛ࡣࢫࣆ
ࣥᣑᩓࡢᙳ㡪ࡀ࠶ࡿࡇ࡜࡜ࣆ࣮ࢡࡢศ
㞳ࡀᝏ࠸ࡓࡵ࡟6Li࡛T1 ᐃࢆ⾜ࡗࡓࠋ
࣓࢖ࣥࣆ࣮ࢡࡢT1ࡀ᭱ࡶ㛗ࡃ(ca. 7 s)ࠊ
ࢩࣇࢺࡀ኱ࡁࡃ࡞ࡿ࡟ࡘࢀ࡚T1 ࡶ▷ࡃ
࡞ࡿഴྥࡀぢࡽࢀࡓࠋࡇࢀࡣࢩࣇࢺࡀᖖ
☢ᛶ࡟ࡼࡿࡶࡢ࡛࠶ࡿࡇ࡜ࢆ᫂ࡽ࠿࡟
♧၀ࡋ࡚࠸ࡿࠋࡘࡲࡾࠊࡇࢀࡽࡢࣆ࣮ࢡ
ࢩࣇࢺ࡜T1 ࡢ್ࡣࡇࢀࡽࣆ࣮ࢡࡢLiࢧ
࢖ࢺ࡜ᖖ☢ᛶ୰ᚰ࡜ࡢ㊥㞳࡟౫Ꮡࡋࠊ㊥
Fig. 3 Recovery curves of 6Li signal intensities
㞳ࡀᑠࡉ࠸࡜ࢩࣇࢺࡀ኱ࡁࡃࠊT1ࡣ▷ࡃ
of LiCoO2 observed at 14 T with the MAS
࡞ࡿ࡜⪃࠼ࡽࢀࡓࠋࡇࡇ࡟ࡣ♧ࡋ࡚࠸࡞
frequency of ca. 14 kHz.
࠸ࡀ183 ppmࡢࣆ࣮ࢡࡢT1ࡣ⣙0.1 s࡜ᴟ
➃࡟▷ࡃ࡞ࡗ࡚࠾ࡾࠊ183 ppmࡢࣆ࣮ࢡࢆ♧ࡍLiࢧ࢖ࢺࡣᖖ☢ᛶCoࡢ᭱㏆ഐ࡛࠶ࡿࡢ
࡛ࡣ࡞࠸࠿࡜⪃࠼࡚࠸ࡿࠋ
ㅰ㎡
ᮏ◊✲ࡣࠊ᪂࢚ࢿࣝࢠ࣮࣭⏘ᴗᢏ⾡⥲ྜ㛤Ⓨᶵᵓࡢࠕ㠉᪂ᆺ⵳㟁ụඛ➃⛉Ꮫᇶ♏◊✲
஦ᴗࠖ࡟࠾࠸࡚⾜ࢃࢀࡓࡶࡢ࡛࠶ࡾࠊ㛵ಀྛ఩࡟῝ࡃឤㅰ࠸ࡓࡋࡲࡍࠋ
References
1. S. Levasseur et. al., Chem. Mater. 15 (2003) 348-354.
-355-
P84
࢔ࣝ࢝ࣜ࣎ࣟࣁ࢖ࢻࣛ࢖ࢻ࡟࠾ࡅࡿ࢖࢜ࣥࡢ
ࢲ࢖ࢼ࣑ࢡࢫ
‫ۑ‬἞ᮧᆂᏊᯘ⦾ಙ
⏘ᴗᢏ⾡⥲ྜ◊✲ᡤ ィ ࣇࣟࣥࢸ࢕࢔◊✲㒊㛛
Ion dynamics in alkali borohydrides
‫ۑ‬Keiko Jimura and Shigenobu Hayashi
Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial
Science and Technology (AIST).
Hydrogen gas is a clean energy source for fuel cells. Hydrogen storage with high densities
is one of key technologies to realize the fuel cells. A number of materials containing hydrogen
have been studied as hydrogen storage materials. Among them, Inorganic compounds such as
sodium borohydride NaBH4 and lithium aluminum hydride LiAlH4 are attractive because of
their high mass density of hydrogen. To understand hydrogen states and dynamics is useful to
create new hydrogen-storage materials. Solid-state NMR is a powerful method to study local
structure and dynamics. In the present work, we focus on alkali borohydrides. We have
studied ion dynamics in alkali borohydrides by means of solid-state NMR.
>ᗎ@ ㏆ᖺࠊ/L%+ࢆึࡵ࡜ࡍࡿ୍㐃ࡢ࣎ࣟࣁ࢖ࢻࣛ࢖ࢻ㸦Ỉ⣲໬࣍࢘⣲໬ྜ≀㸧ࡣࠊ
㔠ᒓỈ⣲໬≀࡞࡝࡜」ྜ໬ࡉࡏࡿࡇ࡜࡟ࡼࡾࠊᵝࠎ࡞࢚ࢿࣝࢠ࣮㛵㐃ᶵ⬟ࢆ♧ࡍࡇ࡜
ࡀ᫂ࡽ࠿࡜࡞ࡗ࡚࠸ࡿࠋࡇࢀࡽࡢ≀㉁ࡣỈ⣲ࡢ㉁㔞ᐦᗘࡀ㧗࠸ࡓࡵࠊ᪂ࡓ࡞Ỉ⣲㈓ⶶ
ᮦᩱ࡜ࡋ࡚ὀ┠ࡉࢀ࡚࠸ࡿࠋ࣎ࣟࣁ࢖ࢻࣛ࢖ࢻ୰ࡢỈ⣲ᣲືࢆㄪ࡭ࡿࡇ࡜ࡣ௒ᚋࡢᮦ
ᩱ㛤Ⓨ࡟㈉⊩ࡍࡿ࡜ᮇᚅࡉࢀ࡚࠸ࡿࠋ୰࡛ࡶࠊᅛయ105ࡣỈ⣲ࢆ┤᥋ほ ࡍࡿࡇ࡜ࡢ
࡛ࡁࡿ㠀ᖖ࡟᭷ຠ࡞ ᐃ᪉ἲ࡜ࡋ࡚ὀ┠ࡉࢀ࡚࠾ࡾࠊ≉࡟Ỉ⣲ࡢࢲ࢖ࢼ࣑ࢡࢫ࡟ࡘ࠸
࡚ࡣࡶࡗ࡜ࡶ᭷ຠ࡞ᡭἲ࡛࠶ࡿࠋᮏ◊✲࡛ࡣࠊ୕✀㢮ࡢ࣎ࣟࣁ࢖ࢻࣛ࢖ࢻ㸦/L%+ࠊ1D%+ࠊ
.%+㸧࡟ࡘ࠸࡚ࠊᅛయ105ࢆ⏝࠸࡚࢖࢜ࣥࡢࢲ࢖ࢼ࣑ࢡࢫࢆㄪ࡭ࡓࠋ
>ᐇ㦂@ ヨᩱࡣࠊࢩࢢ࣐࣭࢔ࣝࢻࣜࢵࢳ♫〇ࡢ⢊ᮎ1D%+ࠊ.%+ࠊ/L%+
ࢆ⏝࠸ࡓࠋ❅⣲㞺ᅖẼୗ࡛㐺㔞ࢆࣃ࢖ࣞࢵࢡࢫ࢞ࣛࢫ⟶㸦ȭPP࠾ࡼࡧPP㸧
࡟ワࡵࠊ࣮ࣟࢱ࣮࣏ࣜࣥࣉ࡛┿✵ᘬࡁࡋ࡞ࡀࡽᑒࡌษࡗࡓࡶࡢࢆ ᐃ࡟⏝࠸ࡓࠋ
㟼Ṇヨᩱࡢ105 ᐃ࡟ࡣࠊ%UXNHU$6;㸦ඹ㬆࿘Ἴᩘ+0+]%
0+]㸧ࠊ%UXNHUPT㸦ඹ㬆࿘Ἴᩘ +0+]㸧ࢆ⏝࠸ࡓࠋࢫ࣌ࢡࢺࣝ ᐃࡣࠊ$6;
ࢆ⏝࠸ࠊ6ROLGHFKRἲȧȫȧȫHFKR࡛⾜ࡗࡓࠋ7 ᐃ࡟ࡘ࠸࡚ࡣࠊ$6;
࠾ࡼࡧPTࢆ⏝࠸ࠊ཯㌿ᅇ᚟ἲȧȫȧȫ ȧȫ HFKRࡲࡓࡣ㣬࿴ᅇ᚟ἲ
ȧȫQȫȧȫȧȫHFKR㸦PT࡛ࡣQ 㸧ࢆ⏝࠸ࡓࠋ ᐃ ᗘ⠊ᅖ
ࡣࠊ$6;࡛ࡣ⣙.࠿ࡽ.ࠊPT࡛ࡣ⣙.࠿ࡽ.࡛࠶ࡿࠋ
ᅛయ105Ỉ⣲㈓ⶶᮦᩱỈ⣲໬࣍࢘⣲໬ྜ≀
‫ࡇ࠸ࡅࡽࡴࡌۑ‬㸪ࡣࡸࡋࡋࡆࡢࡪ
-356-
>⤖ᯝ࠾ࡼࡧ⪃ᐹ@ ᅗ࡟ࠊ1D%+࡟࠾ࡅࡿ+
VWDWLF105ࢫ࣌ࢡࢺࣝࢆ♧ࡍࠋ㧗 㒊࡛ほ ࡉ
ࢀࡓ㠀ᖖ࡟ࢩ࣮ࣕࣉ࡞ࢩࢢࢼࣝࡣ୙⣧≀࡟ࡼ
ࡿࡶࡢ࡜⪃࠼ࡽࢀࡿࠋ඲ ᐃ ᗘ㡿ᇦ࡛ࠊ⥺ᖜ
⣙N+]ࡢ࢞࢘ࢫᆺ⥺ᙧࢆࡋࡓࢩࢢࢼࣝࢆほ ࡋࡓࠋ1D%+ࡣࠊ.௜㏆࡛ప ┦㸦ṇ᪉ᬗ㸧
࠿ࡽᐊ ┦㸦❧᪉ᬗ㸧࡬ࡢ┦㌿⛣ࡀ㉳ࡇࡿࡇ࡜
ࡀ▱ࡽࢀ࡚࠸ࡿࠋࡋ࠿ࡋࠊ ᐃ ᗘ⠊ᅖෆ࡛ࡣ
᫂☜࡞⥺ᙧࡢኚ໬ࡣほ ࡉࢀࡎࠊ⥺ᖜࡶ࡯ࡰ୍
ᐃ࡛࠶ࡗࡓࠋ%VWDWLF105ࢫ࣌ࢡࢺࣝࡶࠊ+
ࢫ࣌ࢡࢺࣝ࡜ఝࡓࡼ࠺࡞⥺ᙧ࡜ࡑࡢ ᗘ౫Ꮡ
ᛶࢆ♧ࡋࡓࠋ .%+ࡢ+VWDWLF105ࢫ࣌ࢡࢺ࡛ࣝࡶࠊ༢୍ᡂ
ศࡢࢩࢢࢼࣝࡀほ ࡉࢀࠊ1D%+࡜ఝࡓࡼ࠺࡞⥺
ᙧࢆ♧ࡋࡓࠋ ᗘኚ໬࡟క࠺ࢫ࣌ࢡࢺࣝࡢ⥺ᖜ
ࡸ⥺ᙧࡢኚ໬ࡣほ ࡉࢀࡎࠊ⥺ᖜࡣ⣙N+]࡛
࠶ࡗࡓࠋ
/L%+ࡣࠊ.௜㏆࡛ᐊ ┦㸦ᩳ᪉ᬗ㸧࠿ࡽ
㧗 ┦㸦භ᪉ᬗ㸧࡬┦㌿⛣ࡍࡿࡇ࡜ࡀ▱ࡽࢀ࡚
Fig. 1. 1H static NMR spectra of
࠸ࡿࠋ+VWDWLF105ࢫ࣌ࢡࢺ࡛ࣝࡣࠊ༢୍ᡂ
NaBH4 (200.13 MHz).
ศࡢࢩࢢࢼࣝࡀほ ࡉࢀࡓࠋ.௨ୗ࡛ࡣ⥺
ᖜࡀ⣙N+]࡛࠶ࡗࡓࠋ.௨ୖ࡛ࡣḟ➨࡟⥺ᖜࡀᑠࡉࡃ࡞ࡗ࡚࠸ࡁࠊ.࡛ࡣ⣙
N+]࡛࠶ࡗࡓࠋ୍᪉ࠊ ᗘኚ໬࡟క࠺⥺ᙧࡢኚ໬ࡣほ ࡉࢀ࡞࠿ࡗࡓࠋ
⤖ᬗᵓ㐀࠿ࡽ᥎ᐃࡉࢀࡿ⥺ᖜ࡜ほ ࡉࢀࡓ⥺ᖜ࡜ẚ㍑᳨ウࡍࡿࡇ࡜࡟ࡼࡗ࡚ࠊ㐠ື
࣮ࣔࢻࢆỴࡵࡓࠋࡑࡢ⤖ᯝࠊ࣎ࣟࣁ
࢖ࢻࣛ࢖ࢻ࡟࠾ࡅࡿ࣍࢘⣲ࢆ୰ᚰ࡜
ࡍࡿᅄ㠃య࢖࢜ࣥ%+ ࡀ㠀ᖖ࡟㏿࠸
➼᪉ⓗ࡞෌㓄ྥ㐠ືࢆࡋ࡚࠾ࡾࠊ
.௜㏆࡛ࡶ㐠ື࣮ࣔࢻࡀኚ໬ࡋ࡞࠸
ࡇ࡜ࢆ᫂ࡽ࠿࡟ࡋࡓࠋ
ᅗ࡟ࠊ1D%+࡟࠾ࡅࡿ+࡜%ࡢࢫ
ࣆ࣮ࣥ᱁Ꮚ⦆࿴᫬㛫㸦7㸧ࡢ ᗘ౫
Ꮡᛶࢆ♧ࡍࠋ.௜㏆࡛┦㌿⛣ࡀ㉳
ࡇࡾࠊ7ࡀ୙㐃⥆࡟ኚ໬ࡋࡓࠋᐊ ┦࡛ࡣ ᗘୖ᪼࡟క࠸ࠊ7ࡣᚎࠎ࡟
㛗ࡃ࡞ࡾ+ࡢ7ࡣ☢ሙ౫Ꮡᛶࢆ♧ࡉ
࡞࠿ࡗࡓࠋ୍᪉ࠊప ┦࡛ࡣ☢ሙ౫
Ꮡᛶࢆ♧ࡋࡓࠋࡇࡢ⤖ᯝࢆゎᯒࡋ࡚ࠊ
%+ࡢ෌㓄ྥ㐠ືࡢ㏿ᗘࢆỴᐃࡋࡓࠋ
Fig. 2. 1H and 11B T1 of NaBH4, (A) 11B T1
>ㅰ㎡@ ᮏ◊✲ࡣࠊ1('2Ỉ⣲㈓ⶶᮦᩱඛ
(64.207 MHz), (B) 1H T1 (19.65 MHz) and
➃ᇶ┙◊✲஦ᴗ+<'52‫ۼ‬67$5ࡢୗ࡛⾜
(C) 1H T1 (200.13 MHz).
ࢃࢀࡓࠋ
-357-
P85
࠯ࠝ࡜ࠗ࠻ߦ߅ߌࠆࡉ࡟ࡦࠬ࠹࠶࠼㉄ὐߩ᷹ⷰ
٤ዊፉ ᄹᵤሶᨋ ❥ା
↥ᬺᛛⴚ✚ว⎇ⓥᚲ⸘᷹ࡈࡠࡦ࠹ࠖࠕ⎇ⓥㇱ㐷
NMR measurements of Brønsted acid sites on zeolites
٤Natsuko Kojima and Shigenobu Hayashi
Research Institute of Instrumentation Frontier, National institute of Advanced Industrial
Science and Technology (AIST)
Zeolites are solid acid catalysts widely used. OH groups on the zeolite surface work as
Brøensted acid. We can study the acid strength and the amount of the acid sites by 1H MAS
NMR measurements. However, it is difficult to get the spectra of the OH groups, because
zeolites easily adsorb H2O in air. In the present work, we have tried to reduce the H2O content
as low as possible and we have obtained 1H MAS NMR spectra of OH groups on several
zeolites.
‫ޜ⸒✜ޛ‬
࠯ࠝ࡜ࠗ࠻ߪ࿕૕㉄⸅ᇦߣߒߡᐢߊ↪޿ࠄࠇߡ޿ࠆ‫⴫࠻ࠗ࡜ࠝ࠯ޕ‬㕙ߩ᳓㉄ၮ߇ࡉ
࡟ࡦࠬ࠹࠶࠼㉄ὐߣߥߞߡ௛޿ߡ߅ࠅ‫ޔ‬1H NMRࠬࡍࠢ࠻࡞ߩ᷹ⷰߦࠃࠅ㉄ᒝᐲ߿㉄
㊂ࠍ⺞ߴࠆߎߣ߇ߢ߈ࠆ‫ߪ࠻ࠗ࡜ࠝ࠯ޔߒ߆ߒޕ‬ⓨ᳇ਛߩ᳓ࠍኈᤃߦๆ⌕ߒߡߒ߹޿‫ޔ‬
᳓㉄ၮᧄ᧪ߩࠬࡍࠢ࠻࡞ࠍᓧࠆߎߣ߇࿎㔍ߢ޽ࠆ‫⎇ᧄޕ‬ⓥߢߪ‫ޔ‬ⓨ᳇ਛߩ᳓ಽߩᓇ㗀
ࠍᭂജឃ㒰ߒߡ⹜ᢱࠍ⺞⵾ߒ‫⴫࠻ࠗ࡜ࠝ࠯ޔ‬㕙ߩ᳓㉄ၮߩ1H MAS NMRࠬࡍࠢ࠻࡞ࠍ
ᓧߚߩߢႎ๔ߔࠆ‫ޕ‬
‫ޛ‬ታ㛎‫ޜ‬
࠯ࠝ࡜ࠗ࠻ߪ‫⸅ޔ‬ᇦቇળෳᾖ⸅ᇦᆔຬળ߆ࠄឭଏߐࠇߚ߽ߩߢ‫࠼࡯ࠦߩࠇߙࠇߘޔ‬
ߪᰴߦ⸥タߔࠆ߽ߩࠍ↪޿ߚ‫*
࠻ࠗ࠽࠺࡞ࡕޕ‬/ߪ,4%<*/<5/ߪ
,4%<* * * ; ࠯ ࠝ ࡜ ࠗ ࠻ ߪ ,4%<*; ‫ߪ ࠻ ࠗ ࡜ ࠝ ࠯ ࠲ ࡯ ࡌ ޔ‬
,4%<*$ࠍ↪޿ߚ‫ޕ‬วᚑᤨߦ߅ߌࠆ5K1#N1ߩࡕ࡞Ყ߇ฦ‫ޔޘ‬ᢙሼߢ⴫ߐࠇߡ޿
ࠆ‫*ޕ‬/ߥࠄ߫‫<ޔ‬5/ߥࠄ߫‫࠲࡯ࡌޔ߫ࠄߥ࠻ࠗ࡜ࠝ࠯;ޔ‬
࠯ࠝ࡜ࠗ࠻ߥࠄ߫ߣߥߞߡ޿ࠆ‫*ޕ‬/<5/***$'#ߪ‫ޔ‬ᱷ⇐ߒ
ߡ޿ࠆ0*ࠗࠝࡦࠍ㒰ߊߚ߼ߦ޽ࠄ߆ߓ߼͠ߢ὾ᚑࠍߒ‫㉄ޔ‬ὐߩᓇ㗀ࠍᬌ⸛ߔࠆߚ
߼ߦ‫ޕߚߒߦဳ*ߡోޔ‬ኒ㐽น⢻ߥ⹜㛎▤ߦࠨࡦࡊ࡞ࠍ౉ࠇ‫⌀ޔ‬ⓨ࡜ࠗࡦߢ⹜㛎▤ౝ
ࠍ⌀ⓨߦߔࠆ‫ߩߘޕ‬ᓟ‫<ޔ‬5/****ࡌ࡯࠲ߪ⹜㛎▤ߩ᷷ᐲࠍ͠߹ߢ‫ޔ‬
*/*;ߪ͠߹ߢᓢ‫ߦޘ‬਄ߍߡ޿߈‫ᤨޔ‬㑆⌀ⓨടᾲߒߚ‫⌀ޕ‬ⓨടᾲᓟ‫ޔ‬
⹜㛎▤ࠍኒ㐽ߒߡ㧝᥅᡼⟎ߒߚ‫ߩߘޕ‬ᓟ‫ࠬࠟ⚛⓸ޔ‬㔓࿐᳇ਅߢ/#5ࡠ࡯࠲࡯ߦ⹜ᢱࠍ
ల㎾ߒߚ‫ޕ‬
*OCIKECPINGURKPPKPI
/#50/4ߪ$TWMGT/5.㧔౒㡆๟ᵄᢙ*/*\㧕
ࠍ↪޿ߡቶ᷷ߢ᷹ቯߒߚ‫ޕ‬$TWMGT/#5ࡊࡠ࡯ࡉࡋ࠶࠼ߢ‫ޔ‬ᄖᓘOOߩࠫ࡞ࠦ࠾ࠕ
࿕૕0/4࠯ࠝ࡜ࠗ࠻࿕૕㉄⸅ᇦ
٤ߎߓ߹ߥߟߎ㧘ߪ߿ߒߒߍߩ߱
-358-
ࡠ࡯࠲࡯ࠍ૶↪ߒ‫♽ࠬ࡞ࡄޔ‬೉ߪㅢᏱߩࠪࡦࠣ࡞ࡄ࡞ࠬࠍ૶↪ߒߚ‫࡞࠻ࠢࡍࠬߩ*ޕ‬
ߪ‫
ࡦ࡜ࠪ࡞࠴ࡔ࡜࠻࠹ޔ‬6/5ࠍၮḰߣߒߡ⴫␜ߒߚ‫ޕ‬
‫⚿ޛ‬ᨐߣ⠨ኤ‫ޜ‬
࠯ࠝ࡜ࠗ࠻ࠍ͠ߢ⌀ⓨടᾲߒߚ
ᓟߦ᷹ቯߒߚ */#50/4ࠬࡍࠢ࠻࡞ࠍ
(KIWTGߦ␜ߒߚ‫*ޕ‬/*/*/ 㪟㪰㪌㪅㪍
ߦRROߩࠪࠣ࠽࡞߇᷹ⷰߐࠇߚ‫ޕ‬
*/*/ߢߪ‫ޔ‬RROߦࠪࡖ࡯ࡊߥ 㪟㪤㪉㪇
ࠪࠣ࠽࡞‫ޔ‬RROઃㄭߣRROઃㄭߦ
ࡉࡠ࡯࠼ߥࠪࠣ࠽࡞߇᷹ⷰߐࠇ‫*ޔ‬/ 㪟㪤㪈㪌
ߢߪRRO‫ޔ‬RRO‫ޔ‬RRO‫ޔ‬RRO
ߦࡉࡠ࡯࠼ߥࠪࠣ࠽࡞߇᷹ⷰߐࠇߚ‫ޕ‬
RROߪቅ┙ߒߚ5K1*‫ޔ‬RRO‫ޔ‬RRO‫ޔ‬㪟㪤㪈㪇
RRO‫࡟ࡉߪ࡞࠽ࠣࠪߥ࠼࡯ࡠࡉߩޔ‬
㪈㪌
㪈㪇
㪌
㪇
㪄㪌
ࡦࠬ࠹࠶࠼㉄ὐ5K1*#NߦᏫዻߐࠇࠆ‫ޕ‬
㱐㩷㩿㫇㫇㫄㪀
*;ߢߪ‫ޔ‬RROߦᲧセ⊛ࠪࡖ࡯
Figure 1. 1H MAS NMR spectra of H-type
ࡊߥࠪࠣ࠽࡞‫ޔ‬RROઃㄭߦࡉࡠ࡯࠼ߥ
mordenites and HY after heating under
ࠪࠣ࠽࡞‫ޔ‬RROߦࠪࡖ࡯ࡊߥࠪࠣ࠽
vacuum.
࡞߇᷹ⷰߐࠇߚ‫ޕ‬RROߪቅ┙ߒߚ
5K1*‫ޔ‬RROઃㄭ‫ޔ‬RROߩࠪࠣ
࠽࡞ߪࡉ࡟ࡦࠬ࠹࠶࠼㉄ὐ
5K1*#NߦᏫዻߐࠇࠆ‫ޕ‬
࠯ࠝ࡜ࠗ࠻ࠍ͠ߢ⌀ⓨടᾲߒ
㪟㪙㪜㪘㪉㪌
ߚᓟߦ᷹ቯߒߚ*/#50/4ࠬࡍࠢ࠻ 㪱㪪㪤㪌㪄㪈㪇㪇㪇㪟
࡞ࠍ(KIWTGߦ␜ߒߚ‫<ޕ‬5/*
<5/*<5/*ߢߪRRO
㪱㪪㪤㪌㪄㪎㪇㪟
ߦࠪࡖ࡯ࡊߥࠪࠣ࠽࡞߇᷹ⷰߐࠇ‫ޔ‬
RROઃㄭߦࡉࡠ࡯࠼ߥࠪࠣ࠽࡞߇
㪱㪪㪤㪌㪄㪉㪌㪟
᷹ⷰߐࠇߚ‫<ޕ‬5/*ߢߪ‫ޔ‬RRO
㪈㪌
㪈㪇
㪌
㪇
㪄㪌
ઃㄭߦ㧞ᧄߣRROߦࠪࠣ࠽࡞߇
㱐㩷㩿㫇㫇㫄㪀
᷹ⷰߐࠇߚ‫ޕ‬RROઃㄭߪቅ┙ߒ
ߚ5K1*‫ޔ‬RROߪ᳓⚛⚿วߒߚ
Figure 2. 1H MAS NMR spectra of H-type
5K1*15K‫ޔ‬RROઃㄭߩࡉࡠ࡯
ZSM5 and HBEA after heating under vacuum.
࠼ߥࠪࠣ࠽࡞ߪࡉ࡟ࡦࠬ࠹࠶࠼㉄
ὐ5K1*#NߦᏫዻߐࠇࠆ‫*ޕ‬$'#ߢߪ‫ޔ‬RROߦࠪࡖ࡯ࡊߥࠪࠣ࠽࡞‫ޔ‬RRO‫ޔ‬
RROߦࡉࡠ࡯࠼ߥࠪࠣ࠽࡞߇᷹ⷰߐࠇߚ‫ޕ‬RROߪቅ┙ߒߚ5K1*‫ޔ‬RROߪ᳓⚛
⚿วߒߚ5K1*15K‫ޔ‬RROߪࡉ࡟ࡦࠬ࠹࠶࠼㉄ὐ5K1*#NߦᏫዻߐࠇࠆ‫ޕ‬
߹ߚ‫ޔ‬਄⸥࠯ࠝ࡜ࠗ࠻ߩ5K#N/#50/4ࠬࡍࠢ࠻࡞ࠍ᷹ⷰߒߚ‫ޕ‬5K/#50/4
ࠬࡍࠢ࠻࡞߆ࠄߪ㛽ᩰߩ5K#NᲧࠍ▚಴ߒ‫ࠄ߆ߎߘޔ‬㈩૏ߩ#N㊂‫࡟ࡉޔߜࠊߥߔޔ‬
ࡦࠬ࠹࠶࠼㉄㊂ࠍ⷗Ⓧ߽ߞߚ‫ޕ‬#N/#50/4ࠬࡍࠢ࠻࡞ߢߪ㈩૏߅ࠃ߮㈩૏ߩ#N
ࠍ᷹ⷰߒ‫ޔ‬㈩૏ߩ#N㊂߆ࠄࡉ࡟ࡦࠬ࠹࠶࠼㉄㊂ࠍ⷗Ⓧ߽ߞߚ‫⚿ߩࠄࠇߎޕ‬ᨐߣ*/#5
0/4ࠬࡍࠢ࠻࡞߆ࠄᓧࠄࠇߚ⚿ᨐࠍᲧセߒߡቯ㊂⊛ߥ⠨ኤࠍⴕߞߚ‫ޕ‬
-359-
P86
࿕૕NMRᴺߦࠃࠆ㉄ൻࠣ࡜ࡈࠔࠗ࠻ጀ㑆ౝߩC60ಽሶߩ
ㆇേ⁁ᘒߩ⎇ⓥ
٤᪀ේ ᄢ੺1‫ޔ‬੗਄ ᄢテ2‫ޔ‬㋈ᧁ ൎ1㧘ਛ᧛ ᢅ๺3㧘
⍹Ꮉ ⺈4㧘ਃᶆ ᶈᴦ4
1 㔚ㅢᄢవㅴℂᎿ‫ޔ‬2 㔚ㅢᄢ㊂ሶ‛⾰‫ޔ‬3 ಽሶ⎇‫ޔ‬4 ᗲᢎᄢ‛ℂ
Solid-state NMR study of physical properties of C60 molecule intercalated in
graphite oxide
٤Daisuke Kuwahara1, Daisuke Inoue2, Masaru Suzuki1, Toshikazu Nakamura3, Makoto
Ishikawa4, Koji Miura4
1,2 Univ. of Electro-Communications, 3 Institute for Molecular Science, 4 Aichi Univ. of Education
Recently, Miura and co-workers have synthesized the novel nanocomposite consisting of a
stacked single graphite oxide sheet and a C60 fullerene monolayer (GO-C60) [1]. GO-C60
shows a ultralow friction. In C60 fullerene and its compounds, one of the interesting topics is
the rotational dynamics. Furthermore, understanding of the rotational dynamics in those
materials is of importance to elucidate the mechanism for ultralow friction. Solid-state 13C
NMR experiments for the fullerene and some compounds have revealed this dynamics. Thus
motivated, we carried out solid-state 13C NMR experiments for GO-C60. In addition, we tried
to confirm the intercalation of C60 into graphite oxide sheets by using solid-state NMR
techniques.
1.✜⸒
ᦨㄭ㧘ਃᶆࠄߪ⤘Ảൻߒߚࠣ࡜ࡈࠔࠗ࠻ߩጀ㑆ߦC60ࠍኽ౉ߒߚ⹜ᢱ㧔ࠣ࡜ࡈࠚࡦ/C60
නጀ⤑/ࠣ࡜ࡈࠚࡦ̖㧕ߩวᚑߦᚑഞߒ㧘⿥ૐ៺ᡂߣߥࠆߎߣࠍ᣿ࠄ߆ߦߒߚ [1]㧚ߎ
ߩ‫⿥ޡ‬ૐ៺ᡂ‫ߡߒߣࡓ࠭࠾ࠞࡔߩޢ‬㧘⤘Ảൻߒߚࠣ࡜ࡈࠔࠗ࠻ߩጀ㑆ౝߦ޽ࠆC60ߩ
ㆇേ⁁ᘒ߇㑐ଥߒߡ޿ࠆߣ⠨߃ࠄࠇߡ޿ࠆ㧚න⚿᥏C60ߪቶ᷷ߢ߶߷⥄↱ߥ࿁ォㆇേ
ࠍߒߡ޿ࠆߎߣ߇⍮ࠄࠇߡ޿ࠆ߇㧘ࠣ࡜ࡈࠚࡦ/C60නጀ⤑/ࠣ࡜ࡈࠚࡦ̖ਛߩC60ಽሶߩ
ㆇേ⁁ᘒߩ⹦⚦ߪ߹ߛ᣿ࠄ߆ߦߐࠇߡ޿ߥ޿㧚ߘߎߢᧄ⎇ⓥߢߪ㧘ࠣ࡜ࡈࠚࡦ/C60න
ጀ⤑/ࠣ࡜ࡈࠚࡦ̖ਛߩC60ಽሶߩㆇേ⁁ᘒߦߟ޿ߡ⍮⷗ࠍᓧࠆߚ߼ߦ㧘ࠣ࡜ࡈࠚࡦ/C60
නጀ⤑/ࠣ࡜ࡈࠚࡦ̖ਛߩC60ಽሶߩ‛ᕈ᷹ቯࠍⴕߞߚ㧚⸛⺰ળߢߪ13C NMR᷹ቯߩ⚿
ᨐࠍਛᔃߦႎ๔ߔࠆ㧚ᧄ⎇ⓥߢߪߐࠄߦ㧘C60߇ࠣ࡜ࡈࠚࡦጀ㑆ߦኽ౉ߐࠇߡ޿ࠆߎ
ߣࠍ㧘࿕૕NMRߩᚻᴺࠍ↪޿ߡ⏕⹺ߔࠆߎߣࠍⴕߞߚ㧚
ࡈ࡜࡯࡟ࡦ㧘ࠣ࡜ࡈࠔࠗ࠻㧘⿥ૐ៺ᡂ
٤ߊࠊߪࠄ ߛ޿ߔߌ‫ޔߕ߆ߒߣ ࠄ߻߆ߥޔࠆߐ߹ ߈ߕߔޔߌߔ޿ߛ ߃߁ߩ޿ޔ‬
޿ߒ߆ࠊ ߹ߎߣ‫ߓ߁ߎ ࠄ߁ߺޔ‬
-360-
2. ታ㛎⚿ᨐ
Fig. 1 ߦࠣ࡜ࡈࠚࡦ/C60නጀ⤑/ࠣ࡜ࡈࠚࡦ̖
ߩ13C NMRࠬࡍࠢ࠻࡞ࠍ␜ߒߚ㧚10Kߦ߅޿
ߡ ߪC60 ಽሶߩൻቇࠪࡈ࠻⇣ᣇᕈߦ⿠࿃ߔࠆ
✢᏷߅ࠃߘ 200ppmߩࠬࡍࠢ࠻࡞߇᷹ⷰߐࠇ
ߚ㧚ߎࠇߪC60ಽሶߩㆇേ߇ಓ⚿ߐࠇߡ޿ࠆߎ
ߣࠍᗧ๧ߔࠆ㧚৻ᣇ㧘70Kએ਄ߩ᷷ᐲၞߢߪ
10Kߢߩࠬࡍࠢ࠻࡞ߦട߃㧘144ppmઃㄭߦࡇ
࡯ࠢࠍᜬߟࠃ߁ߥ㍈޿ࠬࡍࠢ࠻࡞߇᷹ⷰߐࠇ
ߚ㧚ߎߩ᭽ߥ㍈޿ࠬࡍࠢ࠻࡞ߪC60ಽሶߩ࿁ォ
ㆇേߦ↱᧪ߔࠆ߽ߩߢ޽ࠆ㧚120Kએ਄ߩ᷷ᐲ
ၞߢߪࠬࡍࠢ࠻࡞ᒻ⁁ߩᄌൻߪ᷹ቯߩಽ⸃⢻
ߩ▸࿐ౝߢߪ⷗ࠄࠇߥ޿㧚߹ߚ 190–300Kߩ᷷
ᐲ ၞߢߩ 13C NMRࠬࡍࠢ࠻࡞෸߮❑✭๺₸
T1-1ߦࠃࠅ㧘C60ಽሶߪ 190–300Kߩ᷷ᐲၞߢߪ
Figure 1.
13
C NMR spectra of static GO-C60 at
different indicated temperatures.
ㆇേ⁁ᘒߦᄢ߈ߥᄌൻߪήߊ㧘⋧㑐ᤨ㑆ߦߒ
ߡ 10psecࠝ࡯࠳࡯ߩ╬ᣇ࿁ォࠍⴕߞߡ޿ࠆߎ
ߣ߇᣿ࠄ߆ߦߥߞߚ㧚
3. C60ߩኽ౉ߩᬌ⸽
C60߇ࠣ࡜ࡈࠚࡦጀ㑆ߦኽ౉ߐࠇߡ޿ࠆߎߣߪ㧘☳ᧃX✢ߩ࿁᛬࠺࡯࠲ࠍ⸃ᨆߔࠆߎߣ
ߦࠃߞߡߔߢߦ᣿ࠄ߆ߦߥߞߡ޿ࠆ [1]㧚ᧄ⎇ⓥߢߪ⇣ߥࠆ⎇ⓥᚻᲑ㧘࿕૕NMRߩᚻ
ᴺࠍ↪޿ࠆߎߣߦࠃߞߡߎߩ㊀ⷐߥ⚿ᨐ㧔‫ޟ‬C60ߩኽ౉‫ޠ‬㧕ࠍᬌ⸽ߔࠆߎߣߦߒߚ㧚
ౕ૕⊛ߦߪ㧘C60߇ࠣ࡜ࡈࠚࡦጀߣ࠽ࡁ࡟ࡌ࡞ߢ㓞ធߒߡሽ࿷ߒߡ޿ࠆߎߣࠍ᣿ࠄ߆
ߦߔࠆߚ߼ߦ㧘13C–13C㑆ߩREDORታ㛎ࠍⴕߞߚ㧚ߎߩห⒳ᩭ㑆ߩREDORታ㛎ߦߪ㧘
ㆬᛯ⊛RFࡄ࡞ࠬࠍ૶ߞߚᣂߒ޿‫ޟ‬REDORࡄ࡞ࠬ♽೉‫ߚߒ↪૶ࠍޠ‬㧔Fig. 2㧕㧚
Figure 2.
Homonuclear REDOR pulse sequence.
Fig. 3 ߦߪ㧘࠹ࠬ࠻ࠨࡦࡊ࡞ all 13C
Figure 3. (a) Carboxyl carbon resonances of all
13
C enriched L-alanine measured (a) with Ǹ
pulses and (b) withoutǸpulses.
enriched L-alanine ࠍ૶ߞߚ੍஻ታ㛎ߩ⚿ᨐࠍ␜ߒߚ㧚ળ႐ߢߪ㧘ࠣ࡜ࡈࠚࡦ/C60නጀ
⤑/ࠣ࡜ࡈࠚࡦ̖ࠍ૶ߞߚታ㛎⚿ᨐࠍ㧘C60න૕ࠍ૶ߞߚ⚿ᨐߣวࠊߖߡႎ๔ߔࠆ㧚
[1] N. Sasaki and K. Miura, Jpn. J. Appl. Phys. 43, 4486 (2004).
-361-
P87
ᅛయNMR࡟ࡼࡿ⾲㠃ಟ㣭BNࢼࣀ⢏Ꮚࡢᵓ㐀࡜ಟ㣭᭷ᶵ
ศᏊࡢ⤖ྜ≧ែ
‫┦ۑ‬㤿 ὒஅ㸪ᯘ ⦾ಙ
⊂❧⾜ᨻἲே ⏘ᴗᢏ⾡⥲ྜ◊✲ᡤ ィ ࣇࣟࣥࢸ࢕࢔◊✲㒊㛛
Structures of surface-modified boron nitride nano-particles and bonding
states of organic molecules studied by high-resolution solid-state NMR
‫ۑ‬Hiroyuki Souma and Shigenobu Hayashi
Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial
Science and Technology (AIST), Tsukuba, Japan.
It is important that the surface of nano-particles is modified by chemical species having hign
affinity with the matrix in order to disperse nano-particles uniformly in the matrix. We
demonstrated previously that solid-state nuclear magnetic resonance (SSNMR) can detect the
bonding between the surface of the titania nano-particles and the surface-modified reagent.
And we proved previously that SSNMR is very useful to characterize the surface-modified
nano-particles. In the present study, we have synthesized boron nitride (BN) nano-particles
modified by propylphosphonic acid (PPA) and decylphosphonic acid (DPA), and have
demonstrated that SSNMR can detect the bonding between the surface of the BN
nano-particles and PPA or DPA.
࠙ᗎㄽࠚ
ࢼࣀ⢏Ꮚࢆ࣐ࢺࣜࢵࢡࢫ୰࡟ᆒ୍࡟ศᩓࡉࡏࡿࡓࡵ࡟ࡣࠊ࣐ࢺࣜࢵࢡࢫ࡜┦⁐ᛶࡢ
㧗࠸໬Ꮫ✀࡛ࢼࣀ⢏Ꮚ⾲㠃ࢆಟ㣭ࡍࡿࡇ࡜ࡀ㔜せ࡛࠶ࡾࠊࡑࡢ⾲㠃ಟ㣭๣ࡣࢼࣀ⢏Ꮚ
⾲㠃࡟ᑐࡋࠊඹ᭷⤖ྜ࡛ᙉᅛ࡟⤖ྜࡋ࡚࠸ࡿᚲせࡀ࠶ࡿࠋᡃࠎࡣࡇࢀࡲ࡛ࠊࢳࢱࢽ࢔
ࢼࣀ⢏Ꮚࢆࣉࣟࣆࣝ࣍ࢫ࣍ࣥ㓟㸦PPA㸧ࡸࢹࢩࣝ࣍ࢫ࣍ࣥ㓟㸦DPA㸧࡛᭷ᶵಟ㣭ࡋ
ࡓࣁ࢖ࣈࣜࢵࢻヨᩱࢆㄪ〇ࡋࠊࢳࢱࢽ࢔ࢼࣀ⢏Ꮚ⾲㠃ࡢ᭷ᶵศᏊࡢ⤖ྜ≧ែࢆᅛయ
105ἲ࡛ゎ᫂ࡋ࡚ࡁࡓ[1]ࠋ
ࡇࢀࡲ࡛ࡢ◊✲࡟ᘬࡁ⥆ࡁࠊᮏ◊✲࡛ࡣ❅໬࣍࢘⣲ࢼࣀ⢏ᏊBNࢼࣀ⢏Ꮚࡢᮎ➃
ࢆPPA࡜DPA࡛᭷ᶵಟ㣭ࡋࡓ᭷ᶵ↓ᶵࣁ࢖ࣈࣜࢵࢻヨᩱࢆㄪ〇ࡋࠊᅛయNMRࢆ⏝࠸࡚
BNࢼࣀ⢏Ꮚᮎ➃࡟⤖ྜࡋࡓ᭷ᶵศᏊࡢ⤖ྜ≧ែࢆ᫂ࡽ࠿࡟ࡍࡿࡇ࡜ࠊࡑࡋ࡚ㄪ〇๓
ᚋࡢBNࢼࣀ⢏Ꮚࡢᵓ㐀ኚ໬ࡢ᭷↓ࢆㄪ࡭ࡿࡇ࡜ࢆ┠ⓗ࡜ࡋࡓࠋ
࠙ᐇ㦂ࠚ
⾲㠃ಟ㣭๣࡜ࡋ࡚PPAࠊDPAࢆ⏝࠸ࠊBNࢼࣀ⢏Ꮚ࡜ࡢࣁ࢖ࣈࣜࢵࢻヨᩱࢆㄪ〇ࡋࡓࠋ
PPA/BNࢼࣀ⢏ᏊࠊDPA/BNࢼࣀ⢏Ꮚඹ࡟ࠊ࢜࢖ࣝࣂࢫ୰࡛100Υ࡟ຍ⇕ࡋࠊ3᪥㛫ᨩᢾ
ࡉࡏ࡚ヨᩱࢆᚓࡓࠋྛヨᩱ࡟࠾ࡅࡿࢼࣀ⢏Ꮚ⾲㠃ࡢࣜࣥ㓟ᇶࡢ⤖ྜ≧ែ࡜ࡑࡢᵓ㐀ࡣࠊ
31
P CPMAS NMRࠊ11B MAS NMRࠊ1H MAS NMR࡟ࡼࡾㄪ࡭ࡓࠋ ᐃ࡟ࡣࠊBruker
ASX400ศගィ㸦ඹ㬆࿘Ἴᩘ 31P㸸161.98MHzࠊ11B㸸128.34MHzࠊ1H㸸400.13MHz㸧
ᅛయNMRBNࢼࣀ⢏Ꮚ⾲㠃ಟ㣭
‫ࡁࡺࢁࡦ ࡲ࠺ࡑۑ‬㸪ࡣࡸࡋ ࡋࡆࡢࡪ
-362-
࠾ࡼࡧBrukerASX200ศගィ㸦ඹ㬆࿘Ἴᩘ 11B㸸64.21MHzࠊ1H㸸200.13MHz㸧ࢆ⏝࠸
ࡓࠋ
࠙⤖ᯝ࣭⪃ᐹࠚ
➨୍࡟ࠊㄪ〇ࡋࡓPPA/BNࢼࣀ⢏Ꮚ࡜DPA/BNࢼࣀ⢏Ꮚࡢ1H MAS NMR ᐃ⤖ᯝ࠿ࡽࠊ
ࡑࢀࡒࢀࡢヨᩱࡀPPA࠾ࡼࡧDPA࡛᭷ᶵಟ㣭ࡉࢀ࡚࠸ࡿࡇ࡜ࢆ☜ㄆࡋࡓࠋ
⥆࠸࡚ࠊࡑࡢ᭷ᶵಟ㣭๣PPA࠾ࡼࡧDPAࡢ⤖ྜ≧ែࢆ᫂ࡽ࠿࡟ࡍࡿࡓࡵ࡟ࠊ 31P
CPMAS NMRࢫ࣌ࢡࢺࣝࢆ ᐃࡋࡓࠋㄪ〇ࡋࡓPPA/BNࢼࣀ⢏Ꮚ࡜ࡑࡢㄪᩚ࡟⏝࠸ࡓ
PPAࠊ࠾ࡼࡧㄪ〇ࡋࡓDPA/BNࢼࣀ⢏Ꮚ࡜ࡑࡢㄪ〇࡟⏝࠸ࡓDPAࡢࡑࢀࡒࢀࡢ 31P
CPMAS NMRࢫ࣌ࢡࢺࣝࢆFigure 1࡟♧ࡍࠋࡇࡢ୰࡛ࠊ᭷ᶵ↓ᶵࣁ࢖ࣈࣜࢵࢻヨᩱࡢࢫ
࣌ࢡࢺࣝ㸦a㸸PPA/BNࢼࣀ⢏Ꮚࠊc㸸DPA/BNࢼࣀ⢏Ꮚ㸧࡛ࡣࠊ2ࡘࡢࢩࢢࢼࣝࡀ☜ㄆ
ࡉࢀࡓࠋࡇࢀࡣࠊBNࢼࣀ⢏Ꮚ࡜᭷ᶵಟ㣭๣ࡀ⤖ྜࡋࡓࡇ࡜ࢆព࿡ࡋ࡚࠸ࡿࠋࡑࡋ࡚ࠊ
BNࢼࣀ⢏Ꮚ୰ࡢ࣍࢘⣲ཎᏊ࡟⤖
ྜࡋࡓሙྜ࡜❅⣲ཎᏊ࡟⤖ྜࡋ
ࡓሙྜ࡛ࡣࣜࣥ㓟ᇶ࿘ᅖࡢ⎔ቃ
ࡀኚ໬ࡍࡿࡢ࡛ࠊࢩࢢࢼࣝࡀ2ᮏ
࡟ศ⿣ࡋࡓྍ⬟ᛶࡀ㧗࠸ࠋᡃࠎࡣ
㼍
ࡇࢀࢆ᫂ࡽ࠿࡟ࡍࡿࡓࡵࠊPPA࡜
DPAࢆ࣍࢘㓟࡜ࢺ࢚ࣜࢳࣞࣥࢪ
࢔࣑ࣥ࡟┤᥋⤖ྜࡉࡏࡓヨᩱࢆ
సᡂࡋࠊ31P CPMAS NMRࢆ ᐃ
ࡋࡓࠋࡑࡋ࡚ࡑࢀࡽࡢヨᩱࡢࢫ࣌
ࢡࢺࣝ࠿ࡽᚓࡽࢀࡓ໬Ꮫࢩࣇࢺ
㼎
್ࢆ⪃៖ࡋࠊ௒ᅇࡢ᭷ᶵ↓ᶵࣁ࢖
ࣈࣜࢵࢻヨᩱࡢศ⿣ࡋࡓࢩࢢࢼ
ࣝ࡟ࡘ࠸࡚⪃ᐹࡋࡓࠋࡑࡢ⤖ᯝࠊ
㧗࿘Ἴᩘഃࡢࢩࢢࢼࣝࡀ࣍࢘⣲
ཎᏊ࡟⤖ྜࡋࡓPPA࠾ࡼࡧDPA
㼏
ࡢࣜࣥ㓟ᇶ࡛࠶ࡾࠊప࿘Ἴᩘഃࡢ
ࢩࢢࢼࣝࡀ❅⣲ཎᏊ࡟⤖ྜࡋࡓ
ࣜࣥ㓟ᇶ࡛࠶ࡿྍ⬟ᛶࡀ㧗࠸࡜
࠸࠺⤖ㄽ࡟⮳ࡗࡓࠋ
ࡉࡽ࡟ᡃࠎࡣࠊ11B MAS NMR
㼐
ࡢ ᐃࢆ⾜ࡗࡓࠋࡇࡢ⤖ᯝ࠿ࡽࠊ
ㄪ〇๓ࡢBNࢼࣀ⢏Ꮚ࡜ࠊ᭷ᶵ↓
㻡㻜
㻠㻜
㻟㻜
㻞㻜
㻝㻜
㻜 ᶵࣁ࢖ࣈࣜࢵࢻヨᩱ࡟࠾ࡅࡿ࣍
㼜㼜㼙
࢘⣲ཎᏊ࿘ᅖࡢᵓ㐀ኚ໬ࡢ᭷↓
ࢆ☜ㄆࡋࡓࠋ
Figure 1. 31P CPMAS NMR spectra of a) PPA/BN ᮏ◊✲ࡣࠊNEDO㉸ࣁ࢖ࣈࣜࢵ
nano-particles, b) crystalline PPA, c) DPA/BN ࢻᮦᩱᢏ⾡㛤Ⓨࣉࣟࢪ࢙ࢡࢺࡢ
ᨭ᥼ࢆཷࡅ࡚⾜ࢃࢀࡓࡶࡢ࡛࠶
nano-particles and d) crystalline DPA.
ࡿࠋ
࠙ᘬ⏝ᩥ⊩ࠚ[1] ┦㤿ὒஅࠊ༓ⴥுࠊᯘ⦾ಙࠊ➨48ᅇNMRウㄽ఍(2009)
-363-
P88
࿕૕ NMR 䈮䉋䉎 VHxDy (x+y㽈0.8)䈱⋧᭴ㅧ䈱⎇ⓥ
٤㋈ᧁ 㓁‫ޔ‬ᨋ ❥ା
↥ᬺᛛⴚ✚ว⎇ⓥᚲ ⸘᷹ࡈࡠࡦ࠹ࠖࠕ⎇ⓥㇱ㐷
Ӯ0.8) using solid-state NMR
Study of phase structures in VHxDy (x+yӮ
٤You Suzuki, Shigenobu Hayashi
Research institute of instrumentation frontier, National institute of advanced industrial
science and technology (AIST)
Vanadium (V) metal can absorb a large amount of hydrogen to the extent of a
hydrogen-to-metal atomic ratio of 2. It is known that the phase diagrams for vanadium
hydride and deuteride are much different. Especially the hydrides and deuterides in which the
hydrogen or deuterium contents are in 0.7~1.0 have different vanadium sublattices. In our
previous work, the VHxDy system (x+y‫ڌ‬0.8) was studied by X ray diffraction, 1H NMR and
2
H NMR. And the hydrogen and deuterium diffusion were analyzed by spin-lattice relaxation
time. In the present work, we have studied the phase structure in the VHxDy system (x+y‫ڌ‬0.8)
at room temperature using 1H and 2H MAS NMR.
[ᐨ] ࡃ࠽ࠫ࠙ࡓ㊄ዻߪ᳓⚛ࠟࠬߣ෻ᔕߒ‫ޔ‬቟
ቯߥ᳓⚛ൻ‛ࠍᒻᚑߔࠆ‫ޕ‬᳓⚛ൻ‛ߣ㊀᳓⚛ൻ
‛ߢߪ⋧࿑߇ᄢ߈ߊ⇣ߥࠆߎߣ߇⍮ࠄࠇߡ޿ࠆ
(Fig. 1)‫ߦߢ߹ࠇߎޕ‬᳓⚛ߣ㊀᳓⚛ߩᷙวࠟࠬࠍ
෻ᔕߐߖߚ VHxDy ߢ x+yӮ0.8 ߩ߽ߩߪ X ✢࿁᛬
߿࿕૕ᐢ᏷ NMR ࠍ↪޿ߚ⎇ⓥࠍⴕߞߚ‫ߩߘޕ‬
⚿ᨐ‫ޔ‬VH0.84 ߢߪࡃ࠽ࠫ࠙ࡓߪ૕ᔃᱜᣇᩰሶ
(BCT)ࠍߣࠅ᳓⚛ߪ 6 ㈩૏ࠨࠗ࠻ߦๆ⬿ߐࠇࠆ
ߎߣ߿ VD0.81 ߢߪࡃ࠽ࠫ࠙ࡓߪ૕ᔃ┙ᣇᩰሶ
(BCC)ࠍߣࠅ㊀᳓⚛ߪ 4 ㈩૏ࠨࠗ࠻ߦๆ⬿ߐࠇ
ࠆߎߣ‫ޔ‬VH0.4D0.4 ߢߪ BCC ߣ BCT ߩᷙ᥏ߣߥ
ࠆߎߣ߇᣿ࠄ߆ߦߥߞߚ‫́ࡦࡇࠬޔߚ߹ޕ‬ᩰሶ
✭๺ᤨ㑆ߩ᷷ᐲᄌൻ߆ࠄ᳓⚛߿㊀᳓⚛ߩ᜛ᢔ᜼
േߦߟ޿ߡ߽⸃ᨆࠍⴕߞߚ‫ޔߒ߆ߒޕ‬࿕૕㜞ಽ
⸃⢻ NMR ࠍ↪޿ߚ⎇ⓥߪ߹ߛⴕߞߡ޿ߥ޿‫ޕ‬
ᧄ⎇ⓥߢߪ‫ޔ‬㊀᳓⚛ߣシ᳓⚛ߩᷙวᲧ߇⇣ߥࠆ
ࡃ࠽ࠫ࠙ࡓ᳓⚛ൻ‛ߦ߅ߌࠆ⋧᭴ㅧߦߟ޿ߡ
1
H, 2H ࿕૕㜞ಽ⸃⢻ NMR ࠬࡍࠢ࠻࡞ࠍ᷹ቯߒ
ߡ⺞ߴߚ‫ޕ‬
(A)
(B)
Fig. 1 The phase diagrams of vanadium
hydride (A) and deuteride (B)
࿕૕㊀᳓⚛ NMR, ㊄ዻ᳓⚛ൻ‛, ࡃ࠽ࠫ࠙ࡓ᳓⚛ൻ‛
䂾䈜䈝䈐㩷 䉋䈉䋬䈲䉇䈚㩷 䈚䈕䈱䈹
-364-
[ታ㛎] ⹜ᢱߪࡃ࠽ࠫ࠙ࡓ㊄ዻߩ☳ᧃߣ᳓⚛ࠟࠬߣ㊀᳓⚛ࠟࠬߩᷙวࠟࠬࠍ෻ᔕߐߖ
ߡวᚑߒߚ‫ޕ‬᳓⚛߅ࠃ߮㊀᳓⚛ߩ฽᦭㊂ߪๆ⬿ߐࠇߚᷙวࠟࠬߩ૕Ⓧ߆ࠄ᳿ቯߒߚ‫ޕ‬
1
H ߅ࠃ߮ 2H NMR ߩ᷹ቯߦߪ Bruker ASX400 (౒㡆๟ᵄᢙ 1H 400.13 MHz, 2H 61.423
MHz) ࠍ↪޿ߚ‫ޕ‬1H, 2H NMR ࠬࡍࠢ࠻࡞ߩ᷹ቯߪ‫⹜ޔ‬ᢱࠍᄖᓘ 2.5 mm ߩࠫ࡞ࠦ࠾ࠕ
ࡠ࡯࠲࡯ߦలႯߒ‫ⷺࠢ࠶ࠫࡑޔ‬࿁ォ (MAS)ࠍ 12~20 kHz ߢⴕߞߚ‫ޕ‬ㅢᏱߩࠪࡦࠣ࡞ࡄ
࡞ࠬᴺߢ᷹ቯࠍⴕߞߚ‫ޕ‬
[⚿ᨐߣ⠨ኤ] Fig. 2ߦ1H MAS NMRࠬࡍࠢ࠻
࡞ࠍ␜ߔ‫ޕ‬Knight Shiftߩᄌൻߣ✢᏷ߩᄌൻ߇
x=0.84, y=0
*
᷹ⷰߐࠇߚ‫ޕ‬Knight ShiftߩၮḰߣߒߡ↪޿ࠄ
x=0.6, y=0.2
ࠇࠆ⵻ߩࡊࡠ࠻ࡦߪTMSၮḰߢ⚂30.5 ppmߢ
x=0.4, y=0.4
޽ࠅ‫ޔ‬Knight Shiftߪ⽶ߩᣇะߦ௛޿ߡ޿ࠆ‫ޕ‬
߹ߚ‫ޔ‬Knight Shiftߪx=0, y=0.81ߩ⹜ᢱࠍ㒰޿
x=0.2, y=0.6
ߡxߩჇടߦߣ߽ߥ޿ᄢ߈ߊߥߞߡ޿ߚ‫ޔߚ߹ޕ‬
*
x=0, y=0.81
᳓⚛ߣ㊀᳓⚛ߩᷙวࠟࠬߣ෻ᔕߐߖߚ⹜ᢱߢ
50
0
-50
-100
-150
ߪࡇ࡯ࠢ߇2ߟߩࡠ࡯࡟ࡦ࠷㑐ᢙߢಽ㔌ߔࠆ 100
ppm
ߎߣ߇ߢ߈ࠆߎߣ߆ࠄ‫ޔ‬ዪᚲ⊛ߥ᳓⚛ߩๆ⬿ Fig. 2. 1H MAS NMR spectra of VHxDy,
ࠨࠗ࠻߇⇣ߥࠆ࠼ࡔࠗࡦ᭴ㅧ߇ሽ࿷ߔࠆน⢻ referenced to the signal of TMS. The MAS ratio
ᕈ߇޽ࠆ‫✢ߩࠢ࡯ࡇޕ‬᏷ߪxߩჇടߦߣ߽ߥ޿ was 12 kHz. The marks * indicate background
Ⴧടߒߚ‫ޔߪࠇߎޕ‬xߩჇടߦߣ߽ߥ޿1H-1H peaks
㑆ߩ෺ᭂሶ⋧੕૞↪߇ᒝߊߥߞߚߚ߼ߣ⠨߃
ࠄࠇࠆ‫ޔߚ߹ޕ‬㊀᳓⚛ൻ‛ߢߪ᜛ᢔㅦᐲߩㅦ޿4㈩૏ࠨࠗ࠻ߦๆ⬿ߐࠇ‫ޔ‬᜛ᢔㆇേߦ
ࠃߞߡ෺ᭂሶ́෺ᭂሶ⋧੕૞↪߇ᐔဋൻߐࠇߡ޿ߚߩߦኻߒ‫ޔ‬x߇Ⴧ߃ࠆߦᓥ޿᜛ᢔ
ㅦᐲߩㆃ޿6㈩૏ࠨࠗ࠻ߦๆ⬿ߐࠇࠆ᳓⚛߇߰߃ߚߚ߼෺ᭂሶ́෺ᭂሶ⋧੕૞↪ߩᐔ
ဋൻ߇⿠ߎࠅߦߊߊߥߞߚน⢻ᕈ߽⠨߃ࠄࠇࠆ‫ޕ‬
Fig. 3ߦ2H MAS NMRࠬࡍࠢ࠻࡞ࠍ␜ߔ‫ޕ‬1H
MAS NMRࠬࡍࠢ࠻࡞ߣห᭽ߦKnight Shiftߩ
ᄌൻߣ✢᏷ߩᄌൻ߇᷹ⷰߐࠇߚ‫ޔߚ߹ޕ‬Knight
x=0.6, y=0.2
Shiftߩᣇะ߽ห᭽ߦ⵻ߩࡊࡠ࠻ࡦߦᲧߴ⽶ߩ
x=0.4, y=0.4
ᣇะߢ޽ࠅ‫ޔ‬xߩჇടߦߣ߽ߥ޿ᄢ߈ߊߥߞߡ
1
޿ߚ‫ ޔߒ߆ߒޕ‬H MAS NMRߩࠬࡍࠢ࠻࡞ߣ
x=0.2, y=0.6
ߪ㆑޿ࡇ࡯ࠢࠍ2ߟߩᚑಽߦ᣿⏕ߦಽ㔌ߔࠆ
x=0, y=0.81
ߎߣߪߢ߈ߥ߆ߞߚ‫ޔߪࠇߎޕ‬2ߟߩᚑಽ߇ࠪ
ࡈ࠻୯ߦᄢ߈ߥᏅ߇ߥ޿ߚ߼ߣ⠨߃ࠄࠇࠆ‫ ޕ‬100
50
0
-50
-100
-150
ppm
1
ࡇ࡯ࠢߩ✢᏷ߪ H MAS NMRࠬࡍࠢ࠻࡞ߣห
Fig. 3. 2H MAS NMR spectra of VHxDy,
᭽ߦxߩჇടߦߣ߽ߥ޿Ⴧടߒߚ‫ ߪࠇߎޕ‬1H
referenced to the signal of TMS. The MAS
MAS NMRߣห᭽ߦxߩჇടߦߣ߽ߥ޿1H-2H
ratio was 20 kHz.
㑆ߩ෺ᭂሶ⋧੕૞↪߇ᒝߊߥߞߚߚ߼ߣ⠨߃
ࠄࠇࠆ‫ޔߚ߹ޕ‬᜛ᢔㅦᐲߩㆃ޿6㈩૏ࠨࠗ࠻ߦๆ⬿ߐࠇࠆ㊀᳓⚛߇Ⴧ߃‫ޔ‬᜛ᢔㆇേߦ
ࠃࠆ෺ᭂሶ́෺ᭂሶ⋧੕૞↪߿྾ᭂሶ⋧੕૞↪ߩᐔဋൻ߇⿠ߎࠅߦߊߊߥߞߚน⢻
ᕈ߽⠨߃ࠄࠇࠆ‫ޕ‬
[⻢ㄉ] ᧄ⎇ⓥߪNEDO᳓⚛⾂⬿᧚ᢱవ┵ၮ⋚⎇ⓥ੐ᬺ(HYDRO‫ڏ‬STAR)ߩਅߢⴕࠊ
ࠇߚ‫ޕ‬
-365-
P89
ࡇࡠ࡝ࡦ㉄♽ࡊࡠ࠻ࡦዉ㔚૕ߩ࿕૕0/4
䂾⷏↰㓷৻㪈㪃 Ḯ፸ᤩม㪉㪃㩷 ᷓ⼱ᴦᒾ㪈㪃㩷 ౗᧻㩷 ᷤ㪈㪃㩷 ᣣᲧ㊁㜞჻㪉㩷
㪈
↥✚⎇ਛㇱ㪃 2ฬᄢ㒮࡮ⅣႺ㩷
Solid state NMR study
of proton conductors based on metal pyrophosphates
Masakazu Nishida1, Koji Genzaki2, Haruhiko Fukaya1, Wataru Kanematsu1, and Takashi
Hibino 2
1
National Institute of Advanced Industrial Science and Technology (AIST), Chubu, Japan.
2
Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan.
㩷
Protons and phosphates in metal prophosphates were analyzed by solid state NMR in order to
investigate proton conduction in these materials. The results of solid state NMR analysis
suggested that active species of the metal pyrophosphate were dependent on the
hygroscopicity: there were different pathways for protons, depending dopant species and
preparation procedure. In3+ and Al3+ doped tin pyrophosphates had an active P2O7 unit, which
was easily absorbing moisture, while SnP2O7-SnO2 composite has an active PO4 unit, being
less active for moisture. Furthermore, the P2O7 unit of Mg2+ doped tin pyrophosphate was
restricted in bulk, resulting in less proton conductivity at ambient temperature.
䋱䋮✜⸒㩷
㩷 㩷 ਛ᷷ၞ䈎䉌ᵴᕈ䉕⊒⃻䈜䉎䊒䊨䊃䊮ዉ㔚૕䈲䇮ਃర♽⸅
ᇦ䉇Άᢱ㔚ᳰ⚛᧚䈫䈚䈩䈱↪ㅜ䈏ᦼᓙ䈘䉏䈩䈇䉎䈏䇮ㄭᐕ䇮
䊂䉞䊷䉷䊦䊌䊁䉞䉨䊠䊧䊷䊃䋨㪧㪤䋩䉶䊮䉰䈫䈚䈩䈱ᔕ↪䈮䈧
䈇䈩䉅ᵈ⋡䈘䉏䈩䈇䉎䇯ᧄ⎇ⓥ䈪䈲䇮䊏䊨䊥䊮㉄♽䊒䊨䊃䊮ዉ
㔚૕䈫䈚䈩䇮䊏䊨䊥䊮㉄䉴䉵䋨㪪㫅㪧㪉㪦㪎 䋩䉕ૐේሶଔ䉦䉼䉥䊮
㩿㪤㪔㪠㫅㪃㩷 㪘㫃㪃㩷 㪤㪾㪀䈪⟎឵䈚䈢䊄䊷䊒䊏䊨䊥䊮㉄䉴䉵㪪㫅㪈㪄㫏㪤㫏㪧㪉㪦㪎
෸䈶㪚㪸㫉㪹㫆㫅䉕ᜂᜬ䈚䈢὾⚿૕䈎䉌⵾ㅧ䈜䉎㪪㫅㪧㪉㪦㪎㪄㪪㫅㪦㪉䉮
Fig. 1. Structure of doped tin
䊮䊘䉳䉾䊃䉕ኻ⽎䈫䈚䈩䇮࿕૕㪥㪤㪩⸘᷹䈮䉋䉍♽ਛ䈱䊒䊨䊃䊮
pyrophoshate (blue: SnO6,
෸䈶䊥䊮䈱᜼േ䉕᣿䉌䈎䈮䈚䇮䊒䊨䊃䊮ዉ㔚䈮ଥ䉒䉎ᵴᕈ⒳
yellow: P2O7; red: dopant)
䈮䈧䈇䈩䈱⍮⷗䉕ᓧ䉎䈖䈫䉕⋡⊛䈫䈜䉎䇯㩷
㩷
䋲䋮⹜ᢱ䈱⺞⵾㩷
㩷 䊒䊨䊃䊮ዉ㔚૕㪪㫅㪈㪄㫏㪤㫏㪧㪉㪦㪎㩿㪤㪔㪠㫅㪃㩷 㪘㫃㪃㩷 㪤㪾㪀䈲䇮ᐔဋ☸ᓘ䈏㪉㪈㫅㫄䈱㪪㫅㪦㪉䈱⿥ᓸ☸ሶ☳ᧃ䈮
㪏㪌㩼䈱㪟㪊㪧㪦㪋䇮ฦ⒳䊄䊷䊌䊮䊃䇮䉟䉥䊮੤឵᳓䉕䈠䉏䈡䉏ട䈋䇮㪊㪇㪇㷄䈪ᡬᜈ䈚䈩䉴䊤䊥䊷⁁䈮
䈚䈢ᓟ䈮䇮ⓨ᳇ਛ䇮㪍㪌㪇㷄䈪㪉㪅㪌ᤨ㑆࿕⋧෻ᔕ䉕ⴕ䈉䈖䈫䈪ᓧ䈢䇯䈖䈱㓙䇮䊄䊷䊌䊮䊃䈫䈚䈩䈲
㪠㫅㪉㪦㪊㪃㩷 㪘㫃㩿㪦㪟㪀㪊㪃㩷 㪤㪾㩿㪦㪟㪀㪉䈭䈬䈱㉄ൻ‛䉇᳓㉄ൻ‛䉕૶↪䈚䈢䇯㪪㫅㪧㪉㪦㪎㪄㪪㫅㪦㪉䉮䊮䊘䉳䉾䊃䈲
㪏㩷㫎㫋㩼㩷㪚㪸㫉㪹㫆㫅䉕ᜂᜬ䈚䈢㪪㫅㪧㪉㪦㪎㪄㪪㫅㪦㪉὾⚿૕䉕㪍㪇㪇㷄䈪䊥䊮㉄ಣℂ䈜䉎䈖䈫䈮䉋䉍ᓧ䈢䇯㩷
㩷
㪤㪼㫋㪸㫃㩷㫇㫐㫉㫆㫇㪿㫆㫊㫇㪿㪸㫋㪼㪃㩷㪈㪟㩷㪤㪘㪪㩷㪥㪤㪩㪃㩷㪊㪈㪧㩷㪤㪘㪪㩷㪥㪤㪩㩷
㩷
䂾䈮䈚䈣䉁䈘䈎䈝䋬䈕䉖䈙䈐䈖䈉䈛䋬䈸䈎䉇䈲䉎䈵䈖䋬䈎䈰䉁䈧䉒䈢䉎䋬䈵䈶䈱䈢䈎䈚
-366-
䋳䋮⎇ⓥ䈱⚿ᨐ䈍䉋䈶⠨ኤ㩷
Mg2+ (10 mol%)
㩷 ᦨೋ䈮䇮⹜ᢱ⺞⵾ᓟ䇮☳⎈䈚䈢㪪㫅㪈㪄㫏㪤㫏㪧㪉㪦㪎㩿㪤㪔㪠㫅㪃㩷㪘㫃㪃㩷㪤㪾㪀
䈱㩷 㪈㪟㩷㪤㪘㪪㩷㪥㪤㪩䈱᷹ቯ䉕ⴕ䈦䈢䇯䈠䈱⚿ᨐ䉕㪝㫀㪾㪅㪉䈮␜䈜䇯
In3+ (10 mol%)
䈇䈝䉏䈱⹜ᢱ䉅㪈㪇䌾㪈㪊㫇㫇㫄ઃㄭ䈮ᒝ䈇䊏䊷䉪䉕␜䈚䈢䈏䇮䊥
䊮㉄ಣℂ೨䈱㪪㫅㪦㪉䈮䈧䈇䈩䈲㪌㫇㫇㫄ઃㄭ䈮ๆ⌕᳓䈮ၮ䈨䈒ᒙ
䈇䊏䊷䉪䉕␜䈚䈢䈱䉂䈪䈅䈦䈢䇯䉁䈢䇮䊄䊷䊒⒳䈱ᷝട䈮䉋䉍
Al3+ (5 mol%)
䊏䊷䉪䈱ൻቇ䉲䊐䊃䈲㫅㫆㫅㪄㪻㫆㫇㪼㩷㪕㩷㪘㫃㪊㪂㩷㪕㩷㪠㫅㪊㪂㩷㪕㩷㪤㪾㪉㪂䈱㗅䈮㜞
⏛႐䉲䊐䊃䈚䈩䈇䈢䇯੹࿁᷹ቯ䉕ⴕ䈦䈢㪤㪾㪉㪂䊄䊷䊒એᄖ䈱
㪪㫅㪈㪄㫏㪤㫏㪧㪉㪦㪎䈲䈎䈭䉍ๆḨᕈ䈏㜞䈒䇮ๆḨ䈚䈢᳓䈮䉋䈦䈩䊏䊷䉪
non-dope
䈲㜞⏛႐䉲䊐䊃䈚䇮ᒝᐲ䉅Ⴧട䈚䈩䈇䈢䇯㩷
ᰴ䈮䇮᳓ᵞ䈇䉕ⴕ䈉䈖䈫䈪ๆḨᕈ䈱ᚑಽ䉕㒰෰䈚䇮㪈㪟㩷㪤㪘㪪㩷
㪥㪤㪩䈱᷹ቯ䉕ⴕ䈦䈢䇯㪝㫀㪾㪅㪊䈮␜䈚䈢䉋䈉䈮᳓ᵞ䈇䈮䉋䉍䊒䊨䊃 18 16 14 12 10 8 6 4ppm2
Fig.2. 1H MAS NMR of
䊮䈱䊏䊷䉪䈲㜞⏛႐䈮䉲䊐䊃䈚䇮㫅㫆㫅㪄㪻㫆㫇㪼㪃㩷㪠㫅㪊㪂㪃㩷㪘㫃㪊㪂㩷 䊄䊷䊒䈪
䈲㪐㫇㫇㫄ઃㄭ䈮䇮㪤㪾㪉㪂䈪䈲㪏㪅㪊㫇㫇㫄䈮䊏䊷䉪䈏ⷰኤ䈘䉏䈢䇯৻ᣇ䇮 Sn1-xMxP2O7 (M=In, Al, Mg)
㪪㫅㪧㪉㪦㪎㪄㪪㫅㪦㪉䉮䊮䊘䉳䉾䊃䈪䈲䇮᳓ᵞ䈇䈚䈩䈇䈭䈇⹜ᢱ䈪䉅
Mg2+ (10 mol%, washed)
㪎㪅㪍㫇㫇㫄䈫Ყセ⊛㜞⏛႐䈮䊏䊷䉪䈏⃻䉏䇮᳓䈮䉋䉍㒰෰䈘䉏
䉎䉋䈉䈭㪪㫅㪈㪄㫏㪤㫏㪧㪉㪦㪎䈏᦭䈜䉎ๆḨᕈ䈱ಽሶ⒳䈲฽᦭䈚䈩䈇
In3+ (10 mol%, washed)
䈭䈇䈫⠨䈋䉌䉏䈢䇯㩷
㩷 䈖䉏䉌䈱䊒䊨䊃䊮ዉ㔚૕䈱䊋䊦䉪ⅣႺ䈱⋧㆑䉕䇮㪊㪈㪧㩷㪤㪘㪪㩷
Al3+ (5 mol%, washed)
㪥㪤㪩䈪䈘䉌䈮ⷰኤ䈚䈢䇯㪝㫀㪾㪅㪋䈮␜䈜䉋䈉䈮䇮੹࿁᷹ቯ䉕ⴕ䈦
non-dope (washed)
䈢㪪㫅㪈㪄㫏㪤㫏㪧㪉㪦㪎䈱㪊㪈㪧㩷㪛㪛㪆㪤㪘㪪㩷㪥㪤㪩䈪䈲䇮㪇㫇㫇㫄ઃㄭ䈱㪧㪦㪋䈱
㗔ၞ䈫㪄㪈㪌㫇㫇㫄䈫㪄㪊㪏㫇㫇㫄ઃㄭ䈱䋲⒳㘃䈱㪧㪉㪦㪎䈱㗔ၞ䈮䊏䊷䉪
SnP2O7-SnO2
䈏ⷰኤ䈘䉏䈢䇯䉁䈢䇮㪝㫀㪾㪅㪌䈮␜䈜䉋䈉䈮䇮㪊㪈㪧㩷㪚㪧㪆㪤㪘㪪㩷㪥㪤㪩
㪉㪂
䈮䈍䈇䈩䈲䇮㪤㪾 䊄䊷䊒䈱䉂䈏㪄㪊㪏㫇㫇㫄ઃㄭ䈮䊏䊷䉪䈏⃻䉏
SnO2
䈢䈏䇮䈠䉏એᄖ䈱㫅㫆㫅㪃㩷㪠㫅㪊㪂㪃㩷㪘㫃㪊㪂䊄䊷䊒䈪䈲㪄㪈㪉㫇㫇㫄ઃㄭ䈮䉲
18 16 14 12 10 8 6 4 2
䊞䊷䊒䈭䊏䊷䉪䈏⃻䉏䈩䈇䈢䇯৻ᣇ䇮㪪㫅㪧㪉㪦㪎㪄㪪㫅㪦㪉䉮䊮䊘䉳
ppm
㪉㪂
䉾䊃䈪䈲䇮㪛㪛㪆㪤㪘㪪䈪䈲㪤㪾 䊄䊷䊒䈫ห䈛䉋䈉䈮㪄㪊㪏㫇㫇㫄ઃㄭ
Fig.3. 1H MAS NMR of tin
䈮䊑䊨䊷䊄䈭䊏䊷䉪䈏⃻䉏䈢䈏䇮㪚㪧㪆㪤㪘㪪䈪䈲㪇㫇㫇㫄ઃㄭ䈮
pyrophosphates
䈎䈭䉍䉲䊞䊷䊒䈭䊏䊷䉪䉕␜䈚䈩䈇䈢䇯㩷
㩷 㔚᳇ൻቇ⊛䈭䊂䊷䉺䈫ว䉒䈞
Mg2+ (10 mol%)
Mg2+ (10 mol%)
㪊㪂
㪊㪂
䈩⠨ኤ䈜䉎䈫䇮㪠㫅 㪃㩷㪘㫃 䊄䊷䊒䈲
In3+ (10 mol%)
ๆḨᕈ䈱㪧㪉㪦㪎㩿㪄㪈㪉㫇㫇㫄㪀㩷 䈏䇮
In3+ (10 mol%)
㪪㫅㪧㪉㪦㪎㪄㪪㫅㪦㪉䉮䊮䊘䉳䉾䊃䈪䈲㕖
Al3+ (5 mol%)
ๆḨᕈ䈱㪧㪦㪋㩿㪇㫇㫇㫄㪀㩷 䈏䇮䈠䉏䈡
Al3+ (5 mol%)
䉏䊒䊨䊃䊮ዉ㔚ᕈ䈮㑐ਈ䈚䈩䈇䉎
ಽሶ⒳䈪䈅䉎䈫␜ໂ䈘䉏䈢䇯৻ᣇ䇮 non-dope
㪤㪾㪉㪂䊄䊷䊒䈪䈲䇮䈖䉏䉌䈱ಽሶ⒳
non-dope (washed)
non-dope
䈱ነਈ䈲ዋ䈭䈒䇮䈾䈫䉖䈬䈏ਇᵴ
ᕈ䈭䊋䊦䉪䈱㪧㪉㪦㪎㩿㪄㪊㪏㩷㫇㫇㫄㪀䈪䈅 SnP O -SnO
2 7
2
SnP2O7-SnO2
䉍䇮䉁䈢䇮ቶ᷷䈪䈱䊒䊨䊃䊮ዉ㔚
ᕈ䉅ૐ䈒䈭䈦䈩䈇䈢䇯✭๺ᤨ㑆⸃ 25
0
-25
-50
-75
0
-25
-50
-75
ppm 25
ppm
31
ᨆ䉕฽䉄䈢⼏⺰䈱⹦⚦䈮䈧䈇䈩
Fig.4. P DD/MAS NMR of
Fig.5. 31P CP/MAS NMR of
䈲䇮ᒰᣣႎ๔䈜䉎੍ቯ䈪䈅䉎䇯㩷
tin pyrophosphates
tin pyrophosphates
-367-
P90
㜞⏛႐࿕૕%C0/4ߦࠃࠆ࠻ࡃࡕ࡜ࠗ࠻↢ᚑㆊ⒟ߩ⸃ᨆ
٤ฬ㔐ਃଐ1ᯅᧄᐽඳ1✁᎑ᱜㅢ1⩵㑆ᷕ1᧻㊁ା਽1
ਤᚲᱜቁ2ᷡ᳓⑓2᧻੗ਭੳ㓶3
1
ᣩൻᚑ
ᩣ2
⁛‛⾰࡮᧚ᢱ⎇ⓥᯏ᭴3ᣩൻᚑᑪ᧚
ᩣ
Hydrothermal formation of tobermorite studied by solid-state 43Ca NMR
٤Mie Nayuki1, Yasuhiro Hashimoto1, Masamichi Tsunashima1, Jun Kikuma1,
Shinya Matsuno1, Masataka Tansho2, Tadashi Shimizu2, Kunio Matsui3
1
Asahi kasei Corporation, 2National Institute forMaterial Science, 3Asahi kasei Construction
Materials Corporation
Tobermorite, a naturally present hydrated calcium silicate, is hydrothermally produced in
industry. To clarify the synthetic pathway, we have been performed in-situ XRD under
autoclaved condition. However, the information on the amorphous phase including a key
intermediate, C-S-H, has yet to be extracted. Here, ex-situ NMR was carried out for the
intermediates quenched at varied reaction time. In our attempt to comprehensively understand
the pathway, natural abundance 43Ca solid-state NMR in addition to the conventional 29Si and
27
Al NMR spectroscopy was carried out. In this report, we will discuss the structure of the
C-S-H and its conversion to tobermorite in terms of the CaO and SiO layer structure as well
as the Al3+ incorporation.
㧝㧚⋡⊛
ࠤࠗ㉄ࠞ࡞ࠪ࠙ࡓ᳓๺‛ߩ߭ߣߟߢ޽ࠆ࠻ࡃࡕ࡜
Al substitution
CaO layer
ࠗ࠻(5CaO࡮6SiO2࡮5H2O)ߪ‫ࡉ࡯࡟ࠢ࠻࡯ࠝޔ‬㙃↢ߦ
ߡ⵾ㅧߐࠇࠆᑪ▽᧚ᢱߩਥᚑಽߢ޽ࠅ‫ޔ‬Ꮏᬺ⊛ߦ㊀ SiO layer
Ca2+
Ca2+
ⷐߥ㋶‛ߢ޽ࠆ㧔Fig.1㧕‫ޕ‬
CaO layer
ߎࠇ߹ߢߦ࠻ࡃࡕ࡜ࠗ࠻ߩ↢ᚑࡔࠞ࠾࠭ࡓ⸃᣿ߩ
ߚ߼‫ߩߘޔ‬႐㧔in-situ㧕X ✢࿁᛬ࠍⴕߞߚ⚿ᨐ‫ޔ‬ਛ㑆
Fig.1 Tobermorite structure.
↢ᚑ‛‫ޔ‬㕖᥏⾰⋧㧔C-S-H㧕߅ࠃ߮ਇ⚐‛ߣߒߡሽ࿷
ߔࠆ Al ߇࠻ࡃࡕ࡜ࠗ࠻↢ᚑߦᄢ߈ߥᓇ㗀ࠍਈ߃ߡ޿ࠆߎߣ߇᣿ࠄ߆ߦߥߞߡ߈ߚ‫ޕ‬
੹࿁ᚒ‫⚿ޔߪޘ‬᥏㧛㕖᥏ߦ㑐ࠊࠄߕ᭴ㅧᖱႎ߇ᓧࠄࠇࠆ࿕૕ NMR ࠍ↪޿‫ޔ‬X ✢࿁
᛬ߢߪᖱႎ߇ᓧࠄࠇߥ޿㕖᥏⾰⋧ߩ⍮⷗ࠍᓧࠆߎߣࠍ⹜ߺߚ‫ޕ‬
㧞㧚ታ㛎
↢⍹Ἧ㧔CaO㧕‫⍾⃯ޔ‬㧔SiO2㧕‫ޔ‬ǫࠕ࡞ࡒ࠽㧔Al2O3㧕ࠍ᳓ߣᷙวߒ੍஻㙃↢ᓟ‫ࠝޔ‬
࡯࠻ࠢ࡟࡯ࡉౝߢട᷷ߒ෻ᔕߐߖߚ⹜ᢱߦߟ޿ߡ‫ޔ‬෻ᔕㅜਛߩฦᤨὐߢࠨࡦࡊ࡝ࡦࠣ
ࠍⴕ޿‫ޔ‬27Al‫ޔ‬29Si࿕૕NMR᷹ቯߦട߃‫ޔ‬43Ca࿕૕NMR᷹ቯࠍⴕߞߚ‫ޕ‬
ࠞ࡞ࠪ࠙ࡓࡂࠗ࠼ࡠࠪ࡝ࠤ࡯࠻࠻ࡃࡕ࡜ࠗ࠻ 43㧯㨍㧺㧹㧾
٤ߥࠁ߈ߺ߃‫ޔ߿ࠎߒߩߟ߹ޔࠎࠀߓ߹ߊ߈ޔߜߺߐ߹߹ߒߥߟޔࠈ߭ߔ߿ߣ߽ߒߪޔ‬
ߚࠎߒࠂ߹ߐߚ߆‫߅ߦߊ޿ߟ߹ޔߒߛߚߕߺߒޔ‬
-368-
43
Ca ࿕ ૕ NMR ᷹ ቯ ߪ JEOL ECA930
(21.8T) ⵝ⟎ࠍ‫ޔ‬27Al‫ޔ‬29Si࿕૕NMR᷹ቯ
ߪECA700 (16.4T)ࠍ↪޿ߡ‫ޔ‬ห૏૕ᮡ⼂
ࠍⴕࠊߕ‫ޔ‬ᄤὼሽ࿷Ყߩ߹߹᷹ቯࠍⴕߞ
ߚ‫ޕ‬
㧟㧚⚿ᨐߣ⠨ኤ
Fig.2 ߦ࠻ࡃࡕ࡜ࠗ࠻วᚑߦ㑐ࠊࠆൻ
ว‛ߩ43Ca࿕૕NMRࠬࡍࠢ࠻࡞ࠍ‫ޔ‬Fig.3
ߦฦ෻ᔕᤨὐߢࠨࡦࡊ࡝ࡦࠣߒߚ⹜ᢱߩ
43
Ca ‫ޔ‬27Al߅ࠃ߮29Si࿕૕NMRࠬࡍࠢ࠻࡞
ࠍ␜ߒߚ‫ޕ‬
෻ᔕㅜਛߩฦᤨὐߩ NMR ࠬࡍࠢ࠻࡞
ࠃࠅ‫ޔ‬ਛ㑆૕ߣߒߡ‫ޔ‬㕖᥏⾰㧔C-S-H㧕‫ޔ‬
ࠞ࠻ࠕࠗ࠻(hydrogarnet ߩ 1 ⒳)ࠍ⚻↱ߒ
ߚ࠻ࡃࡕ࡜ࠗ࠻↢ᚑ⚻〝߇⏕⹺ߢ߈ߚ‫ޕ‬
߹ߚ‫ޔ‬C-S-Hࠥ࡞ߦߟ޿ߡ‫ޔ‬27Al-NMR
ߦࠃࠆAlߩขࠅㄟ߹ࠇ߿ 29Si-NMRߦࠃ
ࠆࠪ࡝ࠞ᭴ㅧ㧔㎮㐳‫ޔ‬Q2/Q3 Ყ㧕ߦട߃
ߡ‫ޔ‬43Ca-NMRߦࠃࠅ‫ޔ‬C-S-HߩCa᭴ㅧ
㧔6 ㈩૏‫ޔ‬7 ㈩૏㧕ߦߟ޿ߡߩ⍮⷗߇ᓧࠄ
ࠇࠆน⢻ᕈ߇␜ໂߐࠇߚ‫ޕ‬
੹ᓟ‫ࡔ࠮ޔߊߥߢߌߛ࠻ࠗ࡜ࡕࡃ࠻ޔ‬
ࡦ࠻᳓๺ㆊ⒟⸃ᨆ╬ߦ߽ᔕ↪߇ᦼᓙߢ߈
ࠆ‫ޕ‬
⊒⴫ߢߪ‫ޔ‬in-situ XRD ߢߩ෻ᔕㅊ〔ߩ
⚿ᨐ߽੤߃ߡ‫↢ߩ࠻ࠗ࡜ࡕࡃ࠻ޔ‬ᚑㆊ⒟
ߦߟ޿ߡႎ๔ߔࠆ‫ޕ‬
C-S-H gel
hydrogarnet 䋨katoite䋩
CaSO4䊶2H2O
Ca(OH)2
CaO
200
150
100
50
0
-50
PPM
-150
-100
Fig.2 Solid -state 43Ca NMR (16.4T) spectra
of a series of cement based materials.
(A)
43Ca-NMR
tobermorite
(21.8T)
㽶190㷄 9hr
㽵190㷄 100min
㽴190㷄 30min
㽳100㷄
Ca(OH)2
150
(B)
CSH gel
䋨䋫katoite䋩
PPM
100
50
27Al-NMR
0
-50
-100
-150
tobermorite
(16.4T)
㽶190㷄 9hr
katoite
㽵190㷄 100min
㽴190㷄 30min
㽳100㷄
㽲Before
‫ޣ‬ෳ⠨ᢥ₂‫ޤ‬
1) K. Shimoda et al., J. Magn. Reson. 186,
156-159 (2007)
2) G. M. Bowers et al., J. Am. Ceram. Soc.
92, 545-548 (2009)
3) D. L. Bryce et al., J. Am. Chem. Soc.
130, 9282-9292 (2008)
4) D.Laurencin et al, Magn. Reson. Chem.
46, 347-350 (2008)
100
(C)
C-S-H
75
amorphous Al(OH)3
50
25
0
PPM
-25
tobermorite
Q2
(0Al)
29Si-NMR
(16.4T)
Q2
(0Al)
Q2
(1Al)
Q3 Q3
(1Al) (0Al)
㽶190㷄 9hr
㽵190㷄 100min
㽴190㷄 30min
CSH gel
䋨䋫katoite䋩
SiO2
㽳100㷄
‫⻢ޣ‬ㄉ‫ޤ‬
NMR ᷹ቯߦ㑐ߒ‫ޔ‬ᄙᄢߥߏዧജࠍ㗂
޿ߚᣣᧄ㔚ሶ ಴ญ᭽ߦᗵ⻢⥌ߒ߹ߔ‫ޕ‬
-369-
PPM
-70
-80
-90
-100
-110
Fig.3 Hydrothermal formation of tobermorite
monitored by solid-state NMR.
P91
-Keggin ‫׹‬ȝȪᣠƷ‫ ˳׍‬95 Mo NMR
⃝飯島隆広 1 , 西村勝之 1 , 山瀬利博 2,3 , 丹所正孝 4 , 清水 禎 4
(分子研 1 , 東工大 2 , MO デバイス 3 , 物材機構 4 )
Solid state
95
Mo NMR of -Keggin polyoxomolybdates
T. Iijima1 , K. Nishimura1 , T. Yamase2,3 , M. Tansho4 , T. Shimizu4
Institute for Molecular Science 1 , MO Device 2 , Tokyo Institute of Technology 3, National
Institute for Materials Science 3
We report solid state NMR of 95 Mo NMR of -Keggin polyoxomolybdates. 95 Mo
static NMR spectra for a diamagnetic crystal of [PMo12 O36 (OH)4 {La(H2 O)2.75 Cl1.25 }4 ]·
27H2 O were measured under moderate (9.4 T) and ultrahigh (21.8 T) magnetic fields to
clarify the localization of eight d1 electrons included in the {Mo12 } core. The obtained
spectra could be simulated by superimposing two subspectra that arise from Mo(V) and
Mo(VI) with the ratio 2:1. NMR parameters were estimated by density functional theory
(DFT) calculation with a localized-electron model. From these results, it was found that
eight d1 electrons of Mo(V) are localized to form four Mo(V)-Mo(V) bonds.
【ደᚕ】モリブデンには 0-6 価の原子価状態があり、これまで溶液 NMR では全ての整数原
子価について 95 Mo NMR の研究が報告されている [1]。特に、Mo(0), Mo(II), Mo(VI) は
配位化学や反応性の研究で広く用いられてきた。一方、固体 NMR では、I = 5/2 の四極
子核である 95 Mo のスペクトルは、核四極相互作用により線幅が広がってしまうため、固
体 95 Mo NMR による研究は多くなかった。最近我々は、感度・分解能を向上させるため
強磁場マグネットを使用して、局在化または非局在化した d1 電子を有する混合原子価モ
リブデン (V, VI) ポリ酸の固体 95 Mo NMR を測定し、これまで観測例のなかった Mo(V)
の固体 95 Mo NMR スペクトルを報告した [2]。その中で、Mo(VI) サイトに比べ Mo(V) サ
イトの 95 Mo 化学シフトは大きくなること、また d1 電子の局在性の違いにより化学シフ
ト異方性が大きく異なることを示した。
今回研究対象としたのは -Keggin 型の {Mo12 } をコアとする化合物 [PMo12 O36 (OH)4
{La(H2 O)2.75 Cl1.25 }4 ] · 27H2 O(以下 {Mo12 }(La))である。おおよその構造は、{Mo12 }
が 4 つの La(H2 O)2.75 Cl1.25 でキャップされたものである [3]。構造式に小数が現れるのは
La(III) に配位した H2 O や Cl が disorder しているためである。電位差滴定の結果による
と {Mo12 } の Mo は 8 個の Mo(V) と 4 個の Mo(VI) から成っており、Mo も disorder して
いるのではないかとされているが、X 線回折の結果からは一つの Mo サイトしか報告され
95
Mo, ポリ酸
○いいじま たかひろ、にしむら かつゆき、やませ としひろ、たんしょ まさたか、
しみず ただし
-370-
ておらず、構造の詳細(Mo(V) の d1 電子の局在性)は分かっていない。
本研究では、強磁場マグネット等を用いた固体 95 Mo NMR 測定を行い、得られたス
ペクトルのシミュレーションや量子化学計算により {Mo12 }(La) の構造を調べたので、結
果を発表する。
【᬴ܱ】9.4 T での 95 Mo 固体 NMR は Varian Inova 400 分光器を用い、共鳴周波数 26.060
MHz で測定した。21.8 T では JEOL ECA 930 分光器を利用し共鳴周波数 60.572 MHz で
95
Mo 固体 NMR 測定を行った。測定は静止サンプルに対しエコー法で行った。スペクト
ル・シミュレーションは自作のプログラムを用いて行った。NMR パラメータの DFT 計算
は、VWN + BP の汎関数及び triple-ζ レベルの Slater 型基底関数を用い、ADF 2009.01
で行った。
【ኽௐƱᎋ‫】ݑ‬Figs. 1(i-a) および 1(ii-a) に
それぞれ、9.4, 21.8 T の磁場で測定した
(a) Obs.
{Mo12 }(La) の 95 Mo NMR static スペクトル
を示す。両磁場とも、数千 ppm にわたるブ
ロードなスペクトルが得られた。Mo(V) の
(b) Sim.
d1 電子が分子全体に非局在化している場合
は、スペクトルは単一成分になるが、これら
(c) MoV
のスペクトルをシミュレーションするには 2 成
分(Mo(V) と Mo(VI))が必要であった。Fig.
VI
1(b) は、Fig. 1(c) と 1(d) を 2:1 の強度比で
(d) Mo
重ね合わせたシミュレーション・スペクトル
5000
0
-5000
3000
0
-3000
である。
υ / ppm
υ / ppm
i
ii
(
)
(
)
一方、DFT 計算においても、全てのモリ
Fig.
1: 95 Mo MAS NMR spectra of
ブデンが等価であるとする平均構造(X 線に
{Mo12 }(La) under (i) 9.4 and (ii) 21.8 T.
よる構造)では計算が収束することはなかっ
(a) and (b) show the observed and simuた。そこで、d1 電子の局在化モデルとして
lated spectra, respectively. (c) and (d) denote spectral components constituting the
Mo-Mo の距離を可変(4 つの Mo(V)-Mo(V)
spectrum in (b).
と 2 つの Mo(VI)-Mo(VI))として計算を行っ
たところ、計算は収束しリーズナブルな NMR パラメータが得られた。以上のことから、
-{Mo12 } コアの d1 電子は局在化しており、Mo(V)-Mo(V) 結合の形成に寄与していると
考えられる。
[1] M. Minelli, J.H. Enemark, R.T.C Brownlee. M.J. O’Connor, A.G. Webb, Coord.
Chem. Rev. 68, 169 (1985).
[2] T. Iijima, T. Yamase, M. Tanasho, T. Shimizu, K. Nishimura, Chem. Phys. Lett.
487, 232 (2010).
[3] P. Mialane, A. Dolbecq, L. Lisnard, A. Mallard, J. Marrot, F. Secheresse, Angew.
Chem. Int. Ed 41, 2398 (2002).
-371-
P92
࿕૕0/4ߦࠃࠆᓸ↢‛↥↢ࡐ࡝ࠕࡒࡁ㉄߅ࠃ߮
ߘߩࡐ࡝ࡑ࡯ࡉ࡟ࡦ࠼ߩ᭴ㅧ⸃ᨆ
೨↰ ผ㇢㧘٤㤛೨ ⌀๋㧘ᾢ ノ㧘࿖ᧄ ᶈ༑
⑔੗ᄢ㒮Ꮏ㧘㊄ᴛᄢ㒮⥄ὼ
Structural analysis of microbial poly(amino acid)s and their polymer blends
by solid NMR
Shiro Maeda1, ٤Shingo Oumae1, Xiong Hui1, and Ko-Ki Kunimoto2
1
Division of Applied Chemistry and Biotechnology, Graduate School of Engineering,
University of Fukui, Japan and 2Division of Material Engineering, Graduate School of
Natural Science and Technology, Kanazawa University, Japan.
Solid NMR measurements of poly (J-glutamic acid) (J-PGA), its sodium salt (J-PGA/Na) and
poly (H-lysine), and their polymer blends were done. 13C spectrum of J-PGA differs from that
of J-PGA/Na. C=O peak of J-PGA and J-PGA/Na were deconvoluted into three and two
peaks, respectively. The miscibility of J-PGA/PVA was investigated by measuring 1H
spin-lattice relaxation times. There were unassigned peaks in CPMAS spectrum of H-PL film
cast from aqueous solution at 165ppm in 13C and 90ppm in 15N, respectively. These peaks are
not observed in powder sample. We assigned these peaks to C=O and NH group of carbamic
acid formed by reaction of the amino groups with gaseous CO2.
‫ޤ⸒✜ޣ‬
ᓸ↢‛↥↢㜞ಽሶߪਥߦ3⒳㘃⍮ࠄࠇߡ߅ࠅ‫(࡝ࡐޔ‬H-࡝ࠫࡦ) (H-PL)[1]‫(࡝ࡐޔ‬J-ࠣ࡞࠲
ࡒࡦ㉄) (Ȗ-PGA)[2]‫ࠆ޽ߢࡦ࠴ࠖࡈࡁࠕࠪޔ‬㧚H-PLߪ㧘ᔅ㗇ࠕࡒࡁ㉄ߩ৻ߟߢ޽ࠆL
࡝ࠫࡦ߇D૏ߩࠞ࡞ࡏࠠࠪ࡞ၮߣH૏ߩࠕࡒࡁၮߢࠕࡒ࠼⚿วߒߚ㧘᡼✢⩶ߩ৻⒳ߢ޽
ࠆstreptomyces albulus߇↥↢ߔࠆࡐ࡝ࠕࡒࡁ㉄ߢ޽ࠆ㧚Ȗ-PGAߪJ૏ߩࠞ࡞ࡏࠠࠪ࡞ၮ
ߣD૏ߩࠕࡒࡁၮ߇ࠕࡒ࠼⚿วߢㅪߥߞߚࠕ࠾ࠝࡦᕈࡐ࡝ࡑ࡯ߢ‫ޔ‬ਥߣߒߡ⚊⼺⩶ߥ
ߤߩBacillusዻ⩶ߦࠃߞߡ↥↢ߐࠇ᳓ṁᕈ߅ࠃ߮↢ಽ⸃ᕈࠍ᦭ߒ‫ޔ‬ൻ♆ຠ࡮ක↪᧚ᢱ╬
ߩ᏷ᐢ޿ಽ㊁ߢᔕ↪߇ᦼᓙߐࠇߡ޿ࠆ㧚ߎߎߢߪH-PL‫ޔ‬Ȗ-PGAߣߘߩ࠽࠻࡝࠙ࡓႮߢ
޽ࠆࡐ࡝(J-ࠣ࡞࠲ࡒࡦ㉄࠽࠻࡝࠙ࡓ) (Ȗ-PGA /Na)‫ߩ࠼ࡦ࡟ࡉ࡯ࡑ࡝ࡐߩߘ߮ࠃ߅ޔ‬࿕
૕NMR╬ࠍ↪޿ߚ᭴ㅧ⸃ᨆ⚿ᨐࠍႎ๔ߔࠆ㧚
‫ޣ‬ታ㛎‫ޤ‬
H-PL㧦H-PL᳓ṁᶧࠍ࠹ࡈࡠࡦࠪࡖ࡯࡟਄ߦࠠࡖࠬ࠻ߒቶ᷷ߢ㘑ੇᓟ㧘ᷫ࿶ੇ῎ߐߖߡ
ࠠࡖࠬ࠻⹜ᢱࠍ૞ᚑߒߚ㧚Ȗ-PGA㧦⒳‫ߩޘ‬pHߩȖ-PGA᳓ṁᶧࠍ࠹ࡈࡠࡦࠪࡖ࡯࡟਄ߦ
ࠠࡖࠬ࠻ߒቶ᷷ߢ㘑ੇᓟ㧘ᷫ࿶ੇ῎ߐߖߡࠠࡖࠬ࠻⹜ᢱࠍ૞ᚑߒߚ㧚Ȗ-PGA/PVAࡐ࡝
ࡑ࡯ࡉ࡟ࡦ࠼㧦Ȗ-PGA㧘PVAࠍ೎‫ߦޘ‬᳓ṁᶧࠍ૞ᚑߒ㧘⒳‫࠻࠶࠾࡙࡯ࡑࡁࡕߩޘ‬Ყߦ
ߥࠆࠃ߁ߦᷙว࡮ᠣᜈߒߚ㧚ᷙวṁᶧࠍ࠹ࡈࡠࡦࠪࡖ࡯࡟਄ߦࠠࡖࠬ࠻ߒ㧘ቶ᷷ߢ㘑
ੇᓟ㧘ᷫ࿶ੇ῎ߐߖߡࠠࡖࠬ࠻⹜ᢱࠍ૞ᚑߒߚ㧚࿕૕NMRߪChemagnetics CMX
Infinity 300ࠍ↪޿ߡቶ᷷ߢ᷹ቯߒߚ㧚
ᓸ↢‛↥↢ࡐ࡝ࠕࡒࡁ㉄࿕૕0/4ࡐ࡝ࡑ࡯ࡉ࡟ࡦ࠼
߹߃ߛ ߒࠈ߁㧘٤߅߁߹߃ ߒࠎߏ㧘ߒࠂࠎ ߰޿㧘ߊߦ߽ߣ ߎ߁߈
-372-
‫⚿ޣ‬ᨐߣ⠨ኤ‫ޤ‬
H-PL H-PL ߩ 13C ࠬࡍࠢ࠻࡞ࠍ Fig.1 ߦ‫ޔ‬15N ࠬࡍࠢ࠻࡞ࠍ Fig.2 ߦ␜ߔ‫ޕ‬᳓ࠠࡖࠬ࠻
ࡈࠖ࡞ࡓߦ߅޿ߡ‫ޔ‬13C ߢߪ 165ppm‫ޔ‬15N ߢߪ 90ppm ߦࡄ࠙࠳࡯ߦߪߥ޿ࡇ࡯ࠢ߇⃻
ࠇࠆ‫ߩࠢ࡯ࡇߩࠄࠇߎޕ‬Ꮻዻߪਇ᣿ߛߞߚ߇‫ࠍࠄࠇߎޔ‬ⓨ᳇ਛߩ CO2 ߣ஥㎮ߩ NH2
߇⚿วߔࠆߎߣߢ↢ᚑߔࠆࠞ࡞ࡃࡔ࡯࠻(-NHCOOH)ߦᏫዻߒߚ‫[ޕ‬3]
(a)
(a)
*
*
(b)
200
150
100
(b)
50
0 PPM
Fig.1 Solid state C NMR spectra of (a) H-PL powder and
13
350
300
250
200
150
100
50
0
-50PPM
Fig.2 Solid state 15N NMR spectra of (a) H-PL powder and
(b) H-PL cast film from aqueous solution.
(b) H-PL cast film from aqueous solution. *:spinning side
Ȗ-PGA Ȗ-PGA ᳓ࠠࡖࠬ࠻⹜ᢱߩ 13C ࠬࡍࠢ࠻࡞ߩ pH ଐሽᕈࠍ Fig.3 ߦ␜ߔ㧚pH ߇
Ȗ-PGA ߩ pKa ୯(=2.23)ࠃࠅ߽ૐߊߥࠆߣ‫ޔ‬180ppm ઃㄭߩࠞ࡞ࡏ࠾࡞὇⚛ߩ✢ᒻߪᄢ
߈ߊᄌൻߔࠆ㧚ᵄᒻ⸃ᨆߩ⚿ᨐ 3 ᧄߩࡇ࡯ࠢߢࡈࠖ࠶࠻ߢ߈㧘pH ߇ૐߊߥࠆߦߟࠇ
ߡᄢ߈ߊߥࠆ㜞⏛႐஥ߩࡇ࡯ࠢࠍੑ㊂૕ࠍᒻᚑߒߡ޿ࠆ஥㎮ࠞ࡞ࡏࠠࠪ࡞ၮߦᏫዻ
ߒߚ㧚IR ᷹ቯߦ߅޿ߡ߽ߪߞ߈ࠅߣੑ㊂૕ߩሽ࿷ࠍ␜ߔࡇ࡯ࠢ߇⏕⹺ߢ߈ߚ㧚
߹ߚ㧘50ppm ઃㄭߦ⃻ࠇࠆ⢽⢌ᣖ὇⚛ CDߦߟ޿ߡ߽✢ᒻߩᄌൻ߇⷗ࠄࠇࠆ㧚pH ߇
pKa એ਄ߦߥࠆߣ㧘஥㎮ࠞ࡞ࡏ࠾࡞ၮߪ COO㧙ߦᄌൻߔࠆ㧚⽶㔚⩄ߩ෻⊒ߦࠃࠅ㎮㑆
߇ᐢ߇ߞߚ࡜ࡦ࠳ࡓࠦࠗ࡞᭴ㅧࠍߣࠅ㧘ࠦࡦࡈࠜࡔ࡯࡚ࠪࡦᄌൻߦࠃࠅ CDߩൻቇࠪ
ࡈ࠻߇ᄌൻߒߚߣ⠨߃ࠄࠇࠆ㧚
Ȗ-PGA/PVAࡐ࡝ࡑ࡯ࡉ࡟ࡦ࠼ Ȗ-PGA/PVAࡐ࡝ࡑ࡯ࡉ࡟ࡦ࠼ߩ13Cࠬࡍࠢ࠻࡞ࠍFig.4
ߦ␜ߔ㧚PVAߩ13Cࠬࡍࠢ࠻࡞ߩૐ⏛႐஥ߩࡔ࠴ࡦ὇⚛ߩࡇ࡯ࠢߪ㧘┙૕ⷙೣᕈߦࠃ
ࠆಽሶౝ᳓⚛⚿ว᭽ᑼߩ㆑޿ߢ㧘3ᧄߦಽⵚߔࠆ㧚ࡐ࡝ࡑ࡯ࡉ࡟ࡦ࠼ߦ߅޿ߡ߽3ᧄߩ
ࡇ࡯ࠢߩᲧ₸߆ࠄ᳓⚛⚿ว᭽ᑼߩᄌൻࠍ⍮ࠆߎߣ߇ߢ߈ࠆ㧚߹ߚ㧘ࡐ࡝ࡑ࡯ࡉ࡟ࡦ࠼
ߩ᧚ᢱ‛ᕈߦࡐ࡝ࡑ࡯㑆ߩ⋧ṁᕈ߇ᄢ߈ߊ㑐ࠊߞߡߊࠆ㧚ታ㛎ቶ♽߅ࠃ߮࿁ォᐳᮡ♽
ࠬࡇࡦ㧙ᩰሶ✭๺ᤨ㑆T1H߅ࠃ߮T1UH᷹ቯࠍⴕ߁ߎߣߦࠃߞߡ⋧ṁᕈߩ⹏ଔࠍⴕߞߚ㧚
Fig.3 13C CP/MAS NMR spectra of Ȗ-PGA film cast from
aqueous solution at (a)pH7.1, (b)pH4.9, (c)pH3.3, (d)pH2.3,
and (e)pH1.5
Fig.4 13C CP/MAS NMR spectra of (a)Ȗ-PGA,
(b)-(f) Ȗ-PGA/PVA, and (g)PVA. Molar unit ratio of
Ȗ-PGA/PVA are (b)2/1, (c)1/1, (d)1/2, (e)1/3, and (f)1/5.
[1] S. Maeda et al., Polym. Preprints.2008, 49, 730-731
[2]S. Maeda et al., Polym. Preprints Jpn. 2008, 57, 3300, 2009, 58, 1162, 2010, 59, 1060
[3]A. Dos et al., J. Phys. Chem. B, 2008, 112, 15604-15614
-373-
ᅛయ 105 ࢆ⏝࠸ࡓ▼Ⅳ⅊⢓ᗘ࡟୚࠼ࡿᵓ㐀࠾ࡼࡧ⤌ᡂᅉᏊࡢゎᯒ
P93
ᯘ 㞝㉸ ࠊ‫ۑ‬ฟ⏣ ᆂᏊ ࠊᐑ⬥ ோ ࠊᣢ⏣ ໏ ࠊᑺ ⪷ᪿ ஑኱⥲⌮ᕤࠊ ஑኱ඛᑟ◊ࠊ ஑኱Ⅳ⣲ࢭࣥࢱ࣮
Solid-state NMR analysis of structure and composition of coal ash
Xiongchao Lin1, ‫ۑ‬Keiko Ideta2, Jin Miyawaki2, Isao Mochida3, Seong-Ho Yoon1,2,3
Interdisciplinary Graduate School of Engineering Sciences, Kyushu univ. ,2 Institute
for Materials Chemistry and Engineering, Kyushu univ., 3 Research and Education
Center of Carbon Resources, Kyushu univ.
1
Coal ashes usually become the cause of many troubles for a stable continuous operation in coal
gasification process. Smooth tap-out of molting ash and slag from the gasifier is one of the most important
tasks, which is sensitive to compositions and temperature of ash and slag. Correlation between structure and
viscosity under various temperatures of the minerals was closely traced using 27Al-, 29Si-solid state NMR and
XRD, etc. to interpret the transition behaviors and crystal structures of coal ash during gasification. Further,
effects of Ca and Fe compositions, as are known as fluxing agents, on the structural changes of ash are also
examined.
࠙⥴ゝࠚ▼Ⅳ࢞ࢫ໬Ⓨ㟁࡛ࡣ࢞ࢫ໬ຠ⋡ྥୖ࡜ඹ࡟ࠊᏳᐃ᧯ᴗࡢࡓࡵ࡟⅔ෆ࠿ࡽ⁐⼥ࢫࣛࢢࢆ࠸
࠿࡟ࢫ࣒࣮ࢬ࡟ྲྀࡾ㝖ࡃ࠿ࡀ㔜せ࡞ㄢ㢟࡜࡞ࡗ࡚࠸ࡿࠋ
ࡑࡢࡓࡵࠊ▼Ⅳ⅊ࡢ⁐⼥ᛶ࣭ὶືᛶࡀ㔜せ࡜࡞ࡿࡀࠊࡇࢀࡽࡣ⢓ᗘ࡟኱ࡁࡃ┦㛵ࡍࡿࠋࡇࢀࡲ࡛
▼Ⅳ⅊ࡢ⤌ᡂ࠿ࡽ⢓ᗘࢆ᥎ᐃࡍࡿᘧࡀᥦၐࡉࢀ࡚࠸ࡿࡀࠊ୍㒊ࡢⅣ✀࡛ࡣᚲࡎࡋࡶண᝿್㏻ࡾࡢ⁐
⼥ᣲືࢆ♧ࡉ࡞࠸ࡇ࡜ࡀศ࠿ࡗ࡚࠸ࡿࠋ
୍᪉࡛ࠊ&D ࡸ )H ࡣ⢓ᗘ࡟㛵ಀࡍࡿῧຍ๣࡜ࡋ࡚▱ࡽࢀ࡚࠸ࡿࠋᮏ◊✲࡛ࡣࠊࡇࢀࡽࡢ &D ࡸ )H
ࡀ࡞ࡐ⢓ᗘపୗࢆࡶࡓࡽࡍ࠿ࢆㄪ࡭ࡿࡓࡵ࡟ࠊ࠸ࡃࡘ࠿ࡢ &Dࠊ)H ྵ᭷ẚࡢ␗࡞ࡿ▼Ⅳ⅊࡟ࡘ࠸࡚
$O ࠾ࡼࡧ 6Lᅛయ 105 ࡸ ;5' ➼ࢆ⏝࠸࡚㖔≀ࡢ ᗘ࡟ࡼࡿᵓ㐀ኚ໬ࢆ᳨ウࡋࡓࠋ
࠙ᐇ㦂ࠚ ▼Ⅳࡣ &Dࠊ)H ྵ᭷㔞ࡢ␗࡞ࡿ㸿Ⅳࠊ㹂Ⅳࠊ㹋Ⅳ࡜ࢆ⏝ពࠋ⤌ᡂẚࢆ 7DEOH ࡟♧ࡋࡓࠋ
Υࡢ࠸ࡃࡘ࠿ࡢ ᗘ࡛⇕ฎ⌮ࢆ⾜࠸ࠊ▼Ⅳ⅊ࢆసᡂࡋࡓࠋ$O ᅛయ 105 ᐃࡣ -(2/
(&$7PP040$6ࣉ࣮ࣟࣈࢆ⏝࠸ࠊFKHPLFDOVKLIWHFKR ἲࠊ6L ᅛయ 105 ᐃࡣ
(&$7ࠊPP&30$6 ࣉ࣮ࣟࣈࢆ⏝࠸࡚⾜ࡗࡓࠋヨᩱᅇ㌿㏿ᗘࡣࡍ࡭࡚ N+] ࡛⾜ࡗࡓࠋ
7DEOH&RPSRVLWLRQRIDVKHVZLWK;5)DQDO\VLVPRODVHTXLYDOHQWR[LGH
6DPSOHV
6L2
$O2
)H2
&D2
.2
'
$
0
7L2
62
0J2
1' 7RWDO %$
1'QRWGHWHFWHG
% )H2&D20J21D2.2$ 6L2$O27L2
7UDFHHOHPHQWV6U0Q9=U<=Q&X5EZHUHLJQRUHG
࠙⤖ᯝ࡜⪃ᐹࠚ7DEOH ࡟♧ࡋࡓ㸱✀ࡢ▼Ⅳ⅊ࡣ⁐⼥⢓ᗘ࡟ᩘⓒᗘࡢᕪࡀ࠶ࡿࡇ࡜ࢆ☜ㄆࡋࡓࠋ
.H\ZRUGV$O105ࠊ6L105ࠊ▼Ⅳ⅊
ࡾࢇ ࡋࡷࢇࡕࡷ࠾ࠊ‫࡯ࢇࡑ ࢇࡺࠊ࠾ࡉ࠸ ࡔࡕࡶࠊࢇࡌ ࡁࢃࡸࡳࠊࡇ࠸ࡅ ࡓ࡛࠸ۑ‬
-374-
ḟ࡟ྛࠎࡢⅣ✀࡟ࡘ࠸࡚⇕ฎ⌮▼Ⅳ⅊࡜࢞ࢫ໬⅔ෆ࡛⏕ᡂࡋࡓࢫࣛࢢ࡟ࡘ࠸࡚ ;5' ࡜ᅛయ
6L105$O105 ࡢ⤖ᯝࢆ♧ࡍࠋ࠸ࡎࢀࡢⅣ✀࡟ࡘ࠸࡚ࡶ Υ⇕ฎ⌮ࡢప ⅊ࡢ୺ᡂศࡣࠊ
105 ࡟࠾࠸࡚ࡣ㕲࡟ࡼࡿࣈ࣮ࣟࢻࢽࣥࢢࡀほᐹࡉࢀࡿࡶࡢࡢ ;5'105 ࡜ࡶ࡟ NDROLQLWH ࡜ TXDUW]
࡛࠶ࡿࡇ࡜ࡀࢃ࠿ࡿࠋࡋ࠿ࡋ࡞ࡀࡽ Υ⇕ฎ⌮ࢆ᪋ࡋࡓ㧗 ⅊࡛ࡣⅣ✀࡟ࡼࡾ␗࡞ࡿࢫ࣌
ࢡࢺࣝࢆ୚࠼࡚࠸ࡿࠋΥ௨ୖ࡛ࡢࡳὶືᛶࢆ♧ࡍ ' Ⅳ࡜ 0 Ⅳ࡛ࡣ ;5'ࡢ୺ᡂศࡣ PXOOLWH
࡜ TXDUW] ࡛࠶ࡾࠊ≉࡟ࠊ᭱ࡶ⢓ᗘࡢ㧗࠸ 'Ⅳ࡛ࡣ Υ௨ୖ࡛ FULVWREDOLWH ࡢ⏕ᡂࡀࡳࡽࢀ
ࡿ㸦ࢹ࣮ࢱࡣ♧ࡋ࡚࠸࡞࠸㸧ࠋࡑࢀ࡟ᑐࡋࠊ$ Ⅳࡢ ;5' ࣃࢱ࣮ࣥࡣ඲ࡃ␗࡞ࡗ࡚࠾ࡾࠊ&D ࢆྵ
ࢇࡔ」ྜ㓟໬≀ࡢ⏕ᡂࡀ࠶ࡿࡇ࡜ࢆ♧၀ࡋ࡚࠸ࡿࠋ
䡍㻌
㼝
㻭㻙㻌㼟㼘㼍㼓㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌
㻹㻙㼟㼘㼍㼓㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌
㻰㻙㼟㼘㼍㼓㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌
䕿
㻭㻌㻙㻝㻢㻜㻜㻌 㻌 㻌䕿㻌 㻌 㻌 㻌䖃㻌 㻌䕿㻌 㻌 㻌 䕧㻌 㻌 㻌 㻌 㻌 㻌 㻌 䖃㻌 㻌 㻌
㻹㻙㻝㻢㻜㻜㻌 㻌 㻌 㻌㼙㻌 㻌㼙㼔㻌㼙㻌
㻌 㻌 㻌 㻌㻌㼔㻌㻌㻌 㻌㻌 㻌㻌㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌
㻰㻙㻝㻢㻜㻜㻌 㻌 㻌 㻌 㻌㼙㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌
㼔㻌㼙㻌 㻌 㼔㻌 㻌 㼔㻌 㻌
㼙
㻭㻙㻟㻜㻜㻌 㻌 㻌 㼝㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌
㼗㻌 㻌 㻌 㻌 㼗㻌 㻌 㻌 㼗㻌 㻌 㻌 㻌 㻌 㻌 㼗㼝㻌 㻌 㼝㻌㼝㻌 㻌 㼝㻌㼝㻌 㻌 㻌 㼝㻌 㻌 㼝㻌 㻌 㻌 㻌 㼝㻌 㻌 㻌 㻌
㻌
㻌
㻹㻙㻌㻟㻜㻜㻌 㻌 㻌 㼝㻌㻌㻌㻌㼟㻌㻌 㻌㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌
㻰㻙㻟㻜㻜㻌 㻌 㻌㻌㻌 㼗㻌㻌 㻌㻌 㻌㻌㼗㻌㻌㻌 㻌㻌 㻌㻌㻌 㻌㻌 㻌㻌㻌 㻌㻌㻌 㻌㼝㻌㼗㼝㻌
㻌 㻌 㻌㻌㼝㻌㻌 㻌 㻌 㻌㼝㻌㻌 㻌㻌 㻌㻌㻌㻌㻌 㻌㼝㻌㻌㻌㻌㻌 㻌㻌 㻌 㼝㻌 㻌
㼝
䖃
䖃
5
20
䕿
䖃
䕧
35
50
65
㼙
㼗
5
20
㼗
㼔㻌 㻌 㻌 㻌 㼟㻌 㻌 㼟㻌 㻌 㼝㻌㼟㻌 㻌 㻌 㻌
㼝
35
50
㻌㻌
㼙㼔㻌㼙㻌 㻌 㼔㻌
㼙
65
5
20
㼝㻌 㻌 㻌 㻌
㼝
㻌㻌
㼟㼔㻌㼗㻌
35
50
65
㻲㼕㼓㻚㻝㻌 㻌 㻾㼛㼛㼙㻌㼠㼑㼙㼜㼑㼞㼍㼠㼡㼞㼑㻌㼄㻾㻰㻌㼛㼒㻌㼏㼛㼍㼘㻌㼍㼟㼔㼑㼟 㼍㼚㼐㻌㼟㼘㼍㼓㼟 㻌 㼝㻦㻌㼝㼡㼍㼞㼠㼦㻙㻌㻿㼕㻻㻞㻧㻌㼗㻦㻌㼗㼍㼛㼘㼕㼚㼕㼠㼑㻙㻭㼘㻞㻔㻿㼕㻞㻻㻡㻕㻔㻻㻴㻕㻠㻧㼙㻦㻌㼙㼡㼘㼘㼕㼠㼑㻙 㻭㼘㻢㻿㼕㻞㻻㻝㻟㻧㻌
㼟㻦 㼟㼕㼐㼑㼞㼕㼠㼑㻙㻲㼑㻯㻻㻟㻧㻌 ‫ڹ‬㼐㼕㼛㼜㼟㼕㼐㼑㻙㻯㼍㻔㻹㼓㻘㻭㼘㻕㻔㻿㼕㻘㻭㼘㻕㻞㻻㻢㻧㻌 ‫ۑ‬㻦㻌㼍㼚㼛㼞㼠㼔㼕㼠㼑㻙㻯㼍㻭㼘㻞㻿㼕㻞㻻㻤㻧㻌㼔㻦㼔㼑㼙㼍㼠㼕㼠㼑㻙㻲㼑㻞㻻㻟㻧㻌 ‫ە‬㻦㻌㼙㼍㼓㼚㼑㼟㼕㼡㼙㻌㼕㼞㼛㼚㻌㼍㼘㼡㼙㼕㼚㼡㼙㻌
㼛㼤㼕㼐㼑㻔㻹㼓㻲㼑㻜㻚㻢㻭㼘㻝㻚㻠㻻㻠㻕㻌
ࢫࣛࢢࡢ㦵᱁ᵓ㐀ࢆỴࡵࡿ 6L105 ࠿ࡽࡶࠊ' Ⅳࠊ0 Ⅳࡣ㸲㓄఩ࡢ໬Ꮫࢩࣇࢺࡀ㸱ḟඖⓗ࡞ࢿࢵࢺ࣡
࣮ࢡᵓ㐀㸦4㸧࡜ࡗ࡚࠸ࡿ࡜ᖐᒓࡉࢀࡿࡢ࡟ᑐࡋࠊ$ Ⅳࡣ NDROLQLWH4㸧࡜࡯ࡰྠࡌࢩࣇࢺࢆಖࡗ࡚࠾
ࡾࠊຍ⇕࡟ࡼࡿࢿࢵࢺ࣮࣡ࢡᵓ㐀ࡢᡂ㛗ࡀ㉳ࡇࡽ࡞࠸ࡇ࡜ࢆ♧၀ࡋ࡚࠸ࡿࠋ
㻢㻟㻚㻢㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻡㻤㻚㻠㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻡㻣㻚㻜㻌
㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌
㻖㻌 㻌 㻌
㻞㻣
㻭㼘㻌
㻌
㻝㻡㻚㻝㻌
㻡㻝㻚㻤㻌
㻌
㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌
㻢㻜㻚㻞㻌
㻝㻠㻚㻞㻌
㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌
㻡㻚㻞㻌
㼗㻌 㻌
㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌
㻡㻚㻥㻌
㼗㻌 㻌
㻣㻜㻚㻤㻌
㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌
㻌 㻌 㻌 㻡㻣㻚㻠㻌
㻢㻥㻚㻠㻌
㻏㻌
㻞㻥
㻿㼕㻌
㻙㻥㻜㻌
㻌
㻌
㻌
㻌
㻙㻤㻤㻌
㻙㻥㻥㻌
㻌
㻌
㻌
㻌
㻙㻝㻜㻝㻌
㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌
㻙㻥㻝㻌
㻏㻌
㻡㻢㻚㻣㻌
㻌
㻝㻡㻚㻥㻌
㻌
㻌
㻖㻌 㻌 㻌 㻌 㻌㻌㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌
㻌
㻌
㻡㻚㻥㻌
㻌
㼗㻌 㻌
㻌
㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌
㻡㻤㻚㻥㻌
㻙㻥㻝㻌
㼗㻌 㻌 㻌 㻌 㼝㻌 㻙㻝㻜㻣㻌
㼗㻌 㻌 㻌 㻌 㻌 㻌 㼝㻌 㻙㻝㻜㻣㻌
㻙㻝㻜㻠㻌
㻌
㻌
㻌
㻌
㻙㻝㻜㻠㻌
㼗㻌 㻌 㻌 㻌 㼝㻌 㻙㻝㻜㻣㻌
㻙㻥㻝㻌
㻲㼕㼓㻚㻞㻚㻌 㻌 㻿㼛㼘㼕㼐㻙㼟㼠㼍㼠㼑㻌㻞㻣㻭㼘㻙㻌㻘㻌㻞㻥㻿㼕㻙㻌㻺㻹㻾㻌㼛㼒㻌㼏㼛㼍㼘㻌㼍㼟㼔㼑㼟㻌㼍㼚㼐㻌㼟㼘㼍㼓㼟㻌 㻌 㻖㻦㻌㼟㼜㼕㼚㼚㼕㼚㼓㻌㼟㼕㼐㼑㻌㼎㼍㼚㼐㻘㻌 㻌 㻏㻦㻌㼟㼕㼓㼚㼍㼘㻌㼒㼞㼛㼙㻌㼜㼞㼛㼎㼑㻌㼛㼞㻌㼕㼙㼜㼡㼞㼕㼠㼥
㼗㻦㻌㼗㼍㼛㼘㼕㼚㼕㼠㼑㻘㻌㼝㻦㻌㼝㼡㼍㼞㼠㼦㻌 㻌
ࡇࡢࡼ࠺࡞ࢿࢵࢺ࣮࣡ࢡᵓ㐀ࡢᗈࡀࡾࡀ⢓ᗘ࡟┤᥋ᙳ㡪ࢆ୚࠼࡚࠸ࡿࡇ࡜ࡣ᫂ࡽ࠿࡛࠶ࡿࡀࠊࡑࡢ
ཎᅉ࡟ࡘ࠸࡚ ;5' ࡣ VODJ࠿ࡽ࡯ࡰ࡞࡟ࡶ᝟ሗࢆ୚࠼࡞࠸ࡢ࡟ᑐࡋࠊΥ▼Ⅳ⅊࡜ࢫࣛࢢࡢᅛయ
105 ࡣఝ㏻ࡗࡓࢫ࣌ࢡࢺࣝࢆ୚࠼࡚࠸ࡿࠋỈ෭ࡋࡓࢫࣛࢢࡣつ๎ᵓ㐀ࢆྲྀࡾ࡟ࡃ࠸ࡓࡵᒁᡤᵓ㐀ࢆ
ࡼࡃ⾲ࡍ 105 ࡀ㠀ᖖ࡟ᙺ࡟❧ࡘ࡜ゝ࠼ࡿࠋⓎ⾲࡛ࡣ $O670$6 ᐃࢆྵࡵヲ⣽࡟㆟ㄽࡍࡿࠋ
࠙ཧ⪃ᩥ⊩ࠚ㕲࡜㗰YRO1R㔠ᶫࡽ
-375-
P94
㉸೫ᴟ129Xe NMR࡟ࡼࡿゐ፹ᢸయࡢ࣏࢔ホ౯
ż᭹㒊 ᓠஅ1ࠊᖹ㈡ 㝯1ࠊ୰⏣ ┿୍2
1
(⊂)⏘ᴗᢏ⾡⥲ྜ◊✲ᡤࠊ2⛅⏣኱ᏛᕤᏛ㈨※Ꮫ㒊
Hyperpolarized 129Xe NMR of Xe in Catalysis Pores
żMineyuki Hattori1, Takashi Hiraga1, and Shinichi Nakata2
1
National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.
2
Engineering and Resources Science, Akita University, Akita, Japan.
129
Xe NMR techniques have been applied to probe porosity of mesoporous materials and the
pore size is known to relate with the chemical shift. Since the Van der Waals radius of Xe is
known to be 0.216 nm, the possible pore size to adsorb xenon should be larger than 0.4 nm in
diameter. Then the mean pore diameters ranging from 0.4 to 300 nm are the possible target to
show the relationship experimentally. We have developed an apparatus to produce the laser
induced hyperpolarized (HP) Xe gas and tried to apply it to catalysis samples.
࠙せ᪨ࠚ㉸೫ᴟXe࢞ࢫࡢNMRᛂ⏝࡜ࡋ࡚ࠊゐ፹ࡢከᏍᵓ㐀ࡢホ౯ࢆ⾜ࡗࡓࠋ㉸೫ᴟ
࡟ࡼࡾࠊ1୓ಸ௨ୖࡢឤᗘྥୖࡀᚓࡽࢀࠊ✚⟬࡞ࡋ࡛ࡶࠊ༑ศ࡞ಙྕឤᗘࡀᚓࡽࢀࡿࠋ
ᩘ༑ms࠿ࡽ1⛊⛬ᗘࡢ᫬㛫ศゎ࡛ࠊࣜ࢔ࣝࢱ࢖࣒ ᐃࡀྍ⬟࡟࡞ࡗࡓࠋゐ፹࡟྾╔ࡋ
࡚࠸ࡿXeࡢ129Xe NMRࡢ໬Ꮫࢩࣇࢺ࡜⥺ᖜࡣࠊ⣽Ꮝᚄ࡜Xe࡜⣽Ꮝ࡜ࡢ┦஫స⏝ࡢ኱ࡁ
ࡉ࡟౫Ꮡࡍࡿࠋゐ፹Ꮫ఍ࡢ㓄ᕸࡍࡿཧ↷ゐ፹ࢆධᡭࡋ࡚ࠊ129Xe NMRࢫ࣌ࢡࢺࣝࡢྲྀ
ᚓࢆ⾜ࡗࡓࠋ㓟໬ࢭ࣒ࣜ࢘࡟ࡘ࠸࡚ࠊ୕✀㢮ࡢ〇㐀㐣⛬ࡀ␗࡞ࡗࡓヨᩱ࡟ࡘ࠸࡚ࠊヨ
ᩱࡢ๓ฎ⌮࡟ࡼࡾࠊࢩࣇࢺ࡜ࣃࢱ࣮ࣥࡀ␗࡞ࡗࡓࢫ࣌ࢡࢺࣝ ᗘ౫Ꮡᛶࡢ⤖ᯝࢆᚓࡓࠋ
࠙㉸೫ᴟXe NMRᐇ㦂ࠚᮾᶓ໬Ꮫ(ᰴ)࡜⏘⥲◊࡛㛤Ⓨࡋࡓࠊ೫ᴟ⋡3%ࡢ㉸೫ᴟXe࢞ࢫ
ࢆࣂࢵࢳᘧ࡛㐃⥆౪⤥ࡍࡿࡇ࡜ࢆྍ⬟࡜ࡋࡓᐇ⏝ᶵ[1]ࢆ౑⏝ࡋࡓࠋᮏ⿦⨨ࡣࠊཎᩱ࡜
࡞ࡿXe/N2ΰྜ࢞ࢫཬࡧࣃ࣮ࢪ⏝N2࢞ࢫࡢࢩࣜࣥࢲ࣮཰⣡㒊ࠊᅽຊไᚚ㒊ࠊ೫ᴟ⏝ࢭ
ࣝ㒊ࠊཬࡧࠊࢩࢫࢸ࣒ไᚚ㒊࡟ࡼࡾᵓᡂࡉࢀࡿࠋRbࡀᑒධࡉࢀࡓࣃ࢖ࣞࢵࢡࢫࢭࣝ࡟ࠊ
Xe/N2ࡢ㧗⣧ᗘΰྜ࢞ࢫࢆ౪⤥ࡋࠊỌஂ☢▼࢔ࢵࢭࣥࣈࣝ࡟ࡼࡾ⏕ᡂࡋࡓ⣙10mTࡢᆒ
୍☢ሙ(㹼1%)୰࡟࠾࠸࡚794.7nmࡢ༙ᑟయ࣮ࣞࢨ࣮ගࢆ↷ᑕࡍࡿࡇ࡜࡟ࡼࡾࠊ1ᅇ࡟⣙
300mlࡢ㉸೫ᴟXe࢞ࢫࢆ㈓␃ࡋ࡚⏕ᡂࡉࡏࡓ㉸೫ᴟXe࢞ࢫࡣࠊ⣙10ศ௨ୖࡢ㛫㝸ࢆ㛤
ࡅ࡚ࠊ30mlࡢࢩࣜࣥࢪ࡟㐃⥆ⓗ࡟ྲྀࡾฟࡉࢀࠊᑓ⏝࡟㛤Ⓨࡋࡓ࢜ࣥࣛ࢖ࣥᘧᑟධ⟶ࢆ
᥋⥆ࡋࡓヨᩱ⟶୰ࡢゐ፹ヨᩱ࡬ᑟධࡋ᥋ゐࡉࡏࡓࠋゐ፹Ꮫ఍ࡢཧ↷ゐ፹ࠊ௒ᅇࡣ㓟໬
ࢭ࣒ࣜ࢘3✀㢮㸦⾲㸸JRC-CEO-1㸦(ᰴ)୕ᚨ㸧ࠊJRC-CEO-2㸦➨୍⛥ඖ⣲໬Ꮫᕤᴗ(ᰴ)㸧ࠊ
JRC-CEO-3㸦ࠌ㸧㸧࡟ࡘ࠸࡚ࠊ ᐃࢆ⾜ࡗࡓࠋ129Xe NMR ࢫ࣌ࢡࢺࣝࡣࠊ6.3T࡛ࠊtecmag
Apollo Spectrometer࡟ࡼࡾᚓࡓࠋ250ms㛫㝸㐃⥆཰㞟࡜64ᅇ✚⟬(Tr=4s)࡛ࡢ ᐃࢆ⾜ࡗ
ࡓࠋ
㉸೫ᴟXe㸪ከᏍ㉁㸪ゐ፹
żࡣࡗ࡜ࡾࡳࡡࡺࡁ㸪ࡦࡽࡀࡓ࠿ࡋ㸪࡞࠿ࡓࡋࢇ࠸ࡕ
-376-
Fe(%)
ẚ⾲㠃✚㸦m2/g㸧
ᖹᆒ⣽Ꮝᚄ㸦nm㸧
〇㐀ἲ
JRC-CEO-1
0.001௨ୗ
156.9
2.82
JRC-CEO-2
0.003௨ୗ
123.1
7.08
JRC-CEO-3
0.003௨ୗ
81.4
11.6
Ⅳ㓟ࢭ࣒ࣜ࢘300Υ↝ᡂ
୰࿴ỿẊࠊ400Υ↝ᡂ
୰࿴ỿẊࠊ600Υ↝ᡂ
ᅗ㸯㸬129Xe ໬Ꮫࢩࣇࢺ(㓟໬ࢭ࣒ࣜ࢘)㸦ୖ㸧ࠊ྾཰⥺ᖜ㸦FWHM㸧
㸦ୗ㸧ࡢ ᗘ౫Ꮡᛶ
㸦グྕ㸸NoTr:ฎ⌮↓ࡋࠊ200deg Ev:200Υ࡛┿✵ᘬࡁࠊRT Ev:ᐊ ࡛┿✵ᘬࡁ㸧
࠙⤖ᯝࠚᖹᆒ⣽Ꮝᚄࡀ኱ࡁ࡞ヨᩱࡣࠊࢩࣇࢺ್ࡀᑠࡉࡃ࡞ࡿഴྥࡀᚓࡽࢀࡓࠋ200Υ
࡛ࡢ┿✵ฎ⌮࡛ࡣࠊᑟධᚋࡢಙྕᾘ⾶ࡀ᪩ࡃ࡞ࡾࠊNMR ಙྕࡀ᳨ฟࡉࢀ࡞࠸ሙྜࡀ
࠶ࡗࡓࠋᐊ ࡛ࡢ┿✵ฎ⌮࡟ࡼࡾࠊࢩࣇࢺ್ࡀቑ኱ࡍࡿഴྥࡀࡳࡽࢀࡓࠋ129Xe NMR
ᐃ࡟ࡼࡾࠊゐ፹ᢸయࡢ⣽Ꮝ࡟㛵ࡍࡿ᝟ሗࡀᚓࡽࢀࡿࡇ࡜ࡀࢃ࠿ࡗࡓࠋ
࠙ཧ⪃ᩥ⊩ࠚ
[1] ኱➉⣖ኵࠊᮧᒣᏲ⏨ࠊᖹ㈡㝯ࠊ᭹㒊ᓠஅࠊᮏ㛫 ୍ᘯ㸪≉㛤 2004-262668 ྕබሗ㸹
᭹㒊ᓠஅ㸪㉸೫ᴟ࢟ࢭࣀࣥ࢞ࢫ⏕ᡂ⿦⨨ᐇ⏝ᶵࡢ◊✲㛤Ⓨ, ᕤᴗᮦᩱ, 52(3), 86-89
(2004).
-377-
P95
࿕૕0/4ߦࠃࠆࡐ࡝ࡈ࡞ࠝ࡟ࡦ⤑ߩಽሶ㈩ะ⸃ᨆ
‫⚟ۑ‬ᆅ ᑗᚿࠊ⚟ᓥ 㐩ஓࠊᚋ⸨ ῟ࠊᲚ ᘯ඾
ி኱࣭໬◊
Analysis of molecular orientation in polyfluorene films by solid-state NMR
‫ۑ‬Masashi Fukuchi, Tatsuya Fukushima, Atsushi Goto, and Hironori Kaji
Institute for Chemical Research, Kyoto University, Kyoto, Japan.
Poly (9,9-di-n-octyl-2,7-fluorene) (PFO), a prototypical fluorene-based conjugated polymer,
is a highly-efficient blue-emitting polymer with potential applications of light-emitting diodes
and electrically pumped organic lasers. Recently, it has been reported that optical and
electrical properties of organic amorphous films were related to molecular orientations
relative to the substrates. In this study, we characterize molecular orientations in amorphous
thin films of PFO by solid-state NMR. From chemical shift anisotropy (CSA) measurements,
it is found that ı11 signal is reduced and ı33 signal is enhanced when the thin films are
perpendicular to B0. This indicates that the fluorene rings tend to be parallel to the substrates.
The quantitative analysis will be shown in the presentation.
࠙⥴ゝࠚ
㏆ᖺࠊపศᏊ⣔᭷ᶵ㠀ᬗ㉁⭷୰࡟࠾࠸࡚ࠊ
᭷ᶵศᏊࡢ㓄ྥ࡜ගᏛⓗ࣭㟁Ẽⓗ≉ᛶ࡜ࡢ
13
㛫࡟ᐦ᥋࡞┦㛵ࡀ࠶ࡿࡇ࡜ࡀሗ࿌ࡉࢀ
C
13
[1,2]ࠊศᏊࡢ㓄ྥࢆᐃ㔞ⓗ࡟ゎᯒࡍࡿᚲせ
C
ᛶࡀ㧗ࡲࡗ࡚ࡁࡓࠋࡲࡓࠊ㟷ⰍⓎගࢆ♧ࡍ
㧗 ศ Ꮚ ⣔ ᭷ ᶵ EL ᮦ ᩱ ࠊ poly
Fig. 1. Chemical structure of 13C1-FIQ PFO.
(9,9'-di-n-octyl-2,7-fluorene) (PFO)࡟࠾࠸࡚ࠊ
ศᏊࢆ㓄ྥࡉࡏࡿࡇ࡜࡟ࡼࡾࠊṇᏍ⛣ືᗘࡀ୍᱆ྥୖࡍࡿࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿ[3]ࠋ
ࡑࡇ࡛ᮏ◊✲࡛ࡣࠊ࢔ࣔࣝࣇ࢓ࢫ⭷࡟࠾ࡅࡿศᏊ㓄ྥ࡜㟁Ⲵ㍺㏦≉ᛶ࡜ࡢ┦㛵ࢆ᫂☜
࡟ࡍࡿࡇ࡜ࢆ┠ⓗ࡜ࡋ࡚ࠊPFO࢟ࣕࢫࢺ⭷୰࡟࠾ࡅࡿศᏊࡢ㓄ྥࢆᅛయNMRἲ࡟ࡼࡾ
ヲ⣽࡟ゎᯒࡍࡿࡇ࡜ࢆヨࡳࡓࠋ
࠙ᐇ㦂ࠚ
ᅗ1ࡢ♧ࡍࡼ࠺࡟13Cࣛ࣋ࣝࡋࡓ࣏ࣜࣇࣝ࢜ࣞࣥヨᩱ(௨㝆ࠊ13C1-FIQ PFO࡜࿧ࡪ)ࢆྜ
ᡂࡋࡓࠋࡇࡢࣛ࣋ࣝヨᩱࡢ࢟ࣕࢫࢺ⭷(⭷ཌ20s1 Pm)ࢆ30ᯛ✚ᒙࡋࠊ⭷㠃ࡀ㟼☢ሙ࡜
ᆶ┤ࠊ࠶ࡿ࠸ࡣࠊᖹ⾜࡟࡞ࡿࡼ࠺࡟㓄⨨ࡋࡓ≧ែ࡛13C໬Ꮫࢩࣇࢺ␗᪉ᛶ(CSA)ࢆ ᐃ
ࡋࡓࠋᅛయNMR ᐃࡣࠊBruker♫〇AVANCE IIIศගィ࡟ࡼࡾ9.4 Tࡢ㟼☢ሙୗ࡛⾜ࡗ
᭷ᶵ(/࣏ࣜࣇࣝ࢜ࣞࣥ໬Ꮫࢩࣇࢺ␗᪉ᛶ
‫ࡾࡢࢁࡦࡌ࠿ࠊࡋࡘ࠶࠺࡜ࡈࠊࡸࡘࡓࡲࡋࡃࡩࠊࡋࡉࡲࡕࡃࡩۑ‬
-378-
ࡓࠋࣉ࣮ࣟࣈ࡟ࡣࠊDoty♫〇7 mm Widelineࣉ࣮ࣟࣈࢆ⏝࠸ࡓࠋ1H࡜13Cࡢඹ㬆࿘Ἴᩘ
ࡣࡑࢀࡒࢀࠊ400.25 MHzࠊ100.66 MHz࡛࠶ࡿࠋ ᐃࡣᐊ ࡛⾜࠸ࠊᡭἲ࡜ࡋ࡚CPἲࠊ
Hahn-echoἲࢆ⏝࠸ࡓࠋࡲࡓࠊࣛ࣋ࣝࡉࢀ࡚࠸࡞࠸PFO࡟ᑐࡋ࡚ࡶࠊྠᵝ࡟࢟ࣕࢫࢺ⭷
ࢆస〇ࡋࠊࡑࡢCSAࢆ ᐃࡋࡓࠋ13C1-FIQ PFO࡜ࣛ࣋ࣝࡉࢀ࡚࠸࡞࠸PFOࡢᕪࢫ࣌ࢡ
ࢺࣝࢆ࡜ࡿࡇ࡜࡟ࡼࡾࠊࣛ࣋ࣝ13CⅣ⣲ࡢࡳ࡟ᑐࡍࡿCSAࢫ࣌ࢡࢺࣝࢆᚓࡓࠋ
࠙⤖ᯝ࣭⪃ᐹࠚ
ᅗ2(a)࡟ศᏊࡢ㓄ྥࡀࣛࣥࢲ࣒࡞ࣂࣝ
ࢡヨᩱࠊ(b)࡟㟼☢ሙB0࡟ᑐࡋ࡚ᆶ┤࡟㓄
⨨ࡋࡓ࢟ࣕࢫࢺ⭷ヨᩱࠊ(c)࡟ࡣ㟼☢ሙB0
࡟ᑐࡋ࡚ᖹ⾜࡟㓄⨨ࡋࡓ࢟ࣕࢫࢺ⭷ヨᩱ
ࡢ13C CSAࢫ࣌ࢡࢺࣝࢆ♧ࡍࠋ࡞࠾ࠊࡇࢀ
ࡽࡢࢫ࣌ࢡࢺࣝ࡟࠾࠸࡚ࡣࠊୖ㏙ࡢ㏻ࡾ
(a)
ኳ↛Ꮡᅾ13CⅣ⣲ࡢᙳ㡪ࢆྲྀࡾ㝖࠸࡚࠶ࡿࠋ
ᅗ2(b)ࡢࢫ࣌ࢡࢺ࡛ࣝࡣࠊV11ࡢಙྕᙉ
ᗘࡣࠊศᏊࡀࣛࣥࢲ࣒࡟㓄ྥࡋ࡚࠸ࡿᅗ
2(a)࡜ẚ㍑ࡋ࡚ῶᑡࡋ࡚࠾ࡾࠊᅗ2(c)࡛ࡣ
(b)
㏫࡟ቑຍࡋ࡚࠸ࡿࠋࣛ࣋ࣝ13CⅣ⣲ࡢV11
࡟ᑐࡍࡿ୺㍈᪉ྥࡣศᏊ㙐㍈᪉ྥ࡟ᑐᛂ
ࡋ࡚࠸ࡿࡇ࡜࠿ࡽࠊPFOศᏊ㙐ࡣࠊ⭷㠃࡟
ᑐࡋ࡚ᖹ⾜࡟㓄ྥࡍࡿഴྥࡀ࠶ࡿࡇ࡜ࡀ
(c)
ࢃ࠿ࡿࠋࡲࡓࠊV33࡟㛵ࡋ࡚ࡣࠊᅗ2(b)࡛
ࡣࡑࡢಙྕᙉᗘࡣቑຍࡋ࡚࠾ࡾࠊᅗ2(c)
࡛ࡣࡸࡸῶᑡࡋ࡚࠸ࡿࠋࣛ࣋ࣝ13CⅣ⣲ࡢ
V33࡟ᑐࡍࡿ୺㍈᪉ྥࡣࣇࣝ࢜ࣞࣥ⎔࡟ᆶ
Fig. 2. The 13C CSA spectra of 13C1-FIQ PFO in
┤࡞᪉ྥ࡟ᑐᛂࡋ࡚࠸ࡿࡇ࡜࠿ࡽࠊࣇࣝ
BULK (a), in cast films arranged perpendicular to
࢜ࣞࣥ⎔ࡣࠊ⭷㠃࡟ᑐࡋ࡚ᖹ⾜࡟㓄ྥࡍ
B0 (b), and in cast films set parallel to B0 (c).
ࡿഴྥ࡟࠶ࡿࡇ࡜ࡀࢃ࠿ࡿࠋ⌧ᅾࠊศᏊ
ࡢ㓄ྥศᕸ࡟㛵ࡍࡿᐃ㔞ⓗ࡞᳨ウࢆ⾜ࡗ࡚࠸ࡿࠋ
࠙ㅰ㎡ࠚ
PFOྜᡂ࡟࠾࠸࡚ᚚᣦᑟ࠾ࡼࡧᚚຓຊ࠸ࡓࡔࡁࡲࡋࡓఫ཭໬Ꮫᰴᘧ఍♫ࠊᒸ⏣᫂ᙪ
ᵝࠊ㔠ᆏᑗᵝࠊᑠᯘㅍᵝ࡟῝ࡃឤㅰ࠸ࡓࡋࡲࡍࠋᮏ◊✲ࡣࠊ᪥ᮏᏛ⾡᣺⯆఍ࡢ᭱ඛ➃
◊✲㛤Ⓨᨭ᥼ࣉࣟࢢ࣒ࣛ࡟ࡼࡾࠊຓᡂࢆཷࡅࡓࡶࡢ࡛࠶ࡿࠋ
࠙ᩥ⊩ࠚ
[1] D. Yokoyama, A. Sakaguchi, M. Suzuki, C. Adachi, Org. Electron. 2009, 10, 127.
[2] D. Yokoyama, A. Sakaguchi, M. Suzuki, C. Adachi, Appl. Phys. Lett. 2009, 95, 243303.
[3] M. Redecker, M. Inbasekaran, E. P. Woo, D. D. C. Bradley, Appl. Phys. Lett. 1999, 74, 1400.
-379-
P96
⍹὇ߩᄙⷺ࿕૕NMR
ʊ᦭ᯏᚑಽߣήᯏᚑಽߩ᭴ㅧʊ
٤㊄ᯅᐽੑ1㧘㜞ᯅ⾆ᢥ1
1ᣂᣣ㐅వ┵⎇
Multinuclear Solid-state NMR for Coal㧙Organic and Inorganic
Structure㧙
٤Koji Kanehashi1, Takafumi Takahashi2
1Advanced Technology Research Laboratories, Nippon Steel Corporation
Detailed studies on the inorganic matter as well as organic one in coal are very
important from the viewpoint of both geology (coalification and diagenesis) and
coal utilization. Solid-state NMR, a nuclide specific method, is well suited for the
analysis of chemical structure of coal, multicomponent systems. In this study, we
have applied to 1H, 13C, 15N (organic species) and 27Al, 29Si, 11B (inorganic
species) solid-state NMR to obtain information about organic and inorganic
phases in coal.
⍹὇ߪ⵾㋕ࡊࡠ࠮ࠬߦ߅޿ߡਇนᰳߥᄤὼ‛ߢ޽ࠆ‫ޕ‬⍹὇ࠍੇ⇐ߒߡ⵾
ㅧߒߚࠦ࡯ࠢࠬߪ㋕㋶⍹ߩㆶర೷ߣߒߡ↪޿ࠄࠇߡ߅ࠅ‫ᦨޔ‬ㄭߢߪ㜞Ἱߦ
⋥ធᓸ☳὇ࠍ็߈ㄟ߻ߎߣߢ‫ޔ‬㜞ଔߥࠦ࡯ࠢࠬߩᲧ₸ࠍਅߍߚᠲᬺ߇ਥᵹ
ߣߥߞߡ޿ࠆ‫ޔߚ߹ޕ‬⍹὇⊒㔚ߦ߅޿ߡ߽‫࡯࡜ࠗࡏޔ‬Ἱߦᓸ☳὇ࠍ็߈ㄟ
ߺ‫ޔ‬Ά὾ߐߖࠆߎߣߢ⊒㔚ࠍⴕߞߡ߅ࠅ‫ޔ‬ല₸⊛ߥᠲᬺ߅ࠃ߮⍹὇↱᧪ߩ
࠻࡜ࡉ࡞ࠍ࿁ㆱߔࠆߚ߼ߦ߽‫ޔ‬⍹὇ߩ᭴ㅧࠍ᣿ࠄ߆ߦߔࠆߎߣߪ㕖Ᏹߦ㊀
ⷐߢ޽ࠆ‫ޕ‬
⍹὇ߪߘߩ࡜ࡦࠢߦ߽ࠃࠆ߇‫⚂ޔ‬90 mass%ࠍ὇⚛ࠍᆎ߼ߣߒߚ᳓⚛࡮⓸
⚛╬ߩ᦭ᯏᚑಽ߇භ߼ߡ޿ࠆ‫ޕ‬ᱷࠅߩ10 mass%⒟ᐲ߇ࠕ࡞ࡒ࠾࠙ࡓ߿ࠤࠗ
⚛╬ߩήᯏᚑಽߢ޽ࠅ‫᦭ߩࠄࠇߎޔ‬ᯏᚑಽߣήᯏᚑಽ߇ⶄ㔀ߦ⛊ߺวߞߚ
᭴ㅧࠍ᦭ߒߡ޿ࠆߣ⠨߃ࠄࠇߡ޿ࠆ‫ޕ‬ర⚛ㆬᛯᕈ߇޽ࠅ‫ߩࠢ࡞ࡃޔ‬᭴ㅧᖱ
ႎ߇ᓧࠄࠇࠆ࿕૕NMRߪ⍹὇ߩൻቇ᭴ㅧࠍ⍮ࠆ਄ߢ㕖Ᏹߦ᦭ലߥᚻᴺߢ
޽ࠆ‫ޕ‬ᚒ‫ߪޘ‬⍹὇ߩ᦭ല೑↪ࠍଦㅴߔࠆߚ߼‫ߦߢ߹ࠇߎޔ‬13C, 27Al, 29Si╬
ߩ᭴ㅧ⸃ᨆࠍਛᔃߦታᣉߒߡ߈ߚ߇‫ᦨޔ‬ㄭߢߪⅣႺ໧㗴ࠍ⢛᥊ߦ15N߿11B
╬ߩᓸ㊂ᚑಽߩ⹏ଔ߽ⴕߞߡ߅ࠅ‫੹ޔ‬࿁ߩ⊒⴫ߢߪߎࠇࠄߩᩭ⒳ߩ᷹ቯ⚿
ᨐߦ㑐ߒߡႎ๔ߔࠆ‫ޕ‬
࿕૕NMRߩ᷹ቯ᧦ઙࠍTable 1ߦ◲නߦ߹ߣ߼ߚ‫ޕ‬
⍹὇㧘ᄙᩭ࿕૕NMR
٤߆ߨߪߒߎ߁ߓ㧘ߚ߆ߪߒߚ߆߰ߺ
-380-
ᧄⷐᣦߢߪ⚕㕙ߩㇺว਄‫ޔ‬⍹὇ਛߩ⓸⚛ߣࡎ࠙⚛ߩ⚿ᨐࠍ⸥ߔ‫ࠇߕ޿ޕ‬
߽⍹὇ਛߩ฽᦭㊂ߪ௖߆ߢ޽ࠅ㧔N㧦⚂1 mass%‫ޔ‬B㧦⚂0.01 mass%㧕‫ߎޔ‬
ࠇ߹ߢߩႎ๔଀ߪዋߥ޿‫ޕ‬
⍹὇A, Bߩ1Hĺ15N CP/MASࠬࡍࠢ࠻࡞ࠍFig. 1ߦ␜ߔ‫ޕ‬⍹὇ਛߩ⓸⚛ߪ‫ޔ‬
ࡇ࡝ࠫࡦ࠲ࠗࡊ߿ࡇࡠ࡯࡞࠲ࠗࡊߩ⧐㚅ᣖ‫ࡊࠗ࠲ࡦࡒࠕ߿ࡊࠗ࠲࠼ࡒࠕޔ‬
╬ߩ⢽⢌ᣖ߇⠨߃ࠄࠇࠆ߇‫੹ޔ‬࿁ߩ᷹ቯ⚿ᨐ߆ࠄߪ‫ޔ‬ਥߦࡇࡠ࡯࡞࠲ࠗࡊ
߇᷹ⷰߐࠇߡ޿ࠆߩ߇ࠊ߆ࠆ‫ߩࡊࠗ࠲࡞࡯ࡠࡇߚ߹ޕ‬ൻቇࠪࡈ࠻ߪ‫ޔ‬Ⅳ᭴
ㅧ߇⊒㆐ߔࠆߦᓥ޿㜞⏛႐஥߳ࠪࡈ࠻ߒߡ޿ߊߎߣ߆ࠄ‫ޔ‬⍹὇A߅ࠃ߮B
ࠍᲧߴߚ႐ว‫ޔ‬⍹὇Bߩ߶߁߇ࠃࠅࡇࡠ࡯࡞Ⅳ߿ࡌࡦ࠯ࡦⅣ߇❗วߒߚ᭴
ㅧࠍߣߞߡ޿ࠆߣផ᷹ߐࠇࠆ‫ޕ‬ታ㓙‫ޔ‬⍹὇Bߩ߶߁߇὇ൻᐲ߇㜞ߊ‫ޔ‬὇⚛
㛽ᩰߩ⧐㚅ᣖᕈ߇㜞ߊߥߞߡ޿ࠆߎߣ߆ࠄ‫ޔ‬⍦⋫ߒߥ޿⚿ᨐߢ޽ࠆߣ޿߃
ࠆ‫੹ޕ‬࿁ߩ᷹ቯߢߪCP/MASࠍ↪޿ߡ޿ࠆߚ߼‫ޔ‬NߩㄭறߦH߇ሽ࿷ߒߥ޿
ࡇ࡝ࠫࡦ࠲ࠗࡊߪ᷹ⷰߢ߈ߡ޿ߥ޿߇‫⹜ޔ‬ᢱࠍࡊࡠ࠻ࡦൻߔࠆߎߣߢ‫ࡇޔ‬
࡝ࠫ࠾࠙ࡓࠗࠝࡦߣߒߡᬌ಴ߢ߈ࠆߣᕁࠊࠇࠆ‫ޕ‬
ᰴߦ‫ޔ‬⍹὇Cߩ11B MASࠬࡍࠢ࠻࡞ࠍFig. 2ߦ␜ߔ‫ޕ‬0㨪20 ppmߩ㗔ၞߦ3
ᧄߩᲧセ⊛ࠪࡖ࡯ࡊߥࡇ࡯ࠢ߇᷹ⷰߐࠇߚ‫ޕ‬ൻቇࠪࡈ࠻୯߆ࠄ್ᢿߔࠆߣ‫ޔ‬
ૐ⏛႐஥ߩ2ᧄࡇ࡯ࠢߪ3㈩૏Bߩൻቇࠪࡈ࠻㗔ၞߦㄭ޿߇‫ޔ‬3ᧄߩࡇ࡯ࠢ޿
ߕࠇ߽ᩭ྾ᭂሶ⚿วቯᢙߪ㕖Ᏹߦዊߐ޿ߎߣ߆ࠄ‫߇ࠢ࡯ࡇߩߡోޔ‬4㈩૏
᭴ㅧࠍߣߞߡ޿ࠆߣ⚿⺰ઃߌߚ‫ޕ‬ૐ⏛႐஥ߩ2ᧄߩࡇ࡯ࠢߪ‫ޔ‬ㅢᏱߩήᯏ
㉄ൻ‛ߩൻቇࠪࡈ࠻㗔ၞߣߪ⇣ߥߞߡ߅ࠅ‫᦭ޔ‬ᯏ⾰ߣ⚿วߒߚ4㈩૏Bߢ޽
ࠆߣផ᷹ߒߚ‫ޕ‬ታ㓙‫ޔ‬1Hĺ11B CP/MASࠬࡍࠢ࠻࡞ߢߪߎࠇࠄߩૐ⏛႐ߩ
ࡇ࡯ࠢߩ⋧ኻᒝᐲ߇Ⴧടߒߡ޿ߚߎࠈ߆ࠄ‫ޔ‬OHߣ⚿วߒߡ޿ࠆ᦭ᯏ⾰ߩB
ߦ⿠࿃ߔࠆ߽ߩߣផቯߒߡ޿ࠆ‫ޕ‬
Table 1 NMR parameters for coal samples.
Pyridine Quinoline Pyrrole Indole Calbazole
㪥㫌㪺㫃㫀㪻㪼 㪪㫇㫀㫅 㪪㫇㪼㪺㫋㫉㫆㫄㪼㫋㪼㫉
㪚㪤㪯㪄㪊㪇㪇
㪈㪊
㪈㪆㪉
㪚
㪠㪥㪦㪭㪘㪄㪌㪇㪇
㪚㪤㪯㪄㪊㪇㪇
㪈
㪈㪆㪉
㪟
㪠㪥㪦㪭㪘㪄㪌㪇㪇
㪈㪌
Coal A
0
15N
Fig. 1
㪩㪼㪽㪼㫉㪼㫅㪺㪼
㪚㪧㪆㪤㪘㪪
㪟㪤㪙㩷㩿㪈㪎㪅㪊㩷㫇㫇㫄㪀
㪚㪩㪘㪤㪧㪪
㪤㪘㪪
㪘㪻㪸㫄㪸㫅㫋㪸㫅㪼
㩿㪈㪅㪐㪈㩷㫇㫇㫄㪀
㪞㫃㫐㪺㫀㫅㪼
㩿㪄㪊㪋㪎㪅㪌㪋㩷㫇㫇㫄㪀
㪘㫃㪚㫃㪊㪅㪸㫈㩷㩿㪄㪇㪅㪈㩷㫇㫇㫄㪀
㪥
㪈㪆㪉
㪠㪥㪦㪭㪘㪄㪌㪇㪇
㪚㪧㪆㪤㪘㪪
㪘㫃
㪉㪐
㪪㫀
㪌㪆㪉
㪈㪆㪉
㪜㪚㪘㪄㪎㪇㪇
㪚㪤㪯㪄㪊㪇㪇
㪈㪈
㪊㪆㪉
㪜㪚㪘㪄㪎㪇㪇
㪤㪘㪪㪃㩷㪤㪨㪤㪘㪪
㪤㪘㪪
㪤㪘㪪㪃㩷㪚㪧㪆㪤㪘㪪㪃
㪪㪫㪤㪘㪪
㪉㪎
㪙
Coal B
100
㪧㫌㫃㫊㪼㩷㫊㪼㫈㫌㪼㫅㪺㪼
㪧㪛㪤㪪㩷㩿㪄㪊㪋㪅㪇㩷㫇㫇㫄㪀
㪟㪊㪙㪦㪊㪅㩷㪸㫈
㩿㪈㪐㪅㪋㪐㩷㫇㫇㫄㪀
Coal C
-100 -200 -300 -400 -500
50 40 30 20 10
chemical shift / ppm
1Hĺ15N
11B
CP/MAS spectra for coal A and B.
-381-
Fig. 2
11B
0
-10 -20 -30 -40
chemical shift / ppm
MAS spectra for coal C.
P97
ήᯏൻว‛ߩ࿕૕1H NMRߦ߅ߌࠆ㜞ㅦMASߣ
CRAMPSߩಽ⸃⢻ߩᲧセ
٤⷏ᶆ㆐਽1㧘㊄ᯅᐽੑ2
1ਃፉశ↥
2ᣂᣣ㐅వ┵⎇
Comparison of spectral resolution between high-speed MAS and
CRAMPS in 1H solid-state NMR for inorganic compounds
٤Tatsuya Nishiura1, Koji Kanehashi2
1Mishima Kosan Co., Ltd.
2Advanced Technology Research Laboratories, Nippon Steel Corporation
In recent years, Magic angle spinning at very fast spinning frequency, “fast
MAS”, has been utilized to obtain high resolution 1H NMR spectra for solids as
well as CRAMPS. Fast MAS has some advantages over CRAMPS, e.g. easy to
implement and more reliable in the chemical shift. Whereas MAS with the
spinning rate up to 60 kHz provides still insufficient spectral resolution compares
with CRAMPS for 1H abundant compounds such as organic polymer, it is
promising for inorganic solids with lower concentration of 1H, causing the smaller
dipolar interaction. In this study, we have applied high-speed MAS and CRAMPS
to inorganic solids to compare spectral resolution.
1Hᩭߩ࿕૕㜞ಽ⸃⢻NMRࠬࡍࠢ࠻࡞ࠍᓧࠆߦߪCRAMPSࠍㆡ↪ߒ‫ ޔ‬1H
㑆ߩ෺ᭂሶ⋧੕૞↪ࠍᐔဋൻߔࠆᣇᴺ߇⦟ߊ⍮ࠄࠇߡ޿ࠆ߇‫ߩߎޔ‬ᣇᴺߪ
㧔1㧕᧦ઙ⺞ᢛ߇ᾘ㔀‫ޔ‬㧔2㧕ൻቇࠪࡈ࠻ߩା㗬ᕈ߇ૐਅ‫ޔ‬㧔3㧕ቯ㊂ᕈߦ
ᰳߌࠆ‫ߚߞ޿ߣޔ‬໧㗴ὐࠍᜬߟ‫৻ޕ‬ᣇߢ‫ޔ‬ㄭᐕߩࡂ࡯࠼ᛛⴚߩ⊒ዷߦࠃߞ
ߡ‫ޔ‬60 kHz⒟ᐲ߹ߢߩ㕖Ᏹߦ㜞ㅦߢ⹜ᢱࠍ࿁ォߔࠆߎߣ߇น⢻ߥࡊࡠ࡯ࡉ
߇౉ᚻߢ߈ࠆࠃ߁ߦߥࠅ‫◲ࠅࠃޔ‬ଢߦಽ⸃⢻ߩ㜞޿1H NMRࠬࡍࠢ࠻࡞߇
ᓧࠄࠇࠆᦼᓙ߇޽ࠆ‫ޕ‬
᦭ᯏൻว‛ߦ߅޿ߡߪ৻⥸ߦ1HỚᐲ߇㜞޿ߎߣ߆ࠄ‫ޔ‬60 kHz⒟ᐲߩ࿁ォ
๟ᵄᢙߢߪ1H㑆ߩ෺ᭂሶ⋧੕૞↪߇ᐔဋൻߐࠇߕ‫ޔ‬CRAMPSߦಽ⸃⢻߇෸
߫ߥ޿႐ว߽ᄙ޿‫৻ޕ‬ᣇ‫ޔ‬ήᯏൻว‛ਛߩ᳓⚛ේሶߩỚᐲߪૐ޿ߎߣ߆ࠄ‫ޔ‬
CRAMPSࠍ↪޿ߕߣ߽චಽߦಽ⸃⢻ߩ㜞޿1H NMRࠬࡍࠢ࠻࡞߇ᓧࠄࠇࠆ
น⢻ᕈ߇޽ࠆ‫੹ߢߎߘޕ‬࿁‫ߩ߆ߟߊ޿ޔ‬ήᯏൻว‛ߦ߅޿ߡ‫ޔ‬CRAMPSࠬ
ࡍࠢ࠻࡞ߣ㜞ㅦ࿁ォਅߢߩMASࠬࡍࠢ࠻࡞ࠍ᷹ቯߒ‫ޔ‬ಽ⸃⢻ߩ㆑޿ߦ㑐ߔ
ࠆၮ␆⊛ᬌ⸛ࠍⴕߞߚ‫ޕ‬
㜞ㅦMAS㧘CRAMPS㧘ήᯏൻว‛
٤ߦߒ߁ࠄߚߟ߿㧘߆ߨߪߒߎ߁ߓ
-382-
1H
CRAMPS NMRࠬࡍࠢ࠻࡞ߪCMX-300㧔7.0 T㧕ࠍ↪޿‫ޔ‬BR24ߩࡄ࡞
ࠬ♽೉㧔90qࡄ࡞ࠬ᏷㧦1.3 Ps㧕ࠍ↪޿ߡ1500 Hzߩ⹜ᢱ࿁ォ๟ᵄᢙߢ᷹ቯ
ߒߚ‫ޕ‬ൻቇࠪࡈ࠻ߩࠬࠤ࡯࡝ࡦࠣߪࠕࠫࡇࡦ㉄ߩ㜞⏛႐஥ߩࡔ࠴࡟ࡦၮࠍ
1.5 ppmߣߒߚ‫ޕ‬㜞ㅦMASࠬࡍࠢ࠻࡞ߩ᷹ቯߦߪINOVA-500㧔11.7 T㧕ࠍ↪
޿‫ߢࠬ࡞ࡄ࡞ࠣࡦࠪޔ‬10㨪60 kHzߩ⹜ᢱ࿁ォ๟ᵄᢙߢ᷹ቯߒߚ‫ޕ‬ൻቇࠪࡈ
࠻ߪࠕ࠳ࡑࡦ࠲ࡦߩࡇ࡯ࠢࠍ1.91 ppmߦ⸳ቯߒߚ‫ޕ‬
߹ߕ‫✢ߩࠢ࡯ࡇޔ‬᏷ߦኻߔࠆMASㅦᐲߩଐሽᕈࠍFig. 1ߦ␜ߔ‫ޕ‬Silicic
acidߦ߅޿ߡߪ‫ޔ‬MASㅦᐲࠍ਄ߍߡ߽✢᏷߇߶ߣࠎߤᄌൻߒߥ߆ߞߚߩߦ
ኻߒ‫ޔ‬Kaolin㧔Al2Si2O5(OH)4 㧕߿H3BO3 ߢߪ࿁ォ๟ᦼߦኻߒߡ߶߷⋥✢⊛
ߦ✢᏷߇ᷫዋߒߡ޿ߊ௑ะ߇⷗ࠄࠇ‫ߦ․ޔ‬H3BO3 ߢߪߘߩലᨐ߇㗼⪺ߢ
޽ߞߚ‫ߩࠄࠇߎޕ‬MASㅦᐲߦኻߔࠆ✢᏷ߩଐሽᕈߩ㆑޿ߪ‫ޔ‬ൻว‛ਛߩ᳓
⚛Ớᐲߣ㑐ㅪ߇޽ࠆߣ⠨߃ࠄࠇࠆ1)‫ޕ‬਄⸥ߩSilicic acid‫ޔ‬Kaolin‫ ޔ‬H3BO3ਛ
ߩ᳓⚛Ớᐲߪߘࠇߙࠇ< 1 mass%‫ޔ‬1.6 mass%‫ޔ‬4.9 mass%ߢ޽ࠅ‫ޔ‬᳓⚛Ớᐲ
߇㜞޿߶ߤ‫ ޔ‬1H㑆ߩ෺ᭂሶ⋧੕૞↪߇ᐔဋൻߐࠇߡ߅ࠄߕ‫ޔ‬MASㅦᐲߩ
Ⴧടߦ઻߁✢᏷ߩᷫዋലᨐ߇ᄢ߈ߊߥߞߡ޿ࠆߣ⠨߃ࠄࠇࠆ‫ޕ‬᳓⚛Ớᐲ߇
Ყセ⊛㜞޿H3BO3╬ߢߪ‫ޔ‬MASㅦᐲࠍߐࠄߦ਄ߍࠆߎߣߦࠃߞߡ‫ࠆߥᦝޔ‬
✢᏷ߩᷫዋ߇ᦼᓙߢ߈ࠆߣᕁࠊࠇࠆ‫ޕ‬
ᰴߦ‫ޔ‬MASㅦᐲ߇60 kHzߩᤨߩMASࠬࡍࠢ࠻࡞ߣBR24ߩࡄ࡞ࠬ♽೉ߢ
ᓧࠄࠇߚCRAMPSࠬࡍࠢ࠻࡞ࠍᲧセߒߚ৻଀ࠍFig. 2ߦ␜ߔ‫ޕ‬Kaolinߦ߅޿
ߡߪ‫ޔ‬ਔᚻᴺߢ࠻࡯࠲࡞ߩ✢᏷⥄૕ߪ߶߷╬ߒ޿߽ߩߩ‫ޔ‬㜞ㅦMASࠬࡍࠢ
࠻࡞ߢߪࠃࠅ㞲᣿ߦጀ㑆ߣጀౝߦሽ࿷ߔࠆ㕖╬ଔߥOHၮ↱᧪ߩࡇ࡯ࠢ߇
ಽ㔌ߢ߈ߡ޿ࠆ‫৻ޕ‬ᣇ‫ࠅࠃޔ‬᳓⚛Ớᐲߩ㜞޿H3BO3ߢߪ‫ޔ‬CRAMPSࠬࡍࠢ
࠻࡞ߩ߶߁߇ಽ⸃⢻߇㜞޿ߎߣ߆ࠄ‫ޔ‬Fig. 1ߢ⷗ࠄࠇߚ௑ะߣห᭽‫ޔ‬60
kHzߩMASㅦᐲߢߪ1H㑆ߩ෺ᭂሶ⋧੕૞↪ࠍᐔဋൻߔࠆߦߪਇචಽߢ޽ࠆ
ߣ޿߃ࠆ‫ޕ‬
એ਄ߩ⚿ᨐ߆ࠄ‫ޔ‬ήᯏൻว‛ߦ߅޿ߡ߽‫⹜ޔ‬ᢱ࿁ォ๟ᵄᢙ߇60 kHz⒟ᐲ
ߩMASࠬࡍࠢ࠻࡞ߢߪಽ⸃⢻ߩὐߢCRAMPSߦ෸߫ߥ޿ࠤ ࡯ ߽ࠬ޽ࠆ߇ ‫ޔ‬
᷹ቯߩ◲ଢߐ߿ቯ㊂ᕈߩⷰὐ߆ࠄ‫ ޔ‬1Hᩭߩ࿕૕㜞ಽ⸃⢻NMRࠬࡍࠢ࠻࡞
ࠍᓧࠆᣇᴺߣߒߡ㕖Ᏹߦ᦭ലߢ޽ࠆߣ⠨߃ࠄࠇࠆ‫ޕ‬
4500
4000
H3BO3
FWHM / Hz
3500
3000
Kaolin
2500
2000
1500
1000
Silicic acid
500
0
㪇
㪉㪇
㪋㪇
㪍㪇
㪏㪇
㪈㪇㪇
㪈㪉㪇
Rotor Period / Ps
Fig. 1 Dependence of line width on rotor
period for some inorganic compounds
in 1H MAS spectra.
Fig. 2
1H
solid-state NMR spectra for kaolin (a) and
H3BO3 (b). Top: CRAMPS spectra, bottom:
MAS spectra (Qr=60 kHz).
1) J. P. Yesinowski, H. Eckert, G. R. Rossman, JACS, 110 (1988) 1367.
-383-
P98
ࣇࢵ⣲ࣞࢫ105ࣉ࣮ࣟࣈࢆ⏝࠸ࡓᚤ㔞ࣇࢵ⣲ࡢ໬Ꮫᙧែゎᯒ
‫ۑ‬㧗ᶫ㈗ᩥ 㔠ᶫᗣ஧ ᰿ᮏ㈗ᏹ
᪂᪥㚩࣭ඛ➃◊
2
᪥ᮏ㟁Ꮚ
Characterization of chemical species for trace amounts of fluorine using a fluorine-less NMR
probe
‫ۑ‬Takafumi Takahashi1, Koji Kanehashi1, Takahiro Nemoto2
1
Advanced Technology Research Laboratories, Nippon Steel Corporation 2JEOL
Fluorine is one of the elements whose environmental risks have been frequently discussed. Trace
amounts of fluorine in by-products of steel-making industry make it difficult to characterize its
chemical species. To improve the quality of 19F-NMR spectra, a fluorine-less NMR probe has been
developed by substituting a module and a variable condenser with non-fluorine ceramics. As a result, a
19
F MAS NMR spectrum of synthetic products with fluorine content < 1mass% can be obtained
without applying a depth pulse. In addition, new analytical techniques such as 19F{27Al} TRAPDOR
and 31P{19F} CPMAS have been employed. In a 19F{27Al}TRAPDOR spectrum, the fluorine atoms
bonding with aluminum ones are selectively observed. On the other hand, in a 31P{19F}CPMAS NMR
spectrum, the fluorine atoms occurring close to phosphorous ones are selectively observed. The
combination of these analytical techniques allows us to characterize the chemical species of trace
amounts of fluorine.
࠙⥴ゝࠚࣇࢵ⣲㸦㹄㸧ࡣከࡃࡢᕤᴗ〇ရ࡟⏝࠸ࡽࢀࡿ୍᪉ࠊ⎔ቃ㈇Ⲵ≀㉁࡜ࡋ࡚⃰ᗘ࣭⁐ฟ
್཮᪉࡟㛵ࡋ࡚ࠊཝࡋ࠸᤼ฟつไࡀタࡅࡽࢀ࡚࠸ࡿඖ⣲࡛ࡶ࠶ࡿࠋࡇ࠺ࡋࡓ⎔ቃつไࢆࢡࣜ
࢔ࡍࡿࡇ࡜ࡀࠊ▼Ⅳ⅊ࡸࢫࣛࢢ➼ࡢ෌฼⏝ࢆ㐍ࡵࡿ࠺࠼࡛ࡢㄢ㢟࡛࠶ࡿࠋࡇࢀࡲ࡛࡟ࡶࠊF
ࡢ໬Ꮫᙧែࢆไᚚ࡟ࡼࡿ㹄ᅛᐃ໬ἲࡀᥦ᱌ࡉࢀ࡚࠸ࡿࡶࡢࡢࠊ㹄ࡢ໬Ꮫᙧែゎᯒᢏ⾡ࡣ༑ศ
☜❧ࡉࢀ࡚࠸ࡿ࡜ࡣゝ࠼࡞࠸ࠋ≉࡟ࠊ1mass%௨ୗࡢᚤ㔞㹄࡟ࡘ࠸࡚ࡣࠊFྵ᭷໬ྜ≀ࢆNMR
࡛≉ᐃࡍࡿ࡟ࡣᗄࡘ࠿ࡢᢏ⾡ⓗㄢ㢟ࡀᏑᅾࡍࡿࠋ୍⯡࡟ࠊNMRࣉ࣮ࣟࣈෆ㒊ࡢࣔࢪ࣮ࣗࣝ࿘
㎶࡟ࡣຍᕤࡢࡋ᫆ࡉ࡞࡝ࡢ⌮⏤࠿ࡽF⣔ᶞ⬡ࡀከ⏝ࡉࢀࠊᙉ࠸ࣂࢵࢡࢢࣛ࢘ࣥࢻ㸦BG㸧ࢩࢢ
ࢼࣝࢆ୚࠼ࡿࠋࡲࡓࠊAl-F⤖ྜ࡜Si-F⤖ྜ࡟ࡘ࠸࡚ࡣࠊFࡢ໬Ꮫࢩࣇࢺࡀ㢮ఝࡋ࡚࠾ࡾࠊ19F-MAS
ࢫ࣌ࢡࢺࣝࡢࡳ࡛ࡇࢀࡽࢆ༊ูࡍࡿࡇ࡜ࡣ㞴ࡋ࠸ࠋྠᵝ࡟ࠊCa-F⤖ྜࢆᣢࡘ໬ྜ≀ࡢF໬Ꮫࢩ
ࣇࢺࡶࠊᴟࡵ࡚⊃࠸㡿ᇦ࡟㞟୰ࡍࡿࠋࡑࡇ࡛ࠊࡇࢀࡽࡢㄢ㢟ࢆඞ᭹ࡍࡿࡓࡵࠊFࡢBG๐ῶ࡟
ྲྀࡾ⤌ࡴ࡜࡜ࡶ࡟ࠊ ᐃᢏ⾡࡜ࡋ࡚F-Al⤖ྜࢆ㑅ᢥⓗ࡟ᢳฟࡍࡿ19F{27Al}TRAPDORἲࠊP-F
⤖ྜࢆ㑅ᢥⓗ࡟ᢳฟࡍࡿ31P{19F}CPMASἲࡢ ᐃᢏ⾡ࢆ☜❧ࡋࡓࠋࡑࡢ࠺࠼࡛ࠊࡇࢀࡽࡢᡭ
ἲ࡟ࡼࡾࠊྜᡂヨᩱ୰ࡢᚤ㔞Fࡢ໬Ꮫᙧែゎᯒࢆ⾜ࡗࡓࠋ
࠙ᐇ㦂ࠚ NMRࢫ࣌ࢡࢺࣝ ᐃࡣࠊJEOL-ECA700(16.4T)࡟࠾࠸࡚ࠊ27Al-19F஧㔜ඹ㬆ࣉ࣮ࣟࣈ
㸦3.2mm㸧࠾ࡼࡧ31P-19F஧㔜ඹ㬆ࣉ࣮ࣟࣈ(4mm)ࢆ⏝࠸࡚⾜ࡗࡓࠋ
࣮࣮࢟࣡ࢻ㸸ࡧࡾࡻ࠺ࡩࡗࡑࠊ࡜ࡽࡗ࡫࡝࣮ࡿࠊࡩࡗࡑࢀࡍ
‫ࢁࡦ࠿ࡓ࡜ࡶࡡࠊࡌ࠺ࡇࡋࡣࡡ࠿ࠊࡳࡩ࠿ࡓࡋࡣ࠿ࡓۑ‬
-384-
t1= 1/ǎR
19
F-MAS NMR ᐃࡣࠊᅇ㌿㏿ᗘ20kHzࠊ18°ࣃࣝࢫ
㸦 0.7ȝs 㸧 ࠊ ⧞ ࡾ ㏉ ࡋ 5s ࡟ ࡼ ࡾ ⾜ ࡗ ࡓ ࠋ
19
F{27Al}TRAPDORࢫ࣌ࢡࢺࣝ[1] ᐃࡣࠊ27Al-19F஧
㔜ඹ㬆ࣉ࣮ࣟࣈ࡟ࡼࡾࠊFig.1࡟♧ࡍࣃࣝࢫࢩ࣮ࢣ
ࣥࢫࢆ⏝࠸࡚ࠊᅇ㌿࿘Ἴᩘ18kHzࠊt1ࢆᅇ㌿ྠᮇ࡟
ࡋ࡚⾜ࡗࡓࠋ31P{19F}CPMAS ᐃࡣࠊᅇ㌿㏿ᗘ10kHzࠊ
Fig.1
contact time 0.2ms࡟࡚⾜ࡗࡓࠋ
19
F{27Al} TRAPDOR pulse sequence.
The time t1 is rotor-synchronized. ǎR indicates
spinning frequency.
࠙⤖ᯝ࠾ࡼࡧ⪃ᐹࠚFig.2࡟ࠊࣉ࣮ࣟࣈᨵⰋ๓ᚋ࡛ ᐃࡋࡓࣇࢵ⣲ࣂࢵࢡࢢࣛ࢘ࣥࢻࡢẚ㍑ࢆ
♧ࡍࠋࣇࢵ⣲⣔ᮦᩱࢆࣔࢪ࣮ࣗࣝ࿘㎶࠿ࡽ᤼㝖ࡋࡓࡇ࡜࡟ࡼࡗ࡚ࠊ኱ᖜ࡞ࣂࢵࢡࢢࣛ࢘ࣥࢻ
๐ῶຠᯝࡀᚓࡽࢀ࡚࠸ࡿࡇ࡜ࡀศ࠿ࡿࠋ㛗ᮇ✚⟬࡟ࡼࡗ࡚໬Ꮫࢩࣇࢺ200ppm௜㏆࡟⌧ࢀࡿࣂ
ࢵࢡࢢࣛ࢘ࣥࢻࡣࠊᅇ㌿ࢆ᳨ฟࡍࡿࡓࡵࡢගࣇ࢓࢖ࣂ࣮ࢣ࣮ࣈࣝ࡟⏤᮶ࡍࡿࡶࡢ࡜⪃࠼ࡽࢀ
ࡿࠋḟ࡟ࠊCa(OH)2-Al2O3-SiO2ࢆ࣐ࢺࣜࢵࢡࢫ࡜ࡋ࡚CaF2-Na3AlF6-Ca5(PO4)3F(FAP=fluorapatite)
ࢆΰྜࡋࡓヨᩱ࡟ࡘ࠸࡚ࠊ19F{27Al}TRAPDORࢫ࣌ࢡࢺࣝࡢ ᐃࢆ⾜ࡗࡓࠋࡑࡢ⤖ᯝࠊFig.3
࡟♧ࡍࡼ࠺࡟ࠊAl-F⤖ྜࢆ᭷ࡍࡿNa3AlF6ࡢࡳࡀ㑅ᢥⓗ࡟ᙉㄪࡉࢀࡓࢫ࣌ࢡࢺࣝࡀ☜࠿࡟ᚓࡽ
ࢀࡓࠋ᭦࡟ࠊ௒ᅇ㛤ⓎࡋࡓFࣞࢫࣉ࣮ࣟࣈࢆ⏝࠸࡚ࠊྜᡂヨᩱ(F⃰ᗘ0.7mass%)ࡢFࢫ࣌ࢡࢺࣝ
ᐃࢆ⾜ࡗࡓࠋࡑࡢ⤖ᯝࠊࡇ࠺ࡋࡓ1mass㸣ᮍ‶ࡢᚤ㔞㹄࡟ࡘ࠸࡚ࡶࠊdepthࣃࣝࢫ[2]ࢆ㐺⏝
ࡏࡎ࡟ࠊⰋዲ࡞19F-NMRࢫ࣌ࢡࢺࣝࡀᚓࡽࢀࡓࠋࡇࡢࢫ࣌ࢡࢺࣝࡼࡾࠊྜᡂヨᩱ୰Fࡢ໬Ꮫᙧ
ែ࡜ࡋ࡚ࠊࣇࣝ࢜ࣟ࢔ࣃࢱ࢖ࢺ㸦FAP㸧ࡢᏑᅾࡀ♧၀ࡉࢀࡓࡓࡵࠊ31P-MASࢫ࣌ࢡࢺࣝ ᐃࢆ
⾜ࡗࡓࠋࡋ࠿ࡋ࡞ࡀࡽࠊ31P-MASࢫ࣌ࢡࢺࣝࡣ⥺ᖜࡶᗈࡃࠊ໬Ꮫࢩࣇࢺ࠿ࡽFAPࢆ≉ᐃࡍࡿࡇ
࡜ࡣฟ᮶࡞࠿ࡗࡓࠋࡑࡇ࡛ࠊFAP࡟࠾࠸࡚ࡣࣇࢵ⣲ཎᏊ࡜ࣜࣥཎᏊࡀ㏆㊥㞳࡟Ꮡᅾࡍࡿࡇ࡜
࡟╔┠ࡋࠊ31P{19F}CPMASࢫ࣌ࢡࢺࣝࢆ ᐃࡋࡓࠋࡑࡢ⤖ᯝࠊFAPࡢ໬Ꮫࢩࣇࢺ࡜୍⮴ࡍࡿࣆ
࣮ࢡࡀほ ࡉࢀࠊ19F-NMRࢫ࣌ࢡࢺࣝ࠿ࡽ᥎ᐃࡋࡓࡼ࠺࡟ࠊྜᡂヨᩱ୰࡟FAPࡀᏑᅾࡍࡿࡇ࡜
Ca5(PO4)3F
ࡀド᫂ࡉࢀࡓࠋ
CaF
2
Before
After
Fig.2.
of fluorine
background
signal s
Fig. 1.Comparison
Comparison
of fluorine
background
and
after
improvement
of
a
NMR
probe.
before
before and after improvement of a N.
Na3AlF6
MAS
TRAPDOR
Fig.3. Plots of 19F-MAS and 19F{27Al}TRAPDOR spectra.
The symbol * indicates spinning side bands.
࠙⤖ゝࠚᚤ㔞㹄ࡢศᯒ࡟ྥࡅ࡚ࠊ㹄ࣂࢵࢡࢢࣛ࢘ࣥࢻࡢ๐ῶࠊ ᐃᢏ⾡ࡢ㧗ᗘ໬ࢆᐇ᪋ࡋࡓࠋ
ࡇࢀࡽࡢᢏ⾡ࢆ⏝࠸ࡓከ㠃ⓗ࡞ゎᯒ࡟ࡼࡾࠊ㹄ࡢ໬Ꮫᙧែࡀヲ⣽࡟ゎᯒฟ᮶ࡿ࡜⪃࠼ࡽࢀࡿࠋ
࠙ᘬ⏝ᩥ⊩ࠚCory&Ritchey, J.Magn.Reson. (1988) 80 128, 2Grey&Vega, J. Am.Chem. Soc. (1995) 117 8232
-385-
P99
LEDࡄ࠶ࠤ࡯ࠫߩഠൻߦ㑐ߔࠆࡑࠗࠢࡠࡊࡠ࡯ࡉࠍ
↪޿ߚ࿕૕NMR᭴ㅧ⸃ᨆ
٤⍹↰ብਯ㧘ਃᅢℂሶ㧘ਃベఝሶ㧘ᮘጟస຦㧘ᦺୖື㇢
ࢃ᧲࡟࡝ࠨ࡯࠴࠮ࡦ࠲࡯‫ޔ‬ᣣᧄ㔚ሶࢃ‫ޔ‬ㄘᎿᄢ㒮
Structural Analysis of LED Package by Solid-State NMR Using Micro
probe
٤Hiroyuki Ishida1, Riko Miyoshi1, Yuko Miwa1, Katsuya Hioka2, and Tetsuo Asakura3
Toray Research Center, Inc., Shiga, Japan.
2
JEOL Ltd., Tokyo, Japan.
3
Department of Biotechnology, Tokyo University of Agriculture and Technology, Tokyo, Japan.
It has been very difficult to analyze the materials in electronics field by solid-state NMR
because of the lack of sample volume. Recently, micro probe makes it possible to observe a
small amount of samples. As a result of the analyses for the LED encapsulation resin or
LED phosphor, some cross-linking structures were made in degraded LED encapsulation
resin, and it was supposed change of valence state of Ce in degraded LED phosphor.
Furthermore, oxidation or defection of Ce from the crystalline was suggested in degraded
LED phosphor.
䇼✜⸒䇽 ㄭᐕ‫ޔ‬Ꮢ႐᜛ᄢߩ⪺ߒ޿⊕
⦡LEDߦ߅޿ߡ㊀ⷐߥ⺖㗴ߪ‫ޔ‬ା㗬
ᕈߩ໧㗴ߢ޽ࠆ‫ޕ‬ା㗬ᕈߦߪ‫ߟ৻ޔ‬
৻ߟߩ⊕⦡LEDߩ⠴ਭᕈߣ‫ޔ‬ᄙᢙߩ
⊕⦡LED߇૶↪ߐࠇࠆߚ߼ߦ↢ߓ
ࠆノᐲߩ߫ࠄߟ߈߇฽߹ࠇࠆ‫⦡⊕ޕ‬
LEDߩ⠴ਭᕈ‫ߜࠊߥߔޔ‬ഠൻߦ㑐ߒ
ߡߪ‫ޔ‬శ᧤ߩ⚻ᤨഠൻ‫ߩߘޔ‬ᰴߦ‫ޔ‬
ࡄ࠶ࠤ࡯ࠫߩ⚻ᤨഠൻ‫࠴ߦ⊛⚳ᦨޔ‬
࠶ࡊߩ⚻ᤨഠൻ߇⿠ߎࠆߣ⸒ࠊࠇ
ߡ޿ࠆ߇‫ޔ‬ታ㓙ߦߪ‫ߩࠄࠇߎޔ‬ഠൻ Fig. 1 Photographs of microprobe and sample tube.
ⷐ࿃߇ⶄ㔀ߦᷙߑߞߡ߅ࠅ‫ޔ‬ഠൻࡕ
࡯࠼ߩ⸃ᨆࠍ㕖Ᏹߦ࿎㔍ߥ߽ߩߦߒߡ޿ࠆ‫ޕ‬
ᓥ᧪‫ޔ‬࿕૕NMRߩ᷹ቯߦߪ⹜ᢱ㊂߇ᢙ⊖㨪ᢙචmg⒟ᐲᔅⷐߢ޽ߞߚߎߣ߆ࠄ‫ߎޔ‬
ߩࠃ߁ߥ⹜ᢱ㊂ߩዋߥ޿߽ߩߩಽᨆߪਇน⢻ߢ޽ߞߚ‫ࡠࡊࡠࠢࠗࡑޔࠄ߇ߥߒ߆ߒޕ‬
࡯ࡉߩ㐿⊒ߦࠃࠅ‫ޔ‬0.5㨪1mg⒟ᐲߢ߽᷹ቯน⢻ߣߥࠅ‫ޔ‬LEDਛߩ᮸⢽߿Ⱟశ૕ߥߤ
ߩᓸ㊂⹜ᢱߩ߽ߩ߽ಽᨆߔࠆߎߣ߇ߢ߈ࠆࠃ߁ߦߥߞߚ‫⦡⊕ޔߪߢߎߎޕ‬LDEߩኽᱛ
᮸⢽߿Ⱟశ૕ߥߤߦߟ޿ߡㆊ㔚࿶ഠൻ⹜㛎ࠍⴕߞߚ⚿ᨐߦ㑐ߒߡႎ๔ߔࠆ‫ޕ‬
㪣㪜㪛ኽᱛ᮸⢽㪃㩷㪣㪜㪛Ⱟశ૕㪃㩷 䊙䉟䉪䊨䊒䊨䊷䊑㩷
٤޿ߒߛ߭ࠈࠁ߈㧘ߺࠃߒࠅߎ㧘ߺࠊࠁ߁ߎ㧘߭߅߆߆ߟ߿㧘޽ߐߊࠄߡߟࠈ߁
1
-386-
‫ޣ‬ታ㛎‫ ޤ‬Ꮢ⽼ߩ⊕⦡ LED ߦߟ޿ߡ 9V ߢߩㆊ㔚࿶ഠൻ⹜㛎ࠍⴕ޿‫ޔ‬ㅢ㔚೨⹜ᢱߣ
ㅢ㔚⹜㛎ߦࠃࠅోߊノ߆ߥߊߥߞߚഠൻ⹜ᢱࠍ᷹ቯߦଏߒߚ‫ޕ‬9V ߢㅢ㔚ߒߚ႐ว‫ޔ‬
ߔߋߦノ߆ߥߊߥࠆ߽ߩ߿㐳ᤨ㑆⛮⛯ߒߡノߊ߽ߩߥߤ‫ޕߚߞ޽߇߈ߟࠄ߫ߩࠅߥ߆ޔ‬
࿕૕ NMR ᷹ቯߪ‫ޔ‬Bruker ␠⵾ Avance400 ߦ JEOL ␠⵾ࡑࠗࠢࡠࡊࡠ࡯ࡉ
㧔Fig.1㧕
ࠍⵝ⌕ߒߡⴕߞߚ‫▤࡞ࡊࡦࠨ↪ࡉ࡯ࡠࡊࡠࠢࠗࡑޕ‬㧔ࠫ࡞ࠦ࠾ࠕ⵾ ౝᓘ㧦0.5mm‫ޔ‬
ᄖᓘ㧦1mm‫ޔ‬㐳ߐ㧦7.4mm‫⹜ޔ‬ᢱኈⓍ㧦0.8PL㧕ߪ‫ޔ‬Fig.1 ߩ౮⌀ߩࠃ߁ߦ‫ޔ߷߶ޔ‬
☨☸ߣห⒟ᐲߩᄢ߈ߐߢ޽ࠆ‫ߢࡉ࡯ࡠࡊࡠࠢࠗࡑߩߎޕ‬᷹ቯน⢻ߥᩭ⒳ߪ 1H, 13C,
27Al, 79Br ߥߤߢ޽ࠆ‫ޕ‬
Si–Ph
Si–CH3
‫⚿ޣ‬ᨐߣ⠨ኤ‫ ޤ‬Fig.2 ߦ‫ޔ‬LED ߩഠ
ൻ೨ᓟߩኽᱛ᮸⢽ߦߟ޿ߡ᷹ቯߒߚ
13C DD/MAS ࠬࡍࠢ࠻࡞ࠍ␜ߒߚ‫ޕ‬
–SiCH2CH2Si–
1ppm ߦࡔ࠴࡞ၮ↱᧪‫ޔ‬134㨪128ppm
(b)
ߦࡈࠚ࠾࡞ၮ↱᧪ߣផቯߐࠇࠆࡇ࡯ࠢ
߇᷹ⷰߐࠇߡ޿ࠆߎߣ߆ࠄ‫ߩߎޔ‬᮸⢽
(a)
ߪ‫࡝ࠪ࡞࠾ࠚࡈߣࡦ࡯ࠦ࡝ࠪ࡞࠴ࡔޔ‬
PPM
ࠦ࡯ࡦߩ౒㊀ว޽ࠆ޿ߪᷙว‛ߢ޽ࠆ
200
175
150
125
100
75
50
25
0
ߎߣ߇ផቯߐࠇߚ‫ࠢ࡯ࡇޕ‬㕙ⓍᲧࠃࠅ‫ޔ‬
ࡔ࠴࡞ࠪ࡝ࠦ࡯ࡦߣࡈࠚ࠾࡞ࠪ࡝ࠦ࡯ Fig.2 13C DD/MAS spectra of encapsulation
ࡦߩࡕ࡞Ყߪ⚂ 70/30 ߣ⷗Ⓧ߽ࠄࠇߚ‫ ޕ‬resin in LED (a) before degradation and (b)
ഠൻ⹜ᢱߩࠬࡍࠢ࠻࡞ߢߪ‫ޔ‬10ppm after degradation.
ㄭறߦዊߐߥࡇ࡯ࠢ߇᷹ⷰߐࠇߡ޿ࠆ‫ޕ‬
AlVI
ߎߩࡇ࡯ࠢߪࠦࡦ࠲ࠢ࠻࠲ࠗࡓࠍ⍴ߊ
ߒߡ᷹ቯߒߚ 13C CP/MAS ࠬࡍࠢ࠻࡞
ߢ‫ࠅࠃޔ‬ᄢ߈ߥᒝᐲࠍ␜ߒߚߎߣ߆ࠄ‫ޔ‬
AlIV
᨞ᯅ↱᧪ߩࡇ࡯ࠢߢ޽ࠆߎߣ߇␜ໂߐ
*
*
(a)
ࠇߚ‫ޔߦࠄߐޕ‬࿕૕ 1H NMR ᷹ቯࠍⴕ
ߞߚ⚿ᨐ‫⹜ߩߎޔ‬ᢱਛߦࡆ࠾࡞ࠪࡠࠠ
(b)
ࠨࡦ߇㊀วߐࠇߡ޿ࠆߎߣ߇ಽ߆ߞߚ‫ޕ‬
(c)
ߎࠇࠄߩ⚿ᨐࠃࠅ‫ޔ‬᨞ᯅ᭴ㅧߣߒߡߪ
ppm
㪉㪇㪇
㪇
㪄㪉㪇㪇
–SiCH2CH2Si–᭴ㅧߥߤ߇ផቯߐࠇࠆ‫ ޕ‬㪋㪇㪇
Fig.3 ߦ‫ޔ‬LED ߩഠൻ೨ᓟߩⰯశ૕ Fig.3 27Al MAS spectra of phosphor in LED (a)
߅ࠃ߮ YAG ⚿᥏㧔Y3Al5O12㧕ߦߟ޿ߡ before, or (b) after degradation, and (c) YAG㧚
᷹ቯߒߚ 27Al MAS ࠬࡍࠢ࠻࡞ࠍ␜ߒ
ߚ‫ ⚂ޕ‬0ppm ߦ 6 ㈩૏ Al ↱᧪‫ ⚂ޔ‬50㨪70ppm ߦ 4 ㈩૏ Al ↱᧪ߩࡇ࡯ࠢ߇᷹ⷰߐࠇ
ߡ޿ࠆ‫ޕ‬ഠൻ⹜ᢱߦ߅޿ߡߪ‫ޔ‬ㅢ㔚೨⹜ᢱ߿ YAG ⚿᥏ߦᲧߴߡ‫ޔ‬6 ㈩૏ Al ↱᧪ߩࡇ
࡯ࠢ߇߿߿ࡉࡠ࡯࠼ߥߎߣ‫࠼ࡦࡃ࠼ࠗࠨࠣࡦ࠾ࡇࠬޔ‬㧔࿑ਛ*ශ㧕ߩᒝᐲ߇ᄢ߈޿ߎ
ߣ߆ࠄ‫ޔ‬ㅢ㔚ᤨߩᾲ߿శߥߤߦࠃࠅ‫ޔ‬YAG ߩ⚿᥏᭴ㅧߩኻ⒓ᕈߩૐਅ߿‫ޔ‬YAG ߦ࠼
࡯ࡊߐࠇߚ Ce ߩᰳ៊߿㉄ൻ⁁ᘒߩᄌൻ‫ޔ‬ଔᢙᄌൻߥߤ߇⿠߈ߡ޿ࠆߎߣ߇ផ᷹ߐࠇ
ࠆ‫ޕ‬
‫⻢ޣ‬ㄉ‫⎇ᧄ ޤ‬ⓥߩ৻ㇱߪ‫⑼ޔ‬ቇᛛⴚᝄ⥝ᯏ᭴↥ቇࠗࡁࡌ࡯࡚ࠪࡦടㅦ੐ᬺ‫ޣ‬వ┵⸘
᷹ಽᨆᛛⴚ࡮ᯏེ㐿⊒‫ޤ‬㧔ᐔᚑ20-22ᐕᐲ㧕ߦࠃࠅታᣉߐࠇߚ߽ߩߢ޽ࠆ‫ޕ‬
-387-
P100
㓄ྥヨᩱࡢྛ✀NMRἲ࡟ࡼࡿホ౯
○ྜྷỈ ᗈ᫂1㸪ᒸ⃝ ㄔ⿱1㸪ዟᮧ ♸⏕1㸪ച ಇே1
1ྡᕤ኱࣭㝔ᕤ
Characterizations of the Oriented Materials by NMR Techniques
○Hiroaki Yoshimizu1, Masahiro Okazawa1, Yuki Okumura1, Toshihito Karakasa1
1
Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan.
It was already confirmed that the layered structure of the liquid crystalline aromatic polyester
with n-alkyl (C14) side chain (B-C14) could be easily oriented by magnetic field.
In this
study, the magnetically oriented layered structure of B-C14 was characterized by 13C
CP/static NMR.
The sample of B-C14 which was prepared by quenching to room
temperature (RT) from 160 °C in the isotropic liquid state was used as non-oriented and
starting samples for the magnetic orientation under magnetic field of 9.4 T.
As a result, the
best temperature condition was determined 130 °C on heating from room temperature, and
70 °C on cooling from 160 °C.
Furthermore, to clarify the gas transport properties of
polymeric crystalline structure, poly(4-methyl-1-pentene) (PMP) membranes were drawn and
investigated the oriented structure.
>⥴ゝ@ ᡃࠎࡣ࠸ࡃࡘ࠿ࡢ㧗ศᏊ໬ྜ≀࡟࠾ࡅࡿ⤖ᬗ࡞࡝㧗⛛ᗎ໬ࡉࢀࡓᵓ㐀┦ࡢ≉
ᚩࢆά࠿ࡋ㸪Ẽయศ㞳≉ᛶ࡞࡝ࡢ≀ᛶࡀ኱ᖜ࡟ྥୖࡍࡿྍ⬟ᛶ࡟ࡘ࠸᳨࡚ウࡋ࡚࠸ࡿ㸬
ࡇࡢ┠ⓗ࡟ᑐࡋ㸪⤖ᬗ┦➼ࢆ㧗ᗘ࡟୍᪉ྥ࡬㓄ྥࡉࡏࡿࡇ࡜ࡣࡁࢃࡵ࡚᭷ຠ࡛࠶ࡿ࡜
⪃࠼ࡿ㸬ࡑࡋ࡚㸪ศᏊ㓄ྥᵓ㐀ࡢホ౯࡟ྛ✀㹌㹋㹐ἲࢆ㥑౑ࡋ࡚㸪⢭ᐦ࠿ࡘṇ☜࡞✀ࠎ
ࡢᵓ㐀᝟ሗࢆ⋓ᚓࡍࡿࡇ࡜ࡶࡲࡓ㔜せ࡞◊✲ㄢ㢟࡛࠶ࡿ㸬ᮏⓎ⾲࡛ࡣ㸪ᅛయ13C NMR
ἲࢆ⏝࠸ࡓ㓄ྥヨᩱࡢ┤᥋ホ౯࡟ຍ࠼㸪Ẽయࡢᣑᩓᣲືホ౯ࢆ㏻ࡌ࡚㛫᥋ⓗ࡞㓄ྥᵓ
㐀ホ౯࡟ࡘ࠸࡚ሗ࿌ࡍࡿ㸬ලయⓗ࡟ࡣ㸪1,4ࢪ࢔࢚ࣝ࢟ࣝࢫࢸࣝ࡜4,4ࣅࣇ࢙ࣀ࣮ࣝ
࠿ࡽ࡞ࡾࢧ࣮ࣔࢺࣟࣆࢵࢡᾮᬗᛶࢆ♧ࡍ㸪࢔ࣝ࢟ࣝഃ㙐ࢆ᭷ࡍࡿ඲ⰾ㤶᪘࣏࢚ࣜࢫࣝ
(BC14; ഃ㙐࢔ࣝ࢟ࣝഃ㙐ࡢⅣ⣲ᩘࡣ14)ࡀᙧᡂࡍࡿ㸪1ศᏊ࡛ࣞ࣋ࣝ஺஫࡟㓄ิࡋࡓ
ᒙ≧ᵓ㐀ࢆ☢ሙ㓄ྥࡉࡏࡓሙྜࡸ㸪༙⤖ᬗᛶ㧗ศᏊ࡛࠶ࡿ࣏ࣜ4࣓ࢳࣝ1࣌ࣥࢸࣥ
(PMP)ࢆᘏఙ㓄ྥࡉࡏࡓሙྜ࡟ࡘ࠸࡚㸪඾ᆺⓗ↓㓄ྥ(ࣛࣥࢲ࣒ࢥ࢖ࣝ)㧗ศᏊࡢㅖࢹ
࣮ࢱ࡜ࡶẚ㍑ࡋ࡞ࡀࡽ㸪ྛ✀㹌㹋㹐ἲࡢ᭷⏝ᛶ࡟ࡘ࠸࡚ゝཬࡍࡿ㸬࡞࠾㸪ᮏ✏࡛ࡣ୺
࡟BC14ࡢ⤖ᯝ࡟ࡘ࠸࡚㏙࡭ࡿ㸬
>ᐇ㦂@ BC14ࡢྜᡂࡣ᪤ሗ࡟ᚑࡗࡓ㸬☢ሙ↓༳ຍࡢ⎔ቃୗ࡛➼᪉ᛶᾮయ≧ែ࡛࠶ࡿ
ᗘ(160 Υ)࡛5ศ௨ୖ㟼⨨ࡋࡓᚋ㸪ᐊ ࡲ࡛ᛴ෭ࡋࡓࡶࡢࢆ↓㓄ྥヨᩱ࡜ࡋ㸪ࡇࢀࢆ
9.4 Tࡢ㉸㟁ᑟ☢▼ෆ࡛㸪ᡤᐃ ᗘࡲ࡛᪼ ࡋ15ศ㛫ಖᣢࡋࡓᚋ࡟ᐊ ࡲ࡛෭༷ࡋࡓ
ሙྜ(᪼ 㐣⛬)࡜㸪160 Υ࡛5ศಖᣢࡋࡓᚋ࡟ᡤᐃ ᗘࡲ࡛෭༷ࡋ࡚15ศ㛫ಖᣢࡋ࡚࠿
ࡽᐊ ࡟ୗࡆࡓሙྜ(㝆 㐣⛬)ࡢ㸪஧㏻ࡾࡢ᪉ἲ࡛☢ሙ㓄ྥࡉࡏࡓ㸬PMPࢧࣥࣉࣝࡣ
୕஭໬Ꮫ(ᰴ)ࡼࡾ౪୚ࡉࢀࡓᵝࠎ࡞ᘏఙಸ⋡ࡢPMP⭷ࢆ⏝࠸ࡓ㸬ࡇࢀࡽࡢヨᩱࡢᅛయ
13C NMR CP/static୪ࡧ࡟ྛ✀Ẽయࡢ཰╔≧ែ࡟࠾ࡅࡿPFG NMR ᐃࢆ⾜ࡗࡓ㸬
☢ሙ㓄ྥ㸪ẼయࡢNMR㸪Ẽయᣑᩓಀᩘ
○ࡼࡋࡳࡎ ࡦࢁ࠶ࡁ㸪࠾࠿ࡊࢃ ࡲࡉࡦࢁ㸪࠾ࡃࡴࡽ ࡺ࠺ࡁ㸪࠿ࡽ࠿ࡉ ࡜ࡋࡦ࡜
-388-
>⤖ᯝ࡜⪃ᐹ@ Figure 1 ࡟୍౛࡜ࡋ
࡚㸪9.4 T ࡢ㉸ఏᑟ☢▼ෆ࡛ᐊ ࠿ࡽ
ᅗ୰࡟♧ࡋࡓ ᗘࡲ࡛᪼ ࡉࡏࡓࡢ
ࡕ㸪෌ࡧᐊ ࡲ࡛ᚎ෭ࡋࡓྛࢧࣥࣉ
ࣝࡢᅛయ 13C NMR ᐃ⤖ᯝࢆ♧ࡍ㸬
ᕥഃࡢࢫ࣌ࢡࢺࣝࡣࢧࣥࣉࣝㄪ〇᫬
࡟༳ຍࡋࡓ☢ሙ᪉ྥࢆศගィࡢ㟼☢
ሙ(B0)᪉ྥ࡜୍⮴ࡉࡏ࡚タ⨨ࡋᚓࡓ
ࡶࡢ࡛࠶ࡾ㸪ྑഃࡢࡶࡢࡣ B0 ࡜ࡣᆶ
150䉝
150䉝
140䉝
140䉝
130䉝
130䉝
120䉝
120䉝
110䉝
110䉝
100䉝
100䉝
90䉝
90䉝
80䉝
80䉝
70䉝
70䉝
↓㓄ྥ
↓㓄ྥ
┤࡞᪉ྥࢆ㍈࡟ 90rᅇ㌿ࡉࡏ࡚ᚓ
ࡓࡶࡢ࡛࠶ࡿ㸬᭱ୗẁ࡟ẚ㍑ࡢࡓࡵ
࡟♧ࡋࡓ↓㓄ྥヨᩱ(☢ሙ↓༳ຍ࡛
ㄪ〇)ࡢࢫ࣌ࢡࢺࣝࡣ඾ᆺⓗ࡞⢊ᮎ
ࢫ࣌ࢡࢺࣝ⥺ᙧ࡛࠶ࡿ㸬ࡇࢀ࡟ᑐࡋ㸪
☢ሙ㓄ྥヨᩱࡢ㓄ྥ᪉ྥࢆ B0 ࡜ᖹ
⾜࡟࠾࠸࡚ほ ࡋࡓࢫ࣌ࢡࢺ࡛ࣝࡣ㸪
≉࡟ 150 ppm ௜㏆࡟ࢩ࣮ࣕࣉ࡞ࣆ
࣮ࢡࡀほᐹࡉࢀ㸪ࡇࢀࡣ㓄ྥ᪉ྥࢆ
250 200 150 100 50
Fig. 1
0 ppm
250 200 150 100 50
0 ppm
13
C CP/static NMR spectra of B-C14 at
room temperature; (left) c axis is parallel
to B0 (right) c axis is perpendicular to B0.
㟼☢ሙ᪉ྥ࡜ᆶ┤࡟࠾࠸࡚ほ ࡋࡓ
ࢫ࣌ࢡࢺࣝ࡜ࡢẚ㍑୪ࡧ࡟୺㙐ⰾ㤶᪘Ⅳ⣲ࡢ໬Ꮫࢩࣇࢺ␗᪉ᛶࢆ⪃៖ࡍࡿ࡜ᒙ≧ᵓ
㐀ࡢ c ㍈ࡀ㟼☢ሙ᪉ྥ࡟㓄ྥࡋ࡚࠸ࡿ࡜ゎ㔘࡛ࡁࡿ㸬ࡲࡓ㸪ࡇࡢࣆ࣮ࢡࡢᙉᗘࡸ⥺ᖜ
ࡀ㓄ྥ ᗘ࡟ࡼࡾ␗࡞ࡿࡇ࡜ࡀ☜ㄆࡉࢀࡓࡢ࡛㸪ᙉᗘẚ࡜⥺ᖜࢆ㓄ྥᗘࡢᣦᶆ࡜ࡋࡓ㸬
☢ሙ༳ຍ᫬ࡢ ᗘ᮲௳ࡣ᪼ 㐣⛬࡛ࡣ 130 Υ㸪㝆 㐣⛬࡛ࡣ 70 Υࡢ࡜ࡁ᭱ࡶ㓄ྥࡍ
ࡿࡇ࡜ࡀ☜ㄆࡉࢀࡓ㸬᪼ 㐣⛬࡛ࡣ 130 Υ௜㏆࡛ᣢࡘศᏊࡢ㐠ືᛶࡀ᭱ࡶ☢ሙ㓄ྥ࡟
㐺ࡋ࡚࠸ࡿࡓࡵࡔ࡜⪃࠼ࡽࢀ㸪㝆 㐣⛬࡛ࡣ㐠ືᛶࡢ࡜࡚ࡶ㧗࠸➼᪉ᛶᾮయ≧ែ࠿ࡽ
ᚎࠎ࡟㐠ືᛶࢆኻ࠸ࡘࡘ㓄ྥࢆࡋ࡚࠸ࡃࡓࡵ㸪ࡼࡾప࠸ ᗘ࡛᭱ࡶ㓄ྥࡋࡓ࡜⪃࠼ࡽ
ࢀࡓ㸬࡞࠾㸪ࡇࢀࡽࡢゎ㔘ࡣ X ⥺ᅇᢡࢹ࣮ࢱ࡜඲ࡃ▩┪࡞࠸ࡀ㸪NMR ࢹ࣮ࢱࢆࡼࡃ
ぢࡿ࡜㸪30 ppm ௜㏆࡟ほ ࡉࢀ࡚࠸ࡿഃ㙐࢔ࣜࣇ࢓ࢸ࢕ࢵࢡⅣ⣲⏤᮶ࡢࣆ࣮ࢡ⥺ᙧ
ࡶ B0 ᪉ྥ౫Ꮡᛶࢆ♧ࡋ࡚࠾ࡾ㸪ᶆ‽ⓗ࡞ X ⥺ᅇᢡᐇ㦂࡛ࡣᚓ㞴࠸᝟ሗࡀྵࡲࢀ࡚࠸
ࡿⅬࡣ㸪NMR ἲࡢ᭷⏝ᛶࢆ♧ࡍⅬ࡜ࡋ࡚ᙉㄪࡉࢀࡿ㸬
୍᪉㸪BC14 ࡢ㓄ྥ᪉ྥ࡜ྛ✀Ẽయࡢᣑᩓ␗᪉ᛶࡶ୍⮴ࡋ࡚࠾ࡾ㸪ࡇࢀࡽࡣᚑ᮶
ἲ࡜ࡋ࡚ᐇ᪋ࡋࡓẼయ཰╔ᐇ㦂࡛ᚓࡓ཰╔㔞ࡢ⤒᫬ኚ໬ࢹ࣮ࢱࢆ㸪ᖹ⭷ࢆ௬ᐃࡋࡓゎ
ᯒ࠿ࡽᚓࡽࢀࡿẼయᣑᩓಀᩘ್ࡀ㸪㓄ྥヨᩱ࡜↓㓄ྥヨᩱ࡛␗࡞ࡿࡇ࡜࠿ࡽࡶド᫂ࡉ
ࢀࡿ㸬ణࡋ㸪ᣑᩓ␗᪉ᛶࢆ☜ᐇ࡟ᐇ㦂ド᫂ࡍࡿ࡟ࡣ㸪ࢧࣥࣉࣝᙧ≧ࢆᖹ⭷࡜ࡋࡓୖ࡛
⭷㠃࡟ᑐࡋ㓄ྥ᪉ྥࡀᖹ⾜࡞ࡶࡢ࡜ᆶ┤࡞ࡶࡢࡢ஧✀㢮ࢆ⏝ពࡍࡿᚲせࡀ࠶ࡿࡀ㸪
PFG NMR ἲ࡛ࡣ୍ࡘࡢ㓄ྥヨᩱࢆ ᐃ᫬࡟ B0 ࡟ᑐࡋ࡚ᖹ⾜᪉ྥࡶࡋࡃࡣᆶ┤᪉ྥ
࡟タ⨨ࡋ࡚ ᐃࡍࡿࡔࡅ࡛Ⰻࡃ㸪ࡇࡢⅬࡶࡲࡓ NMR ἲࡢ᭷⏝ᛶ࡜࠸࠼ࡿ㸬
PMP ࢧࣥࣉࣝ࡟ࡘ࠸࡚ࡢ⤖ᯝࡣᙜ᪥ㄝ᫂ࡍࡿ㸬
-389-
Fly UP