Comments
Description
Transcript
23Na-MQMAS NMR 法による高分子 Na 塩の研究 23Na
P81 23 ○ Na-MQMAS NMR 法による高分子 Na 塩の研究 1 1 1 2 平沖敏文 、藤江正樹 、荒樋 周 、畠山盛明 、齋藤広児 1 北大院工、2 新日鐵先端研 23 2 Na-MQMAS NMR Studies on Na ion complexes of Polymers Toshifumi Hiraoki1, Masaki Fujie1, Syu Arahi1, Moriaki Hatakeyama2, Koji Saito2 1 Grad. Sch. Eng., Hokkaido University, 2 Advanced Technology Res. Lab., Nippon Steel Corp. ○ Solid-state 23Na 3QMAS NMR measurements were made of sodium salts of poly(glutamic acid), poly(aspartic acid), and poly(methacrylic acid). Local structures of the sodium ion were characterized with the isotropic chemical shift cs and the quadrupole coupling product Pq to be 0 ~ -1 ppm and 1.6 ~ 2.1 MHz, respectively. 序 水溶性ポリアミノ酸は、対イオンに依存してポリアミノ酸の固体状態の主鎖コンフ ォメーションや対イオン結合部位の構造が変化することが知られている。本研究では、 23 Na MQMAS 法を用いて、高分子に対する Na(I=3/2)イオン結合部位の局所構造を検 討した。 実験 23 NaNMR 測定は JEOL ECA700(16.4T, 185 MHz)により、4mm ローターを用いて室温 で行い、1 M NaCl 水溶液を化学シフト基準に用いた。MQMAS 測定は Z-filter 3QMAS 法を用いた。13C-CPMAS 測定は 75MHz で行った。 試料は、ポリメタアクリル酸 Na(PMA-Na)、ポリ グルタミン酸 Na(PGA-Na)、ポリアスパラギン酸 Na(PAA-Na)及び酢酸ナトリウム 3H2O を用いた。 結果と考察 Fig.1 に各試料の 23Na-MAS スペクトルとその化 学シフト値を示す。高分子系では半値幅が 400~600Hz の巾広いシングレットが得られた。化 学シフト値は Na-O 間距離が長くなると、減少する の で 1) 、 得 ら れ た 結 果 は Na-O 間 距 離 が PMANa<PGANa<PAANa の順で長くなることを示 唆している。一方酢酸ナトリウムのスペクトルは Fig. 1 23Na MAS NMR spectra 四極子分裂を含む線巾が狭い線形を示した。 ---------------------------------------------------------------------------------------------------------キーワード:23Na MQMAS、高分子錯体、四極子結合定数 ○ひらおき としふみ、ふじえ まさき、あらひ しゅう、はたけやま もりあき、さいとう こうじ -350- 13 0 2 0 5 F1(Isotropic dimension)/ppm −5 F1(Isotropic dimension)/ppm −2 C CPMAS スペクトルの化学シフ ト値から求めた高分子のコンフォメ CS axis ーションはそれぞれコイル、コイル/ ヘリックス、ヘリックスである。 II QIS axis 酢酸ナトリウムの 23Na 3QMAS スペ III クトルを Fig.2 に示す。3 種の Na 部位 の存在が明瞭に判別でき、それぞれの I 化学シフト等方値(cs)と四極子積(Pq) を求めた。強度が最大のシグナル I は cs=0.01ppm、Pq= 1.44MHz である。II 0 5 −5 F2(MAS dimension)/ppm は-1.91ppm、1.27MHz、III は-0.34ppm、 Fig. 2 23Na 3QMAS NMR spectrum of NaAcetate. 1.40MHz である。 23 Fig. 3 に PGANa の Na 3QMAS スペ クトルを示す。正の傾きを示す巾の広 い単一シグナルが観測され、 cs=0.04ppm、Pq =1.64MHz が得られた。 この試料のコンフォメーションは 70%がコイルで、30%がヘリックスで あるが、線形に影響はないようである。 Fig. 4 に PAANa の 23Na 3QMAS スペ クトルを示す。PGANa と同様に正の 傾きを示す巾の広い単一シグナルが 0 10 −10 5 −5 F2(MAS dimension)/ppm 得られ、cs= -1.32ppm、Pq=2.02MHz である。 Fig. 3 23Na 3QMAS NMR spectrum of PGANa. 23 PMANa の Na 3QMAS スペクトル (Fig. 5)は PGANa や PAANa と同様な線形を示し、cs= -0.44ppm、Pq=2.10MHz であ る。 高分子 Na 塩の Pq 値はいずれも低分子結晶の NaAcetate より大きい。cs はコンフォ メションにはほとんど依存していない。 1) A. George, S. Sen, J. Stebbins, Solid State NMR, 10, 9(1997). −5 −10 CS axis QIS axis 0 F1(Isotropic dimension)/ppm −5 0 QIS axis 10 5 5 F1(Isotropic dimension)/ppm CS axis 20 20 10 0 −10 −20 Fig. 4 23Na 3QMAS NMR spectrum of PAANa. 10 0 −10 −20 F2(MAS dimension)/ppm F2(MAS dimension)/ppm Fig. 5 23Na 3QMAS NMR spectrum of PMANa. -351- P82 ࠴࠙ࡓࠗࠝࡦੑᰴ㔚ᳰ↪ᓸ⚦ሹࡄ࠲ౝߩࠗࠝࡦ ᢔ⸃ᨆ ٤Ꮉථᯅᧄᐽඳਸㇱඳ⧷ጊᧄศ㊁ᓆ ᣩൻᚑᩣᑼળ␠ ၮ⋚ᛛⴚ⎇ⓥᚲ 2 ᣩൻᚑᩣᑼળ␠ ศ㊁⎇ⓥቶ Analysis of ionic mobility in the porous separator for Li ion battery ٤Takuya Morikawa1, Yasuhiro Hashimoto1, Hirohide Otobe1, Aguru Yamamoto1, Akira Yoshino2 1 ASAHI KASEI CORP. Analysis & Simulation Center 2 ASAHI KASEI CORP. Yoshino Laboratory Li-ion, diffusing in confined micro porous spaces of the membrane separator was characterized with PFG-NMR. By placing the membrane sample with its direction appropriately set, every x/y/z component of the ion mobility was individually obtained. Further, with the varied diffusion time, an anomalous diffusion behavior was observed. These anisotropy and anomalous diffusion phenomena may well be related with the inhomogeneity of the micro pore distribution. With further information from FIB-SEM and computer simulation combined, we will discuss the battery characteristics, focusing on the Li-ion diffusion and micro porous structure. ޤ⸒✜ޣ ࠴࠙ࡓࠗࠝࡦੑᰴ㔚ᳰ㧔LIB㧕ߩജ․ᕈࠍℂ⸃ߔࠆߦߪ࠲ࡄޔౝㇱߢߩ ࠗࠝࡦߩᢔേࠍ⍮ࠆߎߣ߇㊀ⷐߢࠅޔᢔଥᢙࠍ⋥ធ⸘᷹น⢻ߥPFG-NMRߪޔ LIBߩജ․ᕈࠍ⼏⺰ߔࠆߦߚߞߡޔ㕖Ᏹߦ↪ߥ࠷࡞ߢࠆ1) ࡞ࡃޔߒ߆ߒޕ ࠢ㔚⸃ᶧਛߣߪ⇣ߥࠅޔᓸ⚦ሹࠍߔࠆࡄ࠲ౝㇱߢߪࠗࠝࡦᢔ߇⚦ሹ᭴ㅧߦ ࠃࠆ㒢ࠍฃߌࠆޕPFG-NMRߦࠃࠅᓧࠄࠇࠆࠗࠝࡦߩᢔേࠍℂ⸃ߒޔLIBߩജ ․ᕈߩᡰ㈩࿃ሶࠍ⏕ߦߔࠆߦߪ⚦࠲ࡄޔሹ᭴ㅧߣࠗࠝࡦᢔߩ㑐ଥࠍℂ⸃ߔ ࠆߎߣ߇ਇนᰳߢࠆޔߚߩߎޕPFG-NMRࠍ↪ߡࡄ࠲ਛߢߩࠗࠝࡦᢔ ࠍ⚦ߦᬌ⸛ߔࠆߣߦޔFIB-SEMࠍ↪ߡਃᰴర⊛ߦ⚦ሹ᭴ㅧࠍᝒ߃ࡦࠝࠗޔᢔ ߣ⚦ሹ᭴ㅧࠍ㑐ㅪઃߌߚ▚⸘ޔߚ߹ޕᯏࠪࡒࡘ࡚ࠪࡦߦࠃࠆࠗࠝࡦߩᵹࠇ⸘▚ࠍ ↪ࠆߎߣߢࡦࠝࠗޔᢔߦᓇ㗀ࠍਈ߃ࠆ⚦ሹ᭴ㅧ࿃ሶࠍ⏕ߦߒߚࡂޔߪߢ⊒ޕ ࠗ࠻㔚ᤨ߿ޔૐ᷷ⅣႺਅߦ߅ߡޔLIBߩജ․ᕈߦᓇ㗀ࠍਈ߃ࠆࡄ࠲ ⚦ሹ᭴ㅧࠍ⼏⺰ߔࠆޕ ޣታ㛎ޤ 㔚⸃ᶧࠍᶐߐߖߚࡄ࠲㧔ᣩൻᚑࠗࡑ࠹ࠕ࡞࠭(ᩣ)ࠃࠅࠨࡦࡊ࡞ឭଏ㧕ߩ PFG-NMR᷹ቯߦࠃࠅᓧࠄࠇߚ㔚⸃ᶧฦᚑಽߩ⥄Ꮖᢔଥᢙ߆ࠄ⚦࠲ࡄޔሹౝ ߢߩLi+ߩᢔേࠍ⹏ଔߒߚ⥄ޔ߅ߥޕᏆᢔଥᢙߪStejskalߩᑼߦၮߠߊᢔࡊࡠ ࠶࠻߆ࠄ᳞ߚޕPFG-NMR᷹ቯߪޔJEOLECA400ߦᦨᄢ13T/m߹ߢ൨㈩⏛႐ࠍශട น⢻ߥ⏛႐൨㈩࡙࠾࠶࠻ࠍធ⛯ߒߡⴕߞߚޕ㔚⸃ᶧߦߪ1M LiTFSI / EC-MEC(1 : 2 2()0/4ࠗࠝࡦᢔ࠴࠙ࡓࠗࠝࡦੑᰴ㔚ᳰ ٤߽ࠅ߆ࠊߚߊ߿㧘ߪߒ߽ߣ߿ߔ߭ࠈ㧘߅ߣߴ߭ࠈ߭ߢ㧘߿߹߽ߣߋࠆ㧘 ࠃߒߩ߈ࠄ -352- Y X vol.%)ࠍ↪ߚޕPFG-NMRߢߪ㕒⏛႐ߦᐔⴕߥᣇะ X Y 㧔ࠨࡦࡊ࡞▤ߩ㜞ߐᣇะ㧕߳ߩᢔ߇ᬌߐࠇࠆޕ Fig.1ߦ␜ߔࠃ߁ߦࠍ࠲ࡄޔ㊀ߨߡࠨࡦࡊ࡞▤ߦ ዉߔࠆߎߣߢ⤑ෘᣇะ㧔Zᣇะ㧕ޔ╴⁁ߦᏎߡ ࠨࡦࡊ࡞▤ߦዉߔࠆߎߣߢޔ㕙ౝߩੑᣇะ㧔Xᣇะޔ Yᣇะ㧕߳ߩฦᚑಽߩ⥄Ꮖᢔଥᢙࠍᓧߚޔߚ߹ޕ Zᣇะ Yᣇะ Xᣇะ ᢔᤨ㑆㧔Ǎ㧕ࠍ20ms㨪800msߢᄌൻߐߖߡPFG-NMR Fig. 1 Sample preparation for ᷹ቯࠍⴕޔᢔࡊࡠ࠶࠻ߩǍଐሽᕈࠍᬌ⸽ߒߚޕ PFG-NMR measurement ࡄ࠲ሹ᭴ㅧߩਃᰴరߪFIB-SEM㧔HITACHI NB5000ဳ㧕ࠍ↪ߡขᓧߒߚޕ೨ಣℂߦࠃࠅࡄ࠲ FIB SEM ߩ㛽ᩰㇱಽߣሹㇱಽߣߩ㑆ߦ㔚ሶኒᐲᏅࠍߟߌޔFIBߦࠃ ࠆ㕙ߒടᎿߣSEMߦࠃࠆᓇࠍ➅ࠅߒߚޕᓧࠄࠇߚㅪ eGa+ ⛯౮⌀ࠍ┙᭴▽ߔࠆߎߣߢਃᰴరࠍᓧߚޕ ⚿ޣᨐߣ⠨ኤޤ ࡄ࠲ߩ⤑ෘᣇะߩࠗࠝࡦᢔߩേ߇LIBߩ㔚 ․ᕈߦᓇ㗀ࠍ߷ߔߎߣߪᗐߦ㔍ߊߥޔߒ߆ߒޕ㔚 Fig. 2 Fabrication 㧒observation ᧦ઙ߿᷷ᐲ᧦ઙ߇ㆊ㉃ߦߥࠆߎߣߢో࠲ࡄޔߢߩ image of FIB-SEM ࠗࠝࡦᢔߩേ߇LIBߩജ․ᕈߦᓇ㗀ࠍ߷ߔޕ 㪱 㪇㪅㪏 䉶䊌䊧䊷䉺㽲 Fig.3ߦ␜ߔࠃ߁ߦߩ࠲ࡄޔ⒳㘃ߦࠃߞߡ⤑ෘᣇ 㪇㪅㪎 䉶䊌䊧䊷䉺㽳 㪇㪅㪍 ะߩᢔᕈߪห╬ߢ߽ޔ㕙ᣇะߢߩᢔᕈߩ㆑߇↢ߓ 㪇㪅㪌 㪇㪅㪋 ࠆߥ߁ࠃߩߎޕᢔേߩᏅߪ⚦ሹ᭴ㅧߦ↱᧪ߒߡ߅ࠅޔ 㪇㪅㪊 㪇㪅㪉 㕙ᣇะ߽ߚో࠲ࡄޔߩࠗࠝࡦߩᢔേ߇ޔ 㪇㪅㪈 㪇 LIBߩ㔚࠻ࠍߐߖߚ㓙ߩജ․ᕈߦᓇ㗀ࠍਈ ߃ࠆߎߣ߇␜ߐࠇߚޕ 㪰 ৻ᣇߢߦᦝޔ㔚࠻ࠍߐߖߚ႐ว߿ᭂૐ᷷ߢ Fig.3 Diffusion constant of Li+ in ߩ㔚ߢߪ⤑ޔෘᣇะߩᢔേ߿㕙ᣇะ߹ߢߚ the separator normalized against the ࡄ࠲ోߩᢔേߢߪLIBߩജ․ᕈࠍ⺑ߔࠆ bulk electrolyte. 㪯 ߎߣ߇᧪ߥޕPFG-NMR߆ࠄᓧࠄࠇߚᢔࡊࡠ࠶࠻ߢ ߪޔFig.4ߦ⎕✢ߢ␜ߔࠃ߁ߦ࠲ࡄޔౝߢߪᢔଥ ᢙ߇ዊߐᚑಽ߇ሽߒߩߎޔᚑಽ߇ߎࠇࠄߩ㔚ᳰ․ᕈߦ ᓇ㗀ߒߡࠆߎߣ߇ࠊ߆ߞߚ⻠ޕṶߢߪޔPFG-NMRߩǍ ଐሽᕈ⹏ଔ߿FIB-SEMߦࠃࠆਃᰴర᭴ㅧࠗࡔࠫ▚⸘ޔᯏ ࠪࡒࡘ࡚ࠪࡦࠍ⚵ߺวࠊߖ࠲ࡄޔౝߦሽߔࠆ ᢔߩㆃᚑಽ߇ߤߩࠃ߁ߥ⚦ሹ᭴ㅧߦ↱᧪ߔࠆߩ߆ߦ ߟߡ⺑ߦ⚦ޔࠍⴕ߁ޕ ޣෳ⠨ᢥ₂ޤ Fig. 4 The diffusion plot of 1) Hayamizu K. et al, J. Phys. Chem. B, 1999, 103, 519-524. electrolyte in separator. ⻢ޣㄉޤ PFG-NMR᷹ቯᜰዉߣ᭽↥)⁛(ޔߚߒ߹߈ߛߚࠍࠬࠗࡃ࠼ࠕߥޘᬺᛛⴚ✚ว⎇ⓥᚲ ᣧ᳓♿ਭሶవ↢ߦᷓߊᗵ⻢ߚߒ߹ߔ࡞ࡊࡦࠨޔߚ߹ޕឭଏޔ㔚ᳰ⹏ଔ⚿ᨐࠍឭଏ ߚߛߚᣩൻᚑࠗࡑ࠹ࠕ࡞࠭(ᩣ)ޔᛛⴚࠕ࠼ࡃࠗࠬࠍߚߛߚᣣᧄ㔚ሶ(ᩣ) ᰞ ᥓม᭽ߦᗵ⻢ߚߒ߹ߔޕ 㪣㫀㩿㪣㫀㪂㪀 㪝㩿㪫㪝㪪㪠㪄㪀 㪟㩿㪜㪚㪀 㪟㩿㪤㪜㪚㪀 㪇 㪄㪇㪅㪌 㪄㪈 㫃㫅㩿㪜㪆㪜㪇㪀 㪄㪈㪅㪌 㪄㪉 㪄㪉㪅㪌 㪄㪊 㪄㪊㪅㪌 㪄㪋 㪄㪋㪅㪌 㪇㪅㪇㪜㪂㪇㪇 -353- 㪉㪅㪇㪜㪂㪈㪇 㪋㪅㪇㪜㪂㪈㪇 㪍㪅㪇㪜㪂㪈㪇 㪏㪅㪇㪜㪂㪈㪇 㱏㪉㱐㪉㪾㪉㩿㼺㪄㱐㪆㪊㪀 㪈㪅㪇㪜㪂㪈㪈 㪈㪅㪉㪜㪂㪈㪈 P83 /L/L0$6105ࡼࡿ/L&R2ࡢᵓ㐀ゎᯒ ۑᮧୖ⨾㔝⏣Ὀᩯ➉⭜Ύ⌮ Ⲩෆᮏ႐ᬕᑠஂぢၿඵ ி࣭⏘ᐁᏛ㐃ᦠᮏ㒊ி࣭⌮㸪&5(67 ி࣭ே⎔ 6 Li/7Li MAS NMR studies on LiCoO2 ۑMiwa Murakami1, Yasuto Noda2,3, Kiyonori Takegoshi2,3, Hajime Arai1, Yoshiharu Uchimoto4, Zenpachi Ogumi1 1 Office of Society-Academia Collaboration for Innovation, Kyoto University, Kyoto, Japan. 2 Graduate School of Science, Kyoto University, Kyoto, Japan. 3 CREST, Japan. 4 Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan. 6 Li/7Li solid-state magic-angle spinning (MAS) NMR has been employed to study microscopic local structure of LiCoO2, which is one of the most widely used cathode materials in lithium ion batteries. The 6Li/7Li MAS spectra consist mainly of a strong sharp signal at 0 ppm and several small signals at ca. 183, 4, -5, -16 ppm. The shift was attributable to hyperfine interaction between Li and paramagnetic Co ions, which are introduced by excess Li ions occupying the Co sites in the D-NaFeO2 lattice structure. 7Li-7Li 2D exchange NMR experiment bears cross peaks among the central Li peak and the minor peaks, for which the exchange mechanism is ascribed to spin-diffusion. Analysis of the 2D NMR spectra as well as T1 measurement allow us to assign the minor peaks and local structures of these minor Li sites near the paramagnetic center is discussed. ࢥࣂࣝࢺ㓟ࣜࢳ࣒࢘/L&R2ࡣ/L㟁ụࡢṇᴟᮦ ᩱࡋ࡚ࡣ୍⯡ⓗ࡞≀㉁࡛࠶ࡾࠊ࠸ࢃࡺࡿ ࣭1D)H2ᆺࡢᒙ≧ᵓ㐀ࢆᣢࡗ࡚࠸ࡿࠋ/Lࡢᨺ㟁 క ࠸ /L&R2 /L ࡀ ฟ ධ ࡾ ࡋ ࠊ /L ࡀ 㐣 ࡞ /L[&R[2[!ࡢᅛయ105࡛ࡣᒙ㛫ࡢ/Lࡢࣆ࣮ࢡ ࡛ ࠶ ࡿ SSP ⌧ ࢀ ࡿ ࣓ ࣥ ࣆ ࣮ ࢡ ௨ እ SSPᑠࡉ࡞ಙྕࡀ⌧ࢀࡿࡇࡀ▱ ࡽࢀ࡚࠸ࡿࡀࠊࡑࡢᖐᒓࡣ᫂ࡽࡉࢀ࡚࠸࡞࠸ࠋ ᅗ㸯6LJPD$OGULFKࡽ㉎ධࡋࡓ/L&R2 ࡢ /L /Lࡢḟඖࢫ࣌ࢡࢺࣝࢆ♧ࡍࠋ/Lࡣኳ↛Ꮡᅾẚࡀ ࡛࠶ࡾ☢Ẽᅇ㌿ẚࡶ/Lࡢ⣙ಸ࡛࠶ࡾឤᗘ ࡣ㧗࠸ࡀࠊᅄᴟᏊ࣮࣓ࣔࣥࢺࡀ/Lࡢ⣙ಸࡁ Fig. 1 7Li/6Li MAS spectra of ࠸ࡓࡵࠊᅄᴟᏊ┦స⏝ࡢḟᦤືࡼࡿ⥺ᖜࡸ LiCoO2 observed at 9.4 T with the ᖖ☢ᛶ┦స⏝ࡼࡿ⥺ᖜ࡞ࡼࡾ࣐ࢼ࣮࡞ MAS frequency of ca. 20 kHz. ಙྕ㸦ᅗ࡛$%&㸧ࡣᖜᗈࡃ࡞ࡾほ ࡀ㞴ࡋ࠸ࠋ ࢫ࣮࣌ࢫࡢ㒔ྜ࡛SSP㏆ࡢࢫ࣌ࢡࢺࣝࡣ♧ࡋ࡚࠸࡞࠸ࠋ ᅛయ㹌㹋㹐ࣜࢳ࣒࢘㟁ụḟඖ┦㛵㹌㹋㹐 ࢃࡳࡳࡽࡴۑ㸪ࡢࡔࡸࡍ㸪ࡓࡅࡈࡋࡁࡼࡢࡾ㸪࠶ࡽ࠸ࡣࡌࡵ㸪࠺ࡕࡶࡼࡋࡣࡿ㸪 ࠾ࡄࡳࡐࢇࡥࡕ -354- ᅗ㸰 7Li-7Liࡢ2DNMRࢫ࣌ࢡࢺࣝࢆ ♧ࡋࡓࠋ㛫ࡣ500ms࡛࠶ࡾࠊ࣐ࢼ࣮ ࡞ࣆ࣮ࢡ(A-C)࣓ࣥࣆ࣮ࢡࡢ㛫ᕪࣆ ࣮ࢡࡀほ ࡉࢀࡓࠋࡇࡢᕪࣆ࣮ࢡࡣᙜึࡣ Li࢜ࣥࡢᣑᩓ㐠ືࡼࡿ㉳ᅉࡍࡿ ⪃࠼ࡓࡀࠊ㔝⏣ࡽࡢ ᗘኚ ᐃ࡞ࡼ ࡾࠊ࢜ࣥࡢᣑᩓࡢࡣ㐜࠸ࡇࡀ♧၀ࡉ ࢀࠊࡇࡢᕪࣆ࣮ࢡࡣࢫࣆࣥᣑᩓ࡛࠶ࡿ⪃ ࠼ࡓ(࣏ࢫࢱ࣮YP5)ࠋࡉࡽᕪࣆ࣮ࢡᙉᗘ ࡢMASࡢ㏿ᗘ౫Ꮡᛶ࡞ࡽࡶᕪࣆ࣮ࢡ ࡢ⏤᮶ࡀࢫࣆࣥᣑᩓ࡛࠶ࡿࡇࡀ♧၀ࡉࢀ ࡚࠸ࡿࠋᅗ㸯࡛♧ࡉࢀࡓࡼ࠺6Liࡢ᪉ࡀศ 㞳ࡀⰋࡃ2D ᐃࡶ㐺ࡋ࡚࠸ࡿࡀࡢ࣓ ࢝ࢽࢬ࣒ࡀࢫࣆࣥᣑᩓ࡛࠶ࡿ♧၀ࡉࢀࡓ ࡓࡵᮏ◊✲࡛ࡣ 6Li-6Liࡢ2D ᐃࡣ⾜ Fig. 2 7Li-7Li 2D exchange MAS spectrum ࢃ࡞ࡗࡓࠋ of LiCoO2 observed at 9.4 T with the MAS ࡇࢀࡽࡢ࣐ࢼ࣮ࣆ࣮ࢡࡢࢩࣇࢺࡢ frequency of ca. 19 kHz. ཎᅉࡣ㐣࡞Liࡼࡿ⤖ᬗḞ㝗ࡀཎᅉ ࡛⌧ࢀࡿᖖ☢ᛶCoࡢ┦స⏝ࡼࡿ ࡶࡢ⪃࠼ࡽࢀࡿࠋࡑࡇ࡛ࠊᖖ☢ᛶ┦ స⏝ࡢࡁࡉࢆぢ✚ࡶࡿࡓࡵࡇࢀࡽ ࡢࣆ࣮ࢡࡢT1 ࢆ ᐃࡋࡓࠋ7Li࡛ࡣࢫࣆ ࣥᣑᩓࡢᙳ㡪ࡀ࠶ࡿࡇࣆ࣮ࢡࡢศ 㞳ࡀᝏ࠸ࡓࡵ6Li࡛T1 ᐃࢆ⾜ࡗࡓࠋ ࣓ࣥࣆ࣮ࢡࡢT1ࡀ᭱ࡶ㛗ࡃ(ca. 7 s)ࠊ ࢩࣇࢺࡀࡁࡃ࡞ࡿࡘࢀ࡚T1 ࡶ▷ࡃ ࡞ࡿഴྥࡀぢࡽࢀࡓࠋࡇࢀࡣࢩࣇࢺࡀᖖ ☢ᛶࡼࡿࡶࡢ࡛࠶ࡿࡇࢆ᫂ࡽ ♧၀ࡋ࡚࠸ࡿࠋࡘࡲࡾࠊࡇࢀࡽࡢࣆ࣮ࢡ ࢩࣇࢺT1 ࡢ್ࡣࡇࢀࡽࣆ࣮ࢡࡢLiࢧ ࢺᖖ☢ᛶ୰ᚰࡢ㊥㞳౫Ꮡࡋࠊ㊥ Fig. 3 Recovery curves of 6Li signal intensities 㞳ࡀᑠࡉ࠸ࢩࣇࢺࡀࡁࡃࠊT1ࡣ▷ࡃ of LiCoO2 observed at 14 T with the MAS ࡞ࡿ⪃࠼ࡽࢀࡓࠋࡇࡇࡣ♧ࡋ࡚࠸࡞ frequency of ca. 14 kHz. ࠸ࡀ183 ppmࡢࣆ࣮ࢡࡢT1ࡣ⣙0.1 sᴟ ➃▷ࡃ࡞ࡗ࡚࠾ࡾࠊ183 ppmࡢࣆ࣮ࢡࢆ♧ࡍLiࢧࢺࡣᖖ☢ᛶCoࡢ᭱㏆ഐ࡛࠶ࡿࡢ ࡛ࡣ࡞࠸⪃࠼࡚࠸ࡿࠋ ㅰ㎡ ᮏ◊✲ࡣࠊ᪂࢚ࢿࣝࢠ࣮࣭⏘ᴗᢏ⾡⥲ྜ㛤Ⓨᶵᵓࡢࠕ㠉᪂ᆺ㟁ụඛ➃⛉Ꮫᇶ♏◊✲ ᴗࠖ࠾࠸࡚⾜ࢃࢀࡓࡶࡢ࡛࠶ࡾࠊ㛵ಀྛ῝ࡃឤㅰ࠸ࡓࡋࡲࡍࠋ References 1. S. Levasseur et. al., Chem. Mater. 15 (2003) 348-354. -355- P84 ࣝ࢝ࣜ࣎ࣟࣁࢻࣛࢻ࠾ࡅࡿ࢜ࣥࡢ ࢲࢼ࣑ࢡࢫ ۑᮧᆂᏊᯘ⦾ಙ ⏘ᴗᢏ⾡⥲ྜ◊✲ᡤ ィ ࣇࣟࣥࢸ◊✲㒊㛛 Ion dynamics in alkali borohydrides ۑKeiko Jimura and Shigenobu Hayashi Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST). Hydrogen gas is a clean energy source for fuel cells. Hydrogen storage with high densities is one of key technologies to realize the fuel cells. A number of materials containing hydrogen have been studied as hydrogen storage materials. Among them, Inorganic compounds such as sodium borohydride NaBH4 and lithium aluminum hydride LiAlH4 are attractive because of their high mass density of hydrogen. To understand hydrogen states and dynamics is useful to create new hydrogen-storage materials. Solid-state NMR is a powerful method to study local structure and dynamics. In the present work, we focus on alkali borohydrides. We have studied ion dynamics in alkali borohydrides by means of solid-state NMR. >ᗎ@ ㏆ᖺࠊ/L%+ࢆึࡵࡍࡿ୍㐃ࡢ࣎ࣟࣁࢻࣛࢻ㸦Ỉ⣲࣍࢘⣲ྜ≀㸧ࡣࠊ 㔠ᒓỈ⣲≀࡞」ྜࡉࡏࡿࡇࡼࡾࠊᵝࠎ࡞࢚ࢿࣝࢠ࣮㛵㐃ᶵ⬟ࢆ♧ࡍࡇ ࡀ᫂ࡽ࡞ࡗ࡚࠸ࡿࠋࡇࢀࡽࡢ≀㉁ࡣỈ⣲ࡢ㉁㔞ᐦᗘࡀ㧗࠸ࡓࡵࠊ᪂ࡓ࡞Ỉ⣲㈓ⶶ ᮦᩱࡋ࡚ὀ┠ࡉࢀ࡚࠸ࡿࠋ࣎ࣟࣁࢻࣛࢻ୰ࡢỈ⣲ᣲືࢆㄪࡿࡇࡣᚋࡢᮦ ᩱ㛤Ⓨ㈉⊩ࡍࡿᮇᚅࡉࢀ࡚࠸ࡿࠋ୰࡛ࡶࠊᅛయ105ࡣỈ⣲ࢆ┤᥋ほ ࡍࡿࡇࡢ ࡛ࡁࡿ㠀ᖖ᭷ຠ࡞ ᐃ᪉ἲࡋ࡚ὀ┠ࡉࢀ࡚࠾ࡾࠊ≉Ỉ⣲ࡢࢲࢼ࣑ࢡࢫࡘ࠸ ࡚ࡣࡶࡗࡶ᭷ຠ࡞ᡭἲ࡛࠶ࡿࠋᮏ◊✲࡛ࡣࠊ୕✀㢮ࡢ࣎ࣟࣁࢻࣛࢻ㸦/L%+ࠊ1D%+ࠊ .%+㸧ࡘ࠸࡚ࠊᅛయ105ࢆ⏝࠸࡚࢜ࣥࡢࢲࢼ࣑ࢡࢫࢆㄪࡓࠋ >ᐇ㦂@ ヨᩱࡣࠊࢩࢢ࣐࣭ࣝࢻࣜࢵࢳ♫〇ࡢ⢊ᮎ1D%+ࠊ.%+ࠊ/L%+ ࢆ⏝࠸ࡓࠋ❅⣲㞺ᅖẼୗ࡛㐺㔞ࢆࣃࣞࢵࢡࢫ࢞ࣛࢫ⟶㸦ȭPP࠾ࡼࡧPP㸧 ワࡵࠊ࣮ࣟࢱ࣮࣏ࣜࣥࣉ࡛┿✵ᘬࡁࡋ࡞ࡀࡽᑒࡌษࡗࡓࡶࡢࢆ ᐃ⏝࠸ࡓࠋ 㟼Ṇヨᩱࡢ105 ᐃࡣࠊ%UXNHU$6;㸦ඹ㬆࿘Ἴᩘ+0+]% 0+]㸧ࠊ%UXNHUPT㸦ඹ㬆࿘Ἴᩘ +0+]㸧ࢆ⏝࠸ࡓࠋࢫ࣌ࢡࢺࣝ ᐃࡣࠊ$6; ࢆ⏝࠸ࠊ6ROLGHFKRἲȧȫȧȫHFKR࡛⾜ࡗࡓࠋ7 ᐃࡘ࠸࡚ࡣࠊ$6; ࠾ࡼࡧPTࢆ⏝࠸ࠊ㌿ᅇἲȧȫȧȫ ȧȫ HFKRࡲࡓࡣ㣬ᅇἲ ȧȫQȫȧȫȧȫHFKR㸦PT࡛ࡣQ 㸧ࢆ⏝࠸ࡓࠋ ᐃ ᗘ⠊ᅖ ࡣࠊ$6;࡛ࡣ⣙.ࡽ.ࠊPT࡛ࡣ⣙.ࡽ.࡛࠶ࡿࠋ ᅛయ105Ỉ⣲㈓ⶶᮦᩱỈ⣲࣍࢘⣲ྜ≀ ࡇ࠸ࡅࡽࡴࡌۑ㸪ࡣࡸࡋࡋࡆࡢࡪ -356- >⤖ᯝ࠾ࡼࡧ⪃ᐹ@ ᅗࠊ1D%+࠾ࡅࡿ+ VWDWLF105ࢫ࣌ࢡࢺࣝࢆ♧ࡍࠋ㧗 㒊࡛ほ ࡉ ࢀࡓ㠀ᖖࢩ࣮ࣕࣉ࡞ࢩࢢࢼࣝࡣ⣧≀ࡼ ࡿࡶࡢ⪃࠼ࡽࢀࡿࠋ ᐃ ᗘ㡿ᇦ࡛ࠊ⥺ᖜ ⣙N+]ࡢ࢞࢘ࢫᆺ⥺ᙧࢆࡋࡓࢩࢢࢼࣝࢆほ ࡋࡓࠋ1D%+ࡣࠊ.㏆࡛ప ┦㸦ṇ᪉ᬗ㸧 ࡽᐊ ┦㸦❧᪉ᬗ㸧ࡢ┦㌿⛣ࡀ㉳ࡇࡿࡇ ࡀ▱ࡽࢀ࡚࠸ࡿࠋࡋࡋࠊ ᐃ ᗘ⠊ᅖෆ࡛ࡣ ᫂☜࡞⥺ᙧࡢኚࡣほ ࡉࢀࡎࠊ⥺ᖜࡶࡰ୍ ᐃ࡛࠶ࡗࡓࠋ%VWDWLF105ࢫ࣌ࢡࢺࣝࡶࠊ+ ࢫ࣌ࢡࢺࣝఝࡓࡼ࠺࡞⥺ᙧࡑࡢ ᗘ౫Ꮡ ᛶࢆ♧ࡋࡓࠋ .%+ࡢ+VWDWLF105ࢫ࣌ࢡࢺ࡛ࣝࡶࠊ༢୍ᡂ ศࡢࢩࢢࢼࣝࡀほ ࡉࢀࠊ1D%+ఝࡓࡼ࠺࡞⥺ ᙧࢆ♧ࡋࡓࠋ ᗘኚక࠺ࢫ࣌ࢡࢺࣝࡢ⥺ᖜ ࡸ⥺ᙧࡢኚࡣほ ࡉࢀࡎࠊ⥺ᖜࡣ⣙N+]࡛ ࠶ࡗࡓࠋ /L%+ࡣࠊ.㏆࡛ᐊ ┦㸦ᩳ᪉ᬗ㸧ࡽ 㧗 ┦㸦භ᪉ᬗ㸧┦㌿⛣ࡍࡿࡇࡀ▱ࡽࢀ࡚ Fig. 1. 1H static NMR spectra of ࠸ࡿࠋ+VWDWLF105ࢫ࣌ࢡࢺ࡛ࣝࡣࠊ༢୍ᡂ NaBH4 (200.13 MHz). ศࡢࢩࢢࢼࣝࡀほ ࡉࢀࡓࠋ.௨ୗ࡛ࡣ⥺ ᖜࡀ⣙N+]࡛࠶ࡗࡓࠋ.௨ୖ࡛ࡣḟ➨⥺ᖜࡀᑠࡉࡃ࡞ࡗ࡚࠸ࡁࠊ.࡛ࡣ⣙ N+]࡛࠶ࡗࡓࠋ୍᪉ࠊ ᗘኚక࠺⥺ᙧࡢኚࡣほ ࡉࢀ࡞ࡗࡓࠋ ⤖ᬗᵓ㐀ࡽ᥎ᐃࡉࢀࡿ⥺ᖜほ ࡉࢀࡓ⥺ᖜẚ㍑᳨ウࡍࡿࡇࡼࡗ࡚ࠊ㐠ື ࣮ࣔࢻࢆỴࡵࡓࠋࡑࡢ⤖ᯝࠊ࣎ࣟࣁ ࢻࣛࢻ࠾ࡅࡿ࣍࢘⣲ࢆ୰ᚰ ࡍࡿᅄ㠃య࢜ࣥ%+ ࡀ㠀ᖖ㏿࠸ ➼᪉ⓗ࡞㓄ྥ㐠ືࢆࡋ࡚࠾ࡾࠊ .㏆࡛ࡶ㐠ື࣮ࣔࢻࡀኚࡋ࡞࠸ ࡇࢆ᫂ࡽࡋࡓࠋ ᅗࠊ1D%+࠾ࡅࡿ+%ࡢࢫ ࣆ࣮ࣥ᱁Ꮚ⦆㛫㸦7㸧ࡢ ᗘ౫ Ꮡᛶࢆ♧ࡍࠋ.㏆࡛┦㌿⛣ࡀ㉳ ࡇࡾࠊ7ࡀ㐃⥆ኚࡋࡓࠋᐊ ┦࡛ࡣ ᗘୖ᪼క࠸ࠊ7ࡣᚎࠎ 㛗ࡃ࡞ࡾ+ࡢ7ࡣ☢ሙ౫Ꮡᛶࢆ♧ࡉ ࡞ࡗࡓࠋ୍᪉ࠊప ┦࡛ࡣ☢ሙ౫ Ꮡᛶࢆ♧ࡋࡓࠋࡇࡢ⤖ᯝࢆゎᯒࡋ࡚ࠊ %+ࡢ㓄ྥ㐠ືࡢ㏿ᗘࢆỴᐃࡋࡓࠋ Fig. 2. 1H and 11B T1 of NaBH4, (A) 11B T1 >ㅰ㎡@ ᮏ◊✲ࡣࠊ1('2Ỉ⣲㈓ⶶᮦᩱඛ (64.207 MHz), (B) 1H T1 (19.65 MHz) and ➃ᇶ┙◊✲ᴗ+<'52ۼ67$5ࡢୗ࡛⾜ (C) 1H T1 (200.13 MHz). ࢃࢀࡓࠋ -357- P85 ࠝࠗ࠻ߦ߅ߌࠆࡉࡦࠬ࠹࠶࠼㉄ὐߩ᷹ⷰ ٤ዊፉ ᄹᵤሶᨋ ❥ା ↥ᬺᛛⴚ✚ว⎇ⓥᚲ⸘᷹ࡈࡠࡦ࠹ࠖࠕ⎇ⓥㇱ㐷 NMR measurements of Brønsted acid sites on zeolites ٤Natsuko Kojima and Shigenobu Hayashi Research Institute of Instrumentation Frontier, National institute of Advanced Industrial Science and Technology (AIST) Zeolites are solid acid catalysts widely used. OH groups on the zeolite surface work as Brøensted acid. We can study the acid strength and the amount of the acid sites by 1H MAS NMR measurements. However, it is difficult to get the spectra of the OH groups, because zeolites easily adsorb H2O in air. In the present work, we have tried to reduce the H2O content as low as possible and we have obtained 1H MAS NMR spectra of OH groups on several zeolites. ޜ⸒✜ޛ ࠝࠗ࠻ߪ࿕㉄⸅ᇦߣߒߡᐢߊ↪ࠄࠇߡࠆ࠻ࠗࠝޕ㕙ߩ᳓㉄ၮ߇ࡉ ࡦࠬ࠹࠶࠼㉄ὐߣߥߞߡߡ߅ࠅޔ1H NMRࠬࡍࠢ࠻࡞ߩ᷹ⷰߦࠃࠅ㉄ᒝᐲ߿㉄ ㊂ࠍ⺞ߴࠆߎߣ߇ߢ߈ࠆߪ࠻ࠗࠝޔߒ߆ߒޕⓨ᳇ਛߩ᳓ࠍኈᤃߦๆ⌕ߒߡߒ߹ޔ ᳓㉄ၮᧄ᧪ߩࠬࡍࠢ࠻࡞ࠍᓧࠆߎߣ߇࿎㔍ߢࠆ⎇ᧄޕⓥߢߪޔⓨ᳇ਛߩ᳓ಽߩᓇ㗀 ࠍᭂജឃ㒰ߒߡ⹜ᢱࠍ⺞ߒ࠻ࠗࠝޔ㕙ߩ᳓㉄ၮߩ1H MAS NMRࠬࡍࠢ࠻࡞ࠍ ᓧߚߩߢႎ๔ߔࠆޕ ޛታ㛎ޜ ࠝࠗ࠻ߪ⸅ޔᇦቇળෳᾖ⸅ᇦᆔຬળ߆ࠄឭଏߐࠇߚ߽ߩߢ࠼ࠦߩࠇߙࠇߘޔ ߪᰴߦ⸥タߔࠆ߽ߩࠍ↪ߚ* ࠻ࠗ࠽࠺࡞ࡕޕ/ߪ,4%<*/<5/ߪ ,4%<* * * ; ࠝ ࠗ ࠻ ߪ ,4%<*; ߪ ࠻ ࠗ ࠝ ࠲ ࡌ ޔ ,4%<*$ࠍ↪ߚޕวᚑᤨߦ߅ߌࠆ5K1#N1ߩࡕ࡞Ყ߇ฦޔޘᢙሼߢߐࠇߡ ࠆ*ޕ/ߥࠄ߫<ޔ5/ߥࠄ߫࠲ࡌޔ߫ࠄߥ࠻ࠗࠝ;ޔ ࠝࠗ࠻ߥࠄ߫ߣߥߞߡࠆ*ޕ/<5/***$'#ߪޔᱷ⇐ߒ ߡࠆ0*ࠗࠝࡦࠍ㒰ߊߚߦࠄ߆ߓ͠ߢᚑࠍߒ㉄ޔὐߩᓇ㗀ࠍᬌ⸛ߔࠆߚ ߦޕߚߒߦဳ*ߡోޔኒ㐽น⢻ߥ⹜㛎▤ߦࠨࡦࡊ࡞ࠍࠇ⌀ޔⓨࠗࡦߢ⹜㛎▤ౝ ࠍ⌀ⓨߦߔࠆߩߘޕᓟ<ޔ5/****ࡌ࠲ߪ⹜㛎▤ߩ᷷ᐲࠍ͠߹ߢޔ */*;ߪ͠߹ߢᓢߦޘߍߡ߈ᤨޔ㑆⌀ⓨടᾲߒߚ⌀ޕⓨടᾲᓟޔ ⹜㛎▤ࠍኒ㐽ߒߡ㧝᥅⟎ߒߚߩߘޕᓟࠬࠟ⚛⓸ޔ㔓࿐᳇ਅߢ/#5ࡠ࠲ߦ⹜ᢱࠍ ల㎾ߒߚޕ *OCIKECPINGURKPPKPI /#50/4ߪ$TWMGT/5.㧔㡆ᵄᢙ*/*\㧕 ࠍ↪ߡቶ᷷ߢ᷹ቯߒߚޕ$TWMGT/#5ࡊࡠࡉࡋ࠶࠼ߢޔᄖᓘOOߩࠫ࡞ࠦ࠾ࠕ ࿕0/4ࠝࠗ࠻࿕㉄⸅ᇦ ٤ߎߓ߹ߥߟߎ㧘ߪ߿ߒߒߍߩ߱ -358- ࡠ࠲ࠍ↪ߒ♽ࠬ࡞ࡄޔߪㅢᏱߩࠪࡦࠣ࡞ࡄ࡞ࠬࠍ↪ߒߚ࡞࠻ࠢࡍࠬߩ*ޕ ߪ ࡦࠪ࡞࠴ࡔ࠻࠹ޔ6/5ࠍၮḰߣߒߡ␜ߒߚޕ ⚿ޛᨐߣ⠨ኤޜ ࠝࠗ࠻ࠍ͠ߢ⌀ⓨടᾲߒߚ ᓟߦ᷹ቯߒߚ */#50/4ࠬࡍࠢ࠻࡞ࠍ (KIWTGߦ␜ߒߚ*ޕ/*/*/ 㪟㪰㪌㪅㪍 ߦRROߩࠪࠣ࠽࡞߇᷹ⷰߐࠇߚޕ */*/ߢߪޔRROߦࠪࡖࡊߥ 㪟㪤㪉㪇 ࠪࠣ࠽࡞ޔRROઃㄭߣRROઃㄭߦ ࡉࡠ࠼ߥࠪࠣ࠽࡞߇᷹ⷰߐࠇ*ޔ/ 㪟㪤㪈㪌 ߢߪRROޔRROޔRROޔRRO ߦࡉࡠ࠼ߥࠪࠣ࠽࡞߇᷹ⷰߐࠇߚޕ RROߪቅ┙ߒߚ5K1*ޔRROޔRROޔ㪟㪤㪈㪇 RROࡉߪ࡞࠽ࠣࠪߥ࠼ࡠࡉߩޔ 㪈㪌 㪈㪇 㪌 㪇 㪄㪌 ࡦࠬ࠹࠶࠼㉄ὐ5K1*#NߦᏫዻߐࠇࠆޕ 㱐㩷㩿㫇㫇㫄㪀 *;ߢߪޔRROߦᲧセ⊛ࠪࡖ Figure 1. 1H MAS NMR spectra of H-type ࡊߥࠪࠣ࠽࡞ޔRROઃㄭߦࡉࡠ࠼ߥ mordenites and HY after heating under ࠪࠣ࠽࡞ޔRROߦࠪࡖࡊߥࠪࠣ࠽ vacuum. ࡞߇᷹ⷰߐࠇߚޕRROߪቅ┙ߒߚ 5K1*ޔRROઃㄭޔRROߩࠪࠣ ࠽࡞ߪࡉࡦࠬ࠹࠶࠼㉄ὐ 5K1*#NߦᏫዻߐࠇࠆޕ ࠝࠗ࠻ࠍ͠ߢ⌀ⓨടᾲߒ 㪟㪙㪜㪘㪉㪌 ߚᓟߦ᷹ቯߒߚ*/#50/4ࠬࡍࠢ࠻ 㪱㪪㪤㪌㪄㪈㪇㪇㪇㪟 ࡞ࠍ(KIWTGߦ␜ߒߚ<ޕ5/* <5/*<5/*ߢߪRRO 㪱㪪㪤㪌㪄㪎㪇㪟 ߦࠪࡖࡊߥࠪࠣ࠽࡞߇᷹ⷰߐࠇޔ RROઃㄭߦࡉࡠ࠼ߥࠪࠣ࠽࡞߇ 㪱㪪㪤㪌㪄㪉㪌㪟 ᷹ⷰߐࠇߚ<ޕ5/*ߢߪޔRRO 㪈㪌 㪈㪇 㪌 㪇 㪄㪌 ઃㄭߦ㧞ᧄߣRROߦࠪࠣ࠽࡞߇ 㱐㩷㩿㫇㫇㫄㪀 ᷹ⷰߐࠇߚޕRROઃㄭߪቅ┙ߒ ߚ5K1*ޔRROߪ᳓⚛⚿วߒߚ Figure 2. 1H MAS NMR spectra of H-type 5K1*15KޔRROઃㄭߩࡉࡠ ZSM5 and HBEA after heating under vacuum. ࠼ߥࠪࠣ࠽࡞ߪࡉࡦࠬ࠹࠶࠼㉄ ὐ5K1*#NߦᏫዻߐࠇࠆ*ޕ$'#ߢߪޔRROߦࠪࡖࡊߥࠪࠣ࠽࡞ޔRROޔ RROߦࡉࡠ࠼ߥࠪࠣ࠽࡞߇᷹ⷰߐࠇߚޕRROߪቅ┙ߒߚ5K1*ޔRROߪ᳓⚛ ⚿วߒߚ5K1*15KޔRROߪࡉࡦࠬ࠹࠶࠼㉄ὐ5K1*#NߦᏫዻߐࠇࠆޕ ߹ߚޔ⸥ࠝࠗ࠻ߩ5K#N/#50/4ࠬࡍࠢ࠻࡞ࠍ᷹ⷰߒߚޕ5K/#50/4 ࠬࡍࠢ࠻࡞߆ࠄߪ㛽ᩰߩ5K#NᲧࠍ▚ߒࠄ߆ߎߘޔ㈩ߩ#N㊂ࡉޔߜࠊߥߔޔ ࡦࠬ࠹࠶࠼㉄㊂ࠍⓍ߽ߞߚޕ#N/#50/4ࠬࡍࠢ࠻࡞ߢߪ㈩߅ࠃ߮㈩ߩ#N ࠍ᷹ⷰߒޔ㈩ߩ#N㊂߆ࠄࡉࡦࠬ࠹࠶࠼㉄㊂ࠍⓍ߽ߞߚ⚿ߩࠄࠇߎޕᨐߣ*/#5 0/4ࠬࡍࠢ࠻࡞߆ࠄᓧࠄࠇߚ⚿ᨐࠍᲧセߒߡቯ㊂⊛ߥ⠨ኤࠍⴕߞߚޕ -359- P86 ࿕NMRᴺߦࠃࠆ㉄ൻࠣࡈࠔࠗ࠻ጀ㑆ౝߩC60ಽሶߩ ㆇേ⁁ᘒߩ⎇ⓥ ٤᪀ේ ᄢ1ޔ ᄢテ2ޔ㋈ᧁ ൎ1㧘ਛ ᢅ3㧘 ⍹Ꮉ ⺈4㧘ਃᶆ ᶈᴦ4 1 㔚ㅢᄢవㅴℂᎿޔ2 㔚ㅢᄢ㊂ሶ‛⾰ޔ3 ಽሶ⎇ޔ4 ᗲᢎᄢ‛ℂ Solid-state NMR study of physical properties of C60 molecule intercalated in graphite oxide ٤Daisuke Kuwahara1, Daisuke Inoue2, Masaru Suzuki1, Toshikazu Nakamura3, Makoto Ishikawa4, Koji Miura4 1,2 Univ. of Electro-Communications, 3 Institute for Molecular Science, 4 Aichi Univ. of Education Recently, Miura and co-workers have synthesized the novel nanocomposite consisting of a stacked single graphite oxide sheet and a C60 fullerene monolayer (GO-C60) [1]. GO-C60 shows a ultralow friction. In C60 fullerene and its compounds, one of the interesting topics is the rotational dynamics. Furthermore, understanding of the rotational dynamics in those materials is of importance to elucidate the mechanism for ultralow friction. Solid-state 13C NMR experiments for the fullerene and some compounds have revealed this dynamics. Thus motivated, we carried out solid-state 13C NMR experiments for GO-C60. In addition, we tried to confirm the intercalation of C60 into graphite oxide sheets by using solid-state NMR techniques. 1.✜⸒ ᦨㄭ㧘ਃᶆࠄߪ⤘Ảൻߒߚࠣࡈࠔࠗ࠻ߩጀ㑆ߦC60ࠍኽߒߚ⹜ᢱ㧔ࠣࡈࠚࡦ/C60 නጀ⤑/ࠣࡈࠚࡦ̖㧕ߩวᚑߦᚑഞߒ㧘ૐᡂߣߥࠆߎߣࠍࠄ߆ߦߒߚ [1]㧚ߎ ߩޡૐᡂߡߒߣࡓ࠭࠾ࠞࡔߩޢ㧘⤘Ảൻߒߚࠣࡈࠔࠗ࠻ߩጀ㑆ౝߦࠆC60ߩ ㆇേ⁁ᘒ߇㑐ଥߒߡࠆߣ⠨߃ࠄࠇߡࠆ㧚න⚿᥏C60ߪቶ᷷ߢ߶߷⥄↱ߥ࿁ォㆇേ ࠍߒߡࠆߎߣ߇⍮ࠄࠇߡࠆ߇㧘ࠣࡈࠚࡦ/C60නጀ⤑/ࠣࡈࠚࡦ̖ਛߩC60ಽሶߩ ㆇേ⁁ᘒߩ⚦ߪ߹ߛࠄ߆ߦߐࠇߡߥ㧚ߘߎߢᧄ⎇ⓥߢߪ㧘ࠣࡈࠚࡦ/C60න ጀ⤑/ࠣࡈࠚࡦ̖ਛߩC60ಽሶߩㆇേ⁁ᘒߦߟߡ⍮ࠍᓧࠆߚߦ㧘ࠣࡈࠚࡦ/C60 නጀ⤑/ࠣࡈࠚࡦ̖ਛߩC60ಽሶߩ‛ᕈ᷹ቯࠍⴕߞߚ㧚⸛⺰ળߢߪ13C NMR᷹ቯߩ⚿ ᨐࠍਛᔃߦႎ๔ߔࠆ㧚ᧄ⎇ⓥߢߪߐࠄߦ㧘C60߇ࠣࡈࠚࡦጀ㑆ߦኽߐࠇߡࠆߎ ߣࠍ㧘࿕NMRߩᚻᴺࠍ↪ߡ⏕ߔࠆߎߣࠍⴕߞߚ㧚 ࡈࡦ㧘ࠣࡈࠔࠗ࠻㧘ૐᡂ ٤ߊࠊߪࠄ ߛߔߌޔߕ߆ߒߣ ࠄ߆ߥޔࠆߐ߹ ߈ߕߔޔߌߔߛ ߃߁ߩޔ ߒ߆ࠊ ߹ߎߣߓ߁ߎ ࠄ߁ߺޔ -360- 2. ታ㛎⚿ᨐ Fig. 1 ߦࠣࡈࠚࡦ/C60නጀ⤑/ࠣࡈࠚࡦ̖ ߩ13C NMRࠬࡍࠢ࠻࡞ࠍ␜ߒߚ㧚10Kߦ߅ ߡ ߪC60 ಽሶߩൻቇࠪࡈ࠻⇣ᣇᕈߦ࿃ߔࠆ ✢߅ࠃߘ 200ppmߩࠬࡍࠢ࠻࡞߇᷹ⷰߐࠇ ߚ㧚ߎࠇߪC60ಽሶߩㆇേ߇ಓ⚿ߐࠇߡࠆߎ ߣࠍᗧߔࠆ㧚৻ᣇ㧘70Kએߩ᷷ᐲၞߢߪ 10Kߢߩࠬࡍࠢ࠻࡞ߦട߃㧘144ppmઃㄭߦࡇ ࠢࠍᜬߟࠃ߁ߥ㍈ࠬࡍࠢ࠻࡞߇᷹ⷰߐࠇ ߚ㧚ߎߩ᭽ߥ㍈ࠬࡍࠢ࠻࡞ߪC60ಽሶߩ࿁ォ ㆇേߦ↱᧪ߔࠆ߽ߩߢࠆ㧚120Kએߩ᷷ᐲ ၞߢߪࠬࡍࠢ࠻࡞ᒻ⁁ߩᄌൻߪ᷹ቯߩಽ⸃⢻ ߩ▸࿐ౝߢߪࠄࠇߥ㧚߹ߚ 190–300Kߩ᷷ ᐲ ၞߢߩ 13C NMRࠬࡍࠢ࠻࡞߮❑✭₸ T1-1ߦࠃࠅ㧘C60ಽሶߪ 190–300Kߩ᷷ᐲၞߢߪ Figure 1. 13 C NMR spectra of static GO-C60 at different indicated temperatures. ㆇേ⁁ᘒߦᄢ߈ߥᄌൻߪήߊ㧘⋧㑐ᤨ㑆ߦߒ ߡ 10psecࠝ࠳ߩ╬ᣇ࿁ォࠍⴕߞߡࠆߎ ߣ߇ࠄ߆ߦߥߞߚ㧚 3. C60ߩኽߩᬌ⸽ C60߇ࠣࡈࠚࡦጀ㑆ߦኽߐࠇߡࠆߎߣߪ㧘☳ᧃX✢ߩ࿁᛬࠺࠲ࠍ⸃ᨆߔࠆߎߣ ߦࠃߞߡߔߢߦࠄ߆ߦߥߞߡࠆ [1]㧚ᧄ⎇ⓥߢߪ⇣ߥࠆ⎇ⓥᚻᲑ㧘࿕NMRߩᚻ ᴺࠍ↪ࠆߎߣߦࠃߞߡߎߩ㊀ⷐߥ⚿ᨐ㧔ޟC60ߩኽޠ㧕ࠍᬌ⸽ߔࠆߎߣߦߒߚ㧚 ౕ⊛ߦߪ㧘C60߇ࠣࡈࠚࡦጀߣ࠽ࡁࡌ࡞ߢ㓞ធߒߡሽߒߡࠆߎߣࠍࠄ߆ ߦߔࠆߚߦ㧘13C–13C㑆ߩREDORታ㛎ࠍⴕߞߚ㧚ߎߩห⒳ᩭ㑆ߩREDORታ㛎ߦߪ㧘 ㆬᛯ⊛RFࡄ࡞ࠬࠍߞߚᣂߒޟREDORࡄ࡞ࠬ♽ߚߒ↪ࠍޠ㧔Fig. 2㧕㧚 Figure 2. Homonuclear REDOR pulse sequence. Fig. 3 ߦߪ㧘࠹ࠬ࠻ࠨࡦࡊ࡞ all 13C Figure 3. (a) Carboxyl carbon resonances of all 13 C enriched L-alanine measured (a) with Ǹ pulses and (b) withoutǸpulses. enriched L-alanine ࠍߞߚ੍ታ㛎ߩ⚿ᨐࠍ␜ߒߚ㧚ળ႐ߢߪ㧘ࠣࡈࠚࡦ/C60නጀ ⤑/ࠣࡈࠚࡦ̖ࠍߞߚታ㛎⚿ᨐࠍ㧘C60නࠍߞߚ⚿ᨐߣวࠊߖߡႎ๔ߔࠆ㧚 [1] N. Sasaki and K. Miura, Jpn. J. Appl. Phys. 43, 4486 (2004). -361- P87 ᅛయNMRࡼࡿ⾲㠃ಟ㣭BNࢼࣀ⢏Ꮚࡢᵓ㐀ಟ㣭᭷ᶵ ศᏊࡢ⤖ྜ≧ែ ┦ۑ㤿 ὒஅ㸪ᯘ ⦾ಙ ⊂❧⾜ᨻἲே ⏘ᴗᢏ⾡⥲ྜ◊✲ᡤ ィ ࣇࣟࣥࢸ◊✲㒊㛛 Structures of surface-modified boron nitride nano-particles and bonding states of organic molecules studied by high-resolution solid-state NMR ۑHiroyuki Souma and Shigenobu Hayashi Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan. It is important that the surface of nano-particles is modified by chemical species having hign affinity with the matrix in order to disperse nano-particles uniformly in the matrix. We demonstrated previously that solid-state nuclear magnetic resonance (SSNMR) can detect the bonding between the surface of the titania nano-particles and the surface-modified reagent. And we proved previously that SSNMR is very useful to characterize the surface-modified nano-particles. In the present study, we have synthesized boron nitride (BN) nano-particles modified by propylphosphonic acid (PPA) and decylphosphonic acid (DPA), and have demonstrated that SSNMR can detect the bonding between the surface of the BN nano-particles and PPA or DPA. ࠙ᗎㄽࠚ ࢼࣀ⢏Ꮚࢆ࣐ࢺࣜࢵࢡࢫ୰ᆒ୍ศᩓࡉࡏࡿࡓࡵࡣࠊ࣐ࢺࣜࢵࢡࢫ┦⁐ᛶࡢ 㧗࠸Ꮫ✀࡛ࢼࣀ⢏Ꮚ⾲㠃ࢆಟ㣭ࡍࡿࡇࡀ㔜せ࡛࠶ࡾࠊࡑࡢ⾲㠃ಟ㣭ࡣࢼࣀ⢏Ꮚ ⾲㠃ᑐࡋࠊඹ᭷⤖ྜ࡛ᙉᅛ⤖ྜࡋ࡚࠸ࡿᚲせࡀ࠶ࡿࠋᡃࠎࡣࡇࢀࡲ࡛ࠊࢳࢱࢽ ࢼࣀ⢏Ꮚࢆࣉࣟࣆࣝ࣍ࢫ࣍ࣥ㓟㸦PPA㸧ࡸࢹࢩࣝ࣍ࢫ࣍ࣥ㓟㸦DPA㸧࡛᭷ᶵಟ㣭ࡋ ࡓࣁࣈࣜࢵࢻヨᩱࢆㄪ〇ࡋࠊࢳࢱࢽࢼࣀ⢏Ꮚ⾲㠃ࡢ᭷ᶵศᏊࡢ⤖ྜ≧ែࢆᅛయ 105ἲ࡛ゎ᫂ࡋ࡚ࡁࡓ[1]ࠋ ࡇࢀࡲ࡛ࡢ◊✲ᘬࡁ⥆ࡁࠊᮏ◊✲࡛ࡣ❅࣍࢘⣲ࢼࣀ⢏ᏊBNࢼࣀ⢏Ꮚࡢᮎ➃ ࢆPPADPA࡛᭷ᶵಟ㣭ࡋࡓ᭷ᶵ↓ᶵࣁࣈࣜࢵࢻヨᩱࢆㄪ〇ࡋࠊᅛయNMRࢆ⏝࠸࡚ BNࢼࣀ⢏Ꮚᮎ➃⤖ྜࡋࡓ᭷ᶵศᏊࡢ⤖ྜ≧ែࢆ᫂ࡽࡍࡿࡇࠊࡑࡋ࡚ㄪ〇๓ ᚋࡢBNࢼࣀ⢏Ꮚࡢᵓ㐀ኚࡢ᭷↓ࢆㄪࡿࡇࢆ┠ⓗࡋࡓࠋ ࠙ᐇ㦂ࠚ ⾲㠃ಟ㣭ࡋ࡚PPAࠊDPAࢆ⏝࠸ࠊBNࢼࣀ⢏Ꮚࡢࣁࣈࣜࢵࢻヨᩱࢆㄪ〇ࡋࡓࠋ PPA/BNࢼࣀ⢏ᏊࠊDPA/BNࢼࣀ⢏Ꮚඹࠊ࢜ࣝࣂࢫ୰࡛100Υຍ⇕ࡋࠊ3᪥㛫ᨩᢾ ࡉࡏ࡚ヨᩱࢆᚓࡓࠋྛヨᩱ࠾ࡅࡿࢼࣀ⢏Ꮚ⾲㠃ࡢࣜࣥ㓟ᇶࡢ⤖ྜ≧ែࡑࡢᵓ㐀ࡣࠊ 31 P CPMAS NMRࠊ11B MAS NMRࠊ1H MAS NMRࡼࡾㄪࡓࠋ ᐃࡣࠊBruker ASX400ศගィ㸦ඹ㬆࿘Ἴᩘ 31P㸸161.98MHzࠊ11B㸸128.34MHzࠊ1H㸸400.13MHz㸧 ᅛయNMRBNࢼࣀ⢏Ꮚ⾲㠃ಟ㣭 ࡁࡺࢁࡦ ࡲ࠺ࡑۑ㸪ࡣࡸࡋ ࡋࡆࡢࡪ -362- ࠾ࡼࡧBrukerASX200ศගィ㸦ඹ㬆࿘Ἴᩘ 11B㸸64.21MHzࠊ1H㸸200.13MHz㸧ࢆ⏝࠸ ࡓࠋ ࠙⤖ᯝ࣭⪃ᐹࠚ ➨୍ࠊㄪ〇ࡋࡓPPA/BNࢼࣀ⢏ᏊDPA/BNࢼࣀ⢏Ꮚࡢ1H MAS NMR ᐃ⤖ᯝࡽࠊ ࡑࢀࡒࢀࡢヨᩱࡀPPA࠾ࡼࡧDPA࡛᭷ᶵಟ㣭ࡉࢀ࡚࠸ࡿࡇࢆ☜ㄆࡋࡓࠋ ⥆࠸࡚ࠊࡑࡢ᭷ᶵಟ㣭PPA࠾ࡼࡧDPAࡢ⤖ྜ≧ែࢆ᫂ࡽࡍࡿࡓࡵࠊ 31P CPMAS NMRࢫ࣌ࢡࢺࣝࢆ ᐃࡋࡓࠋㄪ〇ࡋࡓPPA/BNࢼࣀ⢏Ꮚࡑࡢㄪᩚ⏝࠸ࡓ PPAࠊ࠾ࡼࡧㄪ〇ࡋࡓDPA/BNࢼࣀ⢏Ꮚࡑࡢㄪ〇⏝࠸ࡓDPAࡢࡑࢀࡒࢀࡢ 31P CPMAS NMRࢫ࣌ࢡࢺࣝࢆFigure 1♧ࡍࠋࡇࡢ୰࡛ࠊ᭷ᶵ↓ᶵࣁࣈࣜࢵࢻヨᩱࡢࢫ ࣌ࢡࢺࣝ㸦a㸸PPA/BNࢼࣀ⢏Ꮚࠊc㸸DPA/BNࢼࣀ⢏Ꮚ㸧࡛ࡣࠊ2ࡘࡢࢩࢢࢼࣝࡀ☜ㄆ ࡉࢀࡓࠋࡇࢀࡣࠊBNࢼࣀ⢏Ꮚ᭷ᶵಟ㣭ࡀ⤖ྜࡋࡓࡇࢆពࡋ࡚࠸ࡿࠋࡑࡋ࡚ࠊ BNࢼࣀ⢏Ꮚ୰ࡢ࣍࢘⣲ཎᏊ⤖ ྜࡋࡓሙྜ❅⣲ཎᏊ⤖ྜࡋ ࡓሙྜ࡛ࡣࣜࣥ㓟ᇶ࿘ᅖࡢ⎔ቃ ࡀኚࡍࡿࡢ࡛ࠊࢩࢢࢼࣝࡀ2ᮏ ศࡋࡓྍ⬟ᛶࡀ㧗࠸ࠋᡃࠎࡣ 㼍 ࡇࢀࢆ᫂ࡽࡍࡿࡓࡵࠊPPA DPAࢆ࣍࢘㓟ࢺ࢚ࣜࢳࣞࣥࢪ ࣑ࣥ┤᥋⤖ྜࡉࡏࡓヨᩱࢆ సᡂࡋࠊ31P CPMAS NMRࢆ ᐃ ࡋࡓࠋࡑࡋ࡚ࡑࢀࡽࡢヨᩱࡢࢫ࣌ ࢡࢺࣝࡽᚓࡽࢀࡓᏛࢩࣇࢺ 㼎 ್ࢆ⪃៖ࡋࠊᅇࡢ᭷ᶵ↓ᶵࣁ ࣈࣜࢵࢻヨᩱࡢศࡋࡓࢩࢢࢼ ࣝࡘ࠸࡚⪃ᐹࡋࡓࠋࡑࡢ⤖ᯝࠊ 㧗࿘Ἴᩘഃࡢࢩࢢࢼࣝࡀ࣍࢘⣲ ཎᏊ⤖ྜࡋࡓPPA࠾ࡼࡧDPA 㼏 ࡢࣜࣥ㓟ᇶ࡛࠶ࡾࠊప࿘Ἴᩘഃࡢ ࢩࢢࢼࣝࡀ❅⣲ཎᏊ⤖ྜࡋࡓ ࣜࣥ㓟ᇶ࡛࠶ࡿྍ⬟ᛶࡀ㧗࠸ ࠸࠺⤖ㄽ⮳ࡗࡓࠋ ࡉࡽᡃࠎࡣࠊ11B MAS NMR 㼐 ࡢ ᐃࢆ⾜ࡗࡓࠋࡇࡢ⤖ᯝࡽࠊ ㄪ〇๓ࡢBNࢼࣀ⢏Ꮚࠊ᭷ᶵ↓ 㻡㻜 㻠㻜 㻟㻜 㻞㻜 㻝㻜 㻜 ᶵࣁࣈࣜࢵࢻヨᩱ࠾ࡅࡿ࣍ 㼜㼜㼙 ࢘⣲ཎᏊ࿘ᅖࡢᵓ㐀ኚࡢ᭷↓ ࢆ☜ㄆࡋࡓࠋ Figure 1. 31P CPMAS NMR spectra of a) PPA/BN ᮏ◊✲ࡣࠊNEDO㉸ࣁࣈࣜࢵ nano-particles, b) crystalline PPA, c) DPA/BN ࢻᮦᩱᢏ⾡㛤Ⓨࣉࣟࢪ࢙ࢡࢺࡢ ᨭࢆཷࡅ࡚⾜ࢃࢀࡓࡶࡢ࡛࠶ nano-particles and d) crystalline DPA. ࡿࠋ ࠙ᘬ⏝ᩥ⊩ࠚ[1] ┦㤿ὒஅࠊ༓ⴥுࠊᯘ⦾ಙࠊ➨48ᅇNMRウㄽ(2009) -363- P88 ࿕ NMR 䈮䉋䉎 VHxDy (x+y㽈0.8)䈱⋧᭴ㅧ䈱⎇ⓥ ٤㋈ᧁ 㓁ޔᨋ ❥ା ↥ᬺᛛⴚ✚ว⎇ⓥᚲ ⸘᷹ࡈࡠࡦ࠹ࠖࠕ⎇ⓥㇱ㐷 Ӯ0.8) using solid-state NMR Study of phase structures in VHxDy (x+yӮ ٤You Suzuki, Shigenobu Hayashi Research institute of instrumentation frontier, National institute of advanced industrial science and technology (AIST) Vanadium (V) metal can absorb a large amount of hydrogen to the extent of a hydrogen-to-metal atomic ratio of 2. It is known that the phase diagrams for vanadium hydride and deuteride are much different. Especially the hydrides and deuterides in which the hydrogen or deuterium contents are in 0.7~1.0 have different vanadium sublattices. In our previous work, the VHxDy system (x+yڌ0.8) was studied by X ray diffraction, 1H NMR and 2 H NMR. And the hydrogen and deuterium diffusion were analyzed by spin-lattice relaxation time. In the present work, we have studied the phase structure in the VHxDy system (x+yڌ0.8) at room temperature using 1H and 2H MAS NMR. [ᐨ] ࡃ࠽ࠫ࠙ࡓ㊄ዻߪ᳓⚛ࠟࠬߣᔕߒޔ ቯߥ᳓⚛ൻ‛ࠍᒻᚑߔࠆޕ᳓⚛ൻ‛ߣ㊀᳓⚛ൻ ‛ߢߪ⋧࿑߇ᄢ߈ߊ⇣ߥࠆߎߣ߇⍮ࠄࠇߡࠆ (Fig. 1)ߦߢ߹ࠇߎޕ᳓⚛ߣ㊀᳓⚛ߩᷙวࠟࠬࠍ ᔕߐߖߚ VHxDy ߢ x+yӮ0.8 ߩ߽ߩߪ X ✢࿁᛬ ߿࿕ᐢ NMR ࠍ↪ߚ⎇ⓥࠍⴕߞߚߩߘޕ ⚿ᨐޔVH0.84 ߢߪࡃ࠽ࠫ࠙ࡓߪᔃᱜᣇᩰሶ (BCT)ࠍߣࠅ᳓⚛ߪ 6 ㈩ࠨࠗ࠻ߦๆ⬿ߐࠇࠆ ߎߣ߿ VD0.81 ߢߪࡃ࠽ࠫ࠙ࡓߪᔃ┙ᣇᩰሶ (BCC)ࠍߣࠅ㊀᳓⚛ߪ 4 ㈩ࠨࠗ࠻ߦๆ⬿ߐࠇ ࠆߎߣޔVH0.4D0.4 ߢߪ BCC ߣ BCT ߩᷙ᥏ߣߥ ࠆߎߣ߇ࠄ߆ߦߥߞߚ́ࡦࡇࠬޔߚ߹ޕᩰሶ ✭ᤨ㑆ߩ᷷ᐲᄌൻ߆ࠄ᳓⚛߿㊀᳓⚛ߩᢔ േߦߟߡ߽⸃ᨆࠍⴕߞߚޔߒ߆ߒޕ࿕㜞ಽ ⸃⢻ NMR ࠍ↪ߚ⎇ⓥߪ߹ߛⴕߞߡߥޕ ᧄ⎇ⓥߢߪޔ㊀᳓⚛ߣシ᳓⚛ߩᷙวᲧ߇⇣ߥࠆ ࡃ࠽ࠫ࠙ࡓ᳓⚛ൻ‛ߦ߅ߌࠆ⋧᭴ㅧߦߟߡ 1 H, 2H ࿕㜞ಽ⸃⢻ NMR ࠬࡍࠢ࠻࡞ࠍ᷹ቯߒ ߡ⺞ߴߚޕ (A) (B) Fig. 1 The phase diagrams of vanadium hydride (A) and deuteride (B) ࿕㊀᳓⚛ NMR, ㊄ዻ᳓⚛ൻ‛, ࡃ࠽ࠫ࠙ࡓ᳓⚛ൻ‛ 䂾䈜䈝䈐㩷 䉋䈉䋬䈲䉇䈚㩷 䈚䈕䈱䈹 -364- [ታ㛎] ⹜ᢱߪࡃ࠽ࠫ࠙ࡓ㊄ዻߩ☳ᧃߣ᳓⚛ࠟࠬߣ㊀᳓⚛ࠟࠬߩᷙวࠟࠬࠍᔕߐߖ ߡวᚑߒߚޕ᳓⚛߅ࠃ߮㊀᳓⚛ߩ㊂ߪๆ⬿ߐࠇߚᷙวࠟࠬߩⓍ߆ࠄቯߒߚޕ 1 H ߅ࠃ߮ 2H NMR ߩ᷹ቯߦߪ Bruker ASX400 (㡆ᵄᢙ 1H 400.13 MHz, 2H 61.423 MHz) ࠍ↪ߚޕ1H, 2H NMR ࠬࡍࠢ࠻࡞ߩ᷹ቯߪ⹜ޔᢱࠍᄖᓘ 2.5 mm ߩࠫ࡞ࠦ࠾ࠕ ࡠ࠲ߦలႯߒⷺࠢ࠶ࠫࡑޔ࿁ォ (MAS)ࠍ 12~20 kHz ߢⴕߞߚޕㅢᏱߩࠪࡦࠣ࡞ࡄ ࡞ࠬᴺߢ᷹ቯࠍⴕߞߚޕ [⚿ᨐߣ⠨ኤ] Fig. 2ߦ1H MAS NMRࠬࡍࠢ࠻ ࡞ࠍ␜ߔޕKnight Shiftߩᄌൻߣ✢ߩᄌൻ߇ x=0.84, y=0 * ᷹ⷰߐࠇߚޕKnight ShiftߩၮḰߣߒߡ↪ࠄ x=0.6, y=0.2 ࠇࠆߩࡊࡠ࠻ࡦߪTMSၮḰߢ⚂30.5 ppmߢ x=0.4, y=0.4 ࠅޔKnight Shiftߪ⽶ߩᣇะߦߡࠆޕ ߹ߚޔKnight Shiftߪx=0, y=0.81ߩ⹜ᢱࠍ㒰 x=0.2, y=0.6 ߡxߩჇടߦߣ߽ߥᄢ߈ߊߥߞߡߚޔߚ߹ޕ * x=0, y=0.81 ᳓⚛ߣ㊀᳓⚛ߩᷙวࠟࠬߣᔕߐߖߚ⹜ᢱߢ 50 0 -50 -100 -150 ߪࡇࠢ߇2ߟߩࡠࡦ࠷㑐ᢙߢಽ㔌ߔࠆ 100 ppm ߎߣ߇ߢ߈ࠆߎߣ߆ࠄޔዪᚲ⊛ߥ᳓⚛ߩๆ⬿ Fig. 2. 1H MAS NMR spectra of VHxDy, ࠨࠗ࠻߇⇣ߥࠆ࠼ࡔࠗࡦ᭴ㅧ߇ሽߔࠆน⢻ referenced to the signal of TMS. The MAS ratio ᕈ߇ࠆ✢ߩࠢࡇޕߪxߩჇടߦߣ߽ߥ was 12 kHz. The marks * indicate background ჇടߒߚޔߪࠇߎޕxߩჇടߦߣ߽ߥ1H-1H peaks 㑆ߩᭂሶ⋧↪߇ᒝߊߥߞߚߚߣ⠨߃ ࠄࠇࠆޔߚ߹ޕ㊀᳓⚛ൻ‛ߢߪᢔㅦᐲߩㅦ4㈩ࠨࠗ࠻ߦๆ⬿ߐࠇޔᢔㆇേߦ ࠃߞߡᭂሶ́ᭂሶ⋧↪߇ᐔဋൻߐࠇߡߚߩߦኻߒޔx߇Ⴧ߃ࠆߦᓥᢔ ㅦᐲߩㆃ6㈩ࠨࠗ࠻ߦๆ⬿ߐࠇࠆ᳓⚛߇߰߃ߚߚᭂሶ́ᭂሶ⋧↪ߩᐔ ဋൻ߇ߎࠅߦߊߊߥߞߚน⢻ᕈ߽⠨߃ࠄࠇࠆޕ Fig. 3ߦ2H MAS NMRࠬࡍࠢ࠻࡞ࠍ␜ߔޕ1H MAS NMRࠬࡍࠢ࠻࡞ߣห᭽ߦKnight Shiftߩ ᄌൻߣ✢ߩᄌൻ߇᷹ⷰߐࠇߚޔߚ߹ޕKnight x=0.6, y=0.2 Shiftߩᣇะ߽ห᭽ߦߩࡊࡠ࠻ࡦߦᲧߴ⽶ߩ x=0.4, y=0.4 ᣇะߢࠅޔxߩჇടߦߣ߽ߥᄢ߈ߊߥߞߡ 1 ߚ ޔߒ߆ߒޕH MAS NMRߩࠬࡍࠢ࠻࡞ߣ x=0.2, y=0.6 ߪ㆑ࡇࠢࠍ2ߟߩᚑಽߦ⏕ߦಽ㔌ߔࠆ x=0, y=0.81 ߎߣߪߢ߈ߥ߆ߞߚޔߪࠇߎޕ2ߟߩᚑಽ߇ࠪ ࡈ࠻୯ߦᄢ߈ߥᏅ߇ߥߚߣ⠨߃ࠄࠇࠆ ޕ100 50 0 -50 -100 -150 ppm 1 ࡇࠢߩ✢ߪ H MAS NMRࠬࡍࠢ࠻࡞ߣห Fig. 3. 2H MAS NMR spectra of VHxDy, ᭽ߦxߩჇടߦߣ߽ߥჇടߒߚ ߪࠇߎޕ1H referenced to the signal of TMS. The MAS MAS NMRߣห᭽ߦxߩჇടߦߣ߽ߥ1H-2H ratio was 20 kHz. 㑆ߩᭂሶ⋧↪߇ᒝߊߥߞߚߚߣ⠨߃ ࠄࠇࠆޔߚ߹ޕᢔㅦᐲߩㆃ6㈩ࠨࠗ࠻ߦๆ⬿ߐࠇࠆ㊀᳓⚛߇Ⴧ߃ޔᢔㆇേߦ ࠃࠆᭂሶ́ᭂሶ⋧↪߿྾ᭂሶ⋧↪ߩᐔဋൻ߇ߎࠅߦߊߊߥߞߚน⢻ ᕈ߽⠨߃ࠄࠇࠆޕ [⻢ㄉ] ᧄ⎇ⓥߪNEDO᳓⚛⾂⬿᧚ᢱవ┵ၮ⋚⎇ⓥᬺ(HYDROڏSTAR)ߩਅߢⴕࠊ ࠇߚޕ -365- P89 ࡇࡠࡦ㉄♽ࡊࡠ࠻ࡦዉ㔚ߩ࿕0/4 䂾↰㓷৻㪈㪃 Ḯ፸ᤩม㪉㪃㩷 ᷓ⼱ᴦᒾ㪈㪃㩷 ᧻㩷 ᷤ㪈㪃㩷 ᣣᲧ㊁㜞჻㪉㩷 㪈 ↥✚⎇ਛㇱ㪃 2ฬᄢ㒮ⅣႺ㩷 Solid state NMR study of proton conductors based on metal pyrophosphates Masakazu Nishida1, Koji Genzaki2, Haruhiko Fukaya1, Wataru Kanematsu1, and Takashi Hibino 2 1 National Institute of Advanced Industrial Science and Technology (AIST), Chubu, Japan. 2 Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan. 㩷 Protons and phosphates in metal prophosphates were analyzed by solid state NMR in order to investigate proton conduction in these materials. The results of solid state NMR analysis suggested that active species of the metal pyrophosphate were dependent on the hygroscopicity: there were different pathways for protons, depending dopant species and preparation procedure. In3+ and Al3+ doped tin pyrophosphates had an active P2O7 unit, which was easily absorbing moisture, while SnP2O7-SnO2 composite has an active PO4 unit, being less active for moisture. Furthermore, the P2O7 unit of Mg2+ doped tin pyrophosphate was restricted in bulk, resulting in less proton conductivity at ambient temperature. 䋱䋮✜⸒㩷 㩷 㩷 ਛ᷷ၞ䈎䉌ᵴᕈ䉕⊒䈜䉎䊒䊨䊃䊮ዉ㔚䈲䇮ਃర♽⸅ ᇦ䉇Άᢱ㔚ᳰ⚛᧚䈫䈚䈩䈱↪ㅜ䈏ᦼᓙ䈘䉏䈩䈇䉎䈏䇮ㄭᐕ䇮 䊂䉞䊷䉷䊦䊌䊁䉞䉨䊠䊧䊷䊃䋨㪧㪤䋩䉶䊮䉰䈫䈚䈩䈱ᔕ↪䈮䈧 䈇䈩䉅ᵈ⋡䈘䉏䈩䈇䉎䇯ᧄ⎇ⓥ䈪䈲䇮䊏䊨䊥䊮㉄♽䊒䊨䊃䊮ዉ 㔚䈫䈚䈩䇮䊏䊨䊥䊮㉄䉴䉵䋨㪪㫅㪧㪉㪦㪎 䋩䉕ૐේሶଔ䉦䉼䉥䊮 㩿㪤㪔㪠㫅㪃㩷 㪘㫃㪃㩷 㪤㪾㪀䈪⟎឵䈚䈢䊄䊷䊒䊏䊨䊥䊮㉄䉴䉵㪪㫅㪈㪄㫏㪤㫏㪧㪉㪦㪎 䈶㪚㪸㫉㪹㫆㫅䉕ᜂᜬ䈚䈢⚿䈎䉌ㅧ䈜䉎㪪㫅㪧㪉㪦㪎㪄㪪㫅㪦㪉䉮 Fig. 1. Structure of doped tin 䊮䊘䉳䉾䊃䉕ኻ⽎䈫䈚䈩䇮࿕㪥㪤㪩⸘᷹䈮䉋䉍♽ਛ䈱䊒䊨䊃䊮 pyrophoshate (blue: SnO6, 䈶䊥䊮䈱േ䉕䉌䈎䈮䈚䇮䊒䊨䊃䊮ዉ㔚䈮ଥ䉒䉎ᵴᕈ⒳ yellow: P2O7; red: dopant) 䈮䈧䈇䈩䈱⍮䉕ᓧ䉎䈖䈫䉕⋡⊛䈫䈜䉎䇯㩷 㩷 䋲䋮⹜ᢱ䈱⺞㩷 㩷 䊒䊨䊃䊮ዉ㔚㪪㫅㪈㪄㫏㪤㫏㪧㪉㪦㪎㩿㪤㪔㪠㫅㪃㩷 㪘㫃㪃㩷 㪤㪾㪀䈲䇮ᐔဋ☸ᓘ䈏㪉㪈㫅㫄䈱㪪㫅㪦㪉䈱ᓸ☸ሶ☳ᧃ䈮 㪏㪌㩼䈱㪟㪊㪧㪦㪋䇮ฦ⒳䊄䊷䊌䊮䊃䇮䉟䉥䊮឵᳓䉕䈠䉏䈡䉏ട䈋䇮㪊㪇㪇㷄䈪ᡬᜈ䈚䈩䉴䊤䊥䊷⁁䈮 䈚䈢ᓟ䈮䇮ⓨ᳇ਛ䇮㪍㪌㪇㷄䈪㪉㪅㪌ᤨ㑆࿕⋧ᔕ䉕ⴕ䈉䈖䈫䈪ᓧ䈢䇯䈖䈱㓙䇮䊄䊷䊌䊮䊃䈫䈚䈩䈲 㪠㫅㪉㪦㪊㪃㩷 㪘㫃㩿㪦㪟㪀㪊㪃㩷 㪤㪾㩿㪦㪟㪀㪉䈭䈬䈱㉄ൻ‛䉇᳓㉄ൻ‛䉕↪䈚䈢䇯㪪㫅㪧㪉㪦㪎㪄㪪㫅㪦㪉䉮䊮䊘䉳䉾䊃䈲 㪏㩷㫎㫋㩼㩷㪚㪸㫉㪹㫆㫅䉕ᜂᜬ䈚䈢㪪㫅㪧㪉㪦㪎㪄㪪㫅㪦㪉⚿䉕㪍㪇㪇㷄䈪䊥䊮㉄ಣℂ䈜䉎䈖䈫䈮䉋䉍ᓧ䈢䇯㩷 㩷 㪤㪼㫋㪸㫃㩷㫇㫐㫉㫆㫇㪿㫆㫊㫇㪿㪸㫋㪼㪃㩷㪈㪟㩷㪤㪘㪪㩷㪥㪤㪩㪃㩷㪊㪈㪧㩷㪤㪘㪪㩷㪥㪤㪩㩷 㩷 䂾䈮䈚䈣䉁䈘䈎䈝䋬䈕䉖䈙䈐䈖䈉䈛䋬䈸䈎䉇䈲䉎䈵䈖䋬䈎䈰䉁䈧䉒䈢䉎䋬䈵䈶䈱䈢䈎䈚 -366- 䋳䋮⎇ⓥ䈱⚿ᨐ䈍䉋䈶⠨ኤ㩷 Mg2+ (10 mol%) 㩷 ᦨೋ䈮䇮⹜ᢱ⺞ᓟ䇮☳⎈䈚䈢㪪㫅㪈㪄㫏㪤㫏㪧㪉㪦㪎㩿㪤㪔㪠㫅㪃㩷㪘㫃㪃㩷㪤㪾㪀 䈱㩷 㪈㪟㩷㪤㪘㪪㩷㪥㪤㪩䈱᷹ቯ䉕ⴕ䈦䈢䇯䈠䈱⚿ᨐ䉕㪝㫀㪾㪅㪉䈮␜䈜䇯 In3+ (10 mol%) 䈇䈝䉏䈱⹜ᢱ䉅㪈㪇䌾㪈㪊㫇㫇㫄ઃㄭ䈮ᒝ䈇䊏䊷䉪䉕␜䈚䈢䈏䇮䊥 䊮㉄ಣℂ೨䈱㪪㫅㪦㪉䈮䈧䈇䈩䈲㪌㫇㫇㫄ઃㄭ䈮ๆ⌕᳓䈮ၮ䈨䈒ᒙ 䈇䊏䊷䉪䉕␜䈚䈢䈱䉂䈪䈅䈦䈢䇯䉁䈢䇮䊄䊷䊒⒳䈱ᷝട䈮䉋䉍 Al3+ (5 mol%) 䊏䊷䉪䈱ൻቇ䉲䊐䊃䈲㫅㫆㫅㪄㪻㫆㫇㪼㩷㪕㩷㪘㫃㪊㪂㩷㪕㩷㪠㫅㪊㪂㩷㪕㩷㪤㪾㪉㪂䈱㗅䈮㜞 ⏛႐䉲䊐䊃䈚䈩䈇䈢䇯࿁᷹ቯ䉕ⴕ䈦䈢㪤㪾㪉㪂䊄䊷䊒એᄖ䈱 㪪㫅㪈㪄㫏㪤㫏㪧㪉㪦㪎䈲䈎䈭䉍ๆḨᕈ䈏㜞䈒䇮ๆḨ䈚䈢᳓䈮䉋䈦䈩䊏䊷䉪 non-dope 䈲㜞⏛႐䉲䊐䊃䈚䇮ᒝᐲ䉅Ⴧട䈚䈩䈇䈢䇯㩷 ᰴ䈮䇮᳓ᵞ䈇䉕ⴕ䈉䈖䈫䈪ๆḨᕈ䈱ᚑಽ䉕㒰䈚䇮㪈㪟㩷㪤㪘㪪㩷 㪥㪤㪩䈱᷹ቯ䉕ⴕ䈦䈢䇯㪝㫀㪾㪅㪊䈮␜䈚䈢䉋䈉䈮᳓ᵞ䈇䈮䉋䉍䊒䊨䊃 18 16 14 12 10 8 6 4ppm2 Fig.2. 1H MAS NMR of 䊮䈱䊏䊷䉪䈲㜞⏛႐䈮䉲䊐䊃䈚䇮㫅㫆㫅㪄㪻㫆㫇㪼㪃㩷㪠㫅㪊㪂㪃㩷㪘㫃㪊㪂㩷 䊄䊷䊒䈪 䈲㪐㫇㫇㫄ઃㄭ䈮䇮㪤㪾㪉㪂䈪䈲㪏㪅㪊㫇㫇㫄䈮䊏䊷䉪䈏ⷰኤ䈘䉏䈢䇯৻ᣇ䇮 Sn1-xMxP2O7 (M=In, Al, Mg) 㪪㫅㪧㪉㪦㪎㪄㪪㫅㪦㪉䉮䊮䊘䉳䉾䊃䈪䈲䇮᳓ᵞ䈇䈚䈩䈇䈭䈇⹜ᢱ䈪䉅 Mg2+ (10 mol%, washed) 㪎㪅㪍㫇㫇㫄䈫Ყセ⊛㜞⏛႐䈮䊏䊷䉪䈏䉏䇮᳓䈮䉋䉍㒰䈘䉏 䉎䉋䈉䈭㪪㫅㪈㪄㫏㪤㫏㪧㪉㪦㪎䈏䈜䉎ๆḨᕈ䈱ಽሶ⒳䈲䈚䈩䈇 In3+ (10 mol%, washed) 䈭䈇䈫⠨䈋䉌䉏䈢䇯㩷 㩷 䈖䉏䉌䈱䊒䊨䊃䊮ዉ㔚䈱䊋䊦䉪ⅣႺ䈱⋧㆑䉕䇮㪊㪈㪧㩷㪤㪘㪪㩷 Al3+ (5 mol%, washed) 㪥㪤㪩䈪䈘䉌䈮ⷰኤ䈚䈢䇯㪝㫀㪾㪅㪋䈮␜䈜䉋䈉䈮䇮࿁᷹ቯ䉕ⴕ䈦 non-dope (washed) 䈢㪪㫅㪈㪄㫏㪤㫏㪧㪉㪦㪎䈱㪊㪈㪧㩷㪛㪛㪆㪤㪘㪪㩷㪥㪤㪩䈪䈲䇮㪇㫇㫇㫄ઃㄭ䈱㪧㪦㪋䈱 㗔ၞ䈫㪄㪈㪌㫇㫇㫄䈫㪄㪊㪏㫇㫇㫄ઃㄭ䈱䋲⒳㘃䈱㪧㪉㪦㪎䈱㗔ၞ䈮䊏䊷䉪 SnP2O7-SnO2 䈏ⷰኤ䈘䉏䈢䇯䉁䈢䇮㪝㫀㪾㪅㪌䈮␜䈜䉋䈉䈮䇮㪊㪈㪧㩷㪚㪧㪆㪤㪘㪪㩷㪥㪤㪩 㪉㪂 䈮䈍䈇䈩䈲䇮㪤㪾 䊄䊷䊒䈱䉂䈏㪄㪊㪏㫇㫇㫄ઃㄭ䈮䊏䊷䉪䈏䉏 SnO2 䈢䈏䇮䈠䉏એᄖ䈱㫅㫆㫅㪃㩷㪠㫅㪊㪂㪃㩷㪘㫃㪊㪂䊄䊷䊒䈪䈲㪄㪈㪉㫇㫇㫄ઃㄭ䈮䉲 18 16 14 12 10 8 6 4 2 䊞䊷䊒䈭䊏䊷䉪䈏䉏䈩䈇䈢䇯৻ᣇ䇮㪪㫅㪧㪉㪦㪎㪄㪪㫅㪦㪉䉮䊮䊘䉳 ppm 㪉㪂 䉾䊃䈪䈲䇮㪛㪛㪆㪤㪘㪪䈪䈲㪤㪾 䊄䊷䊒䈫ห䈛䉋䈉䈮㪄㪊㪏㫇㫇㫄ઃㄭ Fig.3. 1H MAS NMR of tin 䈮䊑䊨䊷䊄䈭䊏䊷䉪䈏䉏䈢䈏䇮㪚㪧㪆㪤㪘㪪䈪䈲㪇㫇㫇㫄ઃㄭ䈮 pyrophosphates 䈎䈭䉍䉲䊞䊷䊒䈭䊏䊷䉪䉕␜䈚䈩䈇䈢䇯㩷 㩷 㔚᳇ൻቇ⊛䈭䊂䊷䉺䈫ว䉒䈞 Mg2+ (10 mol%) Mg2+ (10 mol%) 㪊㪂 㪊㪂 䈩⠨ኤ䈜䉎䈫䇮㪠㫅 㪃㩷㪘㫃 䊄䊷䊒䈲 In3+ (10 mol%) ๆḨᕈ䈱㪧㪉㪦㪎㩿㪄㪈㪉㫇㫇㫄㪀㩷 䈏䇮 In3+ (10 mol%) 㪪㫅㪧㪉㪦㪎㪄㪪㫅㪦㪉䉮䊮䊘䉳䉾䊃䈪䈲㕖 Al3+ (5 mol%) ๆḨᕈ䈱㪧㪦㪋㩿㪇㫇㫇㫄㪀㩷 䈏䇮䈠䉏䈡 Al3+ (5 mol%) 䉏䊒䊨䊃䊮ዉ㔚ᕈ䈮㑐ਈ䈚䈩䈇䉎 ಽሶ⒳䈪䈅䉎䈫␜ໂ䈘䉏䈢䇯৻ᣇ䇮 non-dope 㪤㪾㪉㪂䊄䊷䊒䈪䈲䇮䈖䉏䉌䈱ಽሶ⒳ non-dope (washed) non-dope 䈱ነਈ䈲ዋ䈭䈒䇮䈾䈫䉖䈬䈏ਇᵴ ᕈ䈭䊋䊦䉪䈱㪧㪉㪦㪎㩿㪄㪊㪏㩷㫇㫇㫄㪀䈪䈅 SnP O -SnO 2 7 2 SnP2O7-SnO2 䉍䇮䉁䈢䇮ቶ᷷䈪䈱䊒䊨䊃䊮ዉ㔚 ᕈ䉅ૐ䈒䈭䈦䈩䈇䈢䇯✭ᤨ㑆⸃ 25 0 -25 -50 -75 0 -25 -50 -75 ppm 25 ppm 31 ᨆ䉕䉄䈢⼏⺰䈱⚦䈮䈧䈇䈩 Fig.4. P DD/MAS NMR of Fig.5. 31P CP/MAS NMR of 䈲䇮ᒰᣣႎ๔䈜䉎੍ቯ䈪䈅䉎䇯㩷 tin pyrophosphates tin pyrophosphates -367- P90 㜞⏛႐࿕%C0/4ߦࠃࠆ࠻ࡃࡕࠗ࠻↢ᚑㆊ⒟ߩ⸃ᨆ ٤ฬ㔐ਃଐ1ᯅᧄᐽඳ1✁᎑ᱜㅢ1⩵㑆ᷕ1᧻㊁ା1 ਤᚲᱜቁ2ᷡ᳓2᧻ਭੳ㓶3 1 ᣩൻᚑ ᩣ2 ⁛‛⾰᧚ᢱ⎇ⓥᯏ᭴3ᣩൻᚑᑪ᧚ ᩣ Hydrothermal formation of tobermorite studied by solid-state 43Ca NMR ٤Mie Nayuki1, Yasuhiro Hashimoto1, Masamichi Tsunashima1, Jun Kikuma1, Shinya Matsuno1, Masataka Tansho2, Tadashi Shimizu2, Kunio Matsui3 1 Asahi kasei Corporation, 2National Institute forMaterial Science, 3Asahi kasei Construction Materials Corporation Tobermorite, a naturally present hydrated calcium silicate, is hydrothermally produced in industry. To clarify the synthetic pathway, we have been performed in-situ XRD under autoclaved condition. However, the information on the amorphous phase including a key intermediate, C-S-H, has yet to be extracted. Here, ex-situ NMR was carried out for the intermediates quenched at varied reaction time. In our attempt to comprehensively understand the pathway, natural abundance 43Ca solid-state NMR in addition to the conventional 29Si and 27 Al NMR spectroscopy was carried out. In this report, we will discuss the structure of the C-S-H and its conversion to tobermorite in terms of the CaO and SiO layer structure as well as the Al3+ incorporation. 㧝㧚⋡⊛ ࠤࠗ㉄ࠞ࡞ࠪ࠙ࡓ᳓‛ߩ߭ߣߟߢࠆ࠻ࡃࡕ Al substitution CaO layer ࠗ࠻(5CaO6SiO25H2O)ߪࡉࠢ࠻ࠝޔ㙃↢ߦ ߡㅧߐࠇࠆᑪ▽᧚ᢱߩਥᚑಽߢࠅޔᎿᬺ⊛ߦ㊀ SiO layer Ca2+ Ca2+ ⷐߥ㋶‛ߢࠆ㧔Fig.1㧕ޕ CaO layer ߎࠇ߹ߢߦ࠻ࡃࡕࠗ࠻ߩ↢ᚑࡔࠞ࠾࠭ࡓ⸃ߩ ߚߩߘޔ႐㧔in-situ㧕X ✢࿁᛬ࠍⴕߞߚ⚿ᨐޔਛ㑆 Fig.1 Tobermorite structure. ↢ᚑ‛ޔ㕖᥏⾰⋧㧔C-S-H㧕߅ࠃ߮ਇ⚐‛ߣߒߡሽ ߔࠆ Al ߇࠻ࡃࡕࠗ࠻↢ᚑߦᄢ߈ߥᓇ㗀ࠍਈ߃ߡࠆߎߣ߇ࠄ߆ߦߥߞߡ߈ߚޕ ࿁ᚒ⚿ޔߪޘ᥏㧛㕖᥏ߦ㑐ࠊࠄߕ᭴ㅧᖱႎ߇ᓧࠄࠇࠆ࿕ NMR ࠍ↪ޔX ✢࿁ ᛬ߢߪᖱႎ߇ᓧࠄࠇߥ㕖᥏⾰⋧ߩ⍮ࠍᓧࠆߎߣࠍ⹜ߺߚޕ 㧞㧚ታ㛎 ↢⍹Ἧ㧔CaO㧕⍾⃯ޔ㧔SiO2㧕ޔǫࠕ࡞ࡒ࠽㧔Al2O3㧕ࠍ᳓ߣᷙวߒ੍㙃↢ᓟࠝޔ ࠻ࠢࡉౝߢട᷷ߒᔕߐߖߚ⹜ᢱߦߟߡޔᔕㅜਛߩฦᤨὐߢࠨࡦࡊࡦࠣ ࠍⴕޔ27Alޔ29Si࿕NMR᷹ቯߦട߃ޔ43Ca࿕NMR᷹ቯࠍⴕߞߚޕ ࠞ࡞ࠪ࠙ࡓࡂࠗ࠼ࡠࠪࠤ࠻࠻ࡃࡕࠗ࠻ 43㧯㨍㧺㧹㧾 ٤ߥࠁ߈ߺ߃ޔ߿ࠎߒߩߟ߹ޔࠎࠀߓ߹ߊ߈ޔߜߺߐ߹߹ߒߥߟޔࠈ߭ߔ߿ߣ߽ߒߪޔ ߚࠎߒࠂ߹ߐߚ߆߅ߦߊߟ߹ޔߒߛߚߕߺߒޔ -368- 43 Ca ࿕ NMR ᷹ ቯ ߪ JEOL ECA930 (21.8T) ⵝ⟎ࠍޔ27Alޔ29Si࿕NMR᷹ቯ ߪECA700 (16.4T)ࠍ↪ߡޔหᮡ⼂ ࠍⴕࠊߕޔᄤὼሽᲧߩ߹߹᷹ቯࠍⴕߞ ߚޕ 㧟㧚⚿ᨐߣ⠨ኤ Fig.2 ߦ࠻ࡃࡕࠗ࠻วᚑߦ㑐ࠊࠆൻ ว‛ߩ43Ca࿕NMRࠬࡍࠢ࠻࡞ࠍޔFig.3 ߦฦᔕᤨὐߢࠨࡦࡊࡦࠣߒߚ⹜ᢱߩ 43 Ca ޔ27Al߅ࠃ߮29Si࿕NMRࠬࡍࠢ࠻࡞ ࠍ␜ߒߚޕ ᔕㅜਛߩฦᤨὐߩ NMR ࠬࡍࠢ࠻࡞ ࠃࠅޔਛ㑆ߣߒߡޔ㕖᥏⾰㧔C-S-H㧕ޔ ࠞ࠻ࠕࠗ࠻(hydrogarnet ߩ 1 ⒳)ࠍ⚻↱ߒ ߚ࠻ࡃࡕࠗ࠻↢ᚑ⚻〝߇⏕ߢ߈ߚޕ ߹ߚޔC-S-Hࠥ࡞ߦߟߡޔ27Al-NMR ߦࠃࠆAlߩขࠅㄟ߹ࠇ߿ 29Si-NMRߦࠃ ࠆࠪࠞ᭴ㅧ㧔㎮㐳ޔQ2/Q3 Ყ㧕ߦട߃ ߡޔ43Ca-NMRߦࠃࠅޔC-S-HߩCa᭴ㅧ 㧔6 ㈩ޔ7 ㈩㧕ߦߟߡߩ⍮߇ᓧࠄ ࠇࠆน⢻ᕈ߇␜ໂߐࠇߚޕ ᓟࡔޔߊߥߢߌߛ࠻ࠗࡕࡃ࠻ޔ ࡦ࠻᳓ㆊ⒟⸃ᨆ╬ߦ߽ᔕ↪߇ᦼᓙߢ߈ ࠆޕ ⊒ߢߪޔin-situ XRD ߢߩᔕㅊ〔ߩ ⚿ᨐ߽߃ߡ↢ߩ࠻ࠗࡕࡃ࠻ޔᚑㆊ⒟ ߦߟߡႎ๔ߔࠆޕ C-S-H gel hydrogarnet 䋨katoite䋩 CaSO4䊶2H2O Ca(OH)2 CaO 200 150 100 50 0 -50 PPM -150 -100 Fig.2 Solid -state 43Ca NMR (16.4T) spectra of a series of cement based materials. (A) 43Ca-NMR tobermorite (21.8T) 㽶190㷄 9hr 㽵190㷄 100min 㽴190㷄 30min 㽳100㷄 Ca(OH)2 150 (B) CSH gel 䋨䋫katoite䋩 PPM 100 50 27Al-NMR 0 -50 -100 -150 tobermorite (16.4T) 㽶190㷄 9hr katoite 㽵190㷄 100min 㽴190㷄 30min 㽳100㷄 㽲Before ޣෳ⠨ᢥ₂ޤ 1) K. Shimoda et al., J. Magn. Reson. 186, 156-159 (2007) 2) G. M. Bowers et al., J. Am. Ceram. Soc. 92, 545-548 (2009) 3) D. L. Bryce et al., J. Am. Chem. Soc. 130, 9282-9292 (2008) 4) D.Laurencin et al, Magn. Reson. Chem. 46, 347-350 (2008) 100 (C) C-S-H 75 amorphous Al(OH)3 50 25 0 PPM -25 tobermorite Q2 (0Al) 29Si-NMR (16.4T) Q2 (0Al) Q2 (1Al) Q3 Q3 (1Al) (0Al) 㽶190㷄 9hr 㽵190㷄 100min 㽴190㷄 30min CSH gel 䋨䋫katoite䋩 SiO2 㽳100㷄 ⻢ޣㄉޤ NMR ᷹ቯߦ㑐ߒޔᄙᄢߥߏዧജࠍ㗂 ߚᣣᧄ㔚ሶ ญ᭽ߦᗵ⻢⥌ߒ߹ߔޕ -369- PPM -70 -80 -90 -100 -110 Fig.3 Hydrothermal formation of tobermorite monitored by solid-state NMR. P91 -Keggin ȝȪᣠƷ ˳95 Mo NMR ⃝飯島隆広 1 , 西村勝之 1 , 山瀬利博 2,3 , 丹所正孝 4 , 清水 禎 4 (分子研 1 , 東工大 2 , MO デバイス 3 , 物材機構 4 ) Solid state 95 Mo NMR of -Keggin polyoxomolybdates T. Iijima1 , K. Nishimura1 , T. Yamase2,3 , M. Tansho4 , T. Shimizu4 Institute for Molecular Science 1 , MO Device 2 , Tokyo Institute of Technology 3, National Institute for Materials Science 3 We report solid state NMR of 95 Mo NMR of -Keggin polyoxomolybdates. 95 Mo static NMR spectra for a diamagnetic crystal of [PMo12 O36 (OH)4 {La(H2 O)2.75 Cl1.25 }4 ]· 27H2 O were measured under moderate (9.4 T) and ultrahigh (21.8 T) magnetic fields to clarify the localization of eight d1 electrons included in the {Mo12 } core. The obtained spectra could be simulated by superimposing two subspectra that arise from Mo(V) and Mo(VI) with the ratio 2:1. NMR parameters were estimated by density functional theory (DFT) calculation with a localized-electron model. From these results, it was found that eight d1 electrons of Mo(V) are localized to form four Mo(V)-Mo(V) bonds. 【ደᚕ】モリブデンには 0-6 価の原子価状態があり、これまで溶液 NMR では全ての整数原 子価について 95 Mo NMR の研究が報告されている [1]。特に、Mo(0), Mo(II), Mo(VI) は 配位化学や反応性の研究で広く用いられてきた。一方、固体 NMR では、I = 5/2 の四極 子核である 95 Mo のスペクトルは、核四極相互作用により線幅が広がってしまうため、固 体 95 Mo NMR による研究は多くなかった。最近我々は、感度・分解能を向上させるため 強磁場マグネットを使用して、局在化または非局在化した d1 電子を有する混合原子価モ リブデン (V, VI) ポリ酸の固体 95 Mo NMR を測定し、これまで観測例のなかった Mo(V) の固体 95 Mo NMR スペクトルを報告した [2]。その中で、Mo(VI) サイトに比べ Mo(V) サ イトの 95 Mo 化学シフトは大きくなること、また d1 電子の局在性の違いにより化学シフ ト異方性が大きく異なることを示した。 今回研究対象としたのは -Keggin 型の {Mo12 } をコアとする化合物 [PMo12 O36 (OH)4 {La(H2 O)2.75 Cl1.25 }4 ] · 27H2 O(以下 {Mo12 }(La))である。おおよその構造は、{Mo12 } が 4 つの La(H2 O)2.75 Cl1.25 でキャップされたものである [3]。構造式に小数が現れるのは La(III) に配位した H2 O や Cl が disorder しているためである。電位差滴定の結果による と {Mo12 } の Mo は 8 個の Mo(V) と 4 個の Mo(VI) から成っており、Mo も disorder して いるのではないかとされているが、X 線回折の結果からは一つの Mo サイトしか報告され 95 Mo, ポリ酸 ○いいじま たかひろ、にしむら かつゆき、やませ としひろ、たんしょ まさたか、 しみず ただし -370- ておらず、構造の詳細(Mo(V) の d1 電子の局在性)は分かっていない。 本研究では、強磁場マグネット等を用いた固体 95 Mo NMR 測定を行い、得られたス ペクトルのシミュレーションや量子化学計算により {Mo12 }(La) の構造を調べたので、結 果を発表する。 【᬴ܱ】9.4 T での 95 Mo 固体 NMR は Varian Inova 400 分光器を用い、共鳴周波数 26.060 MHz で測定した。21.8 T では JEOL ECA 930 分光器を利用し共鳴周波数 60.572 MHz で 95 Mo 固体 NMR 測定を行った。測定は静止サンプルに対しエコー法で行った。スペクト ル・シミュレーションは自作のプログラムを用いて行った。NMR パラメータの DFT 計算 は、VWN + BP の汎関数及び triple-ζ レベルの Slater 型基底関数を用い、ADF 2009.01 で行った。 【ኽௐƱᎋ】ݑFigs. 1(i-a) および 1(ii-a) に それぞれ、9.4, 21.8 T の磁場で測定した (a) Obs. {Mo12 }(La) の 95 Mo NMR static スペクトル を示す。両磁場とも、数千 ppm にわたるブ ロードなスペクトルが得られた。Mo(V) の (b) Sim. d1 電子が分子全体に非局在化している場合 は、スペクトルは単一成分になるが、これら (c) MoV のスペクトルをシミュレーションするには 2 成 分(Mo(V) と Mo(VI))が必要であった。Fig. VI 1(b) は、Fig. 1(c) と 1(d) を 2:1 の強度比で (d) Mo 重ね合わせたシミュレーション・スペクトル 5000 0 -5000 3000 0 -3000 である。 υ / ppm υ / ppm i ii ( ) ( ) 一方、DFT 計算においても、全てのモリ Fig. 1: 95 Mo MAS NMR spectra of ブデンが等価であるとする平均構造(X 線に {Mo12 }(La) under (i) 9.4 and (ii) 21.8 T. よる構造)では計算が収束することはなかっ (a) and (b) show the observed and simuた。そこで、d1 電子の局在化モデルとして lated spectra, respectively. (c) and (d) denote spectral components constituting the Mo-Mo の距離を可変(4 つの Mo(V)-Mo(V) spectrum in (b). と 2 つの Mo(VI)-Mo(VI))として計算を行っ たところ、計算は収束しリーズナブルな NMR パラメータが得られた。以上のことから、 -{Mo12 } コアの d1 電子は局在化しており、Mo(V)-Mo(V) 結合の形成に寄与していると 考えられる。 [1] M. Minelli, J.H. Enemark, R.T.C Brownlee. M.J. O’Connor, A.G. Webb, Coord. Chem. Rev. 68, 169 (1985). [2] T. Iijima, T. Yamase, M. Tanasho, T. Shimizu, K. Nishimura, Chem. Phys. Lett. 487, 232 (2010). [3] P. Mialane, A. Dolbecq, L. Lisnard, A. Mallard, J. Marrot, F. Secheresse, Angew. Chem. Int. Ed 41, 2398 (2002). -371- P92 ࿕0/4ߦࠃࠆᓸ↢‛↥↢ࡐࠕࡒࡁ㉄߅ࠃ߮ ߘߩࡐࡑࡉࡦ࠼ߩ᭴ㅧ⸃ᨆ ೨↰ ผ㇢㧘٤㤛೨ ⌀๋㧘ᾢ ノ㧘࿖ᧄ ᶈ༑ ᄢ㒮Ꮏ㧘㊄ᴛᄢ㒮⥄ὼ Structural analysis of microbial poly(amino acid)s and their polymer blends by solid NMR Shiro Maeda1, ٤Shingo Oumae1, Xiong Hui1, and Ko-Ki Kunimoto2 1 Division of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Japan and 2Division of Material Engineering, Graduate School of Natural Science and Technology, Kanazawa University, Japan. Solid NMR measurements of poly (J-glutamic acid) (J-PGA), its sodium salt (J-PGA/Na) and poly (H-lysine), and their polymer blends were done. 13C spectrum of J-PGA differs from that of J-PGA/Na. C=O peak of J-PGA and J-PGA/Na were deconvoluted into three and two peaks, respectively. The miscibility of J-PGA/PVA was investigated by measuring 1H spin-lattice relaxation times. There were unassigned peaks in CPMAS spectrum of H-PL film cast from aqueous solution at 165ppm in 13C and 90ppm in 15N, respectively. These peaks are not observed in powder sample. We assigned these peaks to C=O and NH group of carbamic acid formed by reaction of the amino groups with gaseous CO2. ޤ⸒✜ޣ ᓸ↢‛↥↢㜞ಽሶߪਥߦ3⒳㘃⍮ࠄࠇߡ߅ࠅ(ࡐޔH-ࠫࡦ) (H-PL)[1](ࡐޔJ-ࠣ࡞࠲ ࡒࡦ㉄) (Ȗ-PGA)[2]ࠆߢࡦ࠴ࠖࡈࡁࠕࠪޔ㧚H-PLߪ㧘ᔅ㗇ࠕࡒࡁ㉄ߩ৻ߟߢࠆL ࠫࡦ߇Dߩࠞ࡞ࡏࠠࠪ࡞ၮߣHߩࠕࡒࡁၮߢࠕࡒ࠼⚿วߒߚ㧘✢⩶ߩ৻⒳ߢ ࠆstreptomyces albulus߇↥↢ߔࠆࡐࠕࡒࡁ㉄ߢࠆ㧚Ȗ-PGAߪJߩࠞ࡞ࡏࠠࠪ࡞ၮ ߣDߩࠕࡒࡁၮ߇ࠕࡒ࠼⚿วߢㅪߥߞߚࠕ࠾ࠝࡦᕈࡐࡑߢޔਥߣߒߡ⚊⼺⩶ߥ ߤߩBacillusዻ⩶ߦࠃߞߡ↥↢ߐࠇ᳓ṁᕈ߅ࠃ߮↢ಽ⸃ᕈࠍߒޔൻ♆ຠක↪᧚ᢱ╬ ߩᐢಽ㊁ߢᔕ↪߇ᦼᓙߐࠇߡࠆ㧚ߎߎߢߪH-PLޔȖ-PGAߣߘߩ࠽࠻࠙ࡓႮߢ ࠆࡐ(J-ࠣ࡞࠲ࡒࡦ㉄࠽࠻࠙ࡓ) (Ȗ-PGA /Na)ߩ࠼ࡦࡉࡑࡐߩߘ߮ࠃ߅ޔ࿕ NMR╬ࠍ↪ߚ᭴ㅧ⸃ᨆ⚿ᨐࠍႎ๔ߔࠆ㧚 ޣታ㛎ޤ H-PL㧦H-PL᳓ṁᶧࠍ࠹ࡈࡠࡦࠪࡖߦࠠࡖࠬ࠻ߒቶ᷷ߢ㘑ੇᓟ㧘ᷫੇ῎ߐߖߡ ࠠࡖࠬ࠻⹜ᢱࠍᚑߒߚ㧚Ȗ-PGA㧦⒳ߩޘpHߩȖ-PGA᳓ṁᶧࠍ࠹ࡈࡠࡦࠪࡖߦ ࠠࡖࠬ࠻ߒቶ᷷ߢ㘑ੇᓟ㧘ᷫੇ῎ߐߖߡࠠࡖࠬ࠻⹜ᢱࠍᚑߒߚ㧚Ȗ-PGA/PVAࡐ ࡑࡉࡦ࠼㧦Ȗ-PGA㧘PVAࠍߦޘ᳓ṁᶧࠍᚑߒ㧘⒳࠻࠶࠾࡙ࡑࡁࡕߩޘᲧߦ ߥࠆࠃ߁ߦᷙวᠣᜈߒߚ㧚ᷙวṁᶧࠍ࠹ࡈࡠࡦࠪࡖߦࠠࡖࠬ࠻ߒ㧘ቶ᷷ߢ㘑 ੇᓟ㧘ᷫੇ῎ߐߖߡࠠࡖࠬ࠻⹜ᢱࠍᚑߒߚ㧚࿕NMRߪChemagnetics CMX Infinity 300ࠍ↪ߡቶ᷷ߢ᷹ቯߒߚ㧚 ᓸ↢‛↥↢ࡐࠕࡒࡁ㉄࿕0/4ࡐࡑࡉࡦ࠼ ߹߃ߛ ߒࠈ߁㧘٤߅߁߹߃ ߒࠎߏ㧘ߒࠂࠎ ߰㧘ߊߦ߽ߣ ߎ߁߈ -372- ⚿ޣᨐߣ⠨ኤޤ H-PL H-PL ߩ 13C ࠬࡍࠢ࠻࡞ࠍ Fig.1 ߦޔ15N ࠬࡍࠢ࠻࡞ࠍ Fig.2 ߦ␜ߔޕ᳓ࠠࡖࠬ࠻ ࡈࠖ࡞ࡓߦ߅ߡޔ13C ߢߪ 165ppmޔ15N ߢߪ 90ppm ߦࡄ࠙࠳ߦߪߥࡇࠢ߇ ࠇࠆߩࠢࡇߩࠄࠇߎޕᏫዻߪਇߛߞߚ߇ࠍࠄࠇߎޔⓨ᳇ਛߩ CO2 ߣ㎮ߩ NH2 ߇⚿วߔࠆߎߣߢ↢ᚑߔࠆࠞ࡞ࡃࡔ࠻(-NHCOOH)ߦᏫዻߒߚ[ޕ3] (a) (a) * * (b) 200 150 100 (b) 50 0 PPM Fig.1 Solid state C NMR spectra of (a) H-PL powder and 13 350 300 250 200 150 100 50 0 -50PPM Fig.2 Solid state 15N NMR spectra of (a) H-PL powder and (b) H-PL cast film from aqueous solution. (b) H-PL cast film from aqueous solution. *:spinning side Ȗ-PGA Ȗ-PGA ᳓ࠠࡖࠬ࠻⹜ᢱߩ 13C ࠬࡍࠢ࠻࡞ߩ pH ଐሽᕈࠍ Fig.3 ߦ␜ߔ㧚pH ߇ Ȗ-PGA ߩ pKa ୯(=2.23)ࠃࠅ߽ૐߊߥࠆߣޔ180ppm ઃㄭߩࠞ࡞ࡏ࠾࡞⚛ߩ✢ᒻߪᄢ ߈ߊᄌൻߔࠆ㧚ᵄᒻ⸃ᨆߩ⚿ᨐ 3 ᧄߩࡇࠢߢࡈࠖ࠶࠻ߢ߈㧘pH ߇ૐߊߥࠆߦߟࠇ ߡᄢ߈ߊߥࠆ㜞⏛႐ߩࡇࠢࠍੑ㊂ࠍᒻᚑߒߡࠆ㎮ࠞ࡞ࡏࠠࠪ࡞ၮߦᏫዻ ߒߚ㧚IR ᷹ቯߦ߅ߡ߽ߪߞ߈ࠅߣੑ㊂ߩሽࠍ␜ߔࡇࠢ߇⏕ߢ߈ߚ㧚 ߹ߚ㧘50ppm ઃㄭߦࠇࠆ⢽⢌ᣖ⚛ CDߦߟߡ߽✢ᒻߩᄌൻ߇ࠄࠇࠆ㧚pH ߇ pKa એߦߥࠆߣ㧘㎮ࠞ࡞ࡏ࠾࡞ၮߪ COO㧙ߦᄌൻߔࠆ㧚⽶㔚⩄ߩ⊒ߦࠃࠅ㎮㑆 ߇ᐢ߇ߞߚࡦ࠳ࡓࠦࠗ࡞᭴ㅧࠍߣࠅ㧘ࠦࡦࡈࠜࡔ࡚ࠪࡦᄌൻߦࠃࠅ CDߩൻቇࠪ ࡈ࠻߇ᄌൻߒߚߣ⠨߃ࠄࠇࠆ㧚 Ȗ-PGA/PVAࡐࡑࡉࡦ࠼ Ȗ-PGA/PVAࡐࡑࡉࡦ࠼ߩ13Cࠬࡍࠢ࠻࡞ࠍFig.4 ߦ␜ߔ㧚PVAߩ13Cࠬࡍࠢ࠻࡞ߩૐ⏛႐ߩࡔ࠴ࡦ⚛ߩࡇࠢߪ㧘┙ⷙೣᕈߦࠃ ࠆಽሶౝ᳓⚛⚿ว᭽ᑼߩ㆑ߢ㧘3ᧄߦಽⵚߔࠆ㧚ࡐࡑࡉࡦ࠼ߦ߅ߡ߽3ᧄߩ ࡇࠢߩᲧ₸߆ࠄ᳓⚛⚿ว᭽ᑼߩᄌൻࠍ⍮ࠆߎߣ߇ߢ߈ࠆ㧚߹ߚ㧘ࡐࡑࡉࡦ࠼ ߩ᧚ᢱ‛ᕈߦࡐࡑ㑆ߩ⋧ṁᕈ߇ᄢ߈ߊ㑐ࠊߞߡߊࠆ㧚ታ㛎ቶ♽߅ࠃ߮࿁ォᐳᮡ♽ ࠬࡇࡦ㧙ᩰሶ✭ᤨ㑆T1H߅ࠃ߮T1UH᷹ቯࠍⴕ߁ߎߣߦࠃߞߡ⋧ṁᕈߩ⹏ଔࠍⴕߞߚ㧚 Fig.3 13C CP/MAS NMR spectra of Ȗ-PGA film cast from aqueous solution at (a)pH7.1, (b)pH4.9, (c)pH3.3, (d)pH2.3, and (e)pH1.5 Fig.4 13C CP/MAS NMR spectra of (a)Ȗ-PGA, (b)-(f) Ȗ-PGA/PVA, and (g)PVA. Molar unit ratio of Ȗ-PGA/PVA are (b)2/1, (c)1/1, (d)1/2, (e)1/3, and (f)1/5. [1] S. Maeda et al., Polym. Preprints.2008, 49, 730-731 [2]S. Maeda et al., Polym. Preprints Jpn. 2008, 57, 3300, 2009, 58, 1162, 2010, 59, 1060 [3]A. Dos et al., J. Phys. Chem. B, 2008, 112, 15604-15614 -373- ᅛయ 105 ࢆ⏝࠸ࡓ▼Ⅳ⅊⢓ᗘ࠼ࡿᵓ㐀࠾ࡼࡧ⤌ᡂᅉᏊࡢゎᯒ P93 ᯘ 㞝㉸ ࠊۑฟ⏣ ᆂᏊ ࠊᐑ⬥ ோ ࠊᣢ⏣ ࠊᑺ ⪷ᪿ ⥲⌮ᕤࠊ ඛᑟ◊ࠊ Ⅳ⣲ࢭࣥࢱ࣮ Solid-state NMR analysis of structure and composition of coal ash Xiongchao Lin1, ۑKeiko Ideta2, Jin Miyawaki2, Isao Mochida3, Seong-Ho Yoon1,2,3 Interdisciplinary Graduate School of Engineering Sciences, Kyushu univ. ,2 Institute for Materials Chemistry and Engineering, Kyushu univ., 3 Research and Education Center of Carbon Resources, Kyushu univ. 1 Coal ashes usually become the cause of many troubles for a stable continuous operation in coal gasification process. Smooth tap-out of molting ash and slag from the gasifier is one of the most important tasks, which is sensitive to compositions and temperature of ash and slag. Correlation between structure and viscosity under various temperatures of the minerals was closely traced using 27Al-, 29Si-solid state NMR and XRD, etc. to interpret the transition behaviors and crystal structures of coal ash during gasification. Further, effects of Ca and Fe compositions, as are known as fluxing agents, on the structural changes of ash are also examined. ࠙⥴ゝࠚ▼Ⅳ࢞ࢫⓎ㟁࡛ࡣ࢞ࢫຠ⋡ྥୖඹࠊᏳᐃ᧯ᴗࡢࡓࡵ⅔ෆࡽ⁐⼥ࢫࣛࢢࢆ࠸ ࢫ࣒࣮ࢬྲྀࡾ㝖ࡃࡀ㔜せ࡞ㄢ㢟࡞ࡗ࡚࠸ࡿࠋ ࡑࡢࡓࡵࠊ▼Ⅳ⅊ࡢ⁐⼥ᛶ࣭ὶືᛶࡀ㔜せ࡞ࡿࡀࠊࡇࢀࡽࡣ⢓ᗘࡁࡃ┦㛵ࡍࡿࠋࡇࢀࡲ࡛ ▼Ⅳ⅊ࡢ⤌ᡂࡽ⢓ᗘࢆ᥎ᐃࡍࡿᘧࡀᥦၐࡉࢀ࡚࠸ࡿࡀࠊ୍㒊ࡢⅣ✀࡛ࡣᚲࡎࡋࡶண್㏻ࡾࡢ⁐ ⼥ᣲືࢆ♧ࡉ࡞࠸ࡇࡀศࡗ࡚࠸ࡿࠋ ୍᪉࡛ࠊ&D ࡸ )H ࡣ⢓ᗘ㛵ಀࡍࡿῧຍࡋ࡚▱ࡽࢀ࡚࠸ࡿࠋᮏ◊✲࡛ࡣࠊࡇࢀࡽࡢ &D ࡸ )H ࡀ࡞ࡐ⢓ᗘపୗࢆࡶࡓࡽࡍࢆㄪࡿࡓࡵࠊ࠸ࡃࡘࡢ &Dࠊ)H ྵ᭷ẚࡢ␗࡞ࡿ▼Ⅳ⅊ࡘ࠸࡚ $O ࠾ࡼࡧ 6Lᅛయ 105 ࡸ ;5' ➼ࢆ⏝࠸࡚㖔≀ࡢ ᗘࡼࡿᵓ㐀ኚࢆ᳨ウࡋࡓࠋ ࠙ᐇ㦂ࠚ ▼Ⅳࡣ &Dࠊ)H ྵ᭷㔞ࡢ␗࡞ࡿ㸿Ⅳࠊ㹂Ⅳࠊ㹋Ⅳࢆ⏝ពࠋ⤌ᡂẚࢆ 7DEOH ♧ࡋࡓࠋ Υࡢ࠸ࡃࡘࡢ ᗘ࡛⇕ฎ⌮ࢆ⾜࠸ࠊ▼Ⅳ⅊ࢆసᡂࡋࡓࠋ$O ᅛయ 105 ᐃࡣ -(2/ (&$7PP040$6ࣉ࣮ࣟࣈࢆ⏝࠸ࠊFKHPLFDOVKLIWHFKR ἲࠊ6L ᅛయ 105 ᐃࡣ (&$7ࠊPP&30$6 ࣉ࣮ࣟࣈࢆ⏝࠸࡚⾜ࡗࡓࠋヨᩱᅇ㌿㏿ᗘࡣࡍ࡚ N+] ࡛⾜ࡗࡓࠋ 7DEOH&RPSRVLWLRQRIDVKHVZLWK;5)DQDO\VLVPRODVHTXLYDOHQWR[LGH 6DPSOHV 6L2 $O2 )H2 &D2 .2 ' $ 0 7L2 62 0J2 1' 7RWDO %$ 1'QRWGHWHFWHG % )H2&D20J21D2.2$ 6L2$O27L2 7UDFHHOHPHQWV6U0Q9=U<=Q&X5EZHUHLJQRUHG ࠙⤖ᯝ⪃ᐹࠚ7DEOH ♧ࡋࡓ㸱✀ࡢ▼Ⅳ⅊ࡣ⁐⼥⢓ᗘᩘⓒᗘࡢᕪࡀ࠶ࡿࡇࢆ☜ㄆࡋࡓࠋ .H\ZRUGV$O105ࠊ6L105ࠊ▼Ⅳ⅊ ࡾࢇ ࡋࡷࢇࡕࡷ࠾ࠊࢇࡑ ࢇࡺࠊ࠾ࡉ࠸ ࡔࡕࡶࠊࢇࡌ ࡁࢃࡸࡳࠊࡇ࠸ࡅ ࡓ࡛࠸ۑ -374- ḟྛࠎࡢⅣ✀ࡘ࠸࡚⇕ฎ⌮▼Ⅳ⅊࢞ࢫ⅔ෆ࡛⏕ᡂࡋࡓࢫࣛࢢࡘ࠸࡚ ;5' ᅛయ 6L105$O105 ࡢ⤖ᯝࢆ♧ࡍࠋ࠸ࡎࢀࡢⅣ✀ࡘ࠸࡚ࡶ Υ⇕ฎ⌮ࡢప ⅊ࡢᡂศࡣࠊ 105 ࠾࠸࡚ࡣ㕲ࡼࡿࣈ࣮ࣟࢻࢽࣥࢢࡀほᐹࡉࢀࡿࡶࡢࡢ ;5'105 ࡶ NDROLQLWH TXDUW] ࡛࠶ࡿࡇࡀࢃࡿࠋࡋࡋ࡞ࡀࡽ Υ⇕ฎ⌮ࢆࡋࡓ㧗 ⅊࡛ࡣⅣ✀ࡼࡾ␗࡞ࡿࢫ࣌ ࢡࢺࣝࢆ࠼࡚࠸ࡿࠋΥ௨ୖ࡛ࡢࡳὶືᛶࢆ♧ࡍ ' Ⅳ 0 Ⅳ࡛ࡣ ;5'ࡢᡂศࡣ PXOOLWH TXDUW] ࡛࠶ࡾࠊ≉ࠊ᭱ࡶ⢓ᗘࡢ㧗࠸ 'Ⅳ࡛ࡣ Υ௨ୖ࡛ FULVWREDOLWH ࡢ⏕ᡂࡀࡳࡽࢀ ࡿ㸦ࢹ࣮ࢱࡣ♧ࡋ࡚࠸࡞࠸㸧ࠋࡑࢀᑐࡋࠊ$ Ⅳࡢ ;5' ࣃࢱ࣮ࣥࡣࡃ␗࡞ࡗ࡚࠾ࡾࠊ&D ࢆྵ ࢇࡔ」ྜ㓟≀ࡢ⏕ᡂࡀ࠶ࡿࡇࢆ♧၀ࡋ࡚࠸ࡿࠋ 䡍㻌 㼝 㻭㻙㻌㼟㼘㼍㼓㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻹㻙㼟㼘㼍㼓㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻰㻙㼟㼘㼍㼓㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 䕿 㻭㻌㻙㻝㻢㻜㻜㻌 㻌 㻌䕿㻌 㻌 㻌 㻌䖃㻌 㻌䕿㻌 㻌 㻌 䕧㻌 㻌 㻌 㻌 㻌 㻌 㻌 䖃㻌 㻌 㻌 㻹㻙㻝㻢㻜㻜㻌 㻌 㻌 㻌㼙㻌 㻌㼙㼔㻌㼙㻌 㻌 㻌 㻌 㻌㻌㼔㻌㻌㻌 㻌㻌 㻌㻌㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻰㻙㻝㻢㻜㻜㻌 㻌 㻌 㻌 㻌㼙㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㼔㻌㼙㻌 㻌 㼔㻌 㻌 㼔㻌 㻌 㼙 㻭㻙㻟㻜㻜㻌 㻌 㻌 㼝㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㼗㻌 㻌 㻌 㻌 㼗㻌 㻌 㻌 㼗㻌 㻌 㻌 㻌 㻌 㻌 㼗㼝㻌 㻌 㼝㻌㼝㻌 㻌 㼝㻌㼝㻌 㻌 㻌 㼝㻌 㻌 㼝㻌 㻌 㻌 㻌 㼝㻌 㻌 㻌 㻌 㻌 㻌 㻹㻙㻌㻟㻜㻜㻌 㻌 㻌 㼝㻌㻌㻌㻌㼟㻌㻌 㻌㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻰㻙㻟㻜㻜㻌 㻌 㻌㻌㻌 㼗㻌㻌 㻌㻌 㻌㻌㼗㻌㻌㻌 㻌㻌 㻌㻌㻌 㻌㻌 㻌㻌㻌 㻌㻌㻌 㻌㼝㻌㼗㼝㻌 㻌 㻌 㻌㻌㼝㻌㻌 㻌 㻌 㻌㼝㻌㻌 㻌㻌 㻌㻌㻌㻌㻌 㻌㼝㻌㻌㻌㻌㻌 㻌㻌 㻌 㼝㻌 㻌 㼝 䖃 䖃 5 20 䕿 䖃 䕧 35 50 65 㼙 㼗 5 20 㼗 㼔㻌 㻌 㻌 㻌 㼟㻌 㻌 㼟㻌 㻌 㼝㻌㼟㻌 㻌 㻌 㻌 㼝 35 50 㻌㻌 㼙㼔㻌㼙㻌 㻌 㼔㻌 㼙 65 5 20 㼝㻌 㻌 㻌 㻌 㼝 㻌㻌 㼟㼔㻌㼗㻌 35 50 65 㻲㼕㼓㻚㻝㻌 㻌 㻾㼛㼛㼙㻌㼠㼑㼙㼜㼑㼞㼍㼠㼡㼞㼑㻌㼄㻾㻰㻌㼛㼒㻌㼏㼛㼍㼘㻌㼍㼟㼔㼑㼟 㼍㼚㼐㻌㼟㼘㼍㼓㼟 㻌 㼝㻦㻌㼝㼡㼍㼞㼠㼦㻙㻌㻿㼕㻻㻞㻧㻌㼗㻦㻌㼗㼍㼛㼘㼕㼚㼕㼠㼑㻙㻭㼘㻞㻔㻿㼕㻞㻻㻡㻕㻔㻻㻴㻕㻠㻧㼙㻦㻌㼙㼡㼘㼘㼕㼠㼑㻙 㻭㼘㻢㻿㼕㻞㻻㻝㻟㻧㻌 㼟㻦 㼟㼕㼐㼑㼞㼕㼠㼑㻙㻲㼑㻯㻻㻟㻧㻌 ڹ㼐㼕㼛㼜㼟㼕㼐㼑㻙㻯㼍㻔㻹㼓㻘㻭㼘㻕㻔㻿㼕㻘㻭㼘㻕㻞㻻㻢㻧㻌 ۑ㻦㻌㼍㼚㼛㼞㼠㼔㼕㼠㼑㻙㻯㼍㻭㼘㻞㻿㼕㻞㻻㻤㻧㻌㼔㻦㼔㼑㼙㼍㼠㼕㼠㼑㻙㻲㼑㻞㻻㻟㻧㻌 ە㻦㻌㼙㼍㼓㼚㼑㼟㼕㼡㼙㻌㼕㼞㼛㼚㻌㼍㼘㼡㼙㼕㼚㼡㼙㻌 㼛㼤㼕㼐㼑㻔㻹㼓㻲㼑㻜㻚㻢㻭㼘㻝㻚㻠㻻㻠㻕㻌 ࢫࣛࢢࡢ㦵᱁ᵓ㐀ࢆỴࡵࡿ 6L105 ࡽࡶࠊ' Ⅳࠊ0 Ⅳࡣ㸲㓄ࡢᏛࢩࣇࢺࡀ㸱ḟඖⓗ࡞ࢿࢵࢺ࣡ ࣮ࢡᵓ㐀㸦4㸧ࡗ࡚࠸ࡿᖐᒓࡉࢀࡿࡢᑐࡋࠊ$ Ⅳࡣ NDROLQLWH4㸧ࡰྠࡌࢩࣇࢺࢆಖࡗ࡚࠾ ࡾࠊຍ⇕ࡼࡿࢿࢵࢺ࣮࣡ࢡᵓ㐀ࡢᡂ㛗ࡀ㉳ࡇࡽ࡞࠸ࡇࢆ♧၀ࡋ࡚࠸ࡿࠋ 㻢㻟㻚㻢㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻡㻤㻚㻠㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻡㻣㻚㻜㻌 㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌 㻌 㻌 㻞㻣 㻭㼘㻌 㻌 㻝㻡㻚㻝㻌 㻡㻝㻚㻤㻌 㻌 㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌 㻢㻜㻚㻞㻌 㻝㻠㻚㻞㻌 㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌 㻡㻚㻞㻌 㼗㻌 㻌 㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌 㻡㻚㻥㻌 㼗㻌 㻌 㻣㻜㻚㻤㻌 㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌 㻌 㻌 㻌 㻡㻣㻚㻠㻌 㻢㻥㻚㻠㻌 㻏㻌 㻞㻥 㻿㼕㻌 㻙㻥㻜㻌 㻌 㻌 㻌 㻌 㻙㻤㻤㻌 㻙㻥㻥㻌 㻌 㻌 㻌 㻌 㻙㻝㻜㻝㻌 㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻙㻥㻝㻌 㻏㻌 㻡㻢㻚㻣㻌 㻌 㻝㻡㻚㻥㻌 㻌 㻌 㻖㻌 㻌 㻌 㻌 㻌㻌㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌 㻌 㻌 㻡㻚㻥㻌 㻌 㼗㻌 㻌 㻌 㻖㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻖㻌 㻡㻤㻚㻥㻌 㻙㻥㻝㻌 㼗㻌 㻌 㻌 㻌 㼝㻌 㻙㻝㻜㻣㻌 㼗㻌 㻌 㻌 㻌 㻌 㻌 㼝㻌 㻙㻝㻜㻣㻌 㻙㻝㻜㻠㻌 㻌 㻌 㻌 㻌 㻙㻝㻜㻠㻌 㼗㻌 㻌 㻌 㻌 㼝㻌 㻙㻝㻜㻣㻌 㻙㻥㻝㻌 㻲㼕㼓㻚㻞㻚㻌 㻌 㻿㼛㼘㼕㼐㻙㼟㼠㼍㼠㼑㻌㻞㻣㻭㼘㻙㻌㻘㻌㻞㻥㻿㼕㻙㻌㻺㻹㻾㻌㼛㼒㻌㼏㼛㼍㼘㻌㼍㼟㼔㼑㼟㻌㼍㼚㼐㻌㼟㼘㼍㼓㼟㻌 㻌 㻖㻦㻌㼟㼜㼕㼚㼚㼕㼚㼓㻌㼟㼕㼐㼑㻌㼎㼍㼚㼐㻘㻌 㻌 㻏㻦㻌㼟㼕㼓㼚㼍㼘㻌㼒㼞㼛㼙㻌㼜㼞㼛㼎㼑㻌㼛㼞㻌㼕㼙㼜㼡㼞㼕㼠㼥 㼗㻦㻌㼗㼍㼛㼘㼕㼚㼕㼠㼑㻘㻌㼝㻦㻌㼝㼡㼍㼞㼠㼦㻌 㻌 ࡇࡢࡼ࠺࡞ࢿࢵࢺ࣮࣡ࢡᵓ㐀ࡢᗈࡀࡾࡀ⢓ᗘ┤᥋ᙳ㡪ࢆ࠼࡚࠸ࡿࡇࡣ᫂ࡽ࡛࠶ࡿࡀࠊࡑࡢ ཎᅉࡘ࠸࡚ ;5' ࡣ VODJࡽࡰ࡞ࡶሗࢆ࠼࡞࠸ࡢᑐࡋࠊΥ▼Ⅳ⅊ࢫࣛࢢࡢᅛయ 105 ࡣఝ㏻ࡗࡓࢫ࣌ࢡࢺࣝࢆ࠼࡚࠸ࡿࠋỈ෭ࡋࡓࢫࣛࢢࡣつ๎ᵓ㐀ࢆྲྀࡾࡃ࠸ࡓࡵᒁᡤᵓ㐀ࢆ ࡼࡃ⾲ࡍ 105 ࡀ㠀ᖖᙺ❧ࡘゝ࠼ࡿࠋⓎ⾲࡛ࡣ $O670$6 ᐃࢆྵࡵヲ⣽㆟ㄽࡍࡿࠋ ࠙ཧ⪃ᩥ⊩ࠚ㕲㗰YRO1R㔠ᶫࡽ -375- P94 ㉸೫ᴟ129Xe NMRࡼࡿゐ፹ᢸయࡢ࣏ホ౯ ż᭹㒊 ᓠஅ1ࠊᖹ㈡ 㝯1ࠊ୰⏣ ┿୍2 1 (⊂)⏘ᴗᢏ⾡⥲ྜ◊✲ᡤࠊ2⛅⏣ᏛᕤᏛ㈨※Ꮫ㒊 Hyperpolarized 129Xe NMR of Xe in Catalysis Pores żMineyuki Hattori1, Takashi Hiraga1, and Shinichi Nakata2 1 National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan. 2 Engineering and Resources Science, Akita University, Akita, Japan. 129 Xe NMR techniques have been applied to probe porosity of mesoporous materials and the pore size is known to relate with the chemical shift. Since the Van der Waals radius of Xe is known to be 0.216 nm, the possible pore size to adsorb xenon should be larger than 0.4 nm in diameter. Then the mean pore diameters ranging from 0.4 to 300 nm are the possible target to show the relationship experimentally. We have developed an apparatus to produce the laser induced hyperpolarized (HP) Xe gas and tried to apply it to catalysis samples. ࠙せ᪨ࠚ㉸೫ᴟXe࢞ࢫࡢNMRᛂ⏝ࡋ࡚ࠊゐ፹ࡢከᏍᵓ㐀ࡢホ౯ࢆ⾜ࡗࡓࠋ㉸೫ᴟ ࡼࡾࠊ1ಸ௨ୖࡢឤᗘྥୖࡀᚓࡽࢀࠊ✚⟬࡞ࡋ࡛ࡶࠊ༑ศ࡞ಙྕឤᗘࡀᚓࡽࢀࡿࠋ ᩘ༑msࡽ1⛊⛬ᗘࡢ㛫ศゎ࡛ࠊࣜࣝࢱ࣒ ᐃࡀྍ⬟࡞ࡗࡓࠋゐ፹྾╔ࡋ ࡚࠸ࡿXeࡢ129Xe NMRࡢᏛࢩࣇࢺ⥺ᖜࡣࠊ⣽ᏍᚄXe⣽Ꮝࡢ┦స⏝ࡢࡁ ࡉ౫Ꮡࡍࡿࠋゐ፹Ꮫࡢ㓄ᕸࡍࡿཧ↷ゐ፹ࢆධᡭࡋ࡚ࠊ129Xe NMRࢫ࣌ࢡࢺࣝࡢྲྀ ᚓࢆ⾜ࡗࡓࠋ㓟ࢭ࣒ࣜ࢘ࡘ࠸࡚ࠊ୕✀㢮ࡢ〇㐀㐣⛬ࡀ␗࡞ࡗࡓヨᩱࡘ࠸࡚ࠊヨ ᩱࡢ๓ฎ⌮ࡼࡾࠊࢩࣇࢺࣃࢱ࣮ࣥࡀ␗࡞ࡗࡓࢫ࣌ࢡࢺࣝ ᗘ౫Ꮡᛶࡢ⤖ᯝࢆᚓࡓࠋ ࠙㉸೫ᴟXe NMRᐇ㦂ࠚᮾᶓᏛ(ᰴ)⏘⥲◊࡛㛤Ⓨࡋࡓࠊ೫ᴟ⋡3%ࡢ㉸೫ᴟXe࢞ࢫ ࢆࣂࢵࢳᘧ࡛㐃⥆౪⤥ࡍࡿࡇࢆྍ⬟ࡋࡓᐇ⏝ᶵ[1]ࢆ⏝ࡋࡓࠋᮏ⨨ࡣࠊཎᩱ ࡞ࡿXe/N2ΰྜ࢞ࢫཬࡧࣃ࣮ࢪ⏝N2࢞ࢫࡢࢩࣜࣥࢲ࣮⣡㒊ࠊᅽຊไᚚ㒊ࠊ೫ᴟ⏝ࢭ ࣝ㒊ࠊཬࡧࠊࢩࢫࢸ࣒ไᚚ㒊ࡼࡾᵓᡂࡉࢀࡿࠋRbࡀᑒධࡉࢀࡓࣃࣞࢵࢡࢫࢭࣝࠊ Xe/N2ࡢ㧗⣧ᗘΰྜ࢞ࢫࢆ౪⤥ࡋࠊỌஂ☢▼ࢵࢭࣥࣈࣝࡼࡾ⏕ᡂࡋࡓ⣙10mTࡢᆒ ୍☢ሙ(㹼1%)୰࠾࠸࡚794.7nmࡢ༙ᑟయ࣮ࣞࢨ࣮ගࢆ↷ᑕࡍࡿࡇࡼࡾࠊ1ᅇ⣙ 300mlࡢ㉸೫ᴟXe࢞ࢫࢆ㈓␃ࡋ࡚⏕ᡂࡉࡏࡓ㉸೫ᴟXe࢞ࢫࡣࠊ⣙10ศ௨ୖࡢ㛫㝸ࢆ㛤 ࡅ࡚ࠊ30mlࡢࢩࣜࣥࢪ㐃⥆ⓗྲྀࡾฟࡉࢀࠊᑓ⏝㛤Ⓨࡋࡓ࢜ࣥࣛࣥᘧᑟධ⟶ࢆ ᥋⥆ࡋࡓヨᩱ⟶୰ࡢゐ፹ヨᩱᑟධࡋ᥋ゐࡉࡏࡓࠋゐ፹Ꮫࡢཧ↷ゐ፹ࠊᅇࡣ㓟 ࢭ࣒ࣜ࢘3✀㢮㸦⾲㸸JRC-CEO-1㸦(ᰴ)୕ᚨ㸧ࠊJRC-CEO-2㸦➨୍⛥ඖ⣲Ꮫᕤᴗ(ᰴ)㸧ࠊ JRC-CEO-3㸦ࠌ㸧㸧ࡘ࠸࡚ࠊ ᐃࢆ⾜ࡗࡓࠋ129Xe NMR ࢫ࣌ࢡࢺࣝࡣࠊ6.3T࡛ࠊtecmag Apollo Spectrometerࡼࡾᚓࡓࠋ250ms㛫㝸㐃⥆㞟64ᅇ✚⟬(Tr=4s)࡛ࡢ ᐃࢆ⾜ࡗ ࡓࠋ ㉸೫ᴟXe㸪ከᏍ㉁㸪ゐ፹ żࡣࡗࡾࡳࡡࡺࡁ㸪ࡦࡽࡀࡓࡋ㸪࡞ࡓࡋࢇ࠸ࡕ -376- Fe(%) ẚ⾲㠃✚㸦m2/g㸧 ᖹᆒ⣽Ꮝᚄ㸦nm㸧 〇㐀ἲ JRC-CEO-1 0.001௨ୗ 156.9 2.82 JRC-CEO-2 0.003௨ୗ 123.1 7.08 JRC-CEO-3 0.003௨ୗ 81.4 11.6 Ⅳ㓟ࢭ࣒ࣜ࢘300Υ↝ᡂ ୰ỿẊࠊ400Υ↝ᡂ ୰ỿẊࠊ600Υ↝ᡂ ᅗ㸯㸬129Xe Ꮫࢩࣇࢺ(㓟ࢭ࣒ࣜ࢘)㸦ୖ㸧ࠊ྾⥺ᖜ㸦FWHM㸧 㸦ୗ㸧ࡢ ᗘ౫Ꮡᛶ 㸦グྕ㸸NoTr:ฎ⌮↓ࡋࠊ200deg Ev:200Υ࡛┿✵ᘬࡁࠊRT Ev:ᐊ ࡛┿✵ᘬࡁ㸧 ࠙⤖ᯝࠚᖹᆒ⣽Ꮝᚄࡀࡁ࡞ヨᩱࡣࠊࢩࣇࢺ್ࡀᑠࡉࡃ࡞ࡿഴྥࡀᚓࡽࢀࡓࠋ200Υ ࡛ࡢ┿✵ฎ⌮࡛ࡣࠊᑟධᚋࡢಙྕᾘ⾶ࡀ᪩ࡃ࡞ࡾࠊNMR ಙྕࡀ᳨ฟࡉࢀ࡞࠸ሙྜࡀ ࠶ࡗࡓࠋᐊ ࡛ࡢ┿✵ฎ⌮ࡼࡾࠊࢩࣇࢺ್ࡀቑࡍࡿഴྥࡀࡳࡽࢀࡓࠋ129Xe NMR ᐃࡼࡾࠊゐ፹ᢸయࡢ⣽Ꮝ㛵ࡍࡿሗࡀᚓࡽࢀࡿࡇࡀࢃࡗࡓࠋ ࠙ཧ⪃ᩥ⊩ࠚ [1] ➉⣖ኵࠊᮧᒣᏲ⏨ࠊᖹ㈡㝯ࠊ᭹㒊ᓠஅࠊᮏ㛫 ୍ᘯ㸪≉㛤 2004-262668 ྕබሗ㸹 ᭹㒊ᓠஅ㸪㉸೫ᴟ࢟ࢭࣀࣥ࢞ࢫ⏕ᡂ⨨ᐇ⏝ᶵࡢ◊✲㛤Ⓨ, ᕤᴗᮦᩱ, 52(3), 86-89 (2004). -377- P95 ࿕0/4ߦࠃࠆࡐࡈ࡞ࠝࡦ⤑ߩಽሶ㈩ะ⸃ᨆ ⚟ۑᆅ ᑗᚿࠊ⚟ᓥ 㐩ஓࠊᚋ⸨ ῟ࠊᲚ ᘯ ி࣭◊ Analysis of molecular orientation in polyfluorene films by solid-state NMR ۑMasashi Fukuchi, Tatsuya Fukushima, Atsushi Goto, and Hironori Kaji Institute for Chemical Research, Kyoto University, Kyoto, Japan. Poly (9,9-di-n-octyl-2,7-fluorene) (PFO), a prototypical fluorene-based conjugated polymer, is a highly-efficient blue-emitting polymer with potential applications of light-emitting diodes and electrically pumped organic lasers. Recently, it has been reported that optical and electrical properties of organic amorphous films were related to molecular orientations relative to the substrates. In this study, we characterize molecular orientations in amorphous thin films of PFO by solid-state NMR. From chemical shift anisotropy (CSA) measurements, it is found that ı11 signal is reduced and ı33 signal is enhanced when the thin films are perpendicular to B0. This indicates that the fluorene rings tend to be parallel to the substrates. The quantitative analysis will be shown in the presentation. ࠙⥴ゝࠚ ㏆ᖺࠊపศᏊ⣔᭷ᶵ㠀ᬗ㉁⭷୰࠾࠸࡚ࠊ ᭷ᶵศᏊࡢ㓄ྥගᏛⓗ࣭㟁Ẽⓗ≉ᛶࡢ 13 㛫ᐦ᥋࡞┦㛵ࡀ࠶ࡿࡇࡀሗ࿌ࡉࢀ C 13 [1,2]ࠊศᏊࡢ㓄ྥࢆᐃ㔞ⓗゎᯒࡍࡿᚲせ C ᛶࡀ㧗ࡲࡗ࡚ࡁࡓࠋࡲࡓࠊ㟷ⰍⓎගࢆ♧ࡍ 㧗 ศ Ꮚ ⣔ ᭷ ᶵ EL ᮦ ᩱ ࠊ poly Fig. 1. Chemical structure of 13C1-FIQ PFO. (9,9'-di-n-octyl-2,7-fluorene) (PFO)࠾࠸࡚ࠊ ศᏊࢆ㓄ྥࡉࡏࡿࡇࡼࡾࠊṇᏍ⛣ືᗘࡀ୍᱆ྥୖࡍࡿࡇࡀሗ࿌ࡉࢀ࡚࠸ࡿ[3]ࠋ ࡑࡇ࡛ᮏ◊✲࡛ࡣࠊࣔࣝࣇࢫ⭷࠾ࡅࡿศᏊ㓄ྥ㟁Ⲵ㍺㏦≉ᛶࡢ┦㛵ࢆ᫂☜ ࡍࡿࡇࢆ┠ⓗࡋ࡚ࠊPFO࢟ࣕࢫࢺ⭷୰࠾ࡅࡿศᏊࡢ㓄ྥࢆᅛయNMRἲࡼࡾ ヲ⣽ゎᯒࡍࡿࡇࢆヨࡳࡓࠋ ࠙ᐇ㦂ࠚ ᅗ1ࡢ♧ࡍࡼ࠺13Cࣛ࣋ࣝࡋࡓ࣏ࣜࣇࣝ࢜ࣞࣥヨᩱ(௨㝆ࠊ13C1-FIQ PFOࡪ)ࢆྜ ᡂࡋࡓࠋࡇࡢࣛ࣋ࣝヨᩱࡢ࢟ࣕࢫࢺ⭷(⭷ཌ20s1 Pm)ࢆ30ᯛ✚ᒙࡋࠊ⭷㠃ࡀ㟼☢ሙ ᆶ┤ࠊ࠶ࡿ࠸ࡣࠊᖹ⾜࡞ࡿࡼ࠺㓄⨨ࡋࡓ≧ែ࡛13CᏛࢩࣇࢺ␗᪉ᛶ(CSA)ࢆ ᐃ ࡋࡓࠋᅛయNMR ᐃࡣࠊBruker♫〇AVANCE IIIศගィࡼࡾ9.4 Tࡢ㟼☢ሙୗ࡛⾜ࡗ ᭷ᶵ(/࣏ࣜࣇࣝ࢜ࣞࣥᏛࢩࣇࢺ␗᪉ᛶ ࡾࡢࢁࡦࡌࠊࡋࡘ࠶࠺ࡈࠊࡸࡘࡓࡲࡋࡃࡩࠊࡋࡉࡲࡕࡃࡩۑ -378- ࡓࠋࣉ࣮ࣟࣈࡣࠊDoty♫〇7 mm Widelineࣉ࣮ࣟࣈࢆ⏝࠸ࡓࠋ1H13Cࡢඹ㬆࿘Ἴᩘ ࡣࡑࢀࡒࢀࠊ400.25 MHzࠊ100.66 MHz࡛࠶ࡿࠋ ᐃࡣᐊ ࡛⾜࠸ࠊᡭἲࡋ࡚CPἲࠊ Hahn-echoἲࢆ⏝࠸ࡓࠋࡲࡓࠊࣛ࣋ࣝࡉࢀ࡚࠸࡞࠸PFOᑐࡋ࡚ࡶࠊྠᵝ࢟ࣕࢫࢺ⭷ ࢆస〇ࡋࠊࡑࡢCSAࢆ ᐃࡋࡓࠋ13C1-FIQ PFOࣛ࣋ࣝࡉࢀ࡚࠸࡞࠸PFOࡢᕪࢫ࣌ࢡ ࢺࣝࢆࡿࡇࡼࡾࠊࣛ࣋ࣝ13CⅣ⣲ࡢࡳᑐࡍࡿCSAࢫ࣌ࢡࢺࣝࢆᚓࡓࠋ ࠙⤖ᯝ࣭⪃ᐹࠚ ᅗ2(a)ศᏊࡢ㓄ྥࡀࣛࣥࢲ࣒࡞ࣂࣝ ࢡヨᩱࠊ(b)㟼☢ሙB0ᑐࡋ࡚ᆶ┤㓄 ⨨ࡋࡓ࢟ࣕࢫࢺ⭷ヨᩱࠊ(c)ࡣ㟼☢ሙB0 ᑐࡋ࡚ᖹ⾜㓄⨨ࡋࡓ࢟ࣕࢫࢺ⭷ヨᩱ ࡢ13C CSAࢫ࣌ࢡࢺࣝࢆ♧ࡍࠋ࡞࠾ࠊࡇࢀ ࡽࡢࢫ࣌ࢡࢺࣝ࠾࠸࡚ࡣࠊୖ㏙ࡢ㏻ࡾ (a) ኳ↛Ꮡᅾ13CⅣ⣲ࡢᙳ㡪ࢆྲྀࡾ㝖࠸࡚࠶ࡿࠋ ᅗ2(b)ࡢࢫ࣌ࢡࢺ࡛ࣝࡣࠊV11ࡢಙྕᙉ ᗘࡣࠊศᏊࡀࣛࣥࢲ࣒㓄ྥࡋ࡚࠸ࡿᅗ 2(a)ẚ㍑ࡋ࡚ῶᑡࡋ࡚࠾ࡾࠊᅗ2(c)࡛ࡣ (b) ㏫ቑຍࡋ࡚࠸ࡿࠋࣛ࣋ࣝ13CⅣ⣲ࡢV11 ᑐࡍࡿ㍈᪉ྥࡣศᏊ㙐㍈᪉ྥᑐᛂ ࡋ࡚࠸ࡿࡇࡽࠊPFOศᏊ㙐ࡣࠊ⭷㠃 ᑐࡋ࡚ᖹ⾜㓄ྥࡍࡿഴྥࡀ࠶ࡿࡇࡀ (c) ࢃࡿࠋࡲࡓࠊV33㛵ࡋ࡚ࡣࠊᅗ2(b)࡛ ࡣࡑࡢಙྕᙉᗘࡣቑຍࡋ࡚࠾ࡾࠊᅗ2(c) ࡛ࡣࡸࡸῶᑡࡋ࡚࠸ࡿࠋࣛ࣋ࣝ13CⅣ⣲ࡢ V33ᑐࡍࡿ㍈᪉ྥࡣࣇࣝ࢜ࣞࣥ⎔ᆶ Fig. 2. The 13C CSA spectra of 13C1-FIQ PFO in ┤࡞᪉ྥᑐᛂࡋ࡚࠸ࡿࡇࡽࠊࣇࣝ BULK (a), in cast films arranged perpendicular to ࢜ࣞࣥ⎔ࡣࠊ⭷㠃ᑐࡋ࡚ᖹ⾜㓄ྥࡍ B0 (b), and in cast films set parallel to B0 (c). ࡿഴྥ࠶ࡿࡇࡀࢃࡿࠋ⌧ᅾࠊศᏊ ࡢ㓄ྥศᕸ㛵ࡍࡿᐃ㔞ⓗ࡞᳨ウࢆ⾜ࡗ࡚࠸ࡿࠋ ࠙ㅰ㎡ࠚ PFOྜᡂ࠾࠸࡚ᚚᣦᑟ࠾ࡼࡧᚚຓຊ࠸ࡓࡔࡁࡲࡋࡓఫᏛᰴᘧ♫ࠊᒸ⏣᫂ᙪ ᵝࠊ㔠ᆏᑗᵝࠊᑠᯘㅍᵝ῝ࡃឤㅰ࠸ࡓࡋࡲࡍࠋᮏ◊✲ࡣࠊ᪥ᮏᏛ⾡⯆ࡢ᭱ඛ➃ ◊✲㛤Ⓨᨭࣉࣟࢢ࣒ࣛࡼࡾࠊຓᡂࢆཷࡅࡓࡶࡢ࡛࠶ࡿࠋ ࠙ᩥ⊩ࠚ [1] D. Yokoyama, A. Sakaguchi, M. Suzuki, C. Adachi, Org. Electron. 2009, 10, 127. [2] D. Yokoyama, A. Sakaguchi, M. Suzuki, C. Adachi, Appl. Phys. Lett. 2009, 95, 243303. [3] M. Redecker, M. Inbasekaran, E. P. Woo, D. D. C. Bradley, Appl. Phys. Lett. 1999, 74, 1400. -379- P96 ⍹ߩᄙⷺ࿕NMR ʊᯏᚑಽߣήᯏᚑಽߩ᭴ㅧʊ ٤㊄ᯅᐽੑ1㧘㜞ᯅ⾆ᢥ1 1ᣂᣣ㐅వ┵⎇ Multinuclear Solid-state NMR for Coal㧙Organic and Inorganic Structure㧙 ٤Koji Kanehashi1, Takafumi Takahashi2 1Advanced Technology Research Laboratories, Nippon Steel Corporation Detailed studies on the inorganic matter as well as organic one in coal are very important from the viewpoint of both geology (coalification and diagenesis) and coal utilization. Solid-state NMR, a nuclide specific method, is well suited for the analysis of chemical structure of coal, multicomponent systems. In this study, we have applied to 1H, 13C, 15N (organic species) and 27Al, 29Si, 11B (inorganic species) solid-state NMR to obtain information about organic and inorganic phases in coal. ⍹ߪ㋕ࡊࡠࠬߦ߅ߡਇนᰳߥᄤὼ‛ߢࠆޕ⍹ࠍੇ⇐ߒߡ ㅧߒߚࠦࠢࠬߪ㋕㋶⍹ߩㆶరߣߒߡ↪ࠄࠇߡ߅ࠅᦨޔㄭߢߪ㜞Ἱߦ ⋥ធᓸ☳ࠍ็߈ㄟߎߣߢޔ㜞ଔߥࠦࠢࠬߩᲧ₸ࠍਅߍߚᠲᬺ߇ਥᵹ ߣߥߞߡࠆޔߚ߹ޕ⍹⊒㔚ߦ߅ߡ߽ࠗࡏޔἹߦᓸ☳ࠍ็߈ㄟ ߺޔΆߐߖࠆߎߣߢ⊒㔚ࠍⴕߞߡ߅ࠅޔല₸⊛ߥᠲᬺ߅ࠃ߮⍹↱᧪ߩ ࠻ࡉ࡞ࠍ࿁ㆱߔࠆߚߦ߽ޔ⍹ߩ᭴ㅧࠍࠄ߆ߦߔࠆߎߣߪ㕖Ᏹߦ㊀ ⷐߢࠆޕ ⍹ߪߘߩࡦࠢߦ߽ࠃࠆ߇⚂ޔ90 mass%ࠍ⚛ࠍᆎߣߒߚ᳓⚛⓸ ⚛╬ߩᯏᚑಽ߇භߡࠆޕᱷࠅߩ10 mass%⒟ᐲ߇ࠕ࡞ࡒ࠾࠙ࡓ߿ࠤࠗ ⚛╬ߩήᯏᚑಽߢࠅߩࠄࠇߎޔᯏᚑಽߣήᯏᚑಽ߇ⶄ㔀ߦ⛊ߺวߞߚ ᭴ㅧࠍߒߡࠆߣ⠨߃ࠄࠇߡࠆޕర⚛ㆬᛯᕈ߇ࠅߩࠢ࡞ࡃޔ᭴ㅧᖱ ႎ߇ᓧࠄࠇࠆ࿕NMRߪ⍹ߩൻቇ᭴ㅧࠍ⍮ࠆߢ㕖Ᏹߦലߥᚻᴺߢ ࠆޕᚒߪޘ⍹ߩല↪ࠍଦㅴߔࠆߚߦߢ߹ࠇߎޔ13C, 27Al, 29Si╬ ߩ᭴ㅧ⸃ᨆࠍਛᔃߦታᣉߒߡ߈ߚ߇ᦨޔㄭߢߪⅣႺ㗴ࠍ⢛᥊ߦ15N߿11B ╬ߩᓸ㊂ᚑಽߩ⹏ଔ߽ⴕߞߡ߅ࠅޔ࿁ߩ⊒ߢߪߎࠇࠄߩᩭ⒳ߩ᷹ቯ⚿ ᨐߦ㑐ߒߡႎ๔ߔࠆޕ ࿕NMRߩ᷹ቯ᧦ઙࠍTable 1ߦ◲නߦ߹ߣߚޕ ⍹㧘ᄙᩭ࿕NMR ٤߆ߨߪߒߎ߁ߓ㧘ߚ߆ߪߒߚ߆߰ߺ -380- ᧄⷐᣦߢߪ⚕㕙ߩㇺวޔ⍹ਛߩ⓸⚛ߣࡎ࠙⚛ߩ⚿ᨐࠍ⸥ߔࠇߕޕ ߽⍹ਛߩ㊂ߪ߆ߢࠅ㧔N㧦⚂1 mass%ޔB㧦⚂0.01 mass%㧕ߎޔ ࠇ߹ߢߩႎ๔ߪዋߥޕ ⍹A, Bߩ1Hĺ15N CP/MASࠬࡍࠢ࠻࡞ࠍFig. 1ߦ␜ߔޕ⍹ਛߩ⓸⚛ߪޔ ࡇࠫࡦ࠲ࠗࡊ߿ࡇࡠ࡞࠲ࠗࡊߩ⧐㚅ᣖࡊࠗ࠲ࡦࡒࠕ߿ࡊࠗ࠲࠼ࡒࠕޔ ╬ߩ⢽⢌ᣖ߇⠨߃ࠄࠇࠆ߇ޔ࿁ߩ᷹ቯ⚿ᨐ߆ࠄߪޔਥߦࡇࡠ࡞࠲ࠗࡊ ߇᷹ⷰߐࠇߡࠆߩ߇ࠊ߆ࠆߩࡊࠗ࠲࡞ࡠࡇߚ߹ޕൻቇࠪࡈ࠻ߪޔⅣ᭴ ㅧ߇⊒㆐ߔࠆߦᓥ㜞⏛႐߳ࠪࡈ࠻ߒߡߊߎߣ߆ࠄޔ⍹A߅ࠃ߮B ࠍᲧߴߚ႐วޔ⍹Bߩ߶߁߇ࠃࠅࡇࡠ࡞Ⅳ߿ࡌࡦࡦⅣ߇❗วߒߚ᭴ ㅧࠍߣߞߡࠆߣផ᷹ߐࠇࠆޕታ㓙ޔ⍹Bߩ߶߁߇ൻᐲ߇㜞ߊޔ⚛ 㛽ᩰߩ⧐㚅ᣖᕈ߇㜞ߊߥߞߡࠆߎߣ߆ࠄޔ⍦⋫ߒߥ⚿ᨐߢࠆߣ߃ ࠆޕ࿁ߩ᷹ቯߢߪCP/MASࠍ↪ߡࠆߚޔNߩㄭறߦH߇ሽߒߥ ࡇࠫࡦ࠲ࠗࡊߪ᷹ⷰߢ߈ߡߥ߇⹜ޔᢱࠍࡊࡠ࠻ࡦൻߔࠆߎߣߢࡇޔ ࠫ࠾࠙ࡓࠗࠝࡦߣߒߡᬌߢ߈ࠆߣᕁࠊࠇࠆޕ ᰴߦޔ⍹Cߩ11B MASࠬࡍࠢ࠻࡞ࠍFig. 2ߦ␜ߔޕ0㨪20 ppmߩ㗔ၞߦ3 ᧄߩᲧセ⊛ࠪࡖࡊߥࡇࠢ߇᷹ⷰߐࠇߚޕൻቇࠪࡈ࠻୯߆ࠄ್ᢿߔࠆߣޔ ૐ⏛႐ߩ2ᧄࡇࠢߪ3㈩Bߩൻቇࠪࡈ࠻㗔ၞߦㄭ߇ޔ3ᧄߩࡇࠢ ߕࠇ߽ᩭ྾ᭂሶ⚿วቯᢙߪ㕖Ᏹߦዊߐߎߣ߆ࠄ߇ࠢࡇߩߡోޔ4㈩ ᭴ㅧࠍߣߞߡࠆߣ⚿⺰ઃߌߚޕૐ⏛႐ߩ2ᧄߩࡇࠢߪޔㅢᏱߩήᯏ ㉄ൻ‛ߩൻቇࠪࡈ࠻㗔ၞߣߪ⇣ߥߞߡ߅ࠅޔᯏ⾰ߣ⚿วߒߚ4㈩Bߢ ࠆߣផ᷹ߒߚޕታ㓙ޔ1Hĺ11B CP/MASࠬࡍࠢ࠻࡞ߢߪߎࠇࠄߩૐ⏛႐ߩ ࡇࠢߩ⋧ኻᒝᐲ߇Ⴧടߒߡߚߎࠈ߆ࠄޔOHߣ⚿วߒߡࠆᯏ⾰ߩB ߦ࿃ߔࠆ߽ߩߣផቯߒߡࠆޕ Table 1 NMR parameters for coal samples. Pyridine Quinoline Pyrrole Indole Calbazole 㪥㫌㪺㫃㫀㪻㪼 㪪㫇㫀㫅 㪪㫇㪼㪺㫋㫉㫆㫄㪼㫋㪼㫉 㪚㪤㪯㪄㪊㪇㪇 㪈㪊 㪈㪆㪉 㪚 㪠㪥㪦㪭㪘㪄㪌㪇㪇 㪚㪤㪯㪄㪊㪇㪇 㪈 㪈㪆㪉 㪟 㪠㪥㪦㪭㪘㪄㪌㪇㪇 㪈㪌 Coal A 0 15N Fig. 1 㪩㪼㪽㪼㫉㪼㫅㪺㪼 㪚㪧㪆㪤㪘㪪 㪟㪤㪙㩷㩿㪈㪎㪅㪊㩷㫇㫇㫄㪀 㪚㪩㪘㪤㪧㪪 㪤㪘㪪 㪘㪻㪸㫄㪸㫅㫋㪸㫅㪼 㩿㪈㪅㪐㪈㩷㫇㫇㫄㪀 㪞㫃㫐㪺㫀㫅㪼 㩿㪄㪊㪋㪎㪅㪌㪋㩷㫇㫇㫄㪀 㪘㫃㪚㫃㪊㪅㪸㫈㩷㩿㪄㪇㪅㪈㩷㫇㫇㫄㪀 㪥 㪈㪆㪉 㪠㪥㪦㪭㪘㪄㪌㪇㪇 㪚㪧㪆㪤㪘㪪 㪘㫃 㪉㪐 㪪㫀 㪌㪆㪉 㪈㪆㪉 㪜㪚㪘㪄㪎㪇㪇 㪚㪤㪯㪄㪊㪇㪇 㪈㪈 㪊㪆㪉 㪜㪚㪘㪄㪎㪇㪇 㪤㪘㪪㪃㩷㪤㪨㪤㪘㪪 㪤㪘㪪 㪤㪘㪪㪃㩷㪚㪧㪆㪤㪘㪪㪃 㪪㪫㪤㪘㪪 㪉㪎 㪙 Coal B 100 㪧㫌㫃㫊㪼㩷㫊㪼㫈㫌㪼㫅㪺㪼 㪧㪛㪤㪪㩷㩿㪄㪊㪋㪅㪇㩷㫇㫇㫄㪀 㪟㪊㪙㪦㪊㪅㩷㪸㫈 㩿㪈㪐㪅㪋㪐㩷㫇㫇㫄㪀 Coal C -100 -200 -300 -400 -500 50 40 30 20 10 chemical shift / ppm 1Hĺ15N 11B CP/MAS spectra for coal A and B. -381- Fig. 2 11B 0 -10 -20 -30 -40 chemical shift / ppm MAS spectra for coal C. P97 ήᯏൻว‛ߩ࿕1H NMRߦ߅ߌࠆ㜞ㅦMASߣ CRAMPSߩಽ⸃⢻ߩᲧセ ٤ᶆ㆐1㧘㊄ᯅᐽੑ2 1ਃፉశ↥ 2ᣂᣣ㐅వ┵⎇ Comparison of spectral resolution between high-speed MAS and CRAMPS in 1H solid-state NMR for inorganic compounds ٤Tatsuya Nishiura1, Koji Kanehashi2 1Mishima Kosan Co., Ltd. 2Advanced Technology Research Laboratories, Nippon Steel Corporation In recent years, Magic angle spinning at very fast spinning frequency, “fast MAS”, has been utilized to obtain high resolution 1H NMR spectra for solids as well as CRAMPS. Fast MAS has some advantages over CRAMPS, e.g. easy to implement and more reliable in the chemical shift. Whereas MAS with the spinning rate up to 60 kHz provides still insufficient spectral resolution compares with CRAMPS for 1H abundant compounds such as organic polymer, it is promising for inorganic solids with lower concentration of 1H, causing the smaller dipolar interaction. In this study, we have applied high-speed MAS and CRAMPS to inorganic solids to compare spectral resolution. 1Hᩭߩ࿕㜞ಽ⸃⢻NMRࠬࡍࠢ࠻࡞ࠍᓧࠆߦߪCRAMPSࠍㆡ↪ߒ ޔ1H 㑆ߩᭂሶ⋧↪ࠍᐔဋൻߔࠆᣇᴺ߇⦟ߊ⍮ࠄࠇߡࠆ߇ߩߎޔᣇᴺߪ 㧔1㧕᧦ઙ⺞ᢛ߇ᾘ㔀ޔ㧔2㧕ൻቇࠪࡈ࠻ߩା㗬ᕈ߇ૐਅޔ㧔3㧕ቯ㊂ᕈߦ ᰳߌࠆߚߞߣޔ㗴ὐࠍᜬߟ৻ޕᣇߢޔㄭᐕߩࡂ࠼ᛛⴚߩ⊒ዷߦࠃߞ ߡޔ60 kHz⒟ᐲ߹ߢߩ㕖Ᏹߦ㜞ㅦߢ⹜ᢱࠍ࿁ォߔࠆߎߣ߇น⢻ߥࡊࡠࡉ ߇ᚻߢ߈ࠆࠃ߁ߦߥࠅ◲ࠅࠃޔଢߦಽ⸃⢻ߩ㜞1H NMRࠬࡍࠢ࠻࡞߇ ᓧࠄࠇࠆᦼᓙ߇ࠆޕ ᯏൻว‛ߦ߅ߡߪ৻⥸ߦ1HỚᐲ߇㜞ߎߣ߆ࠄޔ60 kHz⒟ᐲߩ࿁ォ ᵄᢙߢߪ1H㑆ߩᭂሶ⋧↪߇ᐔဋൻߐࠇߕޔCRAMPSߦಽ⸃⢻߇ ߫ߥ႐ว߽ᄙ৻ޕᣇޔήᯏൻว‛ਛߩ᳓⚛ේሶߩỚᐲߪૐߎߣ߆ࠄޔ CRAMPSࠍ↪ߕߣ߽චಽߦಽ⸃⢻ߩ㜞1H NMRࠬࡍࠢ࠻࡞߇ᓧࠄࠇࠆ น⢻ᕈ߇ࠆߢߎߘޕ࿁ߩ߆ߟߊޔήᯏൻว‛ߦ߅ߡޔCRAMPSࠬ ࡍࠢ࠻࡞ߣ㜞ㅦ࿁ォਅߢߩMASࠬࡍࠢ࠻࡞ࠍ᷹ቯߒޔಽ⸃⢻ߩ㆑ߦ㑐ߔ ࠆၮ␆⊛ᬌ⸛ࠍⴕߞߚޕ 㜞ㅦMAS㧘CRAMPS㧘ήᯏൻว‛ ٤ߦߒ߁ࠄߚߟ߿㧘߆ߨߪߒߎ߁ߓ -382- 1H CRAMPS NMRࠬࡍࠢ࠻࡞ߪCMX-300㧔7.0 T㧕ࠍ↪ޔBR24ߩࡄ࡞ ࠬ♽㧔90qࡄ࡞ࠬ㧦1.3 Ps㧕ࠍ↪ߡ1500 Hzߩ⹜ᢱ࿁ォᵄᢙߢ᷹ቯ ߒߚޕൻቇࠪࡈ࠻ߩࠬࠤࡦࠣߪࠕࠫࡇࡦ㉄ߩ㜞⏛႐ߩࡔ࠴ࡦၮࠍ 1.5 ppmߣߒߚޕ㜞ㅦMASࠬࡍࠢ࠻࡞ߩ᷹ቯߦߪINOVA-500㧔11.7 T㧕ࠍ↪ ߢࠬ࡞ࡄ࡞ࠣࡦࠪޔ10㨪60 kHzߩ⹜ᢱ࿁ォᵄᢙߢ᷹ቯߒߚޕൻቇࠪࡈ ࠻ߪࠕ࠳ࡑࡦ࠲ࡦߩࡇࠢࠍ1.91 ppmߦ⸳ቯߒߚޕ ߹ߕ✢ߩࠢࡇޔߦኻߔࠆMASㅦᐲߩଐሽᕈࠍFig. 1ߦ␜ߔޕSilicic acidߦ߅ߡߪޔMASㅦᐲࠍߍߡ߽✢߇߶ߣࠎߤᄌൻߒߥ߆ߞߚߩߦ ኻߒޔKaolin㧔Al2Si2O5(OH)4 㧕߿H3BO3 ߢߪ࿁ォᦼߦኻߒߡ߶߷⋥✢⊛ ߦ✢߇ᷫዋߒߡߊะ߇ࠄࠇߦ․ޔH3BO3 ߢߪߘߩലᨐ߇㗼⪺ߢ ߞߚߩࠄࠇߎޕMASㅦᐲߦኻߔࠆ✢ߩଐሽᕈߩ㆑ߪޔൻว‛ਛߩ᳓ ⚛Ớᐲߣ㑐ㅪ߇ࠆߣ⠨߃ࠄࠇࠆ1)ޕ⸥ߩSilicic acidޔKaolin ޔH3BO3ਛ ߩ᳓⚛Ớᐲߪߘࠇߙࠇ< 1 mass%ޔ1.6 mass%ޔ4.9 mass%ߢࠅޔ᳓⚛Ớᐲ ߇㜞߶ߤ ޔ1H㑆ߩᭂሶ⋧↪߇ᐔဋൻߐࠇߡ߅ࠄߕޔMASㅦᐲߩ Ⴧടߦ߁✢ߩᷫዋലᨐ߇ᄢ߈ߊߥߞߡࠆߣ⠨߃ࠄࠇࠆޕ᳓⚛Ớᐲ߇ Ყセ⊛㜞H3BO3╬ߢߪޔMASㅦᐲࠍߐࠄߦߍࠆߎߣߦࠃߞߡࠆߥᦝޔ ✢ߩᷫዋ߇ᦼᓙߢ߈ࠆߣᕁࠊࠇࠆޕ ᰴߦޔMASㅦᐲ߇60 kHzߩᤨߩMASࠬࡍࠢ࠻࡞ߣBR24ߩࡄ࡞ࠬ♽ߢ ᓧࠄࠇߚCRAMPSࠬࡍࠢ࠻࡞ࠍᲧセߒߚ৻ࠍFig. 2ߦ␜ߔޕKaolinߦ߅ ߡߪޔਔᚻᴺߢ࠻࠲࡞ߩ✢⥄ߪ߶߷╬ߒ߽ߩߩޔ㜞ㅦMASࠬࡍࠢ ࠻࡞ߢߪࠃࠅ㞲ߦጀ㑆ߣጀౝߦሽߔࠆ㕖╬ଔߥOHၮ↱᧪ߩࡇࠢ߇ ಽ㔌ߢ߈ߡࠆ৻ޕᣇࠅࠃޔ᳓⚛Ớᐲߩ㜞H3BO3ߢߪޔCRAMPSࠬࡍࠢ ࠻࡞ߩ߶߁߇ಽ⸃⢻߇㜞ߎߣ߆ࠄޔFig. 1ߢࠄࠇߚะߣห᭽ޔ60 kHzߩMASㅦᐲߢߪ1H㑆ߩᭂሶ⋧↪ࠍᐔဋൻߔࠆߦߪਇචಽߢࠆ ߣ߃ࠆޕ એߩ⚿ᨐ߆ࠄޔήᯏൻว‛ߦ߅ߡ߽⹜ޔᢱ࿁ォᵄᢙ߇60 kHz⒟ᐲ ߩMASࠬࡍࠢ࠻࡞ߢߪಽ⸃⢻ߩὐߢCRAMPSߦ߫ߥࠤ ߽ࠬࠆ߇ ޔ ᷹ቯߩ◲ଢߐ߿ቯ㊂ᕈߩⷰὐ߆ࠄ ޔ1Hᩭߩ࿕㜞ಽ⸃⢻NMRࠬࡍࠢ࠻࡞ ࠍᓧࠆᣇᴺߣߒߡ㕖Ᏹߦലߢࠆߣ⠨߃ࠄࠇࠆޕ 4500 4000 H3BO3 FWHM / Hz 3500 3000 Kaolin 2500 2000 1500 1000 Silicic acid 500 0 㪇 㪉㪇 㪋㪇 㪍㪇 㪏㪇 㪈㪇㪇 㪈㪉㪇 Rotor Period / Ps Fig. 1 Dependence of line width on rotor period for some inorganic compounds in 1H MAS spectra. Fig. 2 1H solid-state NMR spectra for kaolin (a) and H3BO3 (b). Top: CRAMPS spectra, bottom: MAS spectra (Qr=60 kHz). 1) J. P. Yesinowski, H. Eckert, G. R. Rossman, JACS, 110 (1988) 1367. -383- P98 ࣇࢵ⣲ࣞࢫ105ࣉ࣮ࣟࣈࢆ⏝࠸ࡓᚤ㔞ࣇࢵ⣲ࡢᏛᙧែゎᯒ ۑ㧗ᶫ㈗ᩥ 㔠ᶫᗣ ᰿ᮏ㈗ᏹ ᪂᪥㚩࣭ඛ➃◊ 2 ᪥ᮏ㟁Ꮚ Characterization of chemical species for trace amounts of fluorine using a fluorine-less NMR probe ۑTakafumi Takahashi1, Koji Kanehashi1, Takahiro Nemoto2 1 Advanced Technology Research Laboratories, Nippon Steel Corporation 2JEOL Fluorine is one of the elements whose environmental risks have been frequently discussed. Trace amounts of fluorine in by-products of steel-making industry make it difficult to characterize its chemical species. To improve the quality of 19F-NMR spectra, a fluorine-less NMR probe has been developed by substituting a module and a variable condenser with non-fluorine ceramics. As a result, a 19 F MAS NMR spectrum of synthetic products with fluorine content < 1mass% can be obtained without applying a depth pulse. In addition, new analytical techniques such as 19F{27Al} TRAPDOR and 31P{19F} CPMAS have been employed. In a 19F{27Al}TRAPDOR spectrum, the fluorine atoms bonding with aluminum ones are selectively observed. On the other hand, in a 31P{19F}CPMAS NMR spectrum, the fluorine atoms occurring close to phosphorous ones are selectively observed. The combination of these analytical techniques allows us to characterize the chemical species of trace amounts of fluorine. ࠙⥴ゝࠚࣇࢵ⣲㸦㹄㸧ࡣከࡃࡢᕤᴗ〇ရ⏝࠸ࡽࢀࡿ୍᪉ࠊ⎔ቃ㈇Ⲵ≀㉁ࡋ࡚⃰ᗘ࣭⁐ฟ ್᪉㛵ࡋ࡚ࠊཝࡋ࠸ฟつไࡀタࡅࡽࢀ࡚࠸ࡿඖ⣲࡛ࡶ࠶ࡿࠋࡇ࠺ࡋࡓ⎔ቃつไࢆࢡࣜ ࡍࡿࡇࡀࠊ▼Ⅳ⅊ࡸࢫࣛࢢ➼ࡢ⏝ࢆ㐍ࡵࡿ࠺࠼࡛ࡢㄢ㢟࡛࠶ࡿࠋࡇࢀࡲ࡛ࡶࠊF ࡢᏛᙧែࢆไᚚࡼࡿ㹄ᅛᐃἲࡀᥦࡉࢀ࡚࠸ࡿࡶࡢࡢࠊ㹄ࡢᏛᙧែゎᯒᢏ⾡ࡣ༑ศ ☜❧ࡉࢀ࡚࠸ࡿࡣゝ࠼࡞࠸ࠋ≉ࠊ1mass%௨ୗࡢᚤ㔞㹄ࡘ࠸࡚ࡣࠊFྵ᭷ྜ≀ࢆNMR ࡛≉ᐃࡍࡿࡣᗄࡘࡢᢏ⾡ⓗㄢ㢟ࡀᏑᅾࡍࡿࠋ୍⯡ࠊNMRࣉ࣮ࣟࣈෆ㒊ࡢࣔࢪ࣮ࣗࣝ࿘ ㎶ࡣຍᕤࡢࡋ᫆ࡉ࡞ࡢ⌮⏤ࡽF⣔ᶞ⬡ࡀከ⏝ࡉࢀࠊᙉ࠸ࣂࢵࢡࢢࣛ࢘ࣥࢻ㸦BG㸧ࢩࢢ ࢼࣝࢆ࠼ࡿࠋࡲࡓࠊAl-F⤖ྜSi-F⤖ྜࡘ࠸࡚ࡣࠊFࡢᏛࢩࣇࢺࡀ㢮ఝࡋ࡚࠾ࡾࠊ19F-MAS ࢫ࣌ࢡࢺࣝࡢࡳ࡛ࡇࢀࡽࢆ༊ูࡍࡿࡇࡣ㞴ࡋ࠸ࠋྠᵝࠊCa-F⤖ྜࢆᣢࡘྜ≀ࡢFᏛࢩ ࣇࢺࡶࠊᴟࡵ࡚⊃࠸㡿ᇦ㞟୰ࡍࡿࠋࡑࡇ࡛ࠊࡇࢀࡽࡢㄢ㢟ࢆඞ᭹ࡍࡿࡓࡵࠊFࡢBG๐ῶ ྲྀࡾ⤌ࡴࡶࠊ ᐃᢏ⾡ࡋ࡚F-Al⤖ྜࢆ㑅ᢥⓗᢳฟࡍࡿ19F{27Al}TRAPDORἲࠊP-F ⤖ྜࢆ㑅ᢥⓗᢳฟࡍࡿ31P{19F}CPMASἲࡢ ᐃᢏ⾡ࢆ☜❧ࡋࡓࠋࡑࡢ࠺࠼࡛ࠊࡇࢀࡽࡢᡭ ἲࡼࡾࠊྜᡂヨᩱ୰ࡢᚤ㔞FࡢᏛᙧែゎᯒࢆ⾜ࡗࡓࠋ ࠙ᐇ㦂ࠚ NMRࢫ࣌ࢡࢺࣝ ᐃࡣࠊJEOL-ECA700(16.4T)࠾࠸࡚ࠊ27Al-19F㔜ඹ㬆ࣉ࣮ࣟࣈ 㸦3.2mm㸧࠾ࡼࡧ31P-19F㔜ඹ㬆ࣉ࣮ࣟࣈ(4mm)ࢆ⏝࠸࡚⾜ࡗࡓࠋ ࣮࣮࢟࣡ࢻ㸸ࡧࡾࡻ࠺ࡩࡗࡑࠊࡽࡗ࣮ࡿࠊࡩࡗࡑࢀࡍ ࢁࡦࡓࡶࡡࠊࡌ࠺ࡇࡋࡣࡡࠊࡳࡩࡓࡋࡣࡓۑ -384- t1= 1/ǎR 19 F-MAS NMR ᐃࡣࠊᅇ㌿㏿ᗘ20kHzࠊ18°ࣃࣝࢫ 㸦 0.7ȝs 㸧 ࠊ ⧞ ࡾ ㏉ ࡋ 5s ࡼ ࡾ ⾜ ࡗ ࡓ ࠋ 19 F{27Al}TRAPDORࢫ࣌ࢡࢺࣝ[1] ᐃࡣࠊ27Al-19F 㔜ඹ㬆ࣉ࣮ࣟࣈࡼࡾࠊFig.1♧ࡍࣃࣝࢫࢩ࣮ࢣ ࣥࢫࢆ⏝࠸࡚ࠊᅇ㌿࿘Ἴᩘ18kHzࠊt1ࢆᅇ㌿ྠᮇ ࡋ࡚⾜ࡗࡓࠋ31P{19F}CPMAS ᐃࡣࠊᅇ㌿㏿ᗘ10kHzࠊ Fig.1 contact time 0.2ms࡚⾜ࡗࡓࠋ 19 F{27Al} TRAPDOR pulse sequence. The time t1 is rotor-synchronized. ǎR indicates spinning frequency. ࠙⤖ᯝ࠾ࡼࡧ⪃ᐹࠚFig.2ࠊࣉ࣮ࣟࣈᨵⰋ๓ᚋ࡛ ᐃࡋࡓࣇࢵ⣲ࣂࢵࢡࢢࣛ࢘ࣥࢻࡢẚ㍑ࢆ ♧ࡍࠋࣇࢵ⣲⣔ᮦᩱࢆࣔࢪ࣮ࣗࣝ࿘㎶ࡽ㝖ࡋࡓࡇࡼࡗ࡚ࠊᖜ࡞ࣂࢵࢡࢢࣛ࢘ࣥࢻ ๐ῶຠᯝࡀᚓࡽࢀ࡚࠸ࡿࡇࡀศࡿࠋ㛗ᮇ✚⟬ࡼࡗ࡚Ꮫࢩࣇࢺ200ppm㏆⌧ࢀࡿࣂ ࢵࢡࢢࣛ࢘ࣥࢻࡣࠊᅇ㌿ࢆ᳨ฟࡍࡿࡓࡵࡢගࣇࣂ࣮ࢣ࣮ࣈࣝ⏤᮶ࡍࡿࡶࡢ⪃࠼ࡽࢀ ࡿࠋḟࠊCa(OH)2-Al2O3-SiO2ࢆ࣐ࢺࣜࢵࢡࢫࡋ࡚CaF2-Na3AlF6-Ca5(PO4)3F(FAP=fluorapatite) ࢆΰྜࡋࡓヨᩱࡘ࠸࡚ࠊ19F{27Al}TRAPDORࢫ࣌ࢡࢺࣝࡢ ᐃࢆ⾜ࡗࡓࠋࡑࡢ⤖ᯝࠊFig.3 ♧ࡍࡼ࠺ࠊAl-F⤖ྜࢆ᭷ࡍࡿNa3AlF6ࡢࡳࡀ㑅ᢥⓗᙉㄪࡉࢀࡓࢫ࣌ࢡࢺࣝࡀ☜ᚓࡽ ࢀࡓࠋ᭦ࠊᅇ㛤ⓎࡋࡓFࣞࢫࣉ࣮ࣟࣈࢆ⏝࠸࡚ࠊྜᡂヨᩱ(F⃰ᗘ0.7mass%)ࡢFࢫ࣌ࢡࢺࣝ ᐃࢆ⾜ࡗࡓࠋࡑࡢ⤖ᯝࠊࡇ࠺ࡋࡓ1mass㸣ᮍ‶ࡢᚤ㔞㹄ࡘ࠸࡚ࡶࠊdepthࣃࣝࢫ[2]ࢆ㐺⏝ ࡏࡎࠊⰋዲ࡞19F-NMRࢫ࣌ࢡࢺࣝࡀᚓࡽࢀࡓࠋࡇࡢࢫ࣌ࢡࢺࣝࡼࡾࠊྜᡂヨᩱ୰FࡢᏛᙧ ែࡋ࡚ࠊࣇࣝ࢜ࣟࣃࢱࢺ㸦FAP㸧ࡢᏑᅾࡀ♧၀ࡉࢀࡓࡓࡵࠊ31P-MASࢫ࣌ࢡࢺࣝ ᐃࢆ ⾜ࡗࡓࠋࡋࡋ࡞ࡀࡽࠊ31P-MASࢫ࣌ࢡࢺࣝࡣ⥺ᖜࡶᗈࡃࠊᏛࢩࣇࢺࡽFAPࢆ≉ᐃࡍࡿࡇ ࡣฟ᮶࡞ࡗࡓࠋࡑࡇ࡛ࠊFAP࠾࠸࡚ࡣࣇࢵ⣲ཎᏊࣜࣥཎᏊࡀ㏆㊥㞳Ꮡᅾࡍࡿࡇ ╔┠ࡋࠊ31P{19F}CPMASࢫ࣌ࢡࢺࣝࢆ ᐃࡋࡓࠋࡑࡢ⤖ᯝࠊFAPࡢᏛࢩࣇࢺ୍⮴ࡍࡿࣆ ࣮ࢡࡀほ ࡉࢀࠊ19F-NMRࢫ࣌ࢡࢺࣝࡽ᥎ᐃࡋࡓࡼ࠺ࠊྜᡂヨᩱ୰FAPࡀᏑᅾࡍࡿࡇ Ca5(PO4)3F ࡀド᫂ࡉࢀࡓࠋ CaF 2 Before After Fig.2. of fluorine background signal s Fig. 1.Comparison Comparison of fluorine background and after improvement of a NMR probe. before before and after improvement of a N. Na3AlF6 MAS TRAPDOR Fig.3. Plots of 19F-MAS and 19F{27Al}TRAPDOR spectra. The symbol * indicates spinning side bands. ࠙⤖ゝࠚᚤ㔞㹄ࡢศᯒྥࡅ࡚ࠊ㹄ࣂࢵࢡࢢࣛ࢘ࣥࢻࡢ๐ῶࠊ ᐃᢏ⾡ࡢ㧗ᗘࢆᐇࡋࡓࠋ ࡇࢀࡽࡢᢏ⾡ࢆ⏝࠸ࡓከ㠃ⓗ࡞ゎᯒࡼࡾࠊ㹄ࡢᏛᙧែࡀヲ⣽ゎᯒฟ᮶ࡿ⪃࠼ࡽࢀࡿࠋ ࠙ᘬ⏝ᩥ⊩ࠚCory&Ritchey, J.Magn.Reson. (1988) 80 128, 2Grey&Vega, J. Am.Chem. Soc. (1995) 117 8232 -385- P99 LEDࡄ࠶ࠤࠫߩഠൻߦ㑐ߔࠆࡑࠗࠢࡠࡊࡠࡉࠍ ↪ߚ࿕NMR᭴ㅧ⸃ᨆ ٤⍹↰ብਯ㧘ਃᅢℂሶ㧘ਃベఝሶ㧘ᮘጟస㧘ᦺୖື㇢ ࢃ᧲ࠨ࠴ࡦ࠲ޔᣣᧄ㔚ሶࢃޔㄘᎿᄢ㒮 Structural Analysis of LED Package by Solid-State NMR Using Micro probe ٤Hiroyuki Ishida1, Riko Miyoshi1, Yuko Miwa1, Katsuya Hioka2, and Tetsuo Asakura3 Toray Research Center, Inc., Shiga, Japan. 2 JEOL Ltd., Tokyo, Japan. 3 Department of Biotechnology, Tokyo University of Agriculture and Technology, Tokyo, Japan. It has been very difficult to analyze the materials in electronics field by solid-state NMR because of the lack of sample volume. Recently, micro probe makes it possible to observe a small amount of samples. As a result of the analyses for the LED encapsulation resin or LED phosphor, some cross-linking structures were made in degraded LED encapsulation resin, and it was supposed change of valence state of Ce in degraded LED phosphor. Furthermore, oxidation or defection of Ce from the crystalline was suggested in degraded LED phosphor. 䇼✜⸒䇽 ㄭᐕޔᏒ႐ᄢߩ⪺ߒ⊕ ⦡LEDߦ߅ߡ㊀ⷐߥ⺖㗴ߪޔା㗬 ᕈߩ㗴ߢࠆޕା㗬ᕈߦߪߟ৻ޔ ৻ߟߩ⊕⦡LEDߩ⠴ਭᕈߣޔᄙᢙߩ ⊕⦡LED߇↪ߐࠇࠆߚߦ↢ߓ ࠆノᐲߩ߫ࠄߟ߈߇߹ࠇࠆ⦡⊕ޕ LEDߩ⠴ਭᕈߜࠊߥߔޔഠൻߦ㑐ߒ ߡߪޔశ᧤ߩ⚻ᤨഠൻߩߘޔᰴߦޔ ࡄ࠶ࠤࠫߩ⚻ᤨഠൻ࠴ߦ⊛⚳ᦨޔ ࠶ࡊߩ⚻ᤨഠൻ߇ߎࠆߣ⸒ࠊࠇ ߡࠆ߇ޔታ㓙ߦߪߩࠄࠇߎޔഠൻ Fig. 1 Photographs of microprobe and sample tube. ⷐ࿃߇ⶄ㔀ߦᷙߑߞߡ߅ࠅޔഠൻࡕ ࠼ߩ⸃ᨆࠍ㕖Ᏹߦ࿎㔍ߥ߽ߩߦߒߡࠆޕ ᓥ᧪ޔ࿕NMRߩ᷹ቯߦߪ⹜ᢱ㊂߇ᢙ⊖㨪ᢙචmg⒟ᐲᔅⷐߢߞߚߎߣ߆ࠄߎޔ ߩࠃ߁ߥ⹜ᢱ㊂ߩዋߥ߽ߩߩಽᨆߪਇน⢻ߢߞߚࡠࡊࡠࠢࠗࡑޔࠄ߇ߥߒ߆ߒޕ ࡉߩ㐿⊒ߦࠃࠅޔ0.5㨪1mg⒟ᐲߢ߽᷹ቯน⢻ߣߥࠅޔLEDਛߩ᮸⢽߿Ⱟశߥߤ ߩᓸ㊂⹜ᢱߩ߽ߩ߽ಽᨆߔࠆߎߣ߇ߢ߈ࠆࠃ߁ߦߥߞߚ⦡⊕ޔߪߢߎߎޕLDEߩኽᱛ ᮸⢽߿Ⱟశߥߤߦߟߡㆊ㔚ഠൻ⹜㛎ࠍⴕߞߚ⚿ᨐߦ㑐ߒߡႎ๔ߔࠆޕ 㪣㪜㪛ኽᱛ᮸⢽㪃㩷㪣㪜㪛Ⱟశ㪃㩷 䊙䉟䉪䊨䊒䊨䊷䊑㩷 ٤ߒߛ߭ࠈࠁ߈㧘ߺࠃߒࠅߎ㧘ߺࠊࠁ߁ߎ㧘߭߅߆߆ߟ߿㧘ߐߊࠄߡߟࠈ߁ 1 -386- ޣታ㛎 ޤᏒ⽼ߩ⊕⦡ LED ߦߟߡ 9V ߢߩㆊ㔚ഠൻ⹜㛎ࠍⴕޔㅢ㔚೨⹜ᢱߣ ㅢ㔚⹜㛎ߦࠃࠅోߊノ߆ߥߊߥߞߚഠൻ⹜ᢱࠍ᷹ቯߦଏߒߚޕ9V ߢㅢ㔚ߒߚ႐วޔ ߔߋߦノ߆ߥߊߥࠆ߽ߩ߿㐳ᤨ㑆⛮⛯ߒߡノߊ߽ߩߥߤޕߚߞ߇߈ߟࠄ߫ߩࠅߥ߆ޔ ࿕ NMR ᷹ቯߪޔBruker ␠ Avance400 ߦ JEOL ␠ࡑࠗࠢࡠࡊࡠࡉ 㧔Fig.1㧕 ࠍⵝ⌕ߒߡⴕߞߚ▤࡞ࡊࡦࠨ↪ࡉࡠࡊࡠࠢࠗࡑޕ㧔ࠫ࡞ࠦ࠾ࠕ ౝᓘ㧦0.5mmޔ ᄖᓘ㧦1mmޔ㐳ߐ㧦7.4mm⹜ޔᢱኈⓍ㧦0.8PL㧕ߪޔFig.1 ߩ౮⌀ߩࠃ߁ߦޔ߷߶ޔ ☨☸ߣห⒟ᐲߩᄢ߈ߐߢࠆߢࡉࡠࡊࡠࠢࠗࡑߩߎޕ᷹ቯน⢻ߥᩭ⒳ߪ 1H, 13C, 27Al, 79Br ߥߤߢࠆޕ Si–Ph Si–CH3 ⚿ޣᨐߣ⠨ኤ ޤFig.2 ߦޔLED ߩഠ ൻ೨ᓟߩኽᱛ᮸⢽ߦߟߡ᷹ቯߒߚ 13C DD/MAS ࠬࡍࠢ࠻࡞ࠍ␜ߒߚޕ –SiCH2CH2Si– 1ppm ߦࡔ࠴࡞ၮ↱᧪ޔ134㨪128ppm (b) ߦࡈࠚ࠾࡞ၮ↱᧪ߣផቯߐࠇࠆࡇࠢ ߇᷹ⷰߐࠇߡࠆߎߣ߆ࠄߩߎޔ᮸⢽ (a) ߪࠪ࡞࠾ࠚࡈߣࡦࠦࠪ࡞࠴ࡔޔ PPM ࠦࡦߩ㊀วࠆߪᷙว‛ߢࠆ 200 175 150 125 100 75 50 25 0 ߎߣ߇ផቯߐࠇߚࠢࡇޕ㕙ⓍᲧࠃࠅޔ ࡔ࠴࡞ࠪࠦࡦߣࡈࠚ࠾࡞ࠪࠦ Fig.2 13C DD/MAS spectra of encapsulation ࡦߩࡕ࡞Ყߪ⚂ 70/30 ߣⓍ߽ࠄࠇߚ ޕresin in LED (a) before degradation and (b) ഠൻ⹜ᢱߩࠬࡍࠢ࠻࡞ߢߪޔ10ppm after degradation. ㄭறߦዊߐߥࡇࠢ߇᷹ⷰߐࠇߡࠆޕ AlVI ߎߩࡇࠢߪࠦࡦ࠲ࠢ࠻࠲ࠗࡓࠍ⍴ߊ ߒߡ᷹ቯߒߚ 13C CP/MAS ࠬࡍࠢ࠻࡞ ߢࠅࠃޔᄢ߈ߥᒝᐲࠍ␜ߒߚߎߣ߆ࠄޔ AlIV ᨞ᯅ↱᧪ߩࡇࠢߢࠆߎߣ߇␜ໂߐ * * (a) ࠇߚޔߦࠄߐޕ࿕ 1H NMR ᷹ቯࠍⴕ ߞߚ⚿ᨐ⹜ߩߎޔᢱਛߦࡆ࠾࡞ࠪࡠࠠ (b) ࠨࡦ߇㊀วߐࠇߡࠆߎߣ߇ಽ߆ߞߚޕ (c) ߎࠇࠄߩ⚿ᨐࠃࠅޔ᨞ᯅ᭴ㅧߣߒߡߪ ppm 㪉㪇㪇 㪇 㪄㪉㪇㪇 –SiCH2CH2Si–᭴ㅧߥߤ߇ផቯߐࠇࠆ ޕ㪋㪇㪇 Fig.3 ߦޔLED ߩഠൻ೨ᓟߩⰯశ Fig.3 27Al MAS spectra of phosphor in LED (a) ߅ࠃ߮ YAG ⚿᥏㧔Y3Al5O12㧕ߦߟߡ before, or (b) after degradation, and (c) YAG㧚 ᷹ቯߒߚ 27Al MAS ࠬࡍࠢ࠻࡞ࠍ␜ߒ ߚ ⚂ޕ0ppm ߦ 6 ㈩ Al ↱᧪ ⚂ޔ50㨪70ppm ߦ 4 ㈩ Al ↱᧪ߩࡇࠢ߇᷹ⷰߐࠇ ߡࠆޕഠൻ⹜ᢱߦ߅ߡߪޔㅢ㔚೨⹜ᢱ߿ YAG ⚿᥏ߦᲧߴߡޔ6 ㈩ Al ↱᧪ߩࡇ ࠢ߇߿߿ࡉࡠ࠼ߥߎߣ࠼ࡦࡃ࠼ࠗࠨࠣࡦ࠾ࡇࠬޔ㧔࿑ਛ*ශ㧕ߩᒝᐲ߇ᄢ߈ߎ ߣ߆ࠄޔㅢ㔚ᤨߩᾲ߿శߥߤߦࠃࠅޔYAG ߩ⚿᥏᭴ㅧߩኻ⒓ᕈߩૐਅ߿ޔYAG ߦ࠼ ࡊߐࠇߚ Ce ߩᰳ៊߿㉄ൻ⁁ᘒߩᄌൻޔଔᢙᄌൻߥߤ߇߈ߡࠆߎߣ߇ផ᷹ߐࠇ ࠆޕ ⻢ޣㄉ⎇ᧄ ޤⓥߩ৻ㇱߪ⑼ޔቇᛛⴚᝄ⥝ᯏ᭴↥ቇࠗࡁࡌ࡚ࠪࡦടㅦᬺޣవ┵⸘ ᷹ಽᨆᛛⴚᯏེ㐿⊒ޤ㧔ᐔᚑ20-22ᐕᐲ㧕ߦࠃࠅታᣉߐࠇߚ߽ߩߢࠆޕ -387- P100 㓄ྥヨᩱࡢྛ✀NMRἲࡼࡿホ౯ ○ྜྷỈ ᗈ᫂1㸪ᒸ⃝ ㄔ⿱1㸪ዟᮧ ♸⏕1㸪ച ಇே1 1ྡᕤ࣭㝔ᕤ Characterizations of the Oriented Materials by NMR Techniques ○Hiroaki Yoshimizu1, Masahiro Okazawa1, Yuki Okumura1, Toshihito Karakasa1 1 Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan. It was already confirmed that the layered structure of the liquid crystalline aromatic polyester with n-alkyl (C14) side chain (B-C14) could be easily oriented by magnetic field. In this study, the magnetically oriented layered structure of B-C14 was characterized by 13C CP/static NMR. The sample of B-C14 which was prepared by quenching to room temperature (RT) from 160 °C in the isotropic liquid state was used as non-oriented and starting samples for the magnetic orientation under magnetic field of 9.4 T. As a result, the best temperature condition was determined 130 °C on heating from room temperature, and 70 °C on cooling from 160 °C. Furthermore, to clarify the gas transport properties of polymeric crystalline structure, poly(4-methyl-1-pentene) (PMP) membranes were drawn and investigated the oriented structure. >⥴ゝ@ ᡃࠎࡣ࠸ࡃࡘࡢ㧗ศᏊྜ≀࠾ࡅࡿ⤖ᬗ࡞㧗⛛ᗎࡉࢀࡓᵓ㐀┦ࡢ≉ ᚩࢆάࡋ㸪Ẽయศ㞳≉ᛶ࡞ࡢ≀ᛶࡀᖜྥୖࡍࡿྍ⬟ᛶࡘ࠸᳨࡚ウࡋ࡚࠸ࡿ㸬 ࡇࡢ┠ⓗᑐࡋ㸪⤖ᬗ┦➼ࢆ㧗ᗘ୍᪉ྥ㓄ྥࡉࡏࡿࡇࡣࡁࢃࡵ࡚᭷ຠ࡛࠶ࡿ ⪃࠼ࡿ㸬ࡑࡋ࡚㸪ศᏊ㓄ྥᵓ㐀ࡢホ౯ྛ✀㹌㹋㹐ἲࢆ㥑ࡋ࡚㸪⢭ᐦࡘṇ☜࡞✀ࠎ ࡢᵓ㐀ሗࢆ⋓ᚓࡍࡿࡇࡶࡲࡓ㔜せ࡞◊✲ㄢ㢟࡛࠶ࡿ㸬ᮏⓎ⾲࡛ࡣ㸪ᅛయ13C NMR ἲࢆ⏝࠸ࡓ㓄ྥヨᩱࡢ┤᥋ホ౯ຍ࠼㸪Ẽయࡢᣑᩓᣲືホ౯ࢆ㏻ࡌ࡚㛫᥋ⓗ࡞㓄ྥᵓ 㐀ホ౯ࡘ࠸࡚ሗ࿌ࡍࡿ㸬ලయⓗࡣ㸪1,4ࢪ࢚ࣝ࢟ࣝࢫࢸࣝ4,4ࣅࣇ࢙ࣀ࣮ࣝ ࡽ࡞ࡾࢧ࣮ࣔࢺࣟࣆࢵࢡᾮᬗᛶࢆ♧ࡍ㸪ࣝ࢟ࣝഃ㙐ࢆ᭷ࡍࡿⰾ㤶᪘࣏࢚ࣜࢫࣝ (BC14; ഃ㙐ࣝ࢟ࣝഃ㙐ࡢⅣ⣲ᩘࡣ14)ࡀᙧᡂࡍࡿ㸪1ศᏊ࡛ࣞ࣋ࣝ㓄ิࡋࡓ ᒙ≧ᵓ㐀ࢆ☢ሙ㓄ྥࡉࡏࡓሙྜࡸ㸪༙⤖ᬗᛶ㧗ศᏊ࡛࠶ࡿ࣏ࣜ4࣓ࢳࣝ1࣌ࣥࢸࣥ (PMP)ࢆᘏఙ㓄ྥࡉࡏࡓሙྜࡘ࠸࡚㸪ᆺⓗ↓㓄ྥ(ࣛࣥࢲ࣒ࢥࣝ)㧗ศᏊࡢㅖࢹ ࣮ࢱࡶẚ㍑ࡋ࡞ࡀࡽ㸪ྛ✀㹌㹋㹐ἲࡢ᭷⏝ᛶࡘ࠸࡚ゝཬࡍࡿ㸬࡞࠾㸪ᮏ✏࡛ࡣ BC14ࡢ⤖ᯝࡘ࠸࡚㏙ࡿ㸬 >ᐇ㦂@ BC14ࡢྜᡂࡣ᪤ሗᚑࡗࡓ㸬☢ሙ↓༳ຍࡢ⎔ቃୗ࡛➼᪉ᛶᾮయ≧ែ࡛࠶ࡿ ᗘ(160 Υ)࡛5ศ௨ୖ㟼⨨ࡋࡓᚋ㸪ᐊ ࡲ࡛ᛴ෭ࡋࡓࡶࡢࢆ↓㓄ྥヨᩱࡋ㸪ࡇࢀࢆ 9.4 Tࡢ㉸㟁ᑟ☢▼ෆ࡛㸪ᡤᐃ ᗘࡲ࡛᪼ ࡋ15ศ㛫ಖᣢࡋࡓᚋᐊ ࡲ࡛෭༷ࡋࡓ ሙྜ(᪼ 㐣⛬)㸪160 Υ࡛5ศಖᣢࡋࡓᚋᡤᐃ ᗘࡲ࡛෭༷ࡋ࡚15ศ㛫ಖᣢࡋ࡚ ࡽᐊ ୗࡆࡓሙྜ(㝆 㐣⛬)ࡢ㸪㏻ࡾࡢ᪉ἲ࡛☢ሙ㓄ྥࡉࡏࡓ㸬PMPࢧࣥࣉࣝࡣ ୕Ꮫ(ᰴ)ࡼࡾ౪ࡉࢀࡓᵝࠎ࡞ᘏఙಸ⋡ࡢPMP⭷ࢆ⏝࠸ࡓ㸬ࡇࢀࡽࡢヨᩱࡢᅛయ 13C NMR CP/static୪ࡧྛ✀Ẽయࡢ╔≧ែ࠾ࡅࡿPFG NMR ᐃࢆ⾜ࡗࡓ㸬 ☢ሙ㓄ྥ㸪ẼయࡢNMR㸪Ẽయᣑᩓಀᩘ ○ࡼࡋࡳࡎ ࡦࢁ࠶ࡁ㸪࠾ࡊࢃ ࡲࡉࡦࢁ㸪࠾ࡃࡴࡽ ࡺ࠺ࡁ㸪ࡽࡉ ࡋࡦ -388- >⤖ᯝ⪃ᐹ@ Figure 1 ୍ࡋ ࡚㸪9.4 T ࡢ㉸ఏᑟ☢▼ෆ࡛ᐊ ࡽ ᅗ୰♧ࡋࡓ ᗘࡲ࡛᪼ ࡉࡏࡓࡢ ࡕ㸪ࡧᐊ ࡲ࡛ᚎ෭ࡋࡓྛࢧࣥࣉ ࣝࡢᅛయ 13C NMR ᐃ⤖ᯝࢆ♧ࡍ㸬 ᕥഃࡢࢫ࣌ࢡࢺࣝࡣࢧࣥࣉࣝㄪ〇 ༳ຍࡋࡓ☢ሙ᪉ྥࢆศගィࡢ㟼☢ ሙ(B0)᪉ྥ୍⮴ࡉࡏ࡚タ⨨ࡋᚓࡓ ࡶࡢ࡛࠶ࡾ㸪ྑഃࡢࡶࡢࡣ B0 ࡣᆶ 150䉝 150䉝 140䉝 140䉝 130䉝 130䉝 120䉝 120䉝 110䉝 110䉝 100䉝 100䉝 90䉝 90䉝 80䉝 80䉝 70䉝 70䉝 ↓㓄ྥ ↓㓄ྥ ┤࡞᪉ྥࢆ㍈ 90rᅇ㌿ࡉࡏ࡚ᚓ ࡓࡶࡢ࡛࠶ࡿ㸬᭱ୗẁẚ㍑ࡢࡓࡵ ♧ࡋࡓ↓㓄ྥヨᩱ(☢ሙ↓༳ຍ࡛ ㄪ〇)ࡢࢫ࣌ࢡࢺࣝࡣᆺⓗ࡞⢊ᮎ ࢫ࣌ࢡࢺࣝ⥺ᙧ࡛࠶ࡿ㸬ࡇࢀᑐࡋ㸪 ☢ሙ㓄ྥヨᩱࡢ㓄ྥ᪉ྥࢆ B0 ᖹ ⾜࠾࠸࡚ほ ࡋࡓࢫ࣌ࢡࢺ࡛ࣝࡣ㸪 ≉ 150 ppm ㏆ࢩ࣮ࣕࣉ࡞ࣆ ࣮ࢡࡀほᐹࡉࢀ㸪ࡇࢀࡣ㓄ྥ᪉ྥࢆ 250 200 150 100 50 Fig. 1 0 ppm 250 200 150 100 50 0 ppm 13 C CP/static NMR spectra of B-C14 at room temperature; (left) c axis is parallel to B0 (right) c axis is perpendicular to B0. 㟼☢ሙ᪉ྥᆶ┤࠾࠸࡚ほ ࡋࡓ ࢫ࣌ࢡࢺࣝࡢẚ㍑୪ࡧ㙐ⰾ㤶᪘Ⅳ⣲ࡢᏛࢩࣇࢺ␗᪉ᛶࢆ⪃៖ࡍࡿᒙ≧ᵓ 㐀ࡢ c ㍈ࡀ㟼☢ሙ᪉ྥ㓄ྥࡋ࡚࠸ࡿゎ㔘࡛ࡁࡿ㸬ࡲࡓ㸪ࡇࡢࣆ࣮ࢡࡢᙉᗘࡸ⥺ᖜ ࡀ㓄ྥ ᗘࡼࡾ␗࡞ࡿࡇࡀ☜ㄆࡉࢀࡓࡢ࡛㸪ᙉᗘẚ⥺ᖜࢆ㓄ྥᗘࡢᣦᶆࡋࡓ㸬 ☢ሙ༳ຍࡢ ᗘ᮲௳ࡣ᪼ 㐣⛬࡛ࡣ 130 Υ㸪㝆 㐣⛬࡛ࡣ 70 Υࡢࡁ᭱ࡶ㓄ྥࡍ ࡿࡇࡀ☜ㄆࡉࢀࡓ㸬᪼ 㐣⛬࡛ࡣ 130 Υ㏆࡛ᣢࡘศᏊࡢ㐠ືᛶࡀ᭱ࡶ☢ሙ㓄ྥ 㐺ࡋ࡚࠸ࡿࡓࡵࡔ⪃࠼ࡽࢀ㸪㝆 㐣⛬࡛ࡣ㐠ືᛶࡢ࡚ࡶ㧗࠸➼᪉ᛶᾮయ≧ែࡽ ᚎࠎ㐠ືᛶࢆኻ࠸ࡘࡘ㓄ྥࢆࡋ࡚࠸ࡃࡓࡵ㸪ࡼࡾప࠸ ᗘ࡛᭱ࡶ㓄ྥࡋࡓ⪃࠼ࡽ ࢀࡓ㸬࡞࠾㸪ࡇࢀࡽࡢゎ㔘ࡣ X ⥺ᅇᢡࢹ࣮ࢱࡃ▩┪࡞࠸ࡀ㸪NMR ࢹ࣮ࢱࢆࡼࡃ ぢࡿ㸪30 ppm ㏆ほ ࡉࢀ࡚࠸ࡿഃ㙐ࣜࣇࢸࢵࢡⅣ⣲⏤᮶ࡢࣆ࣮ࢡ⥺ᙧ ࡶ B0 ᪉ྥ౫Ꮡᛶࢆ♧ࡋ࡚࠾ࡾ㸪ᶆ‽ⓗ࡞ X ⥺ᅇᢡᐇ㦂࡛ࡣᚓ㞴࠸ሗࡀྵࡲࢀ࡚࠸ ࡿⅬࡣ㸪NMR ἲࡢ᭷⏝ᛶࢆ♧ࡍⅬࡋ࡚ᙉㄪࡉࢀࡿ㸬 ୍᪉㸪BC14 ࡢ㓄ྥ᪉ྥྛ✀Ẽయࡢᣑᩓ␗᪉ᛶࡶ୍⮴ࡋ࡚࠾ࡾ㸪ࡇࢀࡽࡣᚑ᮶ ἲࡋ࡚ᐇࡋࡓẼయ╔ᐇ㦂࡛ᚓࡓ╔㔞ࡢ⤒ኚࢹ࣮ࢱࢆ㸪ᖹ⭷ࢆ௬ᐃࡋࡓゎ ᯒࡽᚓࡽࢀࡿẼయᣑᩓಀᩘ್ࡀ㸪㓄ྥヨᩱ↓㓄ྥヨᩱ࡛␗࡞ࡿࡇࡽࡶド᫂ࡉ ࢀࡿ㸬ణࡋ㸪ᣑᩓ␗᪉ᛶࢆ☜ᐇᐇ㦂ド᫂ࡍࡿࡣ㸪ࢧࣥࣉࣝᙧ≧ࢆᖹ⭷ࡋࡓୖ࡛ ⭷㠃ᑐࡋ㓄ྥ᪉ྥࡀᖹ⾜࡞ࡶࡢᆶ┤࡞ࡶࡢࡢ✀㢮ࢆ⏝ពࡍࡿᚲせࡀ࠶ࡿࡀ㸪 PFG NMR ἲ࡛ࡣ୍ࡘࡢ㓄ྥヨᩱࢆ ᐃ B0 ᑐࡋ࡚ᖹ⾜᪉ྥࡶࡋࡃࡣᆶ┤᪉ྥ タ⨨ࡋ࡚ ᐃࡍࡿࡔࡅ࡛Ⰻࡃ㸪ࡇࡢⅬࡶࡲࡓ NMR ἲࡢ᭷⏝ᛶ࠸࠼ࡿ㸬 PMP ࢧࣥࣉࣝࡘ࠸࡚ࡢ⤖ᯝࡣᙜ᪥ㄝ᫂ࡍࡿ㸬 -389-